电容三点式震荡电路的设计
浅析电容三点式正弦波振荡器的设计
浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常用的电子电路,用于产生稳定的正弦波信号。
它广泛应用于通信、测量和科学研究领域。
本文将对电容三点式正弦波振荡器的设计原理和关键要素进行浅析,以帮助读者更好地理解该电路的工作原理和设计方法。
一、电容三点式正弦波振荡器的基本原理电容三点式正弦波振荡器是一种基于频率选择性反馈的振荡器电路。
它由一个运放、几个电容和几个电阻组成。
其基本原理是利用电容和电阻的组合,将一部分信号反馈到输入端,从而使电路产生自激振荡。
当振荡器达到稳定状态时,输出波形将是一个稳定的正弦波信号。
1. 运放选择在电容三点式正弦波振荡器中,选择合适的运放对于振荡器的性能至关重要。
一般来说,采用增益高、输入阻抗大、输出阻抗小的运放能够提高振荡器的性能。
常用的运放有通用型运放、高速运放和运算放大器等。
2. 电容和电阻的选择电容和电阻的选择直接影响到振荡器的频率稳定性和波形失真程度。
在设计电容三点式正弦波振荡器时,需要根据所需的频率和波形要求选择合适的电容和电阻数值。
为了减小温度和供电波动对振荡器的影响,可采用温度补偿电容和电阻。
3. 反馈网络设计电容三点式正弦波振荡器的反馈网络决定了振荡器的频率特性和稳定性。
一般来说,采用RC网络作为反馈网络,可以实现较好的频率稳定性。
还可以根据具体应用需求选择适当的反馈网络结构,如Sallen-Key结构、MFB结构等。
4. 调节电路设计为了能够方便地调节振荡器的频率和幅度,通常需要设计调节电路。
常用的调节电路有变容二极管调谐电路、电位器调节电路等。
5. 输出波形整形电路振荡器产生的波形往往不够理想,需要经过整形电路进行处理。
常用的整形电路有限幅放大器、比较器、滤波器等。
1. 确定频率范围和波形要求在设计电容三点式正弦波振荡器时,首先需要确定所需的频率范围和波形要求。
根据具体的应用需求,选择合适的频率范围和波形要求。
根据所需的频率范围和波形要求,选择合适的运放、电容和电阻。
电容三点式振荡器电路设计与实现
郑州轻工业学院本科通信电子线路课程设计总结报告设计题目:电容三点式振荡器电路设计与实现学生姓名:系别:专业:班级:学号:指导教师:2010年12月25日郑州轻工业学院课程设计任务书题目:电容三点式振荡器电路设计与实现专业、班级学号姓名主要内容、基本要求、主要参考资料等:1、主要内容1) 焊接振荡器电路板。
2) 通过LC振荡器和晶体振荡器输出的波形,对比分析LC振荡器与晶体振荡器的频率稳定度。
2、基本要求元器件排放错落有致,节点焊接正确,设计结构设合理,实验数据可靠,结果输出稳定。
3、主要参考资料[1]张启民编著.通信电子线路.西安:西安电子科技大学出版社,2004.[2]董尚斌等编.通信电子线路.北京:清华大学出版社,2007.[3]顾宝良编著.通信电子线路教程.北京:电子工业出版社,2007.完成期限:2010年12月25日指导教师签名:课程负责人签名:2010年12月25日目录1、设计题目 (4)2、设计内容 (4)3、设计思路 (4)4、设计原理 (4)5、运行结果 (9)6、实验体会 (10)7、参考文献 (11)一:设计题目:电容三点式振荡器电路设计与实现二:设计内容:1) 振荡器电路板的设计与焊接。
2) 调节LC振荡器和晶体振荡器中静态工作点,并了解反馈系数及负载对振荡器的影响。
3) 测试、分析比较LC振荡器与晶体振荡的稳定状况。
三:设计思路:焊接一个符合电容三点式的电路板,电路板上包含有LC振荡电路和集体震荡器震荡电路。
焊接好电路板之后,调节LC振荡器和晶体振荡器的静态工作点。
观察LC振荡器和晶体振荡器的波形图,同时对LC振荡器和晶体振荡器所产生的波形图进行对比分析。
四:设计原理:本次实验首先需要焊接电路板,在焊接电路板时需要注意一些节点的焊接,同时避免焊接时出现短路现象。
本次实验验中振荡器包含电容反馈LC三端振荡器和一个晶体振荡器。
振荡电路主要由振荡回路模块、偏置电路模块、输出缓冲电路模块组成。
浅析电容三点式正弦波振荡器的设计
浅析电容三点式正弦波振荡器的设计
电容三点式正弦波振荡器是一种常见的振荡器电路。
它的基本原理是利用电容和电感的相互耦合,通过频率选择网络来实现正弦波的振荡输出。
电容三点式正弦波振荡器的设计涉及到以下几个关键因素:频率选择网络、幅度稳定电路、负反馈电路以及输出电路。
首先是频率选择网络的设计。
频率选择网络是决定振荡器振荡频率的关键部分,也是整个振荡器的起振条件。
常见的频率选择网络有LC谐振电路和RC谐振电路。
对于电容三点式振荡器,一般选择RC谐振网络。
RC谐振网络由一个固定的电阻和一个可变的电容组成,可以通过调节电容的大小来改变振荡频率。
其次是幅度稳定电路的设计。
由于振荡器是一个自激振荡的系统,输出的振荡幅度可能会受到电源波动的影响而不稳定。
为了保持幅度的稳定,需要设计一个幅度稳定电路。
常见的幅度稳定电路包括电流源和反馈电路。
电流源可以提供稳定的电流,保证振荡器在工作时有足够的驱动能力;反馈电路可以实现负反馈调节,使得输出信号的幅度能够稳定在设定值。
最后是输出电路的设计。
输出电路负责将振荡器的输出信号转换为可用的电压或电流信号。
常见的输出电路包括基准电路和放大电路。
基准电路用于提供稳定的基准电压或电流,以供振荡器输出信号参考;放大电路可以将输出信号放大到足够的幅度,以便于后续的使用或传输。
电子信息工程技术《电容三点式振荡电路》
1电容三点式振荡器—考毕兹(Colpitts )振荡器图1给出两种电容三点式振荡器电路。
图中12b b R R 、和e R 为分压式偏置电阻,图1 电容三点式振荡器电路图(a )电路中,三极管发射极通过E C 交流接地,是共射组态;图(b )电路中,三极管基极通过b C 交流接地,是共基组态。
组态不同,但都满足“射同基反”的构成原则,即与发射极相连的两个电抗性质相同,不与发射极相连的是性质相异的电抗。
高频耦合和旁路电容(b c C C 、和E C 对于高频振荡信号可近似认为短路,旁路和耦合电容的容值至少要比回路电容值大一个数量级以上。
12L C C 、和构成并联谐振回路,12C C 和称为回路电容(也工作电容 。
2电容三点式振荡器电路的起振条件以图5 —22(b)所示共基组态的电容三点式电路为例分析起振条件。
(a)高频交流等效电路画高频振荡回路之前应仔细分析每个电容与电感的作用,应处理好以下问题:画高频振荡回路时,小电容是工作电容, 大电容是耦合电容或旁路电容, 小电感是工作电感, 大电感是高频扼流圈。
画等效电路时保留工作电容与工作电感, 将耦合电容与旁路电容短路, 高频扼流圈开路, 直流电源与地短路,通常高频振荡回路是用于分析振荡频率的,一般不需画出偏置电阻。
判断工作电容和工作电感, 一是根据参数值大小。
电路中数值最小的电容(电感和与其处于同一数量级的电容(电感均被视为工作电容(电感 , 耦合电容与旁路电容的数值往往要大于工作电容几十倍以上, 高频扼流圈的电感数值远远大于工作电感;二是根据所处的位置。
旁路电容分别与晶体管的电极和交流地相连,旁路电容对偏置电阻起旁路作用;耦合电容通常在振荡器负载和晶体管电路之间,起到高频信号耦合及隔直流作用。
这两种电容对高频信号都近似为短路。
工作电容与工作电感是按照振荡器组成法则设置的。
高频扼流圈对直流和低频信号提供通路, 对高频信号起阻隔作用。
图1(b )的交流等效电路图5 —24(a )电容三点式交流等效电路(b 起振条件和振荡频率起振条件包括振幅条件和相位条件。
压控LC电容三点式振荡器设计及仿真
实验名称:压控LC电容三点式振荡器设计及仿真一、实验目的1、了解和掌握LC电容三点式振荡器电路组成和工作原理。
2、了解和掌握压控振荡器电路原理。
3、理解电路元件参数对性能指标的影响。
4、熟悉电路分析软件的使用。
二、实验原理压控振荡器是指输出频率与输入控制电压有对应关系的振荡电路, 其特性用输出角频率ω0与输入控制电压uc之间的关系曲线(图1)来表示。
图1中,uc为零时的角频率ω0,0称为自由振荡角频率;曲线在ω0,0处的斜率K0称为控制灵敏度。
使振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。
在通信或测量仪器中,输入控制电压是欲传输或欲测量的信号(调制信号)。
人们通常把压控振荡器称为调频器,用以产生调频信号。
在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。
三、设计要求及主要指标1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳震荡。
2、实现电压控制振荡器频率变化。
3、分析静态工作点,振荡回路各参数影响,变容二极管参数。
4、震荡频率范围:50MHz到70MHz,控制电压范围3到10V。
5、三极管选用MPSH10(特征频率最小为650MH在,最大IC电流50mA,可满足频率范围要求),直流电压源12V,变容二极管选用MV209。
四、设计过程整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,设计中采用变容二极管MV209来控制振荡器频率,由于负载会对振荡电路的频率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。
1、LC 振荡器设计采用MPSH10 三极管,其特征频率T f =1000MHz 。
LC 振荡器的连接方式有很多,但其原理基本一致,本实验中采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频率而不对振荡回路的分压比产生影响的特点。
高频电子线路课程设计-电容三点式LC振荡器的设计与制作
高频课设实验报告实验项目电容三点式LC振荡器的设计与制作系别专业班级/学号学生姓名实验日期成绩指导教师电容三点式 LC 振荡器的设计与制作一、实验目的1.了解电子元器件和高频电子线路实验系统。
2.掌握电容三点式LC 振荡电路的实验原理。
3.掌握静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响4.了解负载变化对振荡器振荡幅度的影响。
二、实验电路实验原理1.概述2.L C振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。
3.LC振荡器的频率稳定度频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:△f0/f0来表示(f0为所选择的测试频率:△f0为振荡频率的频率误差,Δf0=f02 -f01:f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。
由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高 Q 值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。
4.LC振荡器的调整和参数选择以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图1-1 所示。
(1)静态工作点的调整合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏有一定的影响。
偏置电路一般采用分压式电路。
当振荡器稳定工作时,振荡管工作在非线性状态,通常是依靠晶体管本身的非线性实现稳幅。
若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效 Q 值降低,输出波形变差,频率稳定度降低。
因此,一般在小功率振荡器中总是使静态工作点远离饱和区靠近截止区。
(2)振荡频率 f 的计算式中 CT为 C1、C2和 C3的串联值,因 C1(300p)>>C3(75p),C2(1000P)>> C3(75p),故 CT≈C3,所以,振荡频率主要由 L、C 和 C3 决定。
电容三点式振荡电路设计
1.2 电容三点式振荡电路设计图1所示为利用反馈原理设计的一个电容三点式振荡器,又称考毕兹振荡器。
图中晶体管放大电路构成主网络,直流电源对电路提供偏置,偏置电压经过直流工作点分析在电路中表示出来。
LC并联谐振回路构成正反馈选频网络,其中C1、C2和Ce分别为高频耦合电容和旁路电容,C3、C4为回路电容,L1是回路电感。
在不考虑寄生参数的情况下,根据正弦振荡的相位条件,振荡频率计算公式为:C4端接回基极构成正反馈,反馈系数为F=C3/C4。
电容三点式振荡器的优点为电容对晶体管非线性特性产生的高次谐波呈现低阻抗,所以反馈电压中高次谐波分量很小,因此输出波形接近于正弦波。
2 电路的仿真分析2.1 起振过程振荡曲线分析,即电路的瞬态分析(Time Domain Transient) 在Capture CIS中绘制电路的原理图如图1,各元件参数如图中所示。
对波形发生电路进行时域仿真就是仿真电路的输出波形,因此应选择瞬态分析方式。
仿真时间选择5 μs,并设置Maximum step(最大步长)为10 ns,以输出光滑的振荡波形。
执行仿真分析命令,可以在Probe中清晰地看出正弦波发生电路的起振过程。
图2即为out点输出波形,从中可见起振时间约为1.0 us。
根据仿真波形分析起振过程如下:在刚接通电源时电路中存在各种扰动,这些扰动均具有很宽的频谱,但是只有频率近似为LC选频网络谐振频率fo的分量才能通过反馈网络产生较大的反馈电压。
由于环路增益T>1,经过线性放大和反馈的不断循环,振荡电压会不断增大。
然而由于晶体管的线性范围是有限的,随着振幅的增大放大器逐渐进入饱和区或截止区,增益逐渐下降。
当放大器增益下降而导致环路增益下降到1时,振幅增长过程停止,振荡器达到平衡,进入等幅振荡状态。
改变横坐标将波形放大,利用标尺功能测得波形极大点时间坐标如图3中所示。
通过计算可发现波形周期不稳定:B-A=2.303 3-2.190 5=0.112 8 us,C-B=2.409 3-2.303 3=0.1060us,D-C=2.5107-2.409 3=0.101 4us,E-D=2.621 0-2.510 7=0.110 3 us;即波形频率fo稳定度不高fo=1/T≈4/(E-A)=9.29 MHz。
电容反馈三点式振荡器电路设计
电子技术课程设计报告题目:基于Multisim的电容反馈三点式振荡器电路的设计与仿真学生姓名:陈颍帝学生学号: 1214030203 年级: 2012级专业:通信工程班级: 2012(2) 指导教师:张水锋电子工程学院制2015年5月基于Multisim的电容反馈三点式振荡器电路的设计与仿真学生:陈颍帝指导老师:张水锋电子工程学院通信工程专业1电容反馈三点式振荡器电路设计的任务与要求1.1 电容反馈三点式振荡器电路设计的任务(1) 理解LC三点式振荡器的工作原理,掌握其振荡性能的测量方法。
(2) 理解振荡回路Q值对频率稳定度的影响。
(3) 理解晶体管工作状态、反馈深度、负载变化对振荡幅度与波形的影响。
(4) 了解LC电容反馈三点式振荡器的设计方法。
1.2 电容反馈三点式振荡器电路设计的要求(1) 原理图设计要符合项目的工作原理,连线要正确,端了要不得有标号。
(2) 图中所使用的元器件要合理选用,电阻,电容等器件的参数要正确标明。
(3) 简要说明设计目的,原理图中所使用的元器件功能及在图中的作用,各器件的工作过程及顺序。
2 电容反馈三点式振荡器电路设计的方案制定2.1 电容反馈三点式振荡器电路设计的原理三点式振荡器的交流等效电路如图1所示。
图1 三点式振荡器交流等效电路图中Xcs、Xbe、Xcb为谐振回路的三个电抗。
根据相位平衡条件可知,Xcs、Xbs必须为同性电抗,Xcb与Xcs、Xbs相比必须为异性电抗,且三者之间满足下列关系:Xcb=-(Xcs+Xbs),这就是三点式振荡器相位平衡条件的判断准则。
若Xcs、Xbs 呈容性,Xcb呈感性,则振荡器为电容反馈三点式振荡器;若Xcs、Xbs呈感性,Xcb 呈容性,则为电感反馈三点式振荡器。
下面以图2“考毕兹”电容三点式振荡器为例分析其原理。
图2 “考毕兹”电容三点式振荡器电路图2中L和C1、C2组成振荡回路,反馈电压取自电容C2的两端,Cb和Cc为高频旁路电容,Lc为高频扼流圈,对直流可视为短路,对交流可视为开路。
浅析电容三点式正弦波振荡器的设计
浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常用的电子电路,用于产生稳定的正弦波信号。
本文将从原理、电路设计和调试三个方面对电容三点式正弦波振荡器进行浅析。
一、原理电容三点式正弦波振荡器的原理是利用RC电路的充放电过程产生正弦波信号。
其电路由一个放大器、两个电容和四个电阻组成。
二、电路设计1. 放大器设计放大器部分通常采用运放作为放大器,通过选择合适的运放电路配置来实现放大器的设计。
根据具体要求选择合适的运放型号以及工作电压,同时要注意运放的输入偏置电流、增益带宽乘积等参数。
2. 电容配置电容是决定振荡频率的关键元件。
在电容三点式正弦波振荡器中,通常采用串联或并联电容的方式来决定振荡频率。
如果选择串联电容,需要注意电容的耐压和容值;如果选择并联电容,要注意电容的阻抗和容值。
3. 电阻选择电阻是为了限制电流流过电容,并且影响振荡的稳定性。
根据具体要求来选择合适的电阻值,通常在几千欧姆至几十千欧姆之间。
三、调试电容三点式正弦波振荡器的调试主要包括调整电容和电阻的数值以及运放的工作点等。
具体步骤如下:1. 先选择一个合适的放大器供电电压,一般选择正负12V或正负15V。
2. 根据要求选择合适的运放型号,放入电路中。
3. 根据振荡频率的要求选择合适的电容,并在电路中连接好。
4. 根据需要选择合适的电阻,并与电容一起连接在电路中。
5. 连接好电路后,接入电源进行调试。
可以通过示波器观察输出波形,根据需要调整电阻和电容的数值,直到得到满意的正弦波输出。
总结:电容三点式正弦波振荡器是一种常用的电子电路,通过RC电路的充放电过程产生正弦波信号。
在设计和调试过程中需要注意选择合适的放大器、电容和电阻,并根据实际要求进行调整,以获得稳定的正弦波输出。
浅析电容三点式正弦波振荡器的设计
浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常见的电路设计,用于产生正弦波信号。
它由几个关键的元件组成,包括电容器、电阻和放大器。
在本文中,我们将浅析电容三点式正弦波振荡器的设计原理和关键要点。
一、电容三点式正弦波振荡器的基本原理电容三点式正弦波振荡器的基本原理是利用正反馈和负反馈的相互作用,使得电路中的电压和电流产生周期性的变化,从而产生正弦波信号。
它的基本电路图如下图所示:在这个电路中,电容C和电阻R1构成了反馈回路,而放大器的输出端与反馈回路连接,形成了一个反馈环。
当电路处于稳定工作状态时,输出端将会产生一个频率稳定的正弦波信号。
1. 选择合适的放大器放大器是电容三点式正弦波振荡器中的核心元件,它负责放大反馈回路中的信号,并使电路产生振荡。
常用的放大器类型包括晶体管放大器、运放放大器等。
在选择放大器时,需要考虑其增益、频率响应和功率等参数,以确保电路的稳定工作。
2. 确定反馈回路的参数反馈回路中的电容和电阻参数直接影响着电路的振荡频率和稳定性。
通常情况下,我们可以根据振荡频率的需求来选择合适的电容和电阻数值。
也需要注意电容的漏电流和电阻的温度漂移等因素,以确保电路性能的稳定性。
3. 考虑电源和地的影响电容三点式正弦波振荡器的稳定性也受到电源和地的影响。
在设计电路时,需要充分考虑电源的稳定性和地线的布局,以减小电路受到干扰的可能性。
4. 进行仿真和调试在进行实际的电路设计和制作之前,通常会先进行仿真和调试。
通过仿真软件,可以快速地验证电路设计的正确性,并进行参数调整和优化。
在实际制作电路时,也需要进行严密的调试工作,以确保电路能够正常工作。
电容三点式正弦波振荡器在电子领域有着广泛的应用。
它主要用于产生频率稳定的正弦波信号,可以作为测量仪器的驱动源,也可以用于音频信号发生器、通信设备、调频电路等领域。
在实际应用中,电容三点式正弦波振荡器的性能稳定性和频率稳定性至关重要。
对于其设计和制作来说,需要特别注意电路的参数选择、电源和地的布局等关键要点,以确保电路的性能和可靠性。
实验04 LC电容三点式振荡器
(2)X3与X1、X2的电抗性质相反。
三点式振荡器有两种基本结构,电容反馈振荡器,电 路如图4-1(b)所示;电感反馈振荡器,电路如图4-1 (c)所示。
图4-1三点式振荡器的组成
X2
X1
C2
L2 C1
L1
X3 (a)
L (b)
C
(c)
•根据振幅起振条件,三极管的跨导必须满足下列不等式 • •
实验四 LC电容三点式振荡器
一、实验目的
1.掌握LC三点式振荡电路的基本原理,掌握LC电容三点 式振荡电路设计及电参数计算。
2.掌握振荡回路Q值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流IEQ对振荡 器起振及振荡的影响。
二、实验原理
1.电路组成原理及起振条件
三点式振荡器是指LC回路的三个端点与晶体管的三个 电极分别连接而成的电路,如图4-1(a)所示。图中 三个电抗元件X1、X2、X3构成了决定振荡频率的并联 谐振回路,同时也构成了正反馈所需的反馈网络。从 相位条件看,要构成振荡器,必须满足: (1)与发射极相连的两个电抗X1、X2性质相同。
振荡频率:
f osc f 0
1 1 2 L1C 2 L1CT
(4-3)
式中:
1 1 1 1 1 C C1 C2 CT CT
F CT C2
反馈系数 (4-4) 显然,CT越小F越小,环路增益就越小。在这种振荡电 路中,减小CT来提高回路标准性是以牺牲环路增益为代 价的,如果CT取值过低,振荡器就会不满足振荡条件而 停振。
IEQ(mA) F(MHZ)
表4-3 1K 表4-4
1 2 3 4
10K
电容三点式振荡器与 变容二极管直接调频电路设计
高频实验报告(三)——电容三点式振荡器与变容二极管直接调频电路设计组员座位号 16实验时间周一上午目录一、实验目的 (3)二、实验原理 (3)2。
1电容三点式振荡器基本原理32.2变容二极管调频原理 (6)2。
3寄生调制现象82.4主要性能参数及其测试方法 (9)三、实验内容 (10)四、实验参数设计 (11)五、实验参数测试 (14)六、思考题 (15)一、实验目的1.掌握电容三点式LC振荡电路的基本原理。
2.掌握电容三点式LC振荡电路的工程设计方法。
3.了解高频电路中分布参数的影响及高频电路的测量方法。
4.熟悉静态工作点、反馈系数、等效Q值对振荡器振荡幅度和频谱纯度的影响。
5.掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。
二、实验原理2.1电容三点式振荡器基本原理电容三点式振荡器基本结构如图所示:图3.1 电容三点式振荡器基本结构在谐振频率上,必有X1+X2+X3=0,由于晶体管的v b与v c反相,而根据振荡器的振荡条件|T|=1,要求v be=-v ce,即i X1 = i X2,所以要求X1与X2为同性质的电抗。
综合上述两个条件,可以得到晶体管LC 振荡器的一般构成法则如下:在发射极上连接的两个电抗为同性质电抗,另一个为异性质电抗.原理电路如图3.2所示:图3。
2原理电路共基极实际电路如图3。
3所示:C2C1图3。
3共基极实际电路求)ωj T (的等效电路如下图3。
4 )ωj T (的等效电路其中:20102200121(111()111 ''m L ob f ib L Eob ib cb e f beA j g R j g G k g R R g g r r C G k C C C Q LC C ωξω)≈+=+++≈≈=≈++,=, ,(3-1)0G 为谐振回路导纳,Q 0为回路固有品质因数.回路谐振时有:112()'f C F j k C C ω≈=+(3-2)1()()()1m L fT j A j F j g R k j ωωωξ==+(3—3) ξ是谐振回路广义失谐其中:以上讨论中,忽略C ob 的影响。
lc电容反馈式三点式振荡器实验报告
lc电容反馈式三点式振荡器实验报告实验报告:LC电容反馈式三点式振荡器引言:振荡器是电子电路中常见的一种设备,它能产生稳定的交流信号。
在本次实验中,我们将研究和探索LC电容反馈式三点式振荡器的原理和性能。
一、实验目的本次实验的主要目的是通过搭建LC电容反馈式三点式振荡器电路,观察和分析其输出波形,并探究其振荡频率与电路参数的关系。
二、实验原理LC电容反馈式三点式振荡器是一种基于LC谐振电路的振荡器。
其电路结构包括一个放大器、一个LC谐振电路以及一个反馈网络。
放大器的作用是提供足够的放大增益,使得电路能够自激振荡。
LC谐振电路由一个电感器和一个电容器组成,它们串联在一起形成一个谐振回路。
谐振回路的频率由电感器和电容器的参数决定。
反馈网络的作用是将一部分输出信号反馈到放大器的输入端,以维持振荡的持续进行。
在LC电容反馈式三点式振荡器中,反馈网络采用电容器,通过调节电容器的值可以改变振荡频率。
三、实验步骤1. 按照电路图搭建LC电容反馈式三点式振荡器电路。
2. 调节电容器的值,观察输出波形的变化。
3. 测量并记录不同电容器值下的振荡频率。
四、实验结果与分析在实验中,我们观察到当电容器的值增大时,振荡频率逐渐降低;当电容器的值减小时,振荡频率逐渐升高。
这是因为电容器的值决定了反馈网络的参数,而反馈网络是影响振荡频率的重要因素。
我们还发现,当电容器的值过大或过小时,振荡器无法正常工作,无法产生稳定的输出信号。
这是因为电容器的值过大会导致反馈信号过强,放大器无法提供足够的增益;而电容器的值过小则会导致反馈信号过弱,无法维持振荡的持续进行。
通过实验数据的分析,我们可以得出结论:LC电容反馈式三点式振荡器的振荡频率与电容器的值呈反比关系,而且电容器的值需要在一个适当的范围内才能使振荡器正常工作。
五、实验总结本次实验我们成功搭建了LC电容反馈式三点式振荡器电路,并观察到了其输出波形的变化。
通过实验数据的分析,我们深入了解了振荡器的原理和性能。
电容三点式振荡电路设计
电容三点式振荡电路设计摘要:振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。
为了提高稳定度,需要对电路做改进,以减少晶体管极间电容的影响,可以通过采用减弱晶体管与回路之间耦合的方法,我们得到改进型电容反馈的振荡器电路。
关键词:电容三点式振荡电路,西勒振荡器。
概述一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。
放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。
正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。
选频网络则只允许某个特定频率f能通过,使振荡器产生单一频率的输出。
振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压Uf 和输入电压Ui要相等,这是振幅平衡条件。
二是Uf和Ui必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。
一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。
电子振荡器的输出波形可以是正弦波,也可以是非正弦波,视电子器件的工作状态及所用的电路元件如何组合而定。
正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。
能够产生正弦波的电路称为正弦波振荡器。
通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。
在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。
正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。
反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。
所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。
负阻式振荡器则是将一个呈现负阻特性的有源器件直接与谐振电路相接,产生振荡。
电容三点式正弦波振荡器的设计
2011~2012 学年第二学期《高频电子技术》课程设计报告题目:电容三点式正弦波振荡器的设计专业:电子信息工程班级:10信息1班姓名:王高登何庆林刘慧平指导教师:**电气工程系2012年12月20日任务书摘要在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。
高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。
本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。
并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。
使用实验要求的电源和频率计进行验证,实现了设计目标。
关键字:高频信号,电容,正弦波,振荡器目录第一章绪论----------------------------------------------------------------5第二章电路设计及原理分析--------------------------------------------------62.1 电路的设计---------------------------------------------------------62.2 电路原理及分析-----------------------------------------------------62.3 改进电容式三点电路-------------------------------------------------9 第三章电路元件和参数的确定-----------------------------------------------12 第四章实验仿真及结果误差分析---------------------------------------------13 4.1 电路原理图--------------------------------------------------------13 4.2 实验仿真----------------------------------------------------------13 4.3 实验结果及误差分析------------------------------------------------14 第五章结束语-------------------------------------------------------------15参考文献------------------------------------------------------------------16 附录:元器件列表----------------------------------------------------------17第一章绪论在模拟电子电路中,常常需要各种各样波形的信号,如正弦波,矩形波,三角波和锯齿波等。
9.3.4 电容三点式振荡电路
,
若使C3<<C1、C3<<C2,则
。
2020/6/4
5
电容三点式振荡电路
例9.3.2 如图示出了三个LC振荡电路。试分别判断 它们能否振荡?说明理由,若不能振荡提出修改方案。
分析要点是:“一看、二查、三找”
2020/6/4
6
电容三点式振荡电路
解:(1)图(a)不能振荡。不满足相位条件。修
改方案是将R1左端接地,R2左端接C1、C2的中心抽头。 (2)图(b)不能振荡。因为 Ce 起旁路作用,使反
馈信号短路,不满足幅值条件。解决的方法是去掉Ce。 (3)图(c)不能振荡。因 L使集电结零偏,不满足
幅值条件。解决的方法是在反馈支路接入隔直电容。
2020/6/4
7
电容三点式振荡电路 例9.3.3 如图所示的振荡电路。
(1)该电路能否产生正弦波振荡?若能,则它属于 哪种类型的振荡电路,振荡频率是多少?若不能,应如 何改动使之有可能振荡起来。
模拟电子技术基础
9.3.4 电容三点式振荡电路
2020/6/4
1
电容三点式振荡电路
1. 电容三点式振荡电路(考毕兹电路) (1)电路组成 (2)振荡条件
① 相位平衡条件 〖方法一〗“射同基反” 〖方法二〗“三步曲法”
② 幅值条件
2020/6/4
2
电容三点式振荡电路
当满足起振条件时,应使满足
R'为折合到晶体管c-e之间的等效并联总损耗电阻。 (3)振荡频率
(4)电路特点
① 在高频时频率稳定性较差。
② 频率调节不方便,常用作固定频率振荡电路。③ 振荡波形较好。2020/6/43
电容三点式振荡电路
电容反馈三点式振荡器课程设计
电容反馈三点式振荡器一、摘要随着社会的发展,通讯工具在我们的生活中的作用越来越重要。
通信工程专业的发展势头也一定会更好,为了自己将来更好的适应社会的发展,增强自己对知识的理解和对理论知识的把握,本次课程设计我准备制作具有实用价值的电容反馈三点式振荡器。
振荡器简单地说就是一个频率源,一般用在锁相环中能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。
详细说就是一个不需要外信号激励、自身就可以将直流电能转化为交流电能的装置。
一般分为正反馈和负阻型两种。
所谓“振荡”,其涵义就暗指交流,振荡器包含了一个从不振荡到振荡的过程和功能。
能够完成从直流电能到交流电能的转化,这样的装置就可以称为“振荡器”。
二、总体方案2.1电路工作原理本次课程设计我设计的是电容反馈三点式振荡器,而电容反馈三点式振荡器是自激振荡器的一种,因此更好进行设计了。
振荡器是不需要外加信号激励,自身将直流电能转换为交流电的装置。
凡是可以完成这一目的的装置都可以作为振荡器。
由我们所学过的知识知道,构成一个振荡器必须具备下列一些最基本的条件:(1)任何一个振荡回路,包含两个或两个以上储能元件。
在这两个储能元件中,当一个释放能量时,另一个就接收能量。
接收和释放能量可以往返进行,其频率决定于元件的数值。
(2)电路中必须要有一个能量来源,可以补充由振荡回路电阻所产生的损耗。
在电容三点式振荡器中,这些能量来源就是直流电源。
(3)必须要有一个控制设备,可以使电源在对应时刻补充电路的能量损失,以维持等幅震荡。
这是由有源器件(电子管,晶体管或集成管)和正反馈电路完成的。
对于本次课程设计,所用的最基本原理如下:(1)振荡器起振条件为AF>1(矢量式),振荡器平衡条件为:AF=1(矢量式),它说明在平衡状态时其闭环增益等于1。
在起振时A>1/F,当振幅增大到一定的程度后,由于晶体管工作状态有放大区进入饱和区,放大倍数A迅速下降,直至AF=1(矢量式),此时开始谐振。
电容三点式(改进型)
改进型电容三点式振荡电路的设计姓名:班级:学号:摘要高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
为此,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。
本次课设设计了改进型电容三点式高频振荡器,介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。
使用Protel2004DXP制作PCB板,并使用环氧树脂铜箔板和FeCl3进行了制板和焊接。
使用实验要求的电源和频率计进行验证,实现了设计目标。
关键词:电容三点式、西勒电路、Protel、印制电路板1 实验原理1.1 振荡的原理三点式LC 正弦波振荡器的组成法则(相位条件)是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。
图1-1所示为满足组成法则的基本电容反馈LC 振荡器共基极接法的典型电路。
当电路参数选取合适,满足振幅起振条件时,电路起振。
当忽略负载电阻、晶体管参数及分布电容等因素影响时,振荡频率osc f 可近似认为等于谐振回路的固有振荡频率o f ,即osc f =(1)式中 C 近似等于1C 与2C 的串联值1212C C C C C ≈+ (2)图1-1 电容反馈LC 振荡器由图1-1所画出的分析起振条件的小信号等效电路如图1-2所示。
图1-2 分析起振条件的小信号等效电路由图1-2分析可知,振荡器的起振条件为:e L e L m ng g ng g n g +=+>'''1)(1 (3) 式中 '011,//L e L e eg g R R r ==0e R 为LC 振荡回路的等效谐振电阻;电路的反馈系数 112f C k n C C =≈+ (4)由式(3)看出,由于晶体管输入电阻e r 对回路的负载作用,反馈系数f k 并不是越大越容易起振,反馈系数太大会使增益A 降低,且会降低回路的有载Q 值,使回路的选择性变差,振荡波形产生失真,频率稳定性降低;所以,在晶体管参数一定的情况下,可以调节负载和反馈系数,保证电路起振。
三点电容震荡电路
三点电容震荡电路在电子电路中,震荡电路是一种能够产生连续交流信号的电路。
其中之一是三点电容震荡电路,它由三个电容和其他元件组成。
本文将详细介绍三点电容震荡电路的原理、工作方式和应用。
原理三点电容震荡电路是一种自激振荡电路,利用正反馈实现连续产生交流信号。
它由三个电容(C1、C2和C3)、两个电阻(R1和R2)以及一个放大器组成。
其中C1和C2被称为“振荡电容”,C3被称为“耦合电容”。
三点电容震荡电路的工作原理如下:1.初始状态下,电路处于稳定状态,电容C1和C2存储了电荷,电压分别为V1和V2。
2.由于正反馈的作用,放大器输出的信号经过耦合电容C3后被馈入电容C1。
3.当信号经过C1时,电容C1会向C2放出一部分电荷,导致C2电压上升。
4.当C2电压上升到一定程度时,会将电容C3上的电压放大到足够高的水平,然后将信号馈回C1,形成一个循环。
5.这个循环会不断重复,产生连续的交流信号。
三点电容震荡电路的工作方式三点电容震荡电路可以工作在不同的频率范围内,取决于电容和电阻的数值选择。
下面是三点电容震荡电路的工作方式:1.选择合适的电容和电阻数值。
2.将电容和电阻连接到放大器。
3.通过调节电容数值可以改变震荡频率。
4.通过调节电阻数值可以改变震荡幅度。
5.可通过连接额外的电容或电阻来增加稳定性或改变波形。
应用三点电容震荡电路具有多种应用。
以下是一些常见的应用场景:1.信号源:三点电容震荡电路可用作产生特定频率的信号源,例如音频发生器、无线电信号发生器等。
2.时钟电路:三点电容震荡电路可用于时钟电路中,用于产生时钟脉冲以同步其他电路的操作。
3.通信系统:三点电容震荡电路可用于调制和解调的电路中,用于产生特定频率的调制信号。
总结三点电容震荡电路是一种能够产生连续交流信号的电路。
通过正反馈实现了自激振荡的效果。
它的工作原理简单,通过调节电容和电阻的数值可以改变震荡频率和幅度。
它在信号源、时钟电路和通信系统等领域有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北方民族大学课程设计报告院(部、中心)电气信息工程学院姓名郭佳学号21000065专业通信工程班级1同组人员课程名称通信电路课程设计设计题目名称500KHz 电容三点式 LC 正弦波振荡器的设计起止时间2013.3.4 —— 2013.4.28成绩指导教师签名北方民族大学教务处制摘要本次课设介绍了电容三点式高频振荡电路的设计方法,反馈振荡器的原理和分析以及电容三点式电路参数的计算,并利用其它相关电路为辅助工具来调试放大电路,解决了放大电路中经常出现的自激振荡问题和难以准确的调谐问题。
同时也给出了具体的理论依据和调试方案,从而实现了快速、有效的分析和制作,振荡器电路。
并以 500KHz的振荡器为例,利用 multisim 制作仿真的模型。
关键字:电容三点式振荡仿真目录目录 (3)1、概述 (4)2、三点式电容振荡器 (5)2.1 反馈振荡器的原理和分析 (5)2.2 电容三点式参数 (6)2.3 设计要求 (8)3、电路设计 (8)4 、调试与总结 (10)1 仿真 (10)2、总结: (11)5、心得体会 (11)1、概述振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。
凡是可以完成这一目的的装置都可以作为振荡器。
一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。
放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。
正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。
选频网络则只允许某个特定频率 f 0能通过,使振荡器产生单一频率的输出。
振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U f和输入电压U i要相等,这是振幅平衡条件。
二是U f和U i必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。
一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。
振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。
功率振荡器在工业方面 ( 例如感应加热、介质加热等 ) 的用途也日益广阔。
正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。
能够产生正弦波的电路称为正弦波振荡器。
通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。
在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。
2、三点式电容振荡器2.1 反馈振荡器的原理和分析反馈振荡器原理方框图如图 2.1 所示。
反馈型振荡器是由放大器和反馈网络组成的一个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。
图 2.1反馈振荡器方框图为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。
定义 A( S)为开环放大器的电压放大倍数:U o (S)A(S)U i (S)F(S) 为反馈网络的电压反馈系数:U i'(S)F (S)U o (S)A f ( S) 为闭环电压放大倍数:U o (s)A(S)A f (S)U i (s) 1A(S) F (S)在振荡开始时,由于激励信号较弱,输出电压的振幅U o则比较小,此后经过不断放大与反馈循环,输出幅度U o开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即:T ( jw )1因此起振的振幅条件是:..A F1起振的相位条件是:2nA F要使振荡器起振必须同时满足起振的振幅条件和相位条件。
其中起振的相位条件即为正反馈条件。
2.2 电容三点式参数三点式电容振荡器是自激振荡器的一种。
由串联电容与电感回路及正反馈放大器组成。
因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。
它的优点是:反馈电压取自电容C2,而电容对晶体管非线性特性产生的高次谐波呈现低阻抗,所有反馈电压中高次谐波分量很小,因而输出波形很好;其缺点是:反馈系数因与回路电容有关,如果用改变电容的方法来调整振荡频率,必将改变反馈系数,从而影响起振。
三点式电容振荡器的电路原理图如图 2.2 所示。
图 2.2 电容三点式振荡电路 由振荡器谐振频率计算公式:W1LC根据设计指标, f=6MHz 分配合适的电容和电感。
LC 振荡器有基本放大器、选频网络和正反馈网络三个部分组成。
为了维持震荡,放大器的环路增益应该等于 1,即 AF 1,因为在谐振频率上振荡器的反馈系数为FC 1所以维持振荡所需的电压增益应该是:C 2AC2电容三点式振荡器的谐振频率为C1f o1C 1C 22LC 2C 1 在实验中可通过测量周期 T 来测定谐振频率,即f o1 T放大器的电压增益可通过测量峰值输出电压V op 和输入电压 V ip 来确定,即AVopV ip所以,可以得出VopVipA当知道输入 V ip , A 等于多少的时候,由公式可以求出 V op 的具体参数值。
2.3 设计要求震荡频率500KHz ;输出信号有效值3V ,电源电压12V 负载电阻 3K3、电路设计振荡器在接通电源的一瞬间,晶体管会产生一个从零到某一数值的电流阶跃,该电流阶跃的成分十分丰富,选频网络会选出满足正反馈的频率在经过正反馈建立信号。
电路设计如下图:偏置电阻参数如图所示基集偏置电阻:R2=33k , R3=12K射集反馈电阻:R4=1.62k电源电压12V隔直电容: 10nF旁路电容:510nF三点震荡电路:C2=10NF,C3=30NF.L1=12UH负载电阻: 3k1)静态工作电流的确定合理地选择振荡器的静态工作点,对振荡器的起振,工作的稳定性,波形质量的好坏有着密切的关系。
-般小功率振荡器的静态工作点应选在远离饱和区而靠近截止区的地方。
根据上述原则,一般小功率振荡器集电极电流I CQ大约在0.8-4mA之间选取,故本实验电路中:选 I CQ=2mA V CEQ=1.2Vβ =100则有 R eU CC U CEQ12 0.25.4K R c ICQ2为提高电路的稳定性R e值适当增大,取Re=1.62KΩ则 Rc= 4.5K Ω因: U EQ=I CQ· R E则: U EQ =2mA× 1.62K=3V因: I BQ=I /β则: IBQ =2mA/100=0.02mACQ一般取流过 Rb2 的电流为 5-10IBQ ,若取 10IBQRb 2VBQIBQVBQVEQ0.7 3.7V因:18 K 取标称电阻12K?。
则: R b 20.2R b1V CC V BQV BQR b212V 3.7V因:: R b126.9K12K3.7V故 Rb1 取 28K为调整振荡管静态集电极电流的方便,Rb1由 27K? 电阻构成。
三极管性能4、调试与总结1仿真在设计完成电路后,运用mutisium 软件对振荡电路进行仿真,对其产生的波形进行分析。
振荡器波形图如图 4.1 所示。
由仿真结果图可知:该电路的振荡频率为500KHz ,输出电压有效值为3V2、总结:在这个设计当中,我们学会振荡电路的一些基本内容和基本理论知识。
在设计电路元件参数的时候,首先要计算是否符合振荡电路的起振条件和平衡条件。
正反馈网络是电感反馈三点式振荡网络中比较重要的一个环节。
正反馈使输出起到与输入相似的作用,使统偏差不断增大,使系统振荡,可以放大控制作用,维持振荡电路所消耗的能量。
5、心得体会在本次课程设计中,我从各方面的设计和构思中学到了许多知识,了解到理论和实践结合的难度。
在上学期学习通信电子线路这门课程时,元件的使用只是很局限的运用。
在课程设计中我发现很多芯片,元器件,电路都有很奇妙的作用。
它们以前的作用只是一个最基本的运用,更多的运用会出现在各个实际电路中。
对于电路设计,刚开始拿到题目的时候我以为很简单,在实际制作的过程中发现其实并不是这样。
因为以前学的很多东西都忘记了,包括简单的三极管的静态工作点的计算都忘记了,后来在老师的帮助下再查了其他的资料才将三级管的静态工作点计算好。
在后续的设计过程中,也遇到了许多的问题,如波形不平滑等问题,在仿真的过程中很多知识需要联系起来一起用,需要灵活的运用。
经过这次课程设计,让我对前面的路有了更多的信心,因为在这个过程中,我学到了不少实用的东西,对于通信电子电路有了更深层次的掌握,并且提高了独立解决问题的能力。
虽然这次课程设计中我对电路进行了仿真,并且认真的对电路的每一部分进行了修正,但最后出来的波形还是不很稳定。
本课程设计不仅仅是一项任务,而且是一项使命,我们必须靠自己的能力拿出解决问题的方法。
只有认真,灵活,严谨才能较好的完成整个设计,整个电路。
这次课程设计使我得到了多方面的锻炼,无论从毅力,能力,还是定力都得到了大大的提高。
参考文献:[1]《电子线路设计·实验·测试》第三版,谢自美主编,华中科技大学出版社[2]《高频电子线路实验与课程设计》,杨翠娥主编,哈尔滨工程大学出版社[3]《高频电路设计与制作》,何中庸译,科学出版社[4] 《模拟电子线路》Ⅱ主编:谢沅清出版社:成都电子科大[5] 《通信电子线路》夏术泉艾青南光群出版社:北京理工大学。