飞控计算机测试设备的设计与实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞控计算机测试设备的设计与实现
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!
为了对飞控计算机进行全面准确测试,本文提出了一种飞控计算机测试设备的软硬件设计方案。硬件部分主要是设计工控机中的两块板卡,产生测试系统需要的信号。软件部分以Windows XP为开发平台,标准C++为开发语言,最终能够合理调度硬件完成测试任务。经实际应用表明,该测试设备性能稳定,操作简单,结果准确,具有一定的实用性和推广价值。
0 引言
随着航空技术、控制理论、容错技术以及仿真技术的飞速发展,飞行控制技术有了很大的提高,并已经渗透到工业生产和军事研究的各个方面。飞控计算机是整个飞行控制系统的核心,主要完成控制率计算、余度管理、BIT(机内自检测)、系统调度、故障检测、空置率重构等关键特殊的任务[1],因此对其各项功能测试有着极其重要的意义。测试设备能对飞控系统的实时性、可用性、稳定性和可靠性进行完备测试。
飞控计算机应用具有对软硬件可靠性要求高、信号种类繁多等特点,而且对实时性要求高,导致其测试流程非常复杂。传统的飞控测试设备大多体积庞大,实现成本高,软件可移植性低[2]。本论文以某飞控计算机的测试需求为基础,研究并实现了一种基于PCI 总线,以CPU模拟板和接口分组件模拟板为核心板的测试设备。经试验验证,该设备稳定性高,维护方便,能够对飞控计算机进行精确测试。
1 测试设备需求分析
测试设备硬件部分应满足:能够模拟并接管被测设备的CPU、模拟产生TMS320C25 CPU总线信号;为了对被测飞控计算机进行数据通路测试,板卡要求能模拟被测产品的接口分组件资源。
对于软件部分,要开发自己的设备驱动程序和应用程序。应用程序要易于操作和修改。此外,测试设备要能够进行自检,确保设备工作正常。
2 总体设计
该测试设备总体结构如图1所示。测控单元为产品提供电源信号、控制信号、产生各种数字信号实现产品测试。测控单元包括以下部分:
①工控机:整个测试设备的控制管理中心,通过其测试软件能合理调度硬件对飞控计算机进行各项测试,并生成数据报表。
②数字测试模块:用于产生飞控计算机的控制信号,同时具有I/O端口,用于模拟产生TMS320C25总线信号,并测试飞控计算机的输出信号。
③I/O模块:用于模拟产生TMS320C25总线控制信号,并测试飞控计算机的相应信号。
④程控电源:由控制程序控制输出,提供被测件的工作电压。
⑤通讯模块:实现工控机与程控电源及示波器之间的通讯。
此外,适配器用来实现测控单元与飞控计算机之
间的信号调理及转接。通用示波器用于测试飞控计算机接口信号的波形。
3 测试设备硬件设计
整个测试设备的硬件系统由工控机及工控机中的两块板卡、程控电源及自用电源、示波器及示波器通道切换装置、程控电源过流保护装置及各个自检装置组成[4] ,如图2所示。
工控机作为系统的平台,安装和控制各板卡,运行各种自检和产品测试软件。CPU模拟板作为工控机中的PCI总线接口板[3],通过向被测产品发送“hold”信号,将被测产品中的CPU置于“hold”状态,并模拟产生TMS320C25 CPU总线信号,代替产品中的CPU 对被测飞控计算机板上的各种资源进行访问测试。接口分组件模拟板同样是工控机中的PCI总线接口板[5],用来模拟接口分组件资源,如存储器单元、I/O 资源等,以便对被测飞控计算机进行数据通路测试。示波器用于在动态测试中对规定的接口定时时序信号及接口控制信号进行测量,测量的结果通过USB接口送至工控机进行显示和判定。
程控电源为被测产品提供供电,程控电源通过RS-232接口连至工控机,加电、断电在计算机控制下实现,电源本身具有过压保护功能,但无过流保护功能,其过流保护功能由过流保护装置实现。设备自用电源为机柜中除被测产品及通用仪器之外的所有其它装置供电。示波器通道切换装置将需要连接至示波器进行测量的多个信号进行程控多路转换,转换为两路信号连接至示波器的两个输入通道。过流保护装置用于对产品供电电源进行过流保护,当供电电流超过预先设定值时,切断电源供电,并发出过流保护中断请求信号至工控机。
CPU模拟板及接口分组件模拟板自检装置代替被测飞控计算机产品,建立CPU模拟板及接口分组件模拟板之间的连接,以实现两个板卡之间的闭环联合自检。示波器通道切换自检装置产生多路可区分的信号连接至示波器通道切换装置。设备自用电源为示波器通道切换装置、过流保护装置、CPU模拟板及接口分组件模拟板自检装置及示波器通道切换自检装置供电。
4 测试设备软件设计
软件设计主要是在Windows XP 系统下,编译环境选择Visual C++。软件采用分层设计的思想,最底层为驱动软件,即板卡的驱动程序,上层为设备的应用层软件。
应用层软件设计
应用层软件的组成如图3所示。
自检程序实现测试设备自身正确性检测,分为板卡自检及示波器通道切换自检。板卡自检实现CPU模拟板及接口分组件模拟板的自检,示波器通道切换自检则完成示波器通道切换装置的正确性检测。
芯片擦除测试是对作为程序存储器的E2PROM 按规定步骤进行擦除操作,并测试擦除的正确性。芯片写入测试是将制定应用程序写入作为程序存储器的E2PROM中,并进行校验,以确定写入的正确性。RAM 测试是指对RAM进行存储访问的功能性测试。E2PROM测试是指对E2PROM进行存储访问的功能
性测试。数据通路测试是测试产品96芯接插件至两个37接插件信号的连通性。示波器观察测试是将需要观察的信号引至示波器,并观察、记录和分析信号特性是否满足要求。中断信号测试是由接口分组件模拟板产生一个中断请求信号,通过96芯XF信号连接至CPU模拟板,以测试中断响应的正确性。自动测试是一键完成用户规定的所有测试项目。
所有测试项完成后生成数据报表,方便用户观察测试结果。
驱动程序设计
开发PCI设备驱动程序,就是取得PCI板卡所占用的各种资源(内存、端口、中断和直接存储器存取(DMA)等),并提供给应用程序一条访问这些资源的途径。这里采用WDM模式进行驱动程序的开发。在驱动程序的设计过程中主要解决三个方面的问题:硬件访问、中断处理、驱动程序与应用程序之间的通信。
测试设备总流程