材料力学_陈振中_习题第五章弯曲应力

合集下载

材料力学课后习题答案5章

材料力学课后习题答案5章

∑ Fy = 0,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F 为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内),可将上式改写为
FS右 − FS左 = F
(a)
1
仍据题图 a,由
∑MC
= 0,M 右

F
(
dx 2
5-7 .........................................................................................................................................................3
5-11 .....................................................................................................................................................10
5-13 .....................................................................................................................................................11
− Me

qdx(
dx 2
)

FS左
0
保留有限量,略去一阶和二阶微量后,得
M右 −M左 = Me
为了更一般地反映 M e 作用处弯矩的突变情况(把逆钟向的 M e 也包括在内),可将上式改写

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

05第五章 材料力学习题解答(弯曲内力)

05第五章 材料力学习题解答(弯曲内力)

a
a
(i)
解:(a) (1) 求约束反力
qa
2qa qa
C
A
B
q
a
a
a
a
(j)
MA
A x
2P
C
M0=Pa
B
RA
∑Y = 0 RA − 2P = 0
RA = 2P
∑ M A = 0 M A − 2Pa + M0 = 0
(2) 列剪力方程和弯矩方程
M A = Pa
Q(x)
⎧= ⎨⎩=
RA RA
= −
2P 2P
q
M2
C
a
求内力
P=qa
B
Q2 = P + qa = 2qa
M2
=
−P
×
a

qa
×
a 2
+
M
=

1 2
qa 2
(b) (1)求约束反力
P=200N
1
23
A
1C
DB
RA 200
23
200 200
RD
∑ MD = 0 RA × 400 − P × 200 = 0
RA = 100N
(2) 截开 1-1 截面,取左段,加内力
=
x 0
∈ (0,a) x ∈(a,
2a]
上海理工大学 力学教研室
3
M
(x)
⎧= ⎨⎩ =
RA RA
× ×
x x
+ +
MA MA
= −
2Px − Pa 2P × (x − a)
=
Pa
(3) 画 Q 图和 M 图

材料力学5弯曲内力部分

材料力学5弯曲内力部分

材料力学部分本部分主要内容:一材料力学绪论二轴向拉伸、压缩与剪切三扭转四平面图形的几何性质五弯曲六应力状态与强度理论七组合变形八压杆稳定本部分主要内容:(一)弯曲内力(二)弯曲应力(三)弯曲变形主要内容:一平面弯曲的概念和实例二受弯杆件的简化三剪力和弯矩四剪力方程和弯矩方程·剪力图和弯矩图五剪力、弯矩与分布荷载集度间的关系六弯曲内力部分习题及解答(一)弯曲内力一平面弯曲的概念及实例1. 弯曲: 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴线变成了曲线,这种变形称为弯曲。

2. 梁:以弯曲变形为主的构件通常称为梁。

3.工程实例一平面弯曲的概念及实例4. 平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。

对称弯曲(如下图)——平面弯曲的特例。

非对称弯曲——若梁不具有纵对称面,或者,梁虽具有纵对称面但外力并不作用在对称面内,这种弯曲则统称为非对称弯曲。

本部分内容以对称弯曲为主,讨论梁的应力和变形计算。

一平面弯曲的概念及实例梁的支承条件与载荷情况一般都比较复杂,为了便于分析计算,应进行必要的简化,抽象出计算简图。

1. 构件本身的简化通常取梁的轴线来代替梁。

2. 载荷简化作用于梁上的载荷(包括支座反力)可简化为三种类型:集中力、集中力偶和分布载荷。

3. 支座简化二受弯杆件的简化①固定铰支座2个约束,1个自由度。

如:桥梁下的固定支座,止推滚珠轴承等。

②辊轴支座1个约束,2个自由度。

如:桥梁下的辊轴支座,滚珠轴承等。

二受弯杆件的简化③固定端3个约束,0个自由度。

如:游泳池的跳水板支座,木桩下端的支座等。

q (x )—分布力②悬臂梁二受弯杆件的简化③外伸梁[例] 求下列各图示梁的内力方程并画出内力图。

P Y )x (Q O ==解:①求支反力)L x (P M x Y )x (M O O -=-= ②写出内力方程PLM P Y O O == ;[例]:求图示梁内力图。

xy解:截面法求内力。

11110)(qax M M qax F mi A-=\=+=åxQqa Mqa 2x3qa2/2xqqaa a1122M AY A=S Y 0=S A M 0qa 21M 2qa 2A 2=-+2A qa 21M -=0=-+-A Y qa qa 0=A Y 四剪力方程和弯矩方程·剪力图和弯矩图一、剪力、弯矩与分布荷载间的微分关系对d x 段进行平衡分析,有:[]0d d 0=+-+=å)x (Q )x (Q x )x (q )x (Q Y )x (Q x )x (q d d =五剪力、弯矩与分布荷载集度间的关系及应用()()c x q dxx dQ ==讨论:特别地,当q=c :1、q=c>0 : 均布载荷向上,则Q 向右上方倾斜的直线2、q=c=0 : 没有均载荷,则Q 为水平直线3、q=c<0: 均布载荷向下,则Q 向右下方倾斜的直线五剪力、弯矩与分布荷载集度间的关系及应用q (x )M (x )+d M (x )Q (x )+d Q (x )Q (x )M (x )d x A0dM(x)][M(x)M(x)q(x)(dx)21Q(x)dx ,0)F (m2i A=+-++=å)Q(x dxdM(x)=弯矩图上某点处的切线斜率等于该点处剪力的大小。

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

材料力学第5章弯曲应力

材料力学第5章弯曲应力
Iz
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1

材料力学专项习题练习 弯曲应力

材料力学专项习题练习 弯曲应力
证:设弯曲时的曲率为k,则

对矩形截面:

52.自由叠合梁尺寸及受力如图所示,材料的许用应力 ,若不考虑两梁之间的摩擦,问许用载荷 为多大?
解:因 ,
故 ,又

上梁
下梁

53.梁由上、中、下三层牢固粘合而成,上下层材料的弹性模量为 ,中间层的弹性模量为 ,推导此梁在纯弯曲时,横截面上正应力的计算公式。
弯曲应力
1.圆形截面简支梁A、B套成,A、B层间不计摩擦,材料的弹性模量 。求在外力偶矩 作用下,A、B中最大
正应力的比值 有4个答案:
(A) ;(B) ;(C) ;(D) 。
答:B
2.矩形截面纯弯梁,材料的抗拉弹性模量 大于材料的抗压弹性模量 ,则正应力在截面上的分布图有以下4种答案:
答:C
3.将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点 处的应变为 ,则该曲面在点 处的曲率半径为mm。
解:对各层均有
中间层中
上下层中

54.纯弯曲矩形截面梁,用应力应变关系为 的材料制成,其中B、n均为常数。若平面假设成立,且中性轴仍过截面形心,试导出n为奇数时正应力的计算公式。
解:由 ,得

当n为奇数时,
55.某材料拉伸时的应力应变曲线为: , 、 是材料常数,压缩时的应力应变曲线与拉伸相同。若平面假设成立,最大线应变为 ,试导出矩形截面梁所受弯矩M的公式。
(1)许可载荷 ;
(2)在 作用下,两梁在交界面AB处的纵向长度之差 (不计梁间摩擦)
解:(1) 则
,
(2)
38.矩形截面简支梁如图所示。梁上缘的温度为 ,下缘的温度为 。 ℃且沿梁的高度按线性规律变化,材料线膨胀系数为 ℃,试求由温度场引起的梁的曲率半径 。

材料力学考研题解_第五章弯曲内力

材料力学考研题解_第五章弯曲内力

5-15 .....................................................................................................................................................14
5-10 .......................................................................................................................................................9
5-8 .........................................................................................................................................................4
(也可用左侧题号书签直接查找题目与解)
5-3 试证明,在集中力 F 作用处(图 a),梁微段的内力满足下列关系:
FS右-FS左 = F , M 右 = M 左 而在矩为 Me 的集中力偶作用处(图 b),则恒有
FS右 = FS左 , M 右 − M 左 = M e
证明:根据题图 a,由
题 5-3 图
解:根据题图中所给的 FS 图和 M 图,并依据三个微分关系和两个突变关系,可画梁的
外力图,示如图 5-5a 和 b。
2
图 5-5
5-7 图示外伸梁,承受均布载荷 q 作用。试问当 a 为何值时梁的最大弯矩值(即| M |

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。

习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。

解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。

试求钢丝中的最大应力与d /D 的关系。

并分析钢丝绳为何要用许多高强度的细钢丝组成。

解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。

处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。

试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。

解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。

6—6 图示矩形截面简支梁,受均布载荷作用。

已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。

材料力学第五章

材料力学第五章
目录
§5-3 横力弯曲时的正应力
q=60kN/m
180 120 B C
4. C 截面曲率半径ρ
30 z C 截面弯矩
A
x l = 3m
FBY
K
y
1m
FAY
M C 60kN m
C 截面惯性矩
FS 90kN

M x 90kN
I Z 5.832105 m4 1 M EI
3 36c工字钢 Wz 962cm
(5)讨论
q 71.34kg/m
目录
§5-3 横力弯曲时的正应力
试校核梁的强度。
例题5-4
T型截面铸铁梁,截面尺寸如图示。 t 30MPa, c 60MPa,
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面 要同时满足 t ,max t , c,max c
M C 901 601 0.5 60kN m
M

bh3 0.12 0.183 x IZ 5.832105 m 4 12 12 90kN 180 60103 ( 30) 103 M y 2 K C K IZ 5.832105
x
(压应力) 61.7 106 P a 61.7MP a
第五章 弯曲应力
目录
第五章
弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 §5-4 弯曲切应力 §5-6 提高弯曲强度的措施
目录
§5-1 纯弯曲
回顾与比较 内力 应力
FN A
T IP
M
FS
目录
? ?
§5-1 纯弯曲

材料力学第五章弯曲例题

材料力学第五章弯曲例题
(2) B截面右侧,正弯矩
压应力强度
30kN· m
M B y1 4010696.4 C C 37 . 8 MPa 8 Iz 1.0210
∴压应力强度足够

F=10kN A
Me=70kN∙m B
y1
C
z
C
3m
y
y
3m
40kN· m
M

+
10kN· m
解: (1) y196.4(mm )
y153.6(mm)
Iz 1.02108(mm 4)
4 [ t ]I zc 4010180 10 44.2( kN) F 0.6h2 0.6106 153.6 ∴[F]≤44.2kN
[刘题5.16](P169) 图示铸铁梁,[ t]=40MPa,[ c ] =160MPa, 试按正应力强度条件校核梁的强度。若载荷不变,但将T形 横截面倒置,是否合理?何故?
* 3 FS1S z 3 . 64 10 ( 754055) 0.379( MP a) 4 I zb 2110 10 75
F=8kN
1 1m 1.2m 1 1m
40
a
150
b
10
75
M175 (2)b点 12.9( MP a) Iz
0
已知:P=50kN,F=10kN,l=10m, [刘题5.21](P171) []=160MPa,[]=100 MPa,试按正应力强度条件选择工
30kN· m
M B y 40106153.6 t 60.2MPa t 8 Iz 1.0210
∴拉应力强度不够

F=10kN A
Me=70kN∙m B
y1

弯曲应力

弯曲应力

第5章 弯 曲 应 力 习题(1) 如图5.18所示吊车梁,吊车的每个轮子对梁的作用力都是F ,试问: ① 吊车在什么位置时,梁内的弯矩最大?最大弯矩等于多少?② 吊车在什么位置时,梁的支座反力最大?最大支反力和最大剪力各等于多少?(2) 如图5.19所示一由16号工字钢制成的简支梁承受集中荷载F ,在梁的截面C —C 处下边缘上,用标距s =20mm 的应变仪量得纵向伸长s ∆=0.008mm 。

已知梁的跨长l =1.5m ,a =1m ,弹性模量E =210GPa 。

试求F 力的大小。

图5.18 习题(1)图图5.19 习题(2)图(3) 由两根28a 号槽钢组成的简支梁受三个集中力作用,如图5.20所示。

已知该梁材料为Q235钢,其许用弯曲正应力[]σ=170MPa 。

试求梁的许可荷载[F ]。

图5.20 习题(3)图(4) 简支梁的荷载情况及尺寸如图5.21所示,试求梁的下边缘的总伸长。

图5.21 习题(4)图(5) 一简支木梁受力如图5.22所示,荷载F =5kN ,距离a =0.7m ,材料的许用弯曲正应力[]σ=10MPa ,横截面为bh =3的矩形。

试按正应力强度条件确定梁横截面的尺寸。

图5.22 习题(5)图(6) 如图5.23所示,一矩形截面简支梁由圆柱形木料锯成。

已知F =5kN , 1.5a =m ,[]σ=10MPa 。

试确定弯曲截面系数为最大时矩形截面的高宽比bh ,以及梁所需木料的最小直径d 。

图5.23 习题(6)图(7) 一正方形截面悬臂木梁的尺寸及所受荷载如图5.24所示。

木料的许用弯曲正应力[]σ=10MPa 。

现需在梁的截面C 上中性轴处钻一直径为d 的圆孔,试问在保证梁强度的条件下,圆孔的最大直径d (不考虑圆孔处应力集中的影响)可达多大?图5.24 习题(7)图(8) 当荷载F 直接作用在跨长为l =6m 的简支梁AB 之中点时,梁内最大正应力超过许可值30%。

《材料力学》第五章课后习题参考答案

《材料力学》第五章课后习题参考答案

错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。

材料力学 第五章 弯曲应力课件

材料力学 第五章 弯曲应力课件

力状态。
sx
sx
s x E x
(三)静力学关系:
Ey

ydA
......(2)
N sdA
x A
Ey
A

dA
E

ESz
A

0
S z 0 z (中性)轴过形心
9
M
M
1
y
(sdA) z
A
Eyz
A

Ey2
dA
E

A
yzdA
EI yz
1
第五章
§5–1 引言
弯曲应力
§5–2 平面弯曲时梁横截面上的正应力
§5–3 梁横截面上的剪应力 §5–4 梁的正应力和剪应力强度条件 梁的合理截面 §5–5 非对称截面梁的平面弯曲开口薄壁截面的弯曲中心 §5–6 考虑材料塑性时的极限弯矩
2
§5-1 引言
1、弯曲构件横截面上的(内力)应力 剪力FS 内力 剪应力t
(3)全梁的最大正应力;
(4)已知E=200GPa,求1—1 截面的曲率半径。
120 y
z
解:画M图求截面弯矩
qLx qx2 M1 ( ) 2 2
x 1
60kNm
12
M1 Mmax
1 A 1m 1
q=60kN/m B 2m 180 30 1 2
M max qL2 / 8 60 32 / 8 67.5kNm
Iz为整个截面对z轴之惯性矩;b 为y点处截面宽度。 2、几种常见截面的最大弯曲剪应力 ①工字钢截面:
tmax
FS Af
; Af —腹板的面积。
t min t max

材料力学习题册答案-第5章 弯曲应力

材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。

( × )2、中性轴是梁的横截面与中性层的交线。

梁发生平面弯曲时,其横截面绕中性轴旋转。

( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。

( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。

( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。

( × )6、控制梁弯曲强度的主要因素是最大弯矩值。

( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。

( √ )二、填空题1、应用公式y I Mz=σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。

2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。

3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。

4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、 H Bh BH 66132- 和 Hbh BH 66132- 。

x三、选择题1、如图所示,铸铁梁有A,B,C和D四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。

2、如图所示的两铸铁梁,材料相同,承受相同的载荷F。

则当F增大时,破坏的情况是( C )。

A 同时破坏;B (a)梁先坏;C (b)梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。

若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )A B C DA BDx四、计算题1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。

弯曲应力习题答案

弯曲应力习题答案

弯曲应力习题答案在材料力学中,弯曲应力是结构分析中的一个重要概念,它涉及到梁或板在受到弯曲作用时内部产生的应力。

以下是一些弯曲应力习题的答案示例:习题一:简单梁的弯曲应力计算问题描述:一根长为 \( L \) 米,截面为矩形的梁,宽 \( b \) 米,高 \( h \) 米,材质为钢,弹性模量 \( E \) 为 \( 200 \) GPa。

梁的一端固定,另一端自由,中间受到一个集中力 \( P \) 的作用。

解答:1. 首先,确定梁的截面惯性矩 \( I \):\[ I = \frac{b \cdot h^3}{12} \]2. 根据梁的受力情况,计算梁的弯曲应力 \( \sigma \):\[ \sigma = \frac{M \cdot c}{I} \]其中 \( M \) 是弯矩,对于集中力 \( P \) 作用在梁的中点,弯矩 \( M \) 为 \( \frac{PL}{4} \)。

3. 将弯矩代入弯曲应力公式中:\[ \sigma = \frac{P \cdot L \cdot c}{4 \cdot I} \] 其中 \( c \) 是梁截面上距离中性轴的距离,对于矩形截面,\( c = \frac{h}{2} \)。

4. 将已知数值代入公式,计算出弯曲应力。

习题二:悬臂梁的弯曲应力分析问题描述:一根悬臂梁,长度 \( L \) 米,材料的弹性模量 \( E \) 为 \( 200 \) GPa,梁的一端固定,另一端受到一个向下的集中力 \( P \)。

解答:1. 悬臂梁在末端受到集中力作用时,最大弯矩 \( M \) 出现在梁的末端,其值为 \( P \cdot L \)。

2. 假设梁的截面为圆形,半径 \( r \),则截面惯性矩 \( I \) 为: \[ I = \frac{\pi r^4}{4} \]3. 计算弯曲应力 \( \sigma \):\[ \sigma = \frac{M}{I} = \frac{P \cdot L}{\frac{\pir^4}{4}} \]4. 将已知数值代入公式,计算出弯曲应力。

材料力学练习册5-6详细答案

材料力学练习册5-6详细答案

第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。

试求金属丝内的最大正应变与最大正应力。

已知材料的弹性模量为E。

解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。

试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。

已知钢的弹性模量E =200GPa ,a =1m 。

解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。

若[]MPa 160=σ,试求许可载荷F 。

5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。

如已知AB 梁高为1h ,CD 梁高为2h 。

欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。

已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。

5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。

设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。

=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。

试校核梁的强度。

解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。

材料力学-陈振中-习题第五章弯曲应力

材料力学-陈振中-习题第五章弯曲应力

第五章弯曲应力5.2简支梁承受均布载荷如图所示。

若分别采用截面面积相等的实心和空心圆截面,且53,40221==DdmmD,试分别计算它们的最大正应力。

并问空心截面比实心截面的最大正应力减小了百分之几?解:1)空心截面尺寸:由()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-=-=222222222211444DdDdDDπππ求出;mmdmmD30,5022==2)确定危险截面:梁的弯矩图如图,最大弯矩发生在梁中间截面。

且:mKNqlM⋅==182max3)求最大正应力:实心截面:3231DWZπ=MPaWMZ2.159maxmax==σ空心截面:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-=42232132DdDWZπMPaWMZ6.93max'max==σ4)最大正应力之比:%2.412.1596.932.159max'maxmax=-=-σσσ5.4矩形截面悬臂梁如图所示,已知[]MPamKNqhbml10,/10,32,4====σ。

试确定此梁横截面的尺寸。

解:1) )确定危险截面:梁的弯矩图如图,最大弯矩发生在梁固定端截面。

且:22maxql M =2)建立强度条件:[]σσ≤=Z W M max max其中:62bh W Z = 3)代入数据求出梁截面尺寸:mm h mm b 416,277≥≥.5.8压板的尺寸和载荷情况如图所示。

材料为45钢,MPa s 380=σ,取安全系数n=1.5。

试校核压板的强度。

解:1)最大弯矩()()m N M ⋅=⨯⨯=-3081020104.1533max2)A —A 截面抗弯模量()32633max568.110112102.1203.0cm y I W =⨯⨯⨯-==--3)最大正应力: MPa W M Z4.196maxmax ==σ 许用应力[]MPa ns253==σσ 可见s σσ〈max ,压板强度足够。

5.11图示为一承受纯弯曲的铸铁梁,其截面为倒T 形,材料的拉伸和压缩许用应力之比[][]4/1/=c t σσ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 弯曲应力
5.2简支梁承受均布载荷如图所示。

若分别采用截面面积相等的实心和空心圆截面,且
5
3
,
40221==D d mm D ,试分别计算它们的最大正应力。

并问空心截面比实心截面的最大正应力减小了百分之几?
解:1)空心截面尺寸: 由
()
⎥⎥⎦

⎢⎢⎣⎡⎪⎪⎭

⎝⎛-=-=
2
2
2
2222
22
21
144
4
D d D d
D D π
π
π
求出;mm d mm D 30,5022== 2)确定危险截面:
梁的弯矩图如图,最大弯矩发生在梁中间截面。

且:m KN ql M ⋅==18
2max 3)求最大正应力: 实心截面:32
3
1D W Z π=
M P a
W M Z
2.159m a x
m a x ==
σ 空心截面:⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=4
2232
132D d D W Z π M P a W M Z
6.93max '
max ==σ 4)最大正应力之比:
%2.412
.1596
.932.159max '
max max =-=-σσσ
5.4矩形截面悬臂梁如图所示,已知[]MPa m KN q h b m l 10,/10,3
2
,4====σ。

试确定此梁横截面的尺寸。

解:1) )确定危险截面:
梁的弯矩图如图,最大弯矩发生在梁固定端截面。

且:2
2max
ql M =
2)建立强度条件:[]σσ≤=Z
W M max max
其中:62
bh W Z = 3)代入数据求出梁截面尺寸:mm h mm b 416,277≥≥.
5.8压板的尺寸和载荷情况如图所示。

材料为45钢,MPa s 380=σ,取安全系数n=1.5。

试校核压板的强度。

解:1)最大弯矩
()()
m N M ⋅=⨯⨯=-3081020104.1533max
2)A —A 截面抗弯模量
()
3
2
633max
568.110
112102.1203.0cm y I W =⨯⨯⨯-==
--3)最大正应力: MPa W M Z
4.196max
max ==
σ 许用应力[]MPa n
s
253==
σσ 可见s σσ〈max ,压板强度足够。

5.11图示为一承受纯弯曲的铸铁梁,其截面为倒T 形,材料的拉伸和压缩许用应力之比
[][]4/1/=c t σσ。

求水平翼板的合理宽度。

解:1)确定中性轴位置:由于梁受正的弯矩作,用,因此梁的中性轴以下部分受拉而产生拉应力,中性轴以上部分受压而产生压应力。

由于:
[][]4/1/===上下上

y y I My I My z
z
c t σσ
而400=上下+y y ,由此求出:
mm y mm y 320,80=上下=
2)图中中性轴c z 为截面的一形心轴,则0=zc s ,可得:
()()()()017032034030308060=-⋅⨯--⋅⨯b 求出:b=510mm
5.13 当20号槽钢受纯弯曲变形时,测出A 、B 两点间长度的改变为mm l 3
1027-⨯=∆,材料的E=200GPa ,试求梁截面上的弯矩M 。

解:由梁所受弯矩方向可判断出AB 处于受拉区,AB 产生的线应变:l
l ∆=
ε 查表20号槽钢:cm y mm I z 95.1,1014408=⨯=- 而εσE I My
z
AB ==
则可求出: m KN y I E M z
⋅=-=
7.10)
5.0(0ε
5.16铸铁梁的载荷及横截面尺寸如图。

许用拉应力和压应力分别为
[][]MPa MPa c t 160,40==σσ。

试按正应力强度条件校核梁的强度。

解:1)截面几何性质:()()()()()
cm y 75.1532025.21320103200=⨯⨯+⨯=
()()()()4
2323601375.155.213201232075.532012203cm I z =⎥⎦
⎤⎢⎣⎡-⨯+⨯+⨯+⨯
=
2)强度校核:梁的弯矩图如图 截面B :()()[]t MPa σσ
〈=⨯⨯-⨯=
--+1.241060131075.152310203
2
3
max
()()[]c MPa σσ
〈=⨯⨯⨯=
---4.5210
60131075.1510203
2
3
max
截面C :()()[]t MPa σσ
〈=⨯⨯⨯=
--+2.261060131075.1510103
2
3
max
()()[]c MPa σσ
〈=⨯⨯-⨯=
---06.1210
60131075.152310103
2
3
max
∴强度足够。

5.17试计算图示矩形截面简支梁的1--1截面上a 点和b 点的正应力和剪应力。

解:1)确定1—1截面的剪力和弯矩,
剪力图和弯矩图如图所示。

则可求出:
KN Q m KN M 11
40,114011=⋅=
2)a 点:()MPa I y
M z
a a 04.615.0075.012
104.0075.0101140
331=⨯⨯-⨯⨯==σ
MPa y h I Q a z a 379.0035.0415.015.0075.012
12101140
42223322
1=⎪⎪⎭
⎫ ⎝⎛-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=τ b 点:MPa I y
M z
b b 9.1215.0075.012
1075
.0101140
331=⨯⨯⨯⨯==σ
00415.015.0075.012
121011
40
42233221
=⎪⎪⎭
⎫ ⎝⎛-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=b z
b y h I Q τ 5.21起重机下的梁由两根工字钢组成,起重机自重Q =50KN,起重量P=10KN 。

许用应力
[][]MPa MPa 100,160==τσ。

若暂不考虑梁的自重 。

试按正应力强度条件选定工字钢型
号,
然后再按剪应力强度条件进行校核。

解:1)梁的受力简图如图,可求出起重机对梁的作用力:KN P KN P 50,1021==
2)确定起重机的危险位置及梁内的最大弯矩:
设D 距B 端为x ,则可求出:
()()x x P x P R B 65810
81012-=-+-=
2658x x x R M B D -==

00
=dx
M ,得起重机的危险位置:x=29/6 m 此时梁内的最大弯矩:m KN M D ⋅=⎪⎭

⎝⎛⨯-⎪⎭⎫ ⎝⎛⨯=2.1406296629582
max
3)截面设计:由弯曲正应力强度条件[]σσ≤=
Z
W M max
max 可求出:()
3
6
343810
1602102.140cm W =⨯⨯≥ 故选取两根No.28a 工字钢 ()
315.508cm W = 4)按弯曲剪应力强度条件校核:查表No.28a 工字钢
mm b cm S I z
z
5.8,
6.24==* 由梁的受力情况确定剪力分布情况,得出:KN Q =max
则[]ττ〈=⋅=*MPa b
I S Q z z 9.132max max
, No.28a 工字钢完全满足强度要求。

5.26用螺钉将四块木板连接而成的箱形梁如图所示。

每块木板的横截面皆为mm 25150⨯。

若每一螺钉的许可剪力为1.1KN ,试确定螺钉的间距s.设P =5.5KN 。

解:1)截面几何性质
顶板对中性轴的静矩为:
3
3
103105.8225150mm
S z ⨯=⨯⨯=
截面对中性轴的惯性矩为:
()
4533108.715010020015012
1
m I z -⨯=⨯-⨯=
MPa b
I S Q z z
377.0max =⋅=
τ []Q s b A Q ≤⋅⋅=⋅=ττm a x 可求出:。

相关文档
最新文档