勾股定理与弦图

合集下载

五年级 第一讲勾股定理(超二)

五年级 第一讲勾股定理(超二)

第一讲 勾股定理与弦图一.知识精讲勾股定理的概念勾股定理(毕达哥拉斯定理):直角三角形中的两条直角边的平方和等于斜边的平方.即若a 、b 为直角边,c 为斜边,则222a b c +=.勾股定理逆定理如果三角形两边的平方和等于第三边的平方,那么该三角形是直角三角形.即△ABC 的三边分别是a 、b 、c ,其中c 为最长边,若222a b c +=,则△ABC 是直角三角形,∠C 为直角.勾股数能够构成直角三角形三边长的三个正整数称为勾股数,即222a b c +=,a 、b 、c 为正整数时,称a 、b 、c 为一组勾股数.(1)每组勾股数的相同整数倍也是勾股数.(2)3、4、5是勾股数,又是三个连续整数,并不是所有三个连续整数都是勾股数.(3)常见的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等.勾股定理的证明外弦图 内弦图二.例题精讲勾股定理初步基础练习:(1)如图在直角三角形ABC 中,AB =6,BC =8,求AC =______________.D CB Ab a a a a b b b ccc c D C B A b a a a a b bb c c c c D CB A a a b b c c AB C a bcAB C(2)如图在直角三角形ABC中,AB=8,AC=17,求.BC=______________.AB C【例题1】一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为多少厘米?【例题2】如图,请根据所给的条件,计算出大梯形的面积(单位:厘米).【例题3】如图,四边形ABCD各边的边长均已标在图中,其中∠A=90°,求四边形ABCD的面积.勾股定理进阶【例题4】假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图(下图),他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米?【例题5】矩形ABCD如图折叠,使点D落在BC边上的点F处,已知AB=8,BC=10.求CE的长。

模型 勾股定理:赵爽弦图模型

模型 勾股定理:赵爽弦图模型

第六讲勾股定理模型(二十三)——赵爽弦图模型◎结论1:在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE =CF=GD=AH,则四边形EHGF是正方形【证明】在正方形中,BE=CF=GD=AH,∴AE=BF=CG=HD,又∵∠A=∠B=∠C=∠D=90°,∴Rt△BEF≌Rt△CFG≌Rt△DGH≌Rt△AHE,∴EF=FG=GH=HE,∠AHE=∠BEF,∵∠AEH+∠AHE=90°∴∠AEH十∠BEF=90°∴∠FEH=90°∴四边形EHGF是正方形.◎结论2:如图所示,在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE=CF=GD=AH,此外EQ∥BC,HP∥CD,GO∥DA,FR∥AB,则四边形ORQP是正方形【证明】∵EQ∥BC,HP∥CD,GO∥DA,FR∥AB,且∠A=∠B=∠C=∠D=90°,∴四边形AHPE、四边形EBFQ、四边形FCGP、四边形HOGD均为长方形,∴△AEH≌△PHE≌△BFE≌△QEF≌△CGF≌△RFG≌△DHG≌△OGH,∴HP=EQ=FR=GO,EP=FQ=GR=HO,∴OP=PQ=QR=RO,且∠ROP=180°-∠HOG=90°,∴四边形ORQP为正方形.◎结论3:如图所示,在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE=CF=GD=AH,此外EQ∥BC,HP∥CD,GO∥DA,FR∥AB,则(1)S正方形ABCD =4SAEH∆十S正方形EFGH;(2)S正方形EFGH =4SHPE∆十S正方形OPQR;(3)S正方形ABCD -S正方形EFGH=S正方形EFGH-S正方形OPQR.(4)2S正方形EFGH =S正方形ABCD十S正方形OPQR注:常见的勾股数组合①3,4,5;②5,12,13;③6,8,10;④8,15,17;⑤9,12,15;1.(2022·福建·厦门双十中学思明分校八年级期中)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①2249x y+=;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是()A.①②B.②④C.①②③D.①③2.(2022·辽宁·丹东市第五中学七年级期末)如图是“赵爽弦图”,由4个全等的直角三角形拼成的图形,若大正方形的面积是13,小正方形的面积是1,设直角三角形较长直角边为b,较短直角边为a,则a b+的值是()A.7B.6C.5D.43.(2022·河南·郑州经开区外国语女子中学八年级期末)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌.如图是由四个完全相同的直角三角形和一个小正方形进行的镶嵌,其中直角三角形的一个角等于30°,若小正方形EFGH的边长为1,则大正方形ABCD的边长为()A.31+B.21+C.2D.51-1.(2022·北京十一晋元中学八年级期中)用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论正确的是_____.(填序号即可)x y+=;③2xy=45;④x+y=9.①x﹣y=2;②22492.(2022·河南南阳·八年级期末)把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,③所示的正方形(图②中大正方形边长为5,图③中中间小正方形边长为1),则图①中菱形的面积为________.3.(2022·山西吕梁·八年级期末)如图是一幅赵爽弦图,利用此图可以证明勾股定理.现连接BE ,发现AB =BE ,若DE =1,则正方形ABCD 的面积为________.4.(2022·河南安阳·八年级期末)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.下图是3世纪我国汉代的数学家赵爽在注解《周髀算经》时给出的图案,人们称它为“赵爽弦图”.此图中四个全等的直角三角形可以围成一个大正方形,中空的部分是一个小正方形.如果大正方形的面积是25,小正方形的面积是1,则()2a b +的值是____________.1.(2022·四川宜宾·中考真题)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.2.(2020·湖南娄底·中考真题)由4个直角边长分别为a ,b 的直角三角形围成的“赵爽弦图”如图所示,根据大正方形的面积2c 等于小正方形的面积2()a b -与4个直角三角形的面积2ab 的和证明了勾股定理222+=a b c ,还可以用来证明结论:若0a >、0b >且22a b +为定值,则当a _______b 时,ab 取得最大值.。

三角形中的重要模型-弦图模型、勾股树模型(学生版+解析版)

三角形中的重要模型-弦图模型、勾股树模型(学生版+解析版)

三角形中的重要模型-弦图模型、勾股树模型赵爽弦图分为内弦图与外弦图,是中国古代数学家赵爽发现,既可以证明勾股定理,也可以以此命题,相关的题目有一定的难度,但解题方法也常常是不唯一的。

弦图之美,美在简约,然不失深厚,经典而久远,被誉为“中国数学界的图腾”。

弦图蕴含的割补思想,数形结合思想、图形变换思想更是课堂教学中数学思想渗透的绝佳载体。

一个弦图集合了初中平面几何线与形,位置与数量,方法与思想,小身板,大能量,它就是数学教育里的不老神话。

广受数学教师和数学爱好者研究,近年来也成为了各地中考的热点问题。

模型1、弦图模型(1)内弦图模型:如图1,在正方形ABCD中,AE⊥BF于点E,BF⊥CG于点F,CG⊥DH于点G,DH⊥AE于点H,则有结论:△ABE≌△BCF≌△CDG≌△DAH;S正方形ABCD =4S△EAB+S正方形EFGH。

图1图2图3(2)外弦图模型:如图2,在正方形ABCD中,E,F,G,H分别是正方形ABCD各边上的点,且四边形EFGH是正方形,则有结论:△AHE≌△BEF≌△CFG≌△DGH;S正方形ABCD =4S△EAB+S正方形EFGH。

(3)内外组合型弦图模型:如图3,2S正方形EFGH =S正方形ABCD+S正方形PQMN.1(2023秋·湖北·九年级校联考开学考试)如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成如.如果大正方形的面积是16,直角三角形的直角边长分别为a,b,且a2+b2=ab+10,那么图中小正方形的面积是()A.2B.3C.4D.52(2022·安徽安庆·八年级期末)汉代数学家赵爽为了证明勾股定理,构造了一副“弦图”,后人称其为“赵爽弦图”,如图,大正方形ABCD由四个全等的直角三角形和一个小正方形组成,若∠ADE=∠AED,AD =45,则△ADE的面积为()A.24B.6C.25D.2103(2023·山西八年级期末)如图,图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.24B.52C.61D.764(2022·杭州九年级月考)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A.S1=2B.S2=3C.S3=6D.S1+S3=85(2023·广东·九年级专题练习)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》题时给出了“赵爽弦图”.将两个“赵爽弦图”(如图1)中的两个正方形和八个直角三角形按图2方式摆放围成正方形MNPQ,记空隙处正方形ABCD,正方形EFGH的面积分别为S1,S2S1>S2,则下列四个判断:①S1+S2=14S四边形MNPQ②DG=2AF;③若∠EMH=30°,则S1=3S2;④若点A是线段GF的中点,则3S1=4S2,其中正确的序号是模型2. 勾股树模型6(2022·福建·八年级期末)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,如果正方形A、B、C、D的边长分别为3,4,1,2.则最大的正方形E的面积是.7(2022·浙江·乐清市八年级期中)如图,在四边形ABCD中,∠B=∠D=90°,分别以AB,BC,CD,DA为一边向外作正方形甲、乙、丙、丁,若用S甲,S乙,S丙,S丁来表示它们的面积,那么下列结论正确的是()A.S 甲=S 丁B.S 乙=S 丙C.S 甲-S 乙=S 丁-S 丙D.S 甲+S 乙=S 丙+S 丁8(2022·河南八年级期末)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,⋯按照此规律继续下去,则S 9的值为()A.126B.127C.128D.1299(2023春·山东菏泽·八年级校考阶段练习)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,如果第一个正方形面积为1,则第2023代勾股树中所有正方形的面积为.10(2023·浙江八年级期中)如图,以Rt △ABC 的三边为直径,分别向外作半圆,构成的两个月牙形面积分别为S 1、S 2,Rt △ABC 的面积S 3.若S 1=4,S 2=8,则S 3的值为.11(2022春·浙江温州·九年级校考开学考试)如图1,是数学家毕达哥拉斯根据勾股定理所画的“勾股树”.如图2,在Rt △ABC 中,∠BAC =90°,以其三边为边分别向外作正方形,延长EC ,DB 分别交GF ,AH 于点N ,K ,连接KN 交AG 于点M ,若S 1S 2=916,则tan ∠ACB 为()A.12B.23C.34D.51212(2023·贵州遵义·统考二模)如图1,毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形.在图2中,∠ACB =90°,分别以Rt △ABC 的三条边为边向外作正方形,连接BE ,DG 、BE ,交AC 于点Q ,若∠BAC =30°,BC =2,则四边形EQGD 的面积是.13(2023秋·浙江·八年级专题练习)【背景阅读】勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了验证勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.【实践操作】(1)请叙述勾股定理;(2)验证勾股定理,人们已经找到了400多种方法,请从下列几种常见的验证方法中任选一种来验证该定理:(以下图形均满足验证勾股定理所需的条件)【探索发现】(3)如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;(4)如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1、S2,直角三角形面积为S3,请判断S1、S2、S3的关系并说明理由.课后专项训练1(2022·云南九年级一模)如图是按照一定规律“生长”的“勾股树”:经观察可以发现:图(1)中共有3个正方形,图(2)在图(1)的基础上增加了4个正方形,图(3)在图(2)的基础上增加了8个正方形,⋯⋯,照此规律“生长”下去,图(6)应在图(5)的基础上增加的正方形的个数是()A.12B.32C.64D.1282(2022·浙江初三期中)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若图2中阴影部分的面积为2,且AB+AC=8,则BC的长为()图1图2A.42B.6C.254D.1323(2023·浙江·杭州八年级阶段练习)如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三边为边作正方形ABDE,正方形BCFG,正方形ACHI,AI交CF于点J.三个正方形没有重叠的部分为阴影部分,设四边形BGFJ的面积为S1,四边形CHIJ的面积为S2,若S1-S2=12,S△ABC=4,则正方形BCFG的面积为()A.16B.18C.20D.224(2023春·湖北黄冈·八年级统考期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF 的长为()A.9B.92C.32D.35(2022·四川成都·模拟预测)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再将较小的两个正方形分别绕直角三角形斜边上的两顶点旋转得到图2.则图2中阴影部分面积等于()A.直角三角形的面积B.最大正方形的面积C.最大正方形与直角三角形的面积和D.较小两个正方形重叠部分的面积6(2023春·广东潮州·九年级校考期末)我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图所示的“弦图”,是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形.直角三角形的斜边长为13,一条直角边长为12,则小正方形ABCD 的面积的大小为()A.144B.100C.49D.257(2023春·湖北武汉·八年级统考期末)大约公元222年我国汉代数学家赵爽为《周髀算经》一书作序时介绍了“勾股圆方图”,亦称“赵爽弦图”,如图,四个全等的直角三角形拼成大正方形ABCD ,中空的部分是小正方形EFGH ,连接EG ,BD 相交于点O ,BD 与HC 相交于点P ,若GO =GP ,则直角三角形的边CG 与BG 之比是()A.12B.25C.2-1D.3-28(2023春·江苏泰州·七年级统考期末)大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(如图1).某数学兴趣小组类比“赵爽弦图”构造出图2:△ABC 为等边三角形,AD 、BE 、CF 围成的△DEF 也是等边三角形.已知点D 、E 、F 分别是BE 、CF 、AD 的中点,若△ABC 的面积为14,则△DEF 的面积是()A.1B.2C.3D.49(2023·河北石家庄·校考二模)如图1,毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形.在图2中,∠ACB=90°,分别以Rt△ABC的三条边为边向外作正方形,连接BE,DG,BE交AC于点Q.若∠BAC=30°,BC=2,则四边形EQGD的面积是()B.23C.53+3D.3A.53+3210(2023·江苏扬州·统考中考真题)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若b-a=4,c=20,则每个直角三角形的面积为.11(2022秋·四川成都·八年级校考期中)“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在△ABC中,∠ACB=90°,分别以△ABC的三条边为边向外作正方形,连接EB,CM,DG,CM分别与AB,BE相交于点P,Q.若∠ABE=30°,则DGQM的值为.12(2022春·安徽合肥·八年级合肥市第四十二中学校考期中)如图①,在Rt△ACB中∠ACB=90°,分别以AC、BC、AB为边,向形外作等边三角形,所得的等边三角形的面积分别为S1、S2、S3,请解答以下问题:(1)S1、S2、S3满足的数量关系是.(2)现将△ABF向上翻折,如图②,若阴影部分的S甲=6、S乙=5、S丙=4,则S△ACB=.13(2023·湖北孝感·统考三模)“勾股树”是以正方形一边为斜边向外作直角三角形,再以直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第五代勾股树中正方形的个数为.14(2022·山东临沂·统考二模)中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1(如图1),则正方形的面积为;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形A n B n C n D n的面积为(用含n的式子表示,n为正整数).15(2023·浙江台州·八年级校考期中)如图1,是一个封闭的勾股水箱,其中Ⅰ,Ⅱ,Ⅲ部分是可盛水的正方形,且相互联通,已知∠ACB=90°,AC=6,BC=8,开始时Ⅲ刚好盛满水,而Ⅰ,Ⅱ无水.(1)如图2摆放时,Ⅰ刚好盛满水,而Ⅱ无水,则Ⅲ中有水部分的面积为;(2)如图3摆放时,水面刚好经过Ⅲ的中心O(正方形两条对角线的交点),则Ⅱ中有水部分的面积为.16(2023·湖北黄冈·统考中考真题)如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形.设图中AF=a,DF=b,连接AE,BE,若△ADE与△BEH的面积相等,则b2a2+a2b2=.17(2023·江苏徐州·统考二模)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接AC,若AG平分∠CAD,且正方形EFGH的面积为2,则正方形ABCD的面积为.18(2023·陕西渭南·统考二模)魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理.如图,四边形ABCD、四边形BFGH和四边形AFMN都是正方形,BF交CD于E,若DE=2,CE=4,则BF的长为.19(2022·宁夏吴忠·统考一模)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是17,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,则图2中最大的正方形的面积为31.试求图1中小正方形的面积是为.20(2023·山东济宁·统考二模)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.勾股定理内容为:如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(1)如图2、3、4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;(2)如图5所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.21(2022·湖南·八年级课时练习)如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,求S2.22(2023·广东深圳·校联考三模)中华文明源远流长,如图①是汉代数学家赵爽在注解《周髀算经》时给出的图形,人们称之为赵爽弦图,被誉为中国数学界的图腾.2002年北京国际数学家大会依据赵爽弦图制作了会标,该图有4个全等的直角三角形围成几个大正方形和中间一个小正方形,巧妙的证明了勾股定理.问题发现:如图①,若直角三角形的直角边BC=3,斜边AB=5,则中间小正方形的边长CD=,连接BD,△ABD的面积为.知识迁移:如图②,P是正方形ABCD内一点,连接PA,PB,PC,当∠BPC=90°,BP=10时,△PAB的面积为.拓展延伸:如图③,已知∠MBN=90°,以点B为圆心,适当长为半径画弧,交射线BM,BN分别于A,C两点.(1)已知D为线段AB上一个动点,连接CD,过点B作BE⊥CD,垂足为点E;在CE上取一点F,使EF=BE;过点F作GF⊥CD交BC于点G,试判断三条线段BE,DE,GF之间的数量关系,并说明理由.(2)在(1)的条件下,若D为射线BM上一个动点,F为射线EC上一点;当AB=10,CF=2时,直接写出线段DE的长.三角形中的重要模型-弦图模型、勾股树模型赵爽弦图分为内弦图与外弦图,是中国古代数学家赵爽发现,既可以证明勾股定理,也可以以此命题,相关的题目有一定的难度,但解题方法也常常是不唯一的。

小学勾股定理与弦图基础知识点

小学勾股定理与弦图基础知识点

小学勾股定理与弦图基础知识点
 小学勾股定理与弦图基础知识点
(一)勾股定理
1、勾股定理
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理。

2、勾股定理的证明
如图,从两个大小相等的正方形中(边长都是a+b),减去4块一样的直角三角形后(直角三角形直角边为a、b,斜边为c),剩下的面积应该是相等的,所以得到:在直角三角形中,两个直角边和斜边满足一下数量关系
a[sup]2[/sup]+b[sup]2[/sup]=c[sup]2[/sup](其中a、b为直角边,c为斜边)。

勾股定理与弦图

勾股定理与弦图

E A
3
B
4CD【今日讲来自】 例2,例3,例5,【讲题心得】 ______________________________________________________________.
【家长评价】 ______________________________________________________________ ______________________________________________________________.
本讲主线
1. 勾股定理、勾股数 2. 弦图模型的应用
勾股定理与弦图
1. 勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方. 2. 公式:a2 b2 c2
c a


3
5
b
4
12
【例1】(★★) 如图,求出下列直角三角形中未知边的长度.
12
5
c
10 6
b
6 26
a
24
1. 勾股定理:在直角三角形中,两条直角边的平方 和等于斜边的平方.
3
A
C
D
2
【例5】(★★★☆) 试用图形证明勾股定理.
两种弦图模型:
“屁股向内”
“屁股向外”
知识大总结 1. 勾股定理公式:a2 b2 c2 2. 常见勾股数(3,4,5)、(5,12,13)、(7,24,25) 3. 两个弦图模型
c ab
“屁股向内” “屁股向外” “大裤衩”
【例6】(★★★★☆) (第7届日本算术奥林匹克决赛试题) 在直角边为3与4的直角三角形各边上向外分别作正方形,三个正 方形顶点顺次连接成如左下图所示的六边形ABCDEF. 求这个六边 形的面积是多少? F

弦图证明勾股定理

弦图证明勾股定理

弦图证明勾股定理勾股定理(又译作“勾股论”或“勾股弦”),是古希腊数学家勾股在公元前三世纪时发现的三角形的一个定理:在直角三角形中,斜边的平方等于两条直边的平方之和。

:两条直边的平方等于斜边的平方。

勾股定理可以证明有限多边形的公式以及圆形的面积与周长的关系等,是几何学的重要定理,也是三角形讨论的基础。

在上述定理称之为“勾股论”之前,有关数学家都是用弦图来证明勾股定理的,因此,有关勾股定理的证明也被称之为“弦图证明勾股定理”。

弦图证明勾股定理,是几何中最为强有力的证据之一,具有普遍性、精确度和易于演示的优点。

该证明的基本流程如下:首先,将一个正方形的边长放缩到其中的一条直边,就能得到一个直角三角形;其次,将正方形的边长复制到另外一条直边,从而得到另外一个直角三角形;最后,将两个直角三角形的两条直角相连合并,就能得到一个新的正方形,这正是斜边的平方等于两条直边的平方之和的勾股定理。

以上就是弦图证明勾股定理的基本流程,从而可以以图形的形式证明勾股定理,示范性更强而又更加易于理解。

弦图证明勾股定理可以证明有限多边形的公式,并能够证明圆形的面积和周长的关系。

这种特殊的弦图,称之为“等腰三角形弦图”。

其弦图的基本组成是一个等腰三角形的弦图。

在等腰三角形的弦图中,一条从外部接触点指向顶点的弦图是“等腰三角形弦图”的特殊形式。

通过改变三角形的边长,可以得出不同的等腰三角形,并将它们组合成一个正方形。

由于这种组合在改变边长时所形成的正方形是斜边的平方也等于两条直边的平方之和的勾股定理的定理,因此,这种组合方式可以用来证明勾股定理。

经过上述分析,我们可以清楚地看到,弦图是一种有着极大几何意义的图形,它可以用来证明各种形状的面积以及周平等两条边的公式,并且可以用它来证明勾股定理,它拥有普遍性、精确度和易于演示的几何学特性。

总之,弦图证明勾股定理,是几何学中最为强有力的证据之一,具有普遍性、精确度和易于演示的优点。

它不仅可以用来证明一些有限形状的面积公式,还可以证明勾股定理。

五年级思维--几何--勾股定理与弦图((思维拓展专项练习))学生版

五年级思维--几何--勾股定理与弦图((思维拓展专项练习))学生版

课前预习华盛顿的傍晚亲爱的小朋友们:“在那山的那边海那边的美国首都华盛顿,有一位中年人,他聪明又勤奋,他潜心探讨,他反复思考与演算……”那是1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员加菲尔德。

他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。

由于好奇心驱使,加菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。

只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。

于是加菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”加菲尔德答道:“是5呀。

”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”加菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”加菲尔德一时语塞,无法解释了,心里很不是滋味。

加菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。

他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

具体方法如下:两个全等的Rt△ABC和Rt△BDE可以拼成直角梯形ACDE,则梯形面积等于三个直角三角形面积之和。

即(AC+DE)×CD÷2=AC×BC÷2+BD×DE÷2+AB×BE÷2(a+b)2÷2=a×b÷2+a×b÷2+c×c÷2化简整理得a2+b2=c2勾股定理与弦图点评:此种解法主要利用了三角形的面积公式:底×高÷2,和梯形的面积公式:(上底+下底)×高÷2.而在我国对于勾股定理的证明又做出了那些贡献哪?在我国古代,把直角三角形叫做勾股形。

弦图证明勾股定理

弦图证明勾股定理

弦图证明勾股定理
勾股定理是三角函数学中最著名的定理,它由古希腊数学家勾股提出,也就是说,在一个直角三角形中,斜边的平方等于它的两条直边的平方之和。

以下用弦图证明这一定理,以便更加清楚地理解它。

弦图是一种用来证明勾股定理的图形。

根据图形中等边三角形的定义,要证明勾股定理是简单的,只需要把三角形内的斜边视为弦图的弦,其余两条边就构成了弦图的圆弧。

然后,根据文献的内容,勾股定理可以用以下式子表达:
斜边的平方=两条直边的平方之和。

弦图证明勾股定理的方法很简单,只需要把直边的平方根取出来,然后把它们加在一起,就得到了斜边的平方根。

例如,有一个等边三角形,它有三条边,a,b,c;a和b是直边,c是斜边,根据勾股定理,c的平方等于a的平方加b的平方,即:
c^2 = a^2 + b^2
拿a=3,b=4为例,根据勾股定理,c = 5,因此:
c^2 = 3^2 + 4^2
= 9 + 16
= 25
根据勾股定理,c的平方等于25,可以得出c =25 = 5;证明了勾股定理是正确的。

从以上的讨论可以看出,勾股定理很容易证明,用弦图的方式更容易理解,而且它也可以用于更多的三角函数学中的问题。

此外,弦
图也可以用于证明其它的定理,如抛物线的定义,以及余弦定理,正弦定理等等。

总之,弦图是一种极为有效的图形计算方式,它使用简单、耐用,它可以很好地提供解决实际问题的思路,有助于更好地理解数学。

小学奥数 勾股定理 知识点+例题+练习 (分类全面)

小学奥数 勾股定理 知识点+例题+练习 (分类全面)

勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。

也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2o勾膻定理勾股数★满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。

★常见的勾股数有:①3,4,5;②6,8,10;③8,15,17:④7,24,25;⑤5,12,13;⑥9,12,15…注意:①3,4,5既是勾股数,又是三个连续整数,它们非常特殊,不要认为三个连续整数都是勾股数;②每组勾股数的相同倍数也是勾股数;(如:3,4,5;6,8,10;9,12,15)③勾股数必须都是正整数,(如:0.3,0.4,0.5都是小数,因而不是勾股数)3米例2、一棵大树在离地面3米处折断,树的顶端落在离树的底部4米处,那么这棵树折断之前的高度是多少米?巩固、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?巩固、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000m 处,过了20秒,飞机距离这个女孩头顶5000m,则飞机速度是多少?例3、暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝.他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为km.丄埋宝藏点632登陆点8巩固、轮船从海中岛A出发,先向北航行9km,又往西航行9km,由于遇到冰山,只好又向南航行4km,再向西航行6km,再折向北航行2km,最后又向西航行9km,到达目的地B,求AB 两地间的距离.例4、一个圆桶,底面直径为24cm,高32cm,则桶内所能容下的最长木棒为多少厘米?如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米?B例5、下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是?巩固、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和是cm2.巩固、如图所示,阴影部分是一个正方形,则此正方形的面积为?例6、如图,已知直角三角形两直角边BC,AC的长分别为3cm和4cm,那么CD有多长?巩固、三角形的三边长分别为6,&10,它的最短边上的高为,最长边上的高为巩固、若直角三角形的三边长分别为X,6,8,则X2=例7、等腰三角形ABC的腰长为10,底边上的高为6,则底边的长为多少?巩固、如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。

五年级 第一讲勾股定理(超一)

五年级 第一讲勾股定理(超一)

第一讲 勾股定理与弦图一.知识精讲勾股定理:直角三角形中的两直角边平方后的和等于斜边的平方.注:勾——最短的边、股——较长的直角边、弦——斜边。

勾股定理实际上包含两方面的内容:○1如果一个三角形是直角三角形,那么两条直角边的平方之和等于斜边的平方; ② 如果一个三角形有两边的平方和等于第三边的平方,那么它一定是直角三角形.勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

弦图:外弦图 内弦图二.例题精讲【例题1】(1)求下列体形的周长与面积。

GFEH(2)一块木板如图所示,已知AB=3,BC=4,DC=13,AD=12,木板的面积为。

【例题2】(1)如图在美丽的毕达哥拉斯树中,三角形都是直角三角形,四边形都是正方形,已知所有的正方形面积总共是80,那么最大的正方形面积是多少?(2)下图是由一个直角边都是1的直角三角形向外作直角三角形得到,形成一个美丽的螺旋图案,第8个直角三角形的斜边是多少?如果一直螺旋下去,第几个直角三角形斜边长是100?【例题3】(1)一根竹竿AB紧靠在竖直的墙上,竹竿滑下来,顶端A下滑了0.3米,底端B向左滑了1.5米,那么竹竿有米。

(2)如图,三角形ABC中,AB=9,AC=11,BC=10,过点A作BC边的高AD,求BD,DC的长。

【例题4】下图是一个长为16,宽为10的长方形,沿着图中虚线的位置将这个长方形折叠成一个等腰梯形,则这个梯形的面积是。

【例题5】(1)如图,梯形ABCD中,对角线AC与BD互相垂直。

AB平行于CD,又AB=3,AC=9,BD=12.试求梯形DC的面积.(2)已知梯形的两条对角线互相垂直,其中对角线BD为15厘米,梯形的高DE为12厘米,此梯形的面积为多少平方厘米?【例题6】(1)如图,一个边长为17厘米的正方形木板斜靠在墙角上(木板厚度不计)。

一、弦图与勾股定理的证明

一、弦图与勾股定理的证明

一、弦图与勾股定理的证明【例】图1和图2中的三角形都是直角三角形,四边形都是正方形,利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达是 。

其中图1是中国数学史上有名的 (数学家的名字)弦图,又叫勾股圆方图。

请简单写出两个图的证明过程。

【解析】勾股定理,c 2=a 2+b 2;赵爽(中国数学家,主要贡献是深入研究了《周髀算经》,涉及了勾股定理的理论和证明。

)证明:大正方形面积=四个全等直角三角形面积+中间小正方形面积。

图1:22224()2abc b a a b =⨯+-=+ 图2:22()42ab a b c +=⨯+,即a 2+b 2= c 2。

二、勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边为c ,那么a 2+b 2=c 2。

即直角三角形两直角边的平方和等于斜边的平方。

∵∠C =90°, ∴ a 2+b 2=c 2勾股定理(一)三、常用勾股数1.整数边:(3,4,5);(6,8,10);(5,12,13);(7,24,25);(8,15,17);(9,40,41)2.含特殊角:(30°,60°,90°)的三角形三边之比为1∶3∶2含特殊角:(45°,45°,90°)的三角形三边之比为1∶1∶2 3.如果(a,b,c)是一组勾股数,那么(ak,bk,ck)也是一组勾股数(k为正数)。

【例1】填空1.如图,在△ABC中, ∠C=90°,⑴若a=2,b=3则c=_____。

⑵若a=5,c=13则b=_____。

⑶若a∶c=3∶5且c=20则b=_____。

⑷若∠A=30°,a=1则c=_____,b=_____。

⑸若∠B=60°,b=3则a=_____,c=_____。

2.(2009年湖南长沙)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC =6cm,则AD=______cm。

神奇的勾股圆方图(讲义)

神奇的勾股圆方图(讲义)

*神奇的勾股圆方图(讲义)➢ 知识点睛1. 勾股定理:在直角三角形中,两条直角边a 、b 的平方和等于斜边c 的平方,即222c b a =+。

2. 赵爽的“勾股圆方图”(又称为赵爽“弦图”),即外弦图。

如下图以a 、b 为直角边(b >a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于12ab 。

把这四个直角三角形拼成如图所示形状,四边形ABCD 是一个边长为c 的正方形,所以四边形EFGH 是一个边长为b -a 的正方形。

3. 内弦图如下图,以a 、b 为直角边,以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于12ab 。

把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上。

四边形EFGH 是一个边长为c 的正方形,四边形ABCD 是一个边长为a +b 的正方形。

➢ 精讲精练【板块一】认识弦图经典例题1(1)由四个完全相同的长方形拼出下图1,大正方形的面积是小正方形面积的______倍。

(2)如下图连接图1中每个长方形的一条对角线,形成图2的虚线正方形ABCD 与中间最小的正方形的面积差为多少?图3图2图132AB CD DC B A 23练一练同样大小的长方形小纸片摆成如图所示的图形。

已知小纸片的宽是12厘米,求阴影部分的总面积。

经典例题2四个完全相同的长方形拼成右图,大正方形的面积是100平方分米,小正方形的面积是16平方分米,求每个长方形的面积是多少?长方形的短边是多少分米?16练一练如图,4个相同的长方形和1个小正方形拼成一个大正方形,已知其中小正方形的面积为4平方厘米,大正方形的面积为400平方厘米,则其中长方形的长为______厘米,宽为______厘米。

第19题【板块二】弦图计算经典例题3请只用不带刻度的直尺和铅笔在右图网格(每格边长为1)中画出一个面积为10的正方形。

弦图结构与勾股定理

弦图结构与勾股定理

弦图结构与勾股定理作者:王秋月王攀攀来源:《中学生数理化·八年级数学人教版》2020年第03期勾股定理神秘而美妙,其证法繁多,风采各异,弦图结构在勾股定理的众多证法中堪称是一条亮丽的风景线,下面举例与同学们分享.图1是我国古代数学家赵爽创制的“勾股圆方图”,它又被称为“赵爽弦图”,利用它可以简捷地证明勾股定理:C2=(b-a)2+4x(1/2)ab=b2+a2.我们把图1的“赵爽弦图”称为外弦图(斜边在外),把下面的图2叫作内弦图(也叫作毕达哥拉斯图).利用图2怎样证明勾股定理呢?由c2+4x(1/2)ab=(a+b)2,整理得c2=a2+b2.在人教版教材(八年级下册)第30页的“阅读与思考”中出现了证明勾股定理的又一个图形(如图3),美国第20任总统加菲尔德川它巧妙证明了勾股定理.S梯形=(1/2)(a+b)·(a+b),S梯形=(1/2)c2+2×(1/2)ab,故(1/2)(a+b)(a+b)=(1/2)c2+2×(1/2)ab.整理得a2+b2=c2.實际上,图3是把图2截去一半而成的.如果我们把四个全等的直角三角形纸片按图4进行叠放,也可以通过等面积法来证明勾股定理,在这里,把正方形分割成一个四边形和两个三角形米计算面积.勾股定理的证法现在已有五百多种,而用弦图结构来证明勾股定理体现了数学文化之精深.弦图存初中几何中占有重要地位,构造弦图也是一种常见的辅助线,“一线三直角”模型,正是从弦图中分离出的一部分,面直角坐标系中,点A的坐标为(-3,4).将线段OA绕原点顺时针旋转90°到OB,A点的对应点为B点,则B点的坐标为_____,解:B点坐标为(4,3).我们称图5中的“一线三直角”为“外一线三直角”,有时候还需要构造“内一线三直角”,如图6和图7.。

勾股定理及弦图题库

勾股定理及弦图题库

勾股定理及弦图题库这就是一个“弦图”。

“弦”图是由八个完全一样的直角三角形拼成四个相同的长方形围成的,中间空出一个小正方形。

三国时期的吴国数学家赵爽,就利用这“弦图”对勾股定理作出了严格而简捷的证明。

我们也可以根据“弦图”中大小正方形与长方形的关系,得到一些面积问题的解题思路。

【例】.2002年在北京召开了国际数学家大会,大会会标如下图所示,它由四个相同的直角三角形拼成的(直角边的长度分别为2和3),问大正方形的面积是多少?【例】在边长为10的正方形ABCD中,内接着6个大小相同的正方形,P、Q、M、N是落在大正方形边上的小正方形的顶点,如图所示,则这6个小正方形的总面积是。

【例】.如图,如果长方形ABCD的面积是56cm2,那么四边形MNPQ的面积是多少cm2?【例】点P是正方形ABCD外一点,PB=12cm,∆APB的面积是90cm2,∆CPB的面积是48cm2。

请你回答:正方形ABCD的面积是多少cm2?【例】如图,将矩形ABCD分成15个大小相等的正方形,E、F、G、H分别在AD、AB、BC、CD边上,且是某个小正方形的顶点,若四边形EFGH的面积为1,则矩形ABCD的面积为【例】如下图,正方形ABCD的面积是S,A、B、C、D分别是线段EB、FA、GD、HC的三等分点,试用S表示四边形EFGH的面积S1;【例】(2009•安顺)下图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是——【例】( 2010年广西河池)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y表示直角三角形的两直角边( x>y),下列四个说法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中说法正确的是().A.①② B.①②③ C.①②④ D.①②③④【例】( 2011年浙江温州)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.图7由“弦图”变化得到的,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=10,则S2的值是______【例】小明遇到这样一个问题:如图13,在边长为a ( a>2)的正方形 ABCD 各边上分别截取 AE =BF =CG =DH =1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形.请回答:( 1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),求这个新的正方形的边长;( 2)求正方形MNPQ的面积.( 3)参考小明思考问题的方法,解决问题:如图15,在等边△ABC各边上分别截取AD=BE=CF,再分别过点 D,E,F 作 BC,AC,AB 的垂线,得到等边△RPQ,若S△RPQ=3,则AD的长为______【例】如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b和的平方的值()A.13 B.19 C.25 D.169【例】“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()【例】如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A2的边长为6cm,正方形B的边长为5cm,正方形C的边长为5cm,则正方形D的面积是cm2.【例】如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,正方形A、B、C、D的面积的和是64cm2,则最大的正方形的边长为cm.【例】2002年8月,在北京召开了国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,则两条直角三角形的两条边的立方和等于欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

勾股与弦图

勾股与弦图

勾股定理勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。

数学公式中常写作a^2+b^2=c^2目录概述定义简介勾股定理指出勾股数组推广勾股定理定理勾股定理的来源毕达哥拉斯树常见的勾股数勾、股、弦的比例最早的勾股定理应用《周髀算经》中勾股定理的公式与证明加菲尔德证明勾股定理的故事多种证明方法证法1证法2证法3证法4证法5(欧几里得的证法)证法6(欧几里德(Euclid)射影定理证法)证法七(赵爽弦图)证法8(达芬奇的证法)证法9习题及答案定义介绍勾股定理逆定理概述定义简介勾股定理指出勾股数组推广勾股定理定理勾股定理的来源毕达哥拉斯树常见的勾股数勾、股、弦的比例最早的勾股定理应用《周髀算经》中勾股定理的公式与证明加菲尔德证明勾股定理的故事多种证明方法证法1证法2证法3证法4证法5(欧几里得的证法)证法6(欧几里德(Euclid)射影定理证法)证法七(赵爽弦图)证法8(达芬奇的证法)证法9习题及答案定义介绍勾股定理逆定理展开编辑本段概述定义在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方。

勾股定理(6张)简介勾股定理是余弦定理的一个特例。

这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。

(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。

他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。

目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。

勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。

直角三角形两直角边的平方和等于斜边的平方。

如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课前热身
神奇的无字证明
求下面各三角形中未知边的长度。

有一个直角边为1和1的直角三角形,以它的斜边和1为直角边,向外作另一个直角三角形。

重复以上操作,如下图。

求第1023个直角三角形的斜边长度是_____。

第_____个直角三角形的斜边长度是17。

根据图中所给的条件,求梯形ABCD 的面积。

(★★) (★★★) (★★★)
如图,请根据所给的条件,计算出大梯形的面积(单位:厘米)。

如图,在四边形ABCD 中,AB =30 ,AD =48,BC =14 ,CD =40,∠ADB +∠DBC =90°。

请问:四边形ABCD 的面积是多少?
弦图
⑴大正方形边长为:a +b
⑵小正方形边长为:a -b
⑶中正方形边长为:c
一个直角三角形的斜边长8厘米,两个直角边的长度差为2厘米,求这个三角形的面积?
从一块正方形玻璃上裁下宽为16分米的一长方形条后,剩下的那块长方形的面积为336平方分米,原来正方形的面积是多少平方分米?
(★★★) (★★★★) (★★★) (★★★★★)
本讲总结
重点例题:例1,例2,例6,例7。

相关文档
最新文档