轴对称与轴对称图形(图片多)
七下数学培优第10讲轴对称
(4)∠1与∠2有什么关系?∠3与∠4呢?
轴对称的性质 m
m
A
o
F
P C
D
B
E
Q
综合以上问题,你能得到什么结论?
1.对应点所连的线段被对称轴垂直平分; 2.对应线段相等,对应角相等.
知识点3、简单的轴对称图形 (一)线段的垂直平分线
线段的垂直平分线
探索发现
如图:将一张长方形形的纸对折,然后 用笔尖扎出“14”这个数字,将纸打开 后铺平:
A
D B
C
1
3
F
E
C'
2
4
F'
E'
A'
D' B'
打开
A
C
1
C'
A'
2
3
4
D
F F'
D'
B
E
E'
B'
(1)两个“14”有什么关系? (2)设折痕所在直线为l,连结点E和E′
的线段和l有什么关系?点F和F′呢?
4.轴对称图形沿对称轴对折后,对称轴 两旁的部分( A )
A.完全重合 C.两者都有
B.不完全重合 D. 不确定
A
5、如图,
D
∵ OC是∠AOB的平分线,
C
P
又 _P_D__⊥__O__A_,___P_E__⊥_ OB
O
E
∴PD=PE
B
( 角平分线上的点到这个角两边的距离相等 )
6、如图,OC是∠AOB的平分线,点P在 OC上,PD⊥OA,PE⊥OB,垂足分别是D、
(人教版) 轴对称图形 教学PPT课件1
•
10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。
•
11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。
•
12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!
•
17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。
•
18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅
•
19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生
•
20、做一个决定,并不难,难的是付诸行动,并且坚持到底。
•
21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。
•
22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。
•
23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
•
2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。
•
3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。
•
8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。
•
9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
八年级数学利用轴对称设计图案
3、成轴对称的两个图形的对应线段相等,对应角相等.
想一想
如图给出了一个图案的一半,其中 的虚线是这个图案的对称轴. (1)猜一猜:整个图案是个什么形状? (2)如何准确地画出它的另一半?
尝试探究
已知对称轴 l 和一个点A如
何画出点A关于 l 的对称点A’ ?
A
l
B
A’
1、过点A作对称轴 l 的垂线,垂足为B; 2、延长A B 至A’,使得BA’= A B. 3、点 A’ 就是点A关于 l 的对称点.
1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合, 那么这个图形叫做轴对称图形,这条直线叫做对称轴. 2、对于两个图形,如果沿一条直线对折后,它们能完全重合,那么 这两个图形成轴对称,这条直线就是对称轴. 轴对称主要有哪些性质? 1、关于某条直线对称的两个图形是全等形;
2、如果两个图形关于某直线对称,那么对应点所连的线段被对称轴垂直平分;
基础训练
1、 如何画线段AB关于直线 对称线段A’B’?
l
l的
A
A’
B
B’
找关键点作出其对称点! 然后连结线段.
基础训练
2、如何画 ⊿ABC关于直线 对称⊿ A’B’C’?
l
l的
A
A’
B
B’
还是找关键点作出其对称点!
然后顺次连结线段构成三角形.
基础训练
3、如图给出了一个图案的一半,其中 的虚线
请给出你的设计方案.(“名校” 81页“迁”2)
再 见
; / 深圳除甲醛 深圳甲醛检测 除甲醛公司
mqw42jnp
午就看见了,俺去推哇!”推开隔壁董家成家的院门儿一看,小推车依然还在门道里放着,耿正就进到院儿里招呼一声:“伯, 大娘!”董家成赶快出来说:“是正儿哇,快进屋里坐会儿!”耿正说:“不坐了。俺们要去姥娘家,想用一用小推车,推一 袋大米过去!”董家成说:“你等等,俺来打扫打扫。有几天不用了,落了尘土呢。”说着,拿了一把笤帚来到门道里,把小 推车仔细打扫一番,才让耿正推走。这个小推车果然很好用。耿老爹和耿直合提着把一大袋子大米放上去后,郭氏又将三小瓷 瓶米酒,三斤月饼,以及用小口袋装的莲籽也都搁在了车里。耿正推着车,耿英跨了礼物包,一家七口子高高兴兴地奔十字大 街那边去了。进得门来一看,八十多岁的郭老爷子正坐在火炕上美滋滋地抽旱烟呢,隔壁屋子里传来了娃儿们的嬉戏声。看女 儿一家人过来了,老爷子高兴说:“你们先来屋里坐着,他舅舅带了栋儿到前面给娃娃们打饼子去了,已经有一会子了,估计 就打好了!”耿直一听说舅舅在前面打饼子,拉起尚武就往前面跑。耿兰叫一声“姥爷”,就跑到隔壁屋子里和表妹和小表弟 玩儿去了。耿正将小推车停在台阶前。耿老爹、郭氏和耿英先将莲籽袋子、米酒和月饼都拿进屋里来,郭氏和耿英就坐在炕沿 边上和老爷子说话去了。耿老爹又出来,和耿正合提着将一大袋子大米放到屋里地上。俩人顺手拉两把椅子各自坐了。很快, 耿兰抱着小表弟,随着舅母和表妹也过这边来了。妻弟妹一进门就说:“俺说姐姐姐夫哇,一家子过来就好了,可带这么多东 西做啥啊!”郭氏说:“都是一些咱们这儿稀罕的东西,分着吃了哇!”老爷子说:“那一大袋是什么啊?”耿老爹说:“是 江南的大米,挺不错呢。俺这几年已经学会种这种庄禾了,还带了一些种子回来,想在咱们这儿试着种种。”老爷子说:“这 个主意不错。大米在咱们这儿可是个稀缺的东西呢。你如果真给种成了,也算是做了一件大好事儿哩!”又问女儿郭氏:“刚 提进来的那个小袋子里装的是什么东西?”郭氏说:“他爹说了,是莲籽,煮粥喝挺养人的!”耿老爹说:“每次熬粥之前提 前半天抓一把泡上,然后和小米一起煮上就行了。”妻弟妹说:“可不是个稀罕东西呢!”郭氏又指着米酒和月饼说:“这些 是武儿的嫂嫂亲自酿的新米酒;这些月饼是武儿的姐姐新打的。别说,这江南的月饼,闻着很香呢!”老爷子说:“虽说是第 一次见面,可俺很喜欢这个新外甥,挺不错的娃娃!他的家人看来也都很好呢!”妻弟妹也说:“看来确实是很懂世理的一家 人哩!”耿老爹说:“实在是难得的好人家呢!”耿正和耿兰只顾在一边和漂亮的表妹和可爱的小表弟高兴地玩儿去了,而耿 英的脑海里,此刻装的全都是慈祥的姥娘。定定地看着火炕一边儿九
轴对称图形
2.说一说
什么是轴对称图形?什么是对 称轴?
如果一个图形沿着一条直线对折,两 侧的图形能够完全重合,这个图形就是轴 对称图形。
折痕所在的这条直线叫做对称轴。
轴对称图形 对称轴
下面的图形是不是轴对称图形?
是
是
是
不
不
是
是
自主探究(二)
拿出平面图形折一折,看一看 我们学过的几何图形中哪些是轴对 称图形?它们各有几条对称轴?
(2条) (4条)
(1条) (3条)
(1条)
解疑合探:
请看,圆有几条对称轴?
啊!无数条!
阅读课本,你还有哪些不 明白的地方请提出来,大家一 起解决.
1.下面的字母哪些是轴对称图1.折一折 剪一剪:
先把一张纸对折,在折好的一侧画出 图形,用剪刀剪下来,再把这个图形打开, 观察得到的图形,你发现了什么?
2.说一说
什么是轴对称图形?什么是对 称轴?
沿着一条直线对折,两侧的图 形能够完全重合。
自主探究(一)
1.折一折 剪一剪:
民间剪纸艺术
图片欣赏
蝴蝶
蜻 蜓 秋天落叶
图片欣赏
风筝
通过这节课的学 习你有什么收获?
对称是一种思想,通过 它,人们毕生追求,并 创造次序、美丽和完善。
——赫尔曼·外尔
推理应用游戏
A B C DT E U F GH
2 .国旗是国家的一个象征,观察下 面的国旗,哪些是轴对称图形?试找 出它们的对称轴。
加拿大 瑞典
摩洛哥
古巴
以色列
巴西
运用拓展:
16.5 利用图形的平移、旋转和轴对称设计图案课件 2021—2022学年冀教版八年级数学上册
猫头鹰
小鸟飞翔
鱼翔浅底
小猪小猪胖乎乎
蝴蝶纷飞
三毛他哥二毛
开心雪人
母女俩
渔翁
小雨伞
旭日东升
放飞心情
随堂演练
1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图
案是 ( D )
A
B
C
D
2.如图所示的四个图案中,不能由基本图形旋转得到的是( D )
3.如图,若要使这个图案与自身重合,则它至少绕它的中心旋转 ( A) A.45° B.90° C.135° D.180°
第十六章 轴对称和中心对称
16.5 利用图形的平移、旋转和 轴对称设计图案
知识回顾
我们学过哪几种图形变换?它们的性质分别是什么? ①平移:平移只改变图形的位置,不改变图形的形状和大小;连接 对应点的线段平行(或在同一条直线上)且相等;对应线段平行且 相等,对应角相等.
②旋转:在平面内,一个图形旋转后得到的图形与原来图形之 间有:图形的大小与形状不变;对应点到旋转中心的距离相等; 每对对应点与旋转中心的连线所成的角都是相等的角,它们都 等于旋转角.
例2 请以给定的图形○○△△=(两个圆,两个三角形,两条平行线)为构件,尽
可能多地构思有意义的一些中心图形,并写上一两句贴切,诙谐的解说词.
如下图就是符合要求的图形,你能构思其它图形吗?比一比,看谁的想象力
丰富!
小丑踩球
漂亮的小领结
温馨提示: 进行图案设计时,
首先要整体构思,确 定“基本图形”,再 制定出“基本图形” 变换的具体操作程 序.
(1)
(2)
(3)
解: 如答图所示.
课堂小结
图案的设计
分析图案设计
分清基本图形 知道形成过程
《轴对称图形》课件
3
沿虚线折一折。
对称轴 对称轴
对折后虚线两边的 部分完全重合。 这些 图形 都是 轴对称图形,虚 线是它们的对称 轴
对折后对称轴两边的部分完全重合。 轴对称图形 中间对折的虚线叫做对称轴。
下面的图形如何对折后两边的部分 完全重合?你有几种折法?
2
说说下面图形有几条对称轴,并画出来。
三条
六
条
一条
对称现象
左右两部分或上下两部分完全相同,这些图形都是对 称的 。 。
(三)教学“对称” 1.课题导入 师:是啊,刚才我们看到的其实是生活中 的对称现象。在我们的数学中很多平面图 形,也可以发现对称现象,具有对称现象 的图形叫对称图形,今天老师和同学们一 起来研究数学上的轴对称图形。(板书课 题)
教学目标: 1.知识与技能: (1)初步认识轴对称图形的基本特征。 (2)帮助学生理解对称轴的含义,能画出轴对 称图形的对称轴。 2.过程与方法:通过学生动手操作等实践活动, 培养学生的观察能力和想象能力。 3.情感态度与价值观:在学生的学习活动中,让 学生学会欣赏数学之美。
学习目标
1. 经历观察、操作、交流等活动过程,能 认识轴对称图形。
2. 充分感受数学中的对称美,激发学习数 学的信心。
教学重点: 认识轴对称图形的基本特征,能画出轴对 称图形的对称轴。 教学难点: 能画出轴对称图形的对称轴 教学准备: 多媒体课件 长方形纸片、正方形纸片、 圆形纸片、平行四边形纸片等若干张
二、欣赏图片,建立表象。 (一)这不,你瞧。美丽的蝴蝶带来了哪些 成员? 课件出示:蝴蝶、七星瓢虫、E、工商银 行标志、数字8、飞机、天平、火箭等。 这些图片漂亮吗?学生欣赏各种对称图形。
1.轴对称与轴对称图形
课题轴对称与轴对称图形上课时间09月3 日星期一课时第 1 课时教学目标知识与能力通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及轴对称,并能找出对称轴.过程与方法通过亲自实验、探索,研究、发现、应用轴对称,实现真正的“做数学”.情感态度与价值观欣赏现实生活中的轴对称,体会轴对称在现实生活中的广泛应用和它的丰富文化价值.教学重点认识轴对称与轴对称图形并会找对称轴教学难点轴对称图形和轴对称的区别与联系教学方法合作讨论法教具多媒体教学内容及教学过程一、创设情境走进生活(投影片)4幅图,观察下列四幅图形,面对生活中这些美丽的图片,你是否强烈地感受到美就在我们身边!这是一种怎样的美呢?请你谈谈你的感想?“对称是一种思想,通过它,人们毕生追求,并创造次序、美丽和完善……”让我们走进对称的世界!去感受对称的奇妙和美丽吧!二、互动探究转化建模观察下面的图形,你能发现它们有什么共同的特征吗?说出来与同学交流。
对于两个图形,如果沿一条直线对折后,它们会怎样?,每一组里,右边的图形沿直线对折后与左边的图形完全重合于是我们能够得出轴对称概念.把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.观察下图中的每组图案,你能找出成轴对称的图形吗?练习1.找出图形的对称点2.请在图中标出A、B、C三点的对称点。
AB C3.从镜子中看到一串数字 , 这串数字是4.从水中看到一个汽车牌号为 ,实际车牌号为 .欣赏一些轴对称图形的图片1.中外建筑2.脸谱艺术3.剪纸艺术4.车标设计5.国旗欣赏6.交通标志7.实物图案8.几何图案面对生活中这些美丽的图片,你是否强烈地感受到美就在我们身边!这还是一种怎样的美呢?观察轴对称图形图片找出共同特征,请你想一想:将上图中的每一个图形沿某条直线对折,直线两旁的部分能完全重合吗?能互相重合一模一样是对称的我们能不能给具有这样特征的一个图形起一个名称呢?如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴你能够举出生活中还有哪些轴对称图形吗?生活中有许多轴对称图形,观察下面的轴对称图形,请分别指出每个图形的对称轴.三、拓展延伸提高能力1.观察下列图形,每个图形是不是轴对称图形?如果是,说出它们的对称轴.C D2.你能找出下面图形:正方形,长方形,等腰三角形,等边三角形,椭圆,圆,五角星的对称轴吗? 许多图形不止一条对称轴,如3.下面的图形是轴对称图形吗?如果是,有几条对称轴?归纳: 常见的轴对称图形有:线段、角、等腰三角形、等边三角形、长方形、正方形、菱形、等腰梯形、圆……一般的三角形、梯形、平行四边形不是轴对称图形。
2022年青岛版小学数学《认识轴对称图形》精品课件(五四制)
我们用表格记录一 下整理的结果吧。
合计
第一名 第二名 第三名
(15)人 (7)人 (3 )人 (5)人
返返回回
认识轴对称图形
发现获奖最多的项目是赛跑……
可以按 照获奖 的项目 来整理 一下。
按获奖的项目来统计数据。
王强 黄翔 王芳 方华 赵飞
男 子 第一名 60m
男 子 第二名 60m
女 子 第二名 60m
女 子 立 第三名 定跳远
我们用表格统 计一下结果吧!
合计
赛跑
立定跳远 投球
跳绳
(15 )人 (6)人 ( 4)人 (2 )人 (3 )人
返返回回
认识轴对称图形
你发现了什么?
从这两种分类中, 你发现了什么?
分类的标准不同, 得到的结果也不一 定相同,但最后的 总数却是一样的哦!
返返回回
认识轴对称图形
女 子 投 第一名 球
男 子 投 第三名 球
刘丽 于小美 杨晓燕 刘明 李宁
女 子 第一名 100m
女 子 跳 第一名 绳
女 子 跳 第二名 绳
男 子 立 第一名 定跳远
男 子 立 第三名 定跳远
李亮 孙波 于海 马英 王英
男 子 第一名 100m
男 子 第三名 100m
男 子 跳 第三名 绳
女 子 立 第一名 定跳远
返返回回
认识轴对称图形
发现4个轮子的车辆最多……
按轮胎的数量进行数据统计。
按照轮胎的数 量来整理一下
吧!
合计
2个轮子的 4个轮子的 6个轮子的
( 28)辆 ( 8 )辆 ( 14 )辆 ( 6 )辆
返返回回
认识轴对称图形
统计一下下面水果的情况吧。
生活中的轴对称图形ppt课件
用一用 在纸的一侧上滴几滴墨水,将纸迅速对折、 压平,并用手指压出清晰的折痕,再将纸打开后 铺平,观察所得到的图案,位于折痕两侧墨水图 案彼此之间有什么关系?它的对称轴是什么呢?
位于折痕两侧墨水图案成轴对称 ,对称轴为 折痕所在直线.
24
做一做 将一张矩形纸对折,然后用笔尖扎出“17”这个
数字,将纸打开后铺平,
36
37
38
你们知道 猴子为什么捞 不到月亮吗?
39
你见过这些现象吗?
40
41
42
43
在生活中,为了证实人的身 份,经常需要提取人的指纹, 俗称“按手印”。
如图,想一想,取下的指纹 与按手印的手指上的指纹完 全一样吗?它们有什么关系? 动手试一试,对比一下,然 后民同学交流。
①形状和大小相同;
(第一组)
21
议一议 我们再看图10.1.3中的两组图形,它们有什 么共同点?
(第二组)
22
议一议 我们再看图10.1.3中的两组图形,它们有什 么共同点?
D
D1
像这样,把一个图形沿着某一条直线翻折过去,如果 它能够与另一个图形重合,那么就说这两个图形成轴对 称,这条直线就是对称轴,两个图形中的对应点(即两 个图形重合时互相重合的点)叫做对称点.
轴对称图形是对一个图形说的。
33
轴对称与轴对称图形的区别和联系:
联系:
(1)定义中都有一条直线,都要沿这条直 线折叠重合;
(2)如果把轴对称图形沿对称轴分成两部 分,那么这两个图形就是关于这条直 线成轴对称;反过来,如果把两个成 轴对称的图形看成一个整体,那么它 就是一个轴对称图形。
34
练习:
1、在下列图形中,是轴对称图形的是( C )
七年级数学下册轴对称图形(湘教版)
•
十九、要想成就伟业,除了梦想,必须行动。——佚名
•
二十、忘掉今天的人将被明天忘掉。──歌德
•
二十一、梦境总是现实的反面。——伟格利
•
二十二、世界上最快乐的事,莫过于为理想而奋斗。——苏格拉底
•
二十三、“梦想”是一个多么“虚无缥缈不切实际”的词啊。在很多人的眼里,梦想只是白日做梦,可是,如果你不曾真切的拥有过梦想,你就不会理解梦想的珍贵。——柳岩
4.下列图形中对轴称只有两条的是( )
A.圆
B.等边三角形
C.长方形
D.等腰梯形
【解析】选C.圆有无数条对称轴,故A选项错误;等边三角形有3
条对称轴,故B选项错误;长方形有2条对称轴,故C选项正确;等腰
梯形有1条对称轴,故D选项错误.
5.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为 cm2.
•
四十三、梦想家的缺点是害怕命运。——斯·菲利普斯
•
四十四、从工作里爱了生命,就是通彻了生命最深的秘密。——纪伯伦
•
四十五、穷人并不是指身无分文的人,而是指没有梦想的人。——佚名
•
四十六、不要怀有渺小的梦想,它们无法打动人心。——歌德
•
四十七、人生最苦痛的是梦醒了无路可走。做梦的人是幸福的;倘没有看出可以走的路,最要紧的是不要去惊醒他。——鲁迅
•
二十八、青少年是一个美好而又是一去不可再得的时期,是将来一切光明和幸福的开端。——加里宁
•
二十九、梦想家命长,实干家寿短。——约·奥赖利
•
三十、青年时准备好材料,想造一座通向月亮的桥,或者在地上造二所宫殿或庙宇。活到中年,终于决定搭一个棚。——佚名
•
三十一、在这个并非尽善尽美的世界上,勤奋会得到报偿,而游手好闲则要受到惩罚。——毛姆
13.1 轴对称图形
1.线段、角是轴对称图形吗?如 果是请分别画出它们的对称轴。
.
. A
2.如图的京剧脸谱是一个轴对称图形。 (1)画出这个图形的对称轴。
. . B
(2)A,B是这个图形上的两个点,分别 作出它们的对称点。
• 一个数字在镜中看是“ 道这个数字是多少吗?
”,你知
注:本题要分类讨论,镜面是对称轴, 有两 种放法: (1) 垂直摆放; (2) 水平摆放.
一般长方形
一般平行四边形
等腰梯形
一般梯形
等边三角形
一般三角形
圆
正方形
一条对称轴
一般等腰三角形
等腰梯形
两条对称轴
一般长方形
三条对称轴 四条对称轴
等边三角形
正方形
无数条对称轴
圆
1.把一圆形纸片两次对折后,得到右图, 然后沿虚线剪开,得到两部分,其中一 部分展开后的平面图形是( )
B
A
B
C
D
NO
一个轴对称图形和两个图 形成轴对称的互相转换
如果把成轴对称的两个图形看成一个整 体,它就是一个轴对称图形,把一个轴对 称图形沿对称轴分成两个图形,那么这两 个图形就是关于这条直线轴对称。
你真的理解了吗?
分析讨论:两个图形成轴对称和轴对称 图形的区别与联系?
轴对称图形 两个图形轴对称
区 别
一图形
通过以上3类举例总结判别
轴对称图形的方法:
是 不用 是对 轴折 对的 称方 图法 形判 断 一 个 图 形
2.(福州·中考)下面四个中文艺术字中,不是轴对称图形 的是( )
【解析】选C.只有“千”字不是轴对称图形,上面的撇不对
称.
3、(日照·中考)已知以下四个汽车标志图案:
《轴对称图形》图形的运动PPT教学课件
2 判断。(对的在括号里画“√”,错的在括号里画“×”)
(1)5900=6000 (2)985和1032的近似数都可以写成1000。 (3)8 49≈8000,方框中最大能填9。 (4)4815的近似数只有4800。
( ×) ( √) ( ×) ( ×)
3 选择题。
(1)爸爸每月的工资大约是3000元,实际月工资可能是( C )元。
720
791
758
3 填空。
一台冰箱的价钱是2193 元,约是 2200 元。
一头大象重4840千克, 约重 4800 千克。
4 写出下面各数的近似数。
985 ≈ 990 523 ≈ 520
448 ≈ 450 1025 ≈1030 282 ≈ 280 3902 ≈3900
1、一个与准确数相接近(比准确数略大或略小)的数,叫 做这个准确数的近似数。 2、一个数的近似数,可以取相邻的整十数,也可以取相 邻的整百、整千、整万……的数;因此,一个数的近似数 大多不是唯一的。
A.2400 B.3840 C.3208
(2)买一辆自行车大约需300元,这辆自行车的实际价格可能是
( A )元。
A.305
B.398
C.207
(3)长白山天池湖面的海拔约是2200米,实际海拔可能是( B )米。
A.2599 B.2189 C.2003
4 用合适的近似数描述下面的事物。
一个大型养鸡场某一 天产鸡蛋3638个。
4 在是轴对称图形的后面横线上画“T”,不是的画“F”。
(1)
T
(2)
T
(3)
T
把一个图形沿一条直线对折,对折后直线两边的部分能够 完全重合,这样的图形就是轴对称图形,折痕所在的直线 就是图形的对称轴。
2020中考数学专题复习:图形和变换(轴对称、轴对称图形)(共29张PPT)
3- 2
例题6.
A O
Q
F
B E
综合提优
①求证:DQ=AE;②推断:GF:AE的值;
D
G
C
综合提优
A
D BC:AB=k(k为常数).探究GF与AE之间的数量
关系,并说明理由;
MO
F
B
E
G P
C
A
5X
O2 10 F 3 10 x
4X 5X
拓展应用:在(2)的条件下,连接CP,当k= 2 D 时,若tan∠CGP= 3 ,GF=2 10 ,求CP的长.3
2. 下列图形中,为轴对称图形的是( D )
基础训练
3.(2017黑龙江哈尔滨)下列图形中,既是轴对称图形
又是中心对称图形的是 ( D )
基础训练
4.如图所示,在Rt△ABC中,
∠C= 90°,以顶点A为圆心,适当
长为半径画弧,分别交AC,AB
于点M、N,再分别以点M,N为
圆心,大于0.5MN的长为半径画
例题讲解
∵以△ADE、△AD′E,关于直线AE 成轴对称图形∴AD=AD′, ∵在△ABD和△ACD′中
∴△ABD≌△ACD′(sss)
(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′, ∴∠BAC=∠DAD′=120°, ∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形 △AD′E, ∴∠DAE=∠D′AE= ∠DAD′=60°,即∠DAE=60°
E是边CD上一点,连接AE.折叠该纸片,使点A落在AE
上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.
若DE=5,则GE的长为
.
例题讲解
12
由折叠及轴对称的性质可知, △ABF≌△GBF,BF垂直平分AG,
五年级上册数学课件 轴对称图形西师大版(共25张PPT)
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
X
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
下面哪些汉字、字母是轴对称图形?
甲工 用 中 由
( )( )( X)( )( )
FG H B R
(X)(X) ( )( )(X)
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
请你在小楷纸上画出一个 自己喜欢的轴对称图形。
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
图片欣赏
加拿大国旗
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT) 五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
活动一:观察、思考、交流
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
你今天有什么收获?
五年级上册数学课件-2.2 轴对称图形 ︳西师大版(2014秋)(共25张PPT)
1.完成练习二第3题。 先让学生认真读题,看懂统计表后独立解答。最后引导学生提出其他数学问题并解答,发展学生的应用意识和数据分析观念。 2.完成练习二第7题。 列竖式计算并说说算理。 3.完成练习二第8题。 可以观察、比较左右两个算式的特点,不计算,通过简单的推理得到比较的结果,体现对学生推理能力的培养。 4.完成练习二第9题。 让学生先计算出结果,再连线。 5.完成练习二第10题。 让学生独立完成,再汇报交流。强调让学生通过列竖式的方法进行计算,熟悉方法,培养笔算能力。 6.完成练习二第11题。
《生活中的轴对称——轴对称现象》数学教学PPT课件(4篇)
议一议
观察下图中的每组图案,你发现了什么?
知识讲解
对于两个平面图形,如果沿一条直线对折后 能够完全重合,那么称这两个图形成轴对称,这 条直线叫做这两个图形的对称轴.
如果一个平面图形沿一条直线折叠后,直线两旁的 部分能够互相重合,那么这个图形叫做轴对称图形 (axially symmetric figure) ,这条直线叫做对称轴(axis of symmertry).
议一议
观察图5-2中的图形,哪些图形是轴对称图形? 如果是轴对称图形,请找出它的对称轴.
做一做
随堂训练
1.指出下面的图形是轴对称图形还是两个图形成轴对称? 并画出它们的对称轴。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10) (11) (12)
2.哪一面镜子里是他的像?
3.想想看:圆有几条对称轴? 啊!圆有无数条对称轴!
课堂小结
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特殊形状 两个全等图形的特殊的位置关系
第五章 生活中的轴对称
轴对称现象
学习目标
1 理解轴对称图形和两个图形成轴对称的含义. (重点) 2 能找出对称图形的对称轴,并能作出轴对称图形. (难点)
情景导入
下面这些图形同学们熟悉吗,它们有什么特征?
脸谱艺术
剪纸艺术
车标设计
国旗欣赏
知识讲解
请你想一想:将上图中的每一个图形沿某条直线对折, 直线两旁的部分能完全重合吗? 我们能不能给具有这样特征的一个图形起一个名称呢?
专题03《轴对称》(学生版)
专题03 轴对称1.轴对称图形与轴对称的相关概念(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.2.轴对称的性质(1)轴对称的两个图形是全等图形;轴对称图形的两个部分也是全等图形.(2)轴对称(轴对称图形)对应线段相等,对应角相等.(3)如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(4)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(5)两个图形关于某条直线对称,那么如果它们的对应线段或延长线相交,那么交点一定在在对称轴上.3.轴对称与轴对称图形的区别与联系区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.4.线段垂直平分线的性质及判定性质:线段垂直平分线上的任意一点到线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.5.画一图形关于某条直线的轴对称图形的步骤先找到关键点,画出关键点的对应点,然后按照原图顺序依次连接各点.6.关于坐标轴对称的点的坐标的关系(1)点(x,y)关于x轴对称的点的坐标为(x,-y).(2)点(x,y)关于y轴对称的点的坐标为(-x,y).(3)点(x,y)关于原点轴对称的点的坐标为(-x,-y).7.等腰三角形的性质性质1:等腰三角形的性质:等腰三角形的两个底角相等,(简写成等边对等角).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,(简写成三线合一).8.等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成等角对等边).9.等边三角形的性质等边三角形的三个内角都相等,并且每一个角都等于60度.10.等边三角形的判定(1)三个角都相等的三角形是等腰三角形.(2)有一个角是60度的等腰三角形是等边三角形.11.含30度角的直角三角形的性质在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半.12.最短路径问题利用轴对称将最短路径问题转化为“两点之间线段最短”问题.考点一、轴对称图形例1 (2020永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A.B.C.D.【答案】D【解析】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.【名师点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.考点二、轴对称的性质例2(2020哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB/关于直线AD对称,点B的对称点是B/,∴∠AB/B=∠B=50°,∴∠ACB/=∠AB/B-∠C=10°,故选:A.【名师点睛】本题考查了轴对称的性质,轴对称图形的两个部分也是全等图形,轴对称(轴对称图形)对应线段相等,对应角相等.考点三、利用轴对称设计图案的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格例3 (2020吉林)图①、图②、图③都是33点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M ,N 为格点.(2)在图②中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P ,Q 为格点.(3)在图③中,画一个DEF ∆,使DEF ∆与ABC ∆关于某条直线对称,且D ,E ,F 为格点.【答案】(1)(2)(3)见解析.【解析】(1)如图①,MN 即为所求;(2)如图②,PQ 即为所求;(3)如图③,△DEF 即为所求.【名师点睛】本题考查了轴对称的性质,熟练掌握轴对称性质是解本题的关键.考点四、图形的剪拼例4 (2020武汉一模)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【解析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB ∠的度数是22.5︒.【名师点睛】关键是要理解折叠的过程,得到关键信息,能够通过折叠理解角之间的对称关系是解题的关键. 考点五、轴对称与最小值例5 (2020荆门)在平面直角坐标系中,长为2的线段CD (点D 在点C 右侧)在x 轴上移动()0,2A ,()0,4B ,连接AC 、BD ,则AC BD +的最小值为( )A.B.C.D.【答案】B【解析】设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(-2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴P/,连接MP/,此时P/M+P/N的值最小.∵N(-2,4),Q(0,-2)P/M+P/N的值最小值=P/N+P/=∴AC+BD的最小值为故选:B.【名师点睛】本题考查对称轴—最短问题,坐标与图形的性质,两点间距离公式等知识,解题的关键是学会利用参数解决问题,学会利用数形结合的思想思考问题,学会用转化的思想解决问题,属于中考选择题中的压轴题.考点六、线段垂直平分线的性质例6 (2020枣庄)如图,在ABCBC=,5AC=,∆中,AB的垂直平分线交AB于点D,交BC于点E,连接AE,若6则ACE∆的周长为()A.8B.11C.16D.17【答案】B【解析】DE 垂直平分AB ,AE BE ∴=,ACE ∴∆的周长AC CE AE =++AC CE BE =++AC BC =+56=+11=,故选B .【名师点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.考点七、坐标与图形变化--对称例7 (2020济南)如图,在平面直角坐标系中,△ABC 的顶点都在格点上如果将△ABC 先沿y 轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B 的对应点B'的坐标为( )A .(1,7)B .(0,5)C .(3,4)D .(-1,2)【答案】C 【解析】由坐标系可得B (-1,1),将△ABC 先沿y 轴翻折得到B 点对应点(3,1)再向上平移3个单位长度,点B 的对应点/的坐标为(3,1+3),即(3,4),故选:C.【名师点睛】本题考查了坐标与图形变化--对称和平移,熟练掌握点的坐标的变化规律是解题的关键.考点八、等腰三角形的性质例8 (2020齐齐哈尔)等腰三角形的两边长分别为3,4,其这个等腰三角形周长是 .【答案】10或11.【解析】由题意知,应分两种情况:(1)当腰长为3时,三角形三边长为3,3,4,334+>,能构成三角形;周长=3+3+4=10,(2)当腰长为4时,三角形三边长为3,4,4,周长=3+4+4=11,故答案为:10或11.【名师点睛】本题考查了等腰三角形的性质,熟记等腰三角形的性质是解题的关键.考点九、等腰三角形的判定例9 (2020黄冈模拟)如图,已知∠C =∠D =90°,BC 与AD 交于点E ,AC =BD ,求证:AE =BE .【答案】见解析【解析】证明:∵∠C =∠D =90°,∴△ACB 和△BDA 是直角三角形,在Rt △ACB 和Rt △BDA 中,{AB =BA AC =BD, ∴Rt △ACB ≌Rt △BDA (HL ),∴∠ABC =∠BAD ,∴AE =BE .【名师点睛】本题考查了全等的判定与性质,等腰三角形的判定,熟记掌握等腰三角形的判定定理,证明三角形全等是解题的关键.考点十、等边三角形的性质例10 (2020常州)如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B= °.【答案】30【解析】∵EF 垂直平分BC ,∴BF=CF ,∴∠B=∠BCF ,∴△ACF 为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°,故答案为:30.【名师点睛】此题主要考查了等边三角形的性质,垂直平分线的性质,三角形外角的性质,利用垂直平分线的性质求出∠B=∠BCF 是解本题的关键.考点十一、等边三角形的性质与判定例11 (2020宜昌)如图,在一个池塘两旁有一条笔直小路(B ,C 为小路端点)和一棵小树(A 为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC= 米.【答案】48【解析】∵∠ABC=60°,∠ACB=60°,∴∠BAC=60°,∴△ABC 是等边三角形,∵BC=48米,∴AC=48米.故答案为:48.【名师点睛】本题考查了等边三角形的判定与性质,解题的关键是得到△ABC 是等边三角形.考点十二、含30度角的直角三角形例12 (2020黔西南州)如图,在Rt△ABC中,∠C=90°点D在线段BC上,且∠B=30°,∠ADC=60°,,则BD的长度为.【答案】.【解析】∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=12 AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵∴,∴∴故答案为:【名师点睛】本题考查了含30°角的直角三角形的性质,直角三角形30°所对的直角边等于斜边一半的性质,属于基础题,速记性质是解题的关键.1.(2020宜昌)下面四幅图是摄影爱好者抢拍的一组照片.从对称美的角度看,拍得最成功的是()A.B.C.D.2.将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=120°,∠A=26°,则∠A′DB的度数是()A.100°B.104°C.108°D.112°3.(2020潜江模拟)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°4.(2019·广西北部湾)如图,在△ABC中AC=BC,∠A=40°,观察图中尺规作图的痕迹可知∠BCG的度数为()A. 40°B. 45°C.50°D.60°5.(2020大连)平面直角坐标系中,点P(3,1)关于x轴的对称的点的坐标是()A.(3,1)B.(3,−1)C.(−3,1)D.(−3,−1)6.(2020毕节)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长()A.13 B. 17 C. 13或17 D.13或107.(2020聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120° B. 130° C. 145° D.150°8.(2020武汉东西湖模拟)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条9.(2020成都一模)如图,△ABC中,∠ABC、∠ACB的平分线相交于O,MN过点O且与BC平行.△ABC的周长为20,△AMN的周长为12,则BC的长为()A.10 B.16 C.8 D.410.如图,在△ABC 中,AB =AC =11,∠BAC =120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点E ,则DF 的长为( )A .4.5B .5C .5.5D .611.(2020温州模拟)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、谈收获
生活中处处有数学,我们只有学好了 数学,才能更好的运用数学去解决生活中 的实际问题。
日
习 进 康 成
生
健 长 学 步
快
乐
课后作业
动脑动手:(1)用你获得的知识,为 你的学校或08奥运设计一个美丽的 校徽、会徽…… (2)将纸对折两次或更多 次剪飞鸟图案,你又得到了什么图 形?是轴对称图形吗?说出对称轴。
练习 1.尽可能多地在你的周围环境中找出轴对称的物 体和建筑物. 2.观察下列各种图形,判断是不是轴对称图形.
三:学生实验(2)
在纸上滴几滴墨水或油彩,把纸张对折,随后 打开,看看形成的两块墨迹是不是关于折痕对称? 它的对称轴是什么?
轴对称及其特性
归纳:对于两个图形,如果沿一条直线对折后,它 们能完全重合,那么这两个图形关于这条直线轴对称, 这条直线就是对称轴。两个图形中的对应点(即两个 图形重合时互相重合的点)叫对称点。
一个图形
相同点
都有一条对称轴,都要沿这条直线折叠重合
轴对称与轴对称图形的联系:
若把轴对称图形沿某条对称轴两侧的部分各看成 一个图形,那么在两侧的这两个图形就是成轴对称的 两个图形(如蝴蝶的两个翅膀)
若把轴对称的两个图形看成一个图形,那么这个 图形就是一个轴对称图形(如两扇门看作一个图形、 月亮在水中的倒影)。
^_^
☆☆☆☆
☆☆☆☆
^_^
日
习 进 康 成 健 长
生
学 步
快Hale Waihona Puke 乐1.1轴对称与轴对称图形
王雪荣
一:图片欣赏
同时观察这些图片形状是怎么样的?
它们有什么共同的特性?
二:学生实验(1)
把一张纸对折,然后从折叠处剪出一个图 形,想一想,展开后会是一个什么样的图形? 位于折痕两侧图案有什么关系?
轴对称图形的概念
概念:如果一个图形沿某条直线对折后,直线两旁的 部分能够完全重合,那么这个图形叫轴对称图形,这条 直线叫对称轴,对折后图形上能够互相重合的点叫做对 称点。
练习: 1,下面哪一个选项的右边图形与左边图形成轴 对称?
1
2
3
4
5
2,某人在镜子里看到的数为5801,则实 际的数为——
四:观察图案,探索发现: 1、观察图案:轴对称图形和轴对称是不是一回 事?它们有什么区别?
对称图形和轴对称的区别
轴对称图形与轴对称的区别与联系
轴对称 不同点 轴对称图形
两个图形