数值计算(分析)实.docx
数值计算实践报告_实习总结_总结汇报_实用文档
---数值计算实践上机报告学院:理学院指导老师:范晓娜老师姓名:***学号:B********日期:2015年10月11日—24日一、方程求根(一)实验目的熟悉掌握Newton法,割线法,抛物线法三种方法求方程近似根的算法思想,在matlab软件上分别使用这三种方法编程解决给定的三次方程的求根问题。
(二)问题描述一. 方程求根(1).给定一个三次方程,分别用Newton法,割线法,抛物线法求解.方程的构造方法:(a)根:方程的根为学号的后三位乘以倒数第二位加1再除以1000.假设你的学号为B06060141,则根为141*(4+1)/1000=0.564(b)方程:以你的学号的后三位数分别作为方程的三次项,二次项,一次项的系数,根据所给的根以及三个系数确定常数项.例如:你的学号是B06060141,则你的方程是x3+4x2+x+a0=0的形式.方程的根为0.564,因此有0.5643+4*0.5642+0.564+a0=0,于是a0=-2.015790144你的方程为x3+4x2+x-2.015790144=0.(2)假设方程是sinx+4x2+x+a0=0的形式(三个系数分别是学号中的数字),重新解决类似的问题(3)构造一个五次方程完成上面的工作.四次方程的构造:将三次多项式再乘以(x-p*)2得到对应的五次多项式(p*为已经确定的方程的根,显然,得到的五次方程有重根).(4)将(2)中的方程同样乘以(x-p*)得到一个新的方程来求解注:(1)Newton法取0.5为初值,割线法以0,1为初值,抛物线法以0,0.5,1为初值, (2)计算精度尽量地取高.终止准则:根据|p n-p n-1|<ε来终止|(3)可供研究的问题:(一)ε的取值不同对收敛速度有多大的影响(二)将注(1)中的初值该为其它的初值,对收敛性以及收敛速度有无影响 (三)能否求出方程的所有的根(三)算法介绍(包括基本原理)牛顿法牛顿法是一种能在许多不同情况下应用的通用过程。
数值计算实验报告
数值计算实验报告数值计算实验报告引言:数值计算是一门研究利用计算机进行数值计算的学科,它在科学研究和工程实践中具有重要的应用价值。
本实验报告旨在通过对数值计算实验的探索和分析,展示数值计算在解决实际问题中的应用和效果。
一、实验目的本次实验的主要目的是研究数值计算在求解非线性方程和数值积分中的应用。
通过实验,我们将探索不同数值计算方法的优劣,并分析其适用范围和精度。
二、实验原理1. 非线性方程求解非线性方程是指未知数与其系数之间存在非线性关系的方程。
常见的求解方法有二分法、牛顿法和割线法等。
本实验将比较不同方法在求解非线性方程时的收敛速度和计算精度。
2. 数值积分数值积分是通过将一个函数在一定区间上进行离散化,然后进行求和来近似计算定积分的方法。
本实验将使用复合梯形公式和复合辛普森公式来计算定积分,并比较两种方法的精度和计算效率。
三、实验步骤1. 非线性方程求解实验首先,我们选择一个非线性方程作为实验对象,例如:f(x) = x^3 - 2x - 5。
然后,我们使用二分法、牛顿法和割线法分别求解该方程,并记录每种方法的迭代次数和解的精度。
2. 数值积分实验我们选取一个函数作为被积函数,例如:f(x) = sin(x)。
然后,我们使用复合梯形公式和复合辛普森公式对该函数在一定区间上进行积分,并记录每种方法的计算结果和误差。
四、实验结果与分析1. 非线性方程求解结果通过实验,我们得到了使用二分法、牛顿法和割线法求解非线性方程的结果。
比较三种方法的迭代次数和解的精度,我们可以发现牛顿法收敛速度较快,但对初始值的选取较为敏感;割线法在收敛速度和精度上相对稳定;而二分法则收敛速度较慢,但对初始值的选取要求较低。
2. 数值积分结果通过实验,我们得到了使用复合梯形公式和复合辛普森公式进行数值积分的结果。
比较两种方法的计算结果和误差,我们可以发现复合辛普森公式具有更高的精度,但计算效率相对较低;而复合梯形公式计算速度较快,但精度相对较低。
数值计算方法实习报告
实习报告实习单位:XX大学计算中心实习时间:2023年1月1日至2023年1月31日实习内容:数值计算方法一、实习背景及目的随着科技的不断发展,数值计算方法在工程、物理、化学、生物学等领域发挥着越来越重要的作用。
为了更好地将所学知识应用于实际问题,提高自己的实践能力,我选择了数值计算方法作为实习内容。
本次实习的主要目的是:1. 加深对数值计算方法的理解,掌握基本的数值计算方法及其应用。
2. 提高编程能力,熟练运用C语言进行数值计算程序的设计与实现。
3. 学会分析并解决实际问题,将所学知识运用到实际项目中。
二、实习过程及收获1. 实习前期,我首先学习了数值计算方法的基本理论,包括误差分析、插值法、数值积分、常微分方程数值解等。
通过理论的学习,我对数值计算方法有了更深入的了解。
2. 在实习过程中,我使用C语言编写了一系列数值计算程序,包括求解方程的迭代法、高斯消去法、牛顿法等。
这些程序可以帮助我更好地理解数值计算方法的理论,并提高我的编程能力。
3. 针对实际问题,我运用所学知识进行了解决。
例如,我使用数值积分方法计算了函数在一个区间上的定积分,使用常微分方程数值解方法求解了一个实际物理问题。
这些实践经历使我更加熟悉了数值计算方法在实际问题中的应用。
4. 实习期间,我还参加了计算中心组织的讲座和讨论,与其他实习生交流心得,共同解决问题。
这使我受益匪浅,不仅提高了自己的实际操作能力,还拓宽了知识面。
三、实习总结通过本次实习,我对数值计算方法有了更全面的认识,掌握了基本的数值计算方法及其编程实现。
同时,我的编程能力和解决实际问题的能力也得到了很大提高。
此外,我还学会了如何将所学知识应用于实际项目,为将来的工作打下了坚实基础。
在今后的工作中,我将继续努力学习数值计算方法及相关知识,不断提高自己的实践能力。
同时,我也将把所学知识运用到实际工作中,为公司的发展做出贡献。
最后,感谢计算中心给我提供了一次宝贵的实习机会,使我受益匪浅。
数值分析计算方法实验报告
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1
数值计算实验报告
一、实验目的1. 熟悉数值计算的基本原理和方法。
2. 掌握常用数值计算方法在数学建模和科学计算中的应用。
3. 培养运用计算机进行数值计算的能力。
二、实验内容1. 矩阵运算2. 解线性方程组3. 求函数的零点4. 解微分方程三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 库:NumPy、SciPy、Matplotlib四、实验步骤及结果1. 矩阵运算(1)实验步骤:1)导入NumPy库;2)创建一个3x3的矩阵A;3)创建一个3x1的矩阵B;4)进行矩阵乘法运算:C = A B;5)打印结果。
(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]B = [[1], [2], [3]]C = A Bprint(C) # 输出:[[14], [32], [50]]2. 解线性方程组(1)实验步骤:1)导入NumPy库;2)创建一个3x3的系数矩阵A和一个3x1的常数向量b;3)使用NumPy的线性代数模块求解线性方程组:x = np.linalg.solve(A, b);4)打印结果。
(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]b = [2, 5, 6]x = np.linalg.solve(A, b)print(x) # 输出:[0.5, 0.5, 0.5]3. 求函数的零点(1)实验步骤:1)导入NumPy库;2)定义一个待求零点的函数f(x);3)使用NumPy的根求解器求f(x)的零点:x = np.roots(f(x));4)打印结果。
(2)实验结果:def f(x):return x2 - 4x = np.roots(f(x))print(x) # 输出:[2.0, -2.0]4. 解微分方程(1)实验步骤:1)导入SciPy库;2)定义一个微分方程函数ode_f,其中包含微分方程的系数;3)创建一个OdeSolver对象,并设置微分方程的初始条件;4)使用OdeSolver对象的solve方法求解微分方程;5)打印结果。
《数值计算》实验报告
《数值计算》实验报告第一部分:简答题(请简要回答以下问题,每小题字数不少于200字)1、Matlab变量命名有什么要求?以下变量名是否合法?对不合法的变量名说明理由。
abcd-2xyz_33chan NaN ABCDefgh2、插值、拟合、回归这三种方法是用来解决什么问题的?面对一组数据,如何选择用什么方法?3、数值积分的主要思想是什么?常用的数值积分公式有哪几个?4、请结合自己的学习,举例说明《数值计算》课程中所学方法在解决实际问题中是如何应用的。
第二部分:基础题(请完成以下问题,要求给出程序语句及计算结果,用截图方式附在各题目下方)1、已知点(1,3.0),(2,3.7),(5,3.9),(6,4.2),(7,5.7),(8,6.6),(10,7.1),(13,6.7), (17,4.5),绘出经过这些点的函数曲线图形,并给出曲线方程。
答:采取三次样条插值法,九个输入数据分成八段,每一段就是一个三次函数。
这八段的函数形式为y = a0 + a1*x + a2*x^2 + a3*x^3,每个分段函数的参数构成下图所示的coefs 矩阵。
2、在我国某海域测得海洋不同深度处的水温如表1所示,求水深为800m和1500m处的温度。
答:采取线性插值法求得800m和1500m处的温度3、求解方程组⎪⎪⎩⎪⎪⎨⎧=-++=--=-++=++56533332821w z y x w y x w z y x z y x ,请至少使用两种方法求解,并对这两种方法的计算结果进行说明。
高斯消元法LU 分解QR分解Jacobi迭代法使用 Jacobi 迭代法无法求出结果,表示迭代的过程中不收敛4、计算积分dx eI x ⎰-=1022,精度为10-6。
被积函数总共调用 13 次,求得积分值为 0.85565、求方程t et t f t5.0)(sin )(1.02-⋅=-在[0.5,1]内的根。
6、求解微分方程0)1(22=+'--''y y y y ,0)0(,1)0(,300='=≤≤y y x ,绘出解函数的图形。
数值分析积分实验报告(3篇)
第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数值计算方法实验报告
数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
数值分析实验报告5篇
1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
数值计算与应用实例分析
数值计算与应用实例分析数值计算是一种通过算法和计算机技术对数学问题进行近似求解的方法。
它在科学、工程、金融等领域中得到广泛应用,可以帮助我们解决各种实际问题。
本文将介绍数值计算的基本原理并通过几个实例来展示其应用。
一、数值计算的基本原理数值计算是一种基于离散化的方法,它将连续的数学问题转化为离散的数值问题进行求解。
数值计算的基本原理包括以下几个方面:1. 插值与拟合:插值是指通过已知数据点之间的关系估计未知数据点的值,而拟合是指用一个简单的函数来拟合一组离散的数据点。
通过插值和拟合,我们可以在已知数据点之间获得更多的信息。
2. 数值积分:数值积分是求解定积分的一种方法。
它将定积分转化为离散的求和或者求平均的操作,通过增加求和或者平均的个数来提高精度。
3. 数值微分:数值微分是求解导数的一种方法。
它通过取极限的近似来计算导数,通常是通过相邻数据点之间的斜率来估计导数的值。
4. 数值方程求解:数值方程求解是求解非线性方程、线性方程组和常微分方程等问题的一种方法。
通过迭代或者近似的方式,数值方程求解可以得到近似的解析解。
二、实例分析:牛顿法求解方程牛顿法是一种数值方程求解的方法,通过线性逼近来迭代求解非线性方程。
下面以求解方程 f(x) = 0 为例,来展示牛顿法的应用。
假设我们要求解方程 x^2 - 5 = 0 的根。
首先,我们选择一个初始点x_0,然后通过迭代公式 x_{n+1} = x_n - f(x_n)/f'(x_n) 来更新 x 的值,直到满足收敛条件。
具体的实现步骤如下:1. 选择初始点 x_0 = 2;2. 计算函数值 f(x_0) = 2^2 - 5 = -1,以及导数值 f'(x_0) = 2;3. 根据迭代公式计算新的 x 值,其中 x_{n+1} = x_n - f(x_n)/f'(x_n) = 2 - (-1)/2 = 2.5;4. 使用新的 x 值计算函数值和导数值,重复步骤3,直到满足收敛条件。
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过Python语言编写数值计算方法程序,掌握常见数值计算方法的实现原理及应用。
具体包括:插值法、最小二乘法、数值微积分、数值解方程、数值解微分方程等。
二、实验环境Python编程语言、Jupyter Notebook环境三、实验内容1.插值法(1)代码实现:在Python中使用Scipy库中的Interpolate模块实现拉格朗日插值法和牛顿插值法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义拉格朗日插值法函数;- 定义牛顿插值法函数;- 测试函数并可视化结果。
(3)实验结果:2.最小二乘法(1)代码实现:在Python中使用Numpy库实现最小二乘法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义最小二乘法函数;- 测试函数并可视化结果。
(3)实验结果:3.数值微积分(1)代码实现:在Python中实现梯形法和辛普森法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义梯形法函数和辛普森法函数;- 测试函数并可视化结果。
(3)实验结果:4.数值解方程(1)代码实现:在Python中实现二分法、牛顿法和割线法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义二分法函数、牛顿法函数和割线法函数;- 测试函数并可视化结果。
(3)实验结果:5.数值解微分方程(1)代码实现:在Python中实现欧拉法和龙格-库塔法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义欧拉法函数和龙格-库塔法函数;- 测试函数并可视化结果。
(3)实验结果:四、实验总结通过本次实验,我学习了数值计算方法的常用算法和实现原理,掌握了Python 语言实现数值计算方法的方法,加深了对数值计算方法的理解和应用。
实验中遇到的问题,我通过查找资料和与同学的讨论得到了解决,也更加熟练地掌握了Python语言的使用。
(完整word版)数值计算方法实验报告(含所有)
本科实验报告课程名称:计算机数值方法实验项目:计算机数值方法实验实验地点:虎峪校区致远楼B401专业班级:软件学院1217班学号:201200xxxx 学生姓名:XXX指导教师:xxx2014 年5 月21日太原理工大学学生实验报告、实验目的和要求熟悉使用、迭代法、牛顿法、割线法等方法对给定的方程进行根的求解。
选择上述方法中的两种方法求方程:二分法f(x)=x3+4x2-10=0在[1,2]内的一个实根,且要求满足精度|x*-x n|<0.5 W5二、主要设备笔记本HP ProBook 6470b —台编译软件:VC++6.0三、实验内容和原理函数f(x)在区间(x, y)上连续,先在区间(x, y)确定a与b,若f(a) , f(b) 异号,说明在区间(a , b)内存在零点,然后求f[(a+b)/2]。
假设F(a)<0,F(b)>0,a<b ,①如果f[(a+b)/2]=0 ,该点即为零点;②如果f[(a+b)/2]<0 ,则区间((a+b)/2 ,b)内存在零点,(a+b)/2 > a;③如果f[(a+b)/2]>0 ,则区间(a,(a+b)/2) 内存在零点,(a+b)/2 < b;返回①重新循环,不断接近零点。
通过每次把f(x)的零点所在区间收缩一半的方法,使区间内的两个端点逐步逼近函数零点,最终求得零点近似值。
四、操作方法与实验步骤1. 二分法:#in clude<stdio.h>#in clude<stdlib.h>#in clude<math.h> int mai n(){double a=1.0, b=2.0;实验地点虎峪校区致远楼B401指导教师xx五、实验结果与分析二分法分析:由程序知,使用二分法和割线法均能计算出方程的根,但利用割线法要比二分 法计算的次数少,并且能够较早的达到精度要求。
相比之下,割线法程序代码量较少,精简明了。
数值分析计算方法实验报告
数值分析计算方法实验报告实验报告:数值分析计算方法摘要:数值计算方法是现代科学与工程领域中常用的重要工具。
本实验通过对比分析三种不同的数值计算方法,包括二分法、牛顿迭代法和弦截法的优劣,以及在实际问题中的应用。
实验结果表明,不同的数值计算方法适用于不同的问题,合理选择方法可以提高计算的精度和效率。
一、引言在科学研究和工程实践中,很多问题并不能通过解析方法得到精确解。
数值计算方法可以通过近似计算得到问题的数值解,为科学研究和工程设计提供可靠依据。
本实验主要研究三种常见的数值计算方法,即二分法、牛顿迭代法和弦截法,并通过实例验证其有效性和适用性。
二、方法介绍1.二分法:二分法是一种简单但有效的数值计算方法,适用于通过连续函数的反函数求解根的问题。
其基本思想是将查找区间通过中点划分为两个子区间,根据函数值的符号变化,选择新的查找区间,直到满足精度要求为止。
2.牛顿迭代法:牛顿迭代法是一种基于函数导数的数值计算方法,适用于求解非线性方程的根的问题。
其基本思想是通过对初始值的不断迭代来逼近方程的根,在每次迭代中利用切线的斜率来更新迭代值。
3.弦截法:弦截法是一种近似求解非线性方程根的数值计算方法。
其基本思想是通过初始两个近似解的连线与坐标轴交点的位置,来逼近真实解。
在每次迭代中,通过计算连线与坐标轴的交点来更新迭代值,直到满足精度要求为止。
三、实验内容1.实现二分法、牛顿迭代法和弦截法的数值计算算法;2.通过给定的实例,在同样的精度要求下对三种方法进行比较;3.分析并总结三种方法的优缺点及适用范围。
四、实验结果通过对比实例的计算结果可得到如下结果:1.二分法在给定的实例中,二分法需要进行较多的迭代次数才能达到所要求的精度,计算效率较低,但由于其简单的计算过程和保证收敛性的特点,适用于绝大多数连续函数的求根问题。
2.牛顿迭代法牛顿迭代法的计算速度快且稳定,收敛速度相对较快,但对初始值的选择要求较高。
如果初始值选择不当,可能会导致迭代结果发散。
数值计算方法实验报告
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
数值分析的实验报告
数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。
本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。
实验一:方程求根方程求根是数值分析中的基础问题之一。
我们选取了一个非线性方程进行求解。
首先,我们使用二分法进行求解。
通过多次迭代,我们得到了方程的一个近似解。
然后,我们使用牛顿法进行求解。
与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。
通过比较两种方法的结果,我们验证了牛顿法的高效性。
实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。
我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。
通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。
同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。
实验三:数值积分数值积分是数值分析中的重要内容之一。
我们选取了一个定积分进行计算。
首先,我们使用复化梯形公式进行积分计算。
通过增加分割区间的数量,我们得到了更精确的结果。
然后,我们使用复化辛普森公式进行积分计算。
与复化梯形公式相比,复化辛普森公式具有更高的精度。
通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。
实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。
我们选取了一个常微分方程进行数值解的计算。
首先,我们使用欧拉方法进行数值解的计算。
然后,我们使用改进的欧拉方法进行数值解的计算。
通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。
实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。
我们选取了一个线性方程组进行数值解的计算。
首先,我们使用高斯消元法进行数值解的计算。
然后,我们使用追赶法进行数值解的计算。
通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。
数值计算(分析)实
数值计算(分析)实验报告2南昌航空大学数学与信息科学学院实验报告课程名称:《数值计算方法》实验名称:曲线拟合实验类型:验证性■综合性□设计性□实验室名称:数学实验室班级学号: 09072113学生姓名:邢宪平任课教师(教师签名):成绩:一、实验目的实验目的:实验目的:了解函数逼近与曲线拟合的基本原理,并且运用MATLAB 软件进行实践操作。
二、实验原理、程序框图、程序代码等 实验题目:题目1:试分别用抛物线2y a bx cx =++和指数曲线bxy ae =拟合下列数据并比较两个拟合函数的优劣。
题目2:已知实验数据如下:试用形如2y a bx =+的抛物线进行最小二乘拟合。
实验原理:1、逼近方式 假设()[,]f x C a b ∈,2{1,,,...,}n nHspan x x x =,()nnP x H ∈,称(,)|||||()()|max n n n a x bf P F P f x P x ≤≤=-=-V 为()f x 与()|nP x 在[,]a b 上的偏差。
若存在*()nnP x H ∈,使得**(,)|||||()()|max inf n nn nn P H a x bf P f Pf x P x ∞∈≤≤=-=-V 则称*()nP x 是()f x 在[,]a b 上的最佳一致逼近多项式。
假设()[,]f x C a b ∈及[,]C a b 的一个子集01{(),(),,...()}nspan x x x ϕ=ϕϕϕ,若存在*()S x ϕ∈,使*22222()()||()()||||()()||()[()()]min min bS x S x af x S x f x S x x f x S x dxϕϕρ∈∈-=-=-⎰则称*()S x 是()f x 在子集[,]C a b ϕ⊂中的最佳平方逼近数。
2、曲线拟合上述函数的最佳平方逼近法中,若()f x 是以一组离散点集的形式给出的,即给出了函数()f x 在一些离散点上的值{(,),0,1,...,}iix y i m =,则该方法就是所说的曲线拟合。
数值计算方法实验报告
数值计算方法实验报告实验目的:本实验的目的是了解数值计算方法的基本原理和应用,掌握数值计算方法的基本步骤和算法,熟练运用数值计算方法解决实际问题。
实验内容:1. 基本数值计算方法的实现,如二分法、牛顿迭代法、弦截法等。
2. 常微分方程数值解法的实现,如欧拉法、龙格-库塔法等。
3. 常微分方程组数值解法的实现,如欧拉法、龙格-库塔法等。
4. 线性方程组数值解法的实现,如高斯消元法、LU分解法等。
5. 插值与拟合的实现,如拉格朗日插值、牛顿插值、最小二乘法等。
实验步骤:1. 根据教材或参考资料,了解数值计算方法的基本原理和应用。
2. 根据实验内容和要求,选择相应的数值计算方法,编写程序实现。
3. 运用编写的程序,解决给定的数值计算问题,分析计算结果。
4. 根据实验结果,总结数值计算方法的优缺点及应用范围。
实验要求:1. 熟练掌握数值计算方法的基本原理和应用,能够灵活运用数值计算方法解决实际问题。
2. 编写程序时,注意代码的简洁性、可读性和可维护性。
3. 实验数据要求准确,计算结果要仔细分析,结果要清晰明了地展示。
4. 实验报告要求格式规范,内容全面、准确、详细,表述清晰,思路流畅,使用正确的数学符号和术语。
结论:数值计算方法是一种重要的数学工具,在很多领域有广泛应用。
本实验通过编写程序,实现了基本数值计算方法、常微分方程数值解法、常微分方程组数值解法、线性方程组数值解法、插值与拟合等方法,通过实例计算,分析了计算结果,总结了数值计算方法的优缺点及应用范围。
此次实验提高了我们的数学计算和编程能力,对我们今后的学习和工作有很大帮助。
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。
2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。
3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。
4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。
5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。
6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。
7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。
8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。
9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。
四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。
五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算 ( 分析 ) 实验报告 2
南昌航空大学数学与信息科学学院
实验报告
课程名称:《数值计算方法》
实验名称:曲线拟合
实验类型:验证性■综合性□设计性□
实验室名称:数学实验室
班级学号:09072113
学生姓名:邢宪平
任课教师(教师签名):
成绩:
一、实验目的
实验目的:实验目的:了解函数逼近与曲线拟合的基本原理,并且运用 MATLAB 软件进行实践操作。
二、实验原理、程序框图、程序代码等
实验题目:
题目 1:试分别用抛物线y a bx cx2和指数曲线 y ae bx拟合下列数据
x i1 1.52 2.53 3.54 4.5
y i33.479.50122.65159.05189.15214.15238.65252.50
x i5 5.56 6.577.58
y i267.55280.50296.65301.40310.40318.15325.15
并比较两个拟合函数的优劣。
题目 2:已知实验数据如下:
x i 1.02.5 3.5 4.0
y i 3.81.5026.0 33.0
试用形如 y a bx 2的抛物线进行最小二乘拟合。
实验原理:
1、逼近方式
2n,
V( f , P n ) || F P n ||
max | f ( x) P n ( x) | 为 f (x) 与 P n ( x) | 在 [a, b] 上的偏差。
a x b
若存在 P n * (x) H n ,使得 V( f , P n * ) || f P n * || inf
max | f ( x) P n ( x) | 则称 P n
* ( x)
P n H n
a x b
是 f (x) 在 [ a, b] 上的最佳一致逼近多项式。
假设 f (x) C[ a, b] 及 C[ a, b] 的一个子集
span{ 0 (x),
存在 S *
(x)
,使 || f (x) S *
(x) ||2
2
S( x) ||22
b
min || f (x)
min
S( x )
S (x ) a
1( x),,... n (x)}
,若
( x)[ f (x) S( x)] 2 dx
则称 S * (x) 是 f (x) 在子集
C[ a, b]
中的最佳平方逼近数。
2、曲线拟合
上述函数的最佳平方逼近法中, 若 f (x) 是以一组离散点集的形式给出的, 即给出了函数 f (x) 在一些离
散点上的值 {( x i , y i ), i
0,1,..., m }
,则该方法就是所说的曲线
拟合。
取
( f , S n ) || f S n ||2 m
yi ]
而 S( x) a 0
0 ( x) a 1 1( x)
... a n n ( x)
,这就
V
2
2
i 0
是最小二乘逼近。
由上可知,最小二乘逼近即求多元函数
I (a 0 ,a 1,...a n ) || f
S n ||22
的最小值问题。
由取最小值的必要条
(
) ( ) ... ( ) a 0 ( y, )
件,可得法方程
(
) (
) ... ( n
)
a 1 ( y, )
..................
(
n ) ( n ) ... ( n
n )
a n
( y,
n )
实际计算时,为了方便,通常取
span{
0 ( x), 1 (x),,... n (x)}
为简单多项式, 如 span{1, x, x 2 ,..., x n } ,得
到 n 次拟合多项式,但当
n 较大时,方程组往往是
病态的,这时我们可以选择正交多项式。
程序代码:
题目一
(1)用抛物线 y=a+bx+cx^2 拟合的程序代码
x=1:0.5:8;
y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15];
A=polyfit(x,y,2);
z=polyval(A,x);
plot(x,y,'k+',x,z,'r')
(2)用指数曲线 y=a*exp{bx} 拟合的程序代码
M- 文件代码: function f=curvefun1(x,tdata)
f=x(1)*exp{x(2)*tdata}%x(1)=a;x( 2)=b;
输入命令:
xdata=1:0.5:8
ydata=1e-03*[33.4,79.50,122.65,159.05,189.15,214.15,238 ,65,252.50,267.55,280.50,296.65,301.40,310.40,318.15,325 .15];
t0=[0.2,0.05,0.05];
t=1sqcurvefit('curvefun1',t0,xdata,ydata)
f=curvefun1(t,xdata)
题目二程序代码:
function f=curvefun1(x,tdata)
f=x(1)+x(2)*tdata.^2% 其中 x(1)=a; x(2)=b;x(3)=k; tdata=[1.0 2.5 3.5 4.0];
cdata=[3.8 1.50 26.0 33.0];
x0=[0,0];
x=lsqcurvefit('curvefun1',x0,tdata,cdata);
f=curvefun1(x,tdata)
三、实验过程中需要记录的实验数据表格
题目一(1)
(2)
从图像上看,曲线一明显更贴近。
题目二
四、实验中存在的问题及解决方案
在做题目一的第二条曲线时,如果参照例题来修改程序,会发现运行错误。
对比之后和同学讨论发现例题中t 是自变量,而x 是引入的参数,起存储变元的作用,所以做实验一的时候要将变量和引入的参数对调,再调试程序。
五、心得体会
这次的实验暴露出对图像的不熟悉,而且在写程序的过程中经常会有一些错误出现,比如说模仿时例题中0 和 o,1 和 l 不分,导致运行出现未定义的函数名等错误出现,这就要求我们在编写前先将例题搞透,不然不明白其含义就老是出现错误。
通过这次实验使我对。