实验五 幅度调制器实验

合集下载

幅度调制与解调

幅度调制与解调

幅度调制与解调实验一、实现目的1、通过本次实验,起到理论联系实际的作用,将理论课中学到的调幅、检波电路的分析方法用到实验电路的分析和实验结果的分析中,使理论真正地用在实际电路中,落到实处。

要求学生必须从时域、频域对调制和解调过程中信号的变换分析清楚。

2、本次采用的实验电路既能实现普通调幅,又能实现双边带调幅,通过实验更进一步理解普通调幅(AM)和双边常调幅(DSB)在理论上、电路中的联系和区别。

3、实验中所测量的各种数据、曲线、波形是代表电路性能的主要参数,要求理解参数的意义和测量方法,能从一组数据中得出不同的参数并衡量电路的性能。

二、实验仪器1、数字示波器 TDS210 0~60MHz 1台2、频谱分析仪 GSP-827 0~2.7GHz 1台3、直流稳压电源 SS3323 0~30V 1台4、实验电路板自制 1块三、实验电路及原理1、实验电路介绍实验所采用的电路为开关调幅电路,如图所示。

既能实现AM调制,又能实现DSB调制,是一种稳定可靠,性能优良的实验电路,其基本工作原理是:调制信号经耦合电容C1输入与电位器输出的直流电压叠加,分别送到同相跟随器U1A 和反相跟随器U1B,这样在两个跟随器的输出端就得到两个幅度相等,但相位相反的调制信号(U+和U-)。

再分别送到高速模拟开关的两个输入端S1和S2,由开关在两个信号之间高频交替切换输出(由载波控制),在输出端就得到调幅波,通过调整电位器可以改变直流电压达到改变调制度m,当电位器调到中心位置时就得到了双边带的调幅信号。

放大器为高精度运放AD8552,开关为二选一高速CMOS模拟开关ADG779。

另外,为防止实验过程中由于调制信号幅度过大而损坏电路,特加了保护二极管D1、D2;由于运算放大器和模拟开关是单电源轨至轨型,只能单5V供电,在使用时所有信号是叠加在2.5V直流电平上的,电路中R7、R8就是提供该直流偏置电平的,R12、R13、T1是用来抵销直流电平的,以免对检波电路产生影响;R8、C5、C7、L1和R9、C6、C8、L2起到导通直流和低频信号、阻止高频信号的作用,防止开关泄露的高频载波信号对运算放大器产生影响;高频载波信号(1MHz,方波)由有源晶体振荡器X1产生。

幅度调制与解调电路实验报告

幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验十、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真十一、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。

十二、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。

引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。

引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。

引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。

用来调节偏置电流I5 及镜像电流I0 的值。

十三、实验内容及步骤1、乘法器失调调零2、观察调幅波形图二:K502 1-2短接波形图图三:K502 2-3短接波形图3、观测解调输出图四:解调输出波形图十四、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。

既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。

即有式中m是调幅波的调制系数(调幅度)。

同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。

十五、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。

温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。

十六、注意事项1.实验前先检查试验箱的电源是否正常;2.使用示波器将波形调至最合适的大小再读数据;3.实验结束后关闭各设备电源,清理好仪器和工具。

幅度调制及解调实验心得

幅度调制及解调实验心得

幅度调制及解调实验心得一、实验目的幅度调制及解调实验是电子学中的基础实验之一,旨在通过实践操作与理论结合的方式,加深对幅度调制及解调原理的理解,掌握幅度调制与解调电路的设计和调试方法。

二、实验原理1. 幅度调制原理幅度调制是指用模拟信号(也称为基带信号)去控制高频信号(也称为载波信号)的振幅变化,从而将模拟信号转化为高频信号。

具体而言,假设模拟信号为m(t),高频载波信号为c(t),则幅度调制后得到的带载波信号s(t)可表示为:$$s(t)=(A_c+m(t))\cos(2\pi f_c t)$$其中,$A_c$为载波振幅,$f_c$为载波频率。

可以看出,当模拟信号m(t)变化时,带载波信号s(t)的振幅也会随之变化。

2. 幅度解调原理幅度解调是指将已经被幅度调制过的带载波信号还原成原始模拟信号。

常见的幅度解调电路有包络检测器和同步检测器两种。

包络检测器的原理是利用二极管的非线性特性,将带载波信号的正半周期和负半周期分别整流,然后通过一个低通滤波器得到原始模拟信号的包络。

具体而言,假设带载波信号为s(t),则包络检测器输出的电压e(t)可表示为:$$e(t)=R_c\cdot C\cdot \frac{d}{dt}|s(t)|$$其中,$R_c$为电路中的电阻,$C$为电容。

同步检测器的原理是利用一个参考信号(也称为本振信号)与已经被幅度调制过的带载波信号相乘得到一个混频信号,然后通过低通滤波器得到原始模拟信号。

具体而言,假设参考信号为$f_r(t)$,带载波信号为$s(t)$,则同步检测器输出的电压e(t)可表示为:$$e(t)=K_d\cdot m(t)$$其中,$K_d$为检波灵敏度。

三、实验步骤1. 实验材料准备:示波器、函数发生器、二极管、电容、变阻器等。

2. 搭建幅度调制电路:将函数发生器输出接入变阻器中,并将变阻器输出接入二极管的正极,将二极管的负极接地。

将载波信号从函数发生器输出,并通过一个电容与变阻器输出相乘,得到幅度调制后的带载波信号。

实验五 声光调制实验(修订)

实验五 声光调制实验(修订)

数据记录
• 1、声光调制幅度特性 (Id为一级衍射光光强)
载波幅度Um(V) 0 0.5 1 1.5 2 2.5
一级衍射光光强Id
载波幅度Um(V) 3 3.5 4 4.5 5 5.5
一级衍射光光强Id
数据记录
• 2、声光调制频率偏转特性(θd~F ) • 零级光位置d0= ; • 声光调制器与接收孔间的距离L=
布拉格衍射
F Sin 2 s
• (式中F与VS分别为超声波的频率与速度, 为光波的波长) • 当满足入射角θi较小,且θi= θB的布拉格衍 射条件下,此时有最强的正一级(或负一 级)的衍射光呈现。
偏转角
• 入射(掠射)角θi与衍射角θB之和称为偏转 角θd K
d i B 2 B


实验注意事项

• •
4、调节半导体激光器功率时,不要用力 过大而损坏功率调节旋钮。 5、调节载物平台的转向应在±10°以内。 6、实验数据的单位和精度要求:角度单 位为rad,螺旋测微器和标尺都需要估读 一位。
载波频率F(MHz) 一级衍射光位置d1 距离d=| d1 - d0 | 60 70 80 90 100

偏转角θd≈ d/L
数据记录
• 2、声光调制频率偏转特性(Id~F ) • 改变频率时应随时调节“载波幅度”旋钮, 以尽量保持调制幅度(载波电压表指示读数) 一致。如1、2、3等。
载波频率F(MHz)
一级衍射光光强Id 载波频率F(MHz) 一级衍射光光强Id 80 82 84 86 88 90 92 94 96 98 10 0
60
62
64
66
68
70
72

实验 信号的幅度调制

实验   信号的幅度调制

实验信号的幅度调制一概述模拟通信现在虽然已不多用,但它仍然是通信系统的基础。

由于从消息变换而来的原始信号具有频率较低的频谱分量,这种信号在许多信道中不适宜直接进行传输。

因此,在通信系统的发送端通常需要有调制过程,而在接收端则需要有反调制过程——解调过程。

调制在通信系统中具有十分重要的作用,所谓调制,就是按调制信号(基带信号)的变化规律去改变载波的某些参数的过程,下面我们讨论一下模拟调制调制方式的基础——幅度调制。

二原理及框图幅度调制是正弦型载波的幅度随调制信号作线性变化的过程。

设正弦型载波为s(t)=Aco s(w t+a)式中w──载波角频率;A──载波的幅度;a──载波的初始相位。

那么,幅度调制信号(已调信号)一般可表示为S(t)=Am(t)cos(Wt+a)式中m(t)为基带调制信号。

下面是幅度调制的原理框图:m(t) Sm(t)由以上表示式可见,幅度已调信号,在波形上它的幅度随基带信号变化而呈正比例地变化;在品扑结构上,它的频谱完全是基带信号频谱结构在频域内的简单搬移(精确到常数因子)。

由于这种搬移是线性的,因此,幅度调制又称为线性调制。

因而,从频域的角度来讲,要恢复原来的信号,只须加适当的滤波器即可,对已调信号进行频谱的反向搬移。

由以上可知,所谓调幅信号,就是用信号的幅度来装载信息,以达到远距离通信的目的。

三步骤1 根据幅度调制与解调原理,用Systemview软件建立一个仿真电路,如下图所示:图表1 仿真电路2 元件参数配置Token 0,2 余弦信号([0],频率0.5Hz;[2],频率10Hz)Token 1,5 相乘器Token 3,4,7 信号接收器Token 6 低通滤波器(截止频率7Hz,极点数3) 3 运行时间设置运行时间=4S; 采样频率=50.25hz4运行系统在系统内运行该系统后,转到分析窗观察Token3,4,7三个点的波形.5频谱图在分析窗绘出该系统调制后的频谱图.幅度调制运行结果1已调信号波形2已调信号频谱3 解调后的调制信号4-1.Svu是一个参考示例的电路原理图。

幅度调制与解调实验报告

幅度调制与解调实验报告

信号幅度调制与解调实验一. 实验目的1. 通过本实验熟悉信号的幅值调制与解调原理。

2. 了解信号调制与解调过程中波形和频谱的变化,加深对调制与解调的理解。

二. 实验原理在测试技术中,信号调制与解调是工程测试信号在传输过程中常用的一种调理方法,主要是为了解决微弱缓变信号的放大以及信号的传输问题。

设测量信号为)(t x ,高频载波信号为)2cos()(φπ+=ft t z 。

信号调制过程就是将两者相乘,调幅波信号为:(1)信号解调就是将调幅波信号再与高频载波信号相乘,有:)4cos()()(2cos )()(212t f t x t x t f t x t y z z m ππ+== (2) 信号由x(t)和2倍载波频率的高频信号两部分组成,用低通滤波器滤除信号中的高频部分就可以得到测量信号x(t),这种方法称为同步解调。

图1 信号的幅度调制与同步解调过程实际中调制与解调在不同的设备上实现,载波频率可以严格一致,但相位很难同步,式(2)变为:)2cos()2cos()()(φππ+=t f t f t x t y z z m (3) 解调过程与同步解调类似,但必须保证x(t)为正信号;对双极性的测量信号x(t),则用一个偏置电平将信号抬高为单极性的正信号,然后再进行调制与解调处理,故称为偏置调制。

图2 测量信号的偏置处理三. 实验内容1.信号的同步调制与解调观察。

2.信号的偏置调制和过调失真现象观察。

3.信号调制中的重迭失真现象观察。

四. 实验仪器和设备1. 计算机1台2. DRVI快速可重组虚拟仪器平台1套3. 打印机1台五. 实验步骤1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI采集仪主卡检测”或“网络在线注册”进行软件注册。

2.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号的同步调制与解调实验”,建立实验环境,观察信号与调制与解调过程中的信号波形变化。

实验四和五(调幅及检波)

实验四和五(调幅及检波)

实验四振幅调制器一、实验目的:1.了解集成模拟乘法器的使用方法,掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

5.通过实验中波形的变换,学会分析实验现象。

二、预习要求1.预习幅度调制器有关知识。

2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。

3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。

三、实验原理1、幅度调制的基本原理在无线电通信中,其基本任务是远距离传送各种信息,如语音、图象和数据等,而在这些信息传送过程中都必须用到调制与解调。

调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。

通常称高频振荡为载波信号。

代表信息的低频信号称为调制信号,调制即是用调制信号去控制高频载波的参数,使载波信号的某一个或几个参数(振幅、频率或相位)按照调制信号的规律变化。

按照所控制载波参数(幅度、频率、相位)区分,调制可分为幅度调制、频率调制和相位调制。

幅度调制(调幅)就是载波的振幅(包络)受调制信号的控制,随调制信号的变换而变化的一种调制。

在幅度调制中,又根据所取出已调信号的频谱分量不同,分为普通调幅(标准调幅,AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。

它们的主要区别是产生的方法和频谱结构。

在学习时要注意比较各自特点及其应用。

2、单片集成双平衡模拟相乘器MC1496集成模拟乘法器是完成两个模拟量相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频等过程,均可看成两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件简单,且性能优越。

因此,在无线电通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有:BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等等。

高频实验五:振幅解调器(包络检波、同步检波)

高频实验五:振幅解调器(包络检波、同步检波)

实验5 振幅解调器(包络检波、同步检波)—、实验准备1.做本实验时应具备的知识点:●振幅解调●二极管包络检波●模拟乘法器实现同步检波2.做本实验时所用到的仪器:●③号实验板《调幅与功率放大器电路》●双踪示波器●万用表●直流稳压电源●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用包络检波器实现AM波解调的方法。

了解滤波电容数值对AM波解调影响;3.理解包络检波器只能解调m≤100%的AM波,而不能解调m>100%的AM波以及DSB 波的概念;4.掌握用MC1496模拟乘法器组成的同步检波器来实现AM波和DSB波解调的方法;5.了解输出端的低通滤波器对AM波解调、DSB波解调的影响;6.理解同步检波器能解调各种AM波以及DSB波的概念。

三、实验内容1.用示波器观察包络检波器解调AM波、DSB波时的性能;2.用示波器观察同步检波器解调AM波、DSB波时的性能;3.用示波器观察普通调幅波(AM)解调中的对角切割失真和底部切割失真的现象。

四、基本原理振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。

通常,振幅解调的方法有包络检波和同步检波两种。

1.二极管包络检波二极管包络检波器是包络检波器中最简单、最常用的一种电路。

它适合于解调信号电平较大(俗称大信号,通常要求峰一峰值为1.5V 以上)的AM 波。

它具有电路简单,检波线性好,易于实现等优点。

本实验电路主要包括二极管、RC 低通滤波器和低频放大部分,如图9-1所示。

图中,D21为检波管,C23、R20、C24构成低通滤波器,W21为二极管检波直流负载,W21用来调节直流负载大小,W22相串构成二极管检波交流负载,W22用来调节交流负载大小。

开关K21是为二极管检波交流负载的接入与断开而设置的,短路下方时为接入交流负载,全不接入为断开交流负载。

短路上方为接入后级低放。

调节W23可调整输出幅度。

图中,利用二极管的单向导电性使得电路的充放电时间常数不同(实际上,相差很大)来实现检波,所以RC 时间常数的选择很重要。

实验五 幅度调制器实验

实验五  幅度调制器实验

实验五幅度调制器实验一、实验目的:1. 掌握集成模拟乘法器的基本工作原理;2. 掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点;3. 学习调制系数m及调制特性(m~ UΩm )的测量方法,了解m<1 和m=1及 m>1时调幅波的波形特点。

二、预习要求:1. 预习幅度调制器的有关知识;2. 认真阅读实验指导书,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引脚的直流电压;3. 了解调制系数m的意义及测量方法;4. 分析全载波调幅信号的特点;5. 了解实验电路中各元件作用。

三、实验电路说明:本实验电路如图7-5所示。

图7-5图中MC1496芯片引脚1和引脚4接两个51Ω和两个75Ω电阻及51K电位器用来调节输入馈通电压,调偏W,有意引入一个直流补偿电压,由于调制电压uΩ与直流补偿电压相串联,相当于给调制信号uΩ叠加了某一直流电压后与载波电压uc相乘,从而完成普通调幅。

如需要产生抑制载波双边带调幅波,则应仔细调节W,使MC1496输入端电路平衡。

另外,调节W也可改变调制系数m。

1496芯片引脚2和引脚3之间接有负反馈电阻R3,用来扩展u Ω的输入动态范围。

载波电压uc由引脚8输入。

MC1496芯片输出端(引脚6)接有一个由并联L1、C5回路构成的带通滤波器,原因是考虑到当uc幅度较大时,乘法器内部双差分对管将处于开关工作状态,其输出信号中含有3ωc±Ω、5ωc±Ω、……等无用组合频率分量,为抑制无用分量和选出ωc±Ω分量,故不能用纯阻负载,只能使用选频网络。

四、实验仪器:1. 双踪示波器2. 万用表3. 实验箱及幅度调制、解调模块4、高频信号发生器五、实验内容及步骤:1.接通电源;2.调节高频信号源使其产生fc=10MHz幅度为200mV左右的正弦信号作为载波接到幅度调制电路输入端TP1,从函数波发生器输出频率为fΩ=1KHz左右幅度为600mV左右的正弦调制信号到幅度调制电路输入端TP2,示波器接幅度调制电路输出端TP3;3.反复调整uΩ的幅度和W及C5使之出现合适的调幅波,观察其波形并测量调制系数m;4.调整uΩ的幅度和W及C5,同时观察并记录m< 1、m=1及m>1时的调幅波形;5 在保证fc、fΩ和Ucm一定的情况下测量m—UΩm曲线。

幅度调制实验

幅度调制实验

实验三幅度调制一、实验目的1、理解用乘法器实现幅度调制的原理。

2、掌握用集成模拟乘法器构成的调幅电路。

3、掌握集成模拟乘法器的使用方法。

二、实验原理1、调幅原理调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。

振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。

把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三极管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。

2、集成四象限模拟乘法器MC1496简介:MC1496是目前常用的平衡调制/解调器。

它内部电路含有8 个有源晶体管,有两个输入端V X、V Y和一个输出端V O。

一个理想乘法器的输出为V O=KV X V Y,而实际上输出存在着各种误差,其输出的关系为:V O=K(V X +V XOS)(V Y+V YOS)+V ZOX。

为了得到好的精度,必须消除V XOS、V YOS与V ZOX三项失调电压。

它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。

本实验箱在幅度调制,同步检波,混频电路三个基本实验项目中均采用MC1496。

MC1496的管脚功能和内部原理图如图1所示,各引脚功能如下:1)、SIG+ 信号输入正端2)、GADJ 增益调节端3)、GADJ 增益调节端4)、SIG- 信号输入负端5)、BIAS 偏置端6)、OUT+ 正电流输出端7)、NC 空脚8)、CAR+ 载波信号输入正端9)、NC 空脚10)、CAR- 载波信号输入负端11)、NC 空脚12)、OUT- 负电流输出端13)、NC 空脚14)、V- 负电源三、实际电路分析本实验的电路如图2所示,图中U301是幅度调制乘法器,音频信号和载波分别从J301和J302输入到乘法器的两个输入端,K301和K303可分别将两路输入对地短路,以便对乘法器进行输入失调调零。

幅度调制实验报告

幅度调制实验报告
>> a=[1 0 1 0 1 0 1 0 1 0];
>> A=a(ceil(10*t+0.01));
>> A1=[zeros(1,5),A(1:995)];
>> g=ones(1,100);
>> g=[g,g,g,g,g,g,g,g,g,g];
>> su = (A.*g.*cos(2*pi*100*t)-A1.*g.*sin(2*pi*100*t))/2;
>> sl = (A.*g.*cos(2*pi*100*t)+A1.*g.*sin(2*pi*100*t))/2;
>> f=1000*(0:256)/512;
>> Su=fft(su,512);
>> Pssu=Su.*conj(Su)/512;
>> Sl=fft(sl,512);
>> Pssl=Sl.*conj(Sl)/512;
>> s1=cos(2*pi*100*t);
>> s2=a(ceil(10*t+0.01)).*g.*cos(2*pi*100*t);
>> f=1000*(0:256)/512;
>> S1=fft(s1,512);
>> Pss1=S1.*conj(S1)/512;
>> S2=fft(s2,512);
>> subplot(4,1,4);
>> plot(f,Pssl(1:257));
>> axis([0,200,0,10]);
第四步,MASK调幅,一个四进制比特流的映射过程

实验五 振幅调制器

实验五    振幅调制器

实验五振幅调制器一、实验目的1、掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。

2、掌握测量调幅系数的方法。

3、通过实验调幅波形的变换,学会分析实验现象。

二、预习要求1、预习幅度调制器的有关知识。

2、认真阅读实验指导书,了解实验原理及内容,分析实验电路用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。

3、分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。

三、实验仪器1、双踪示波器2、万用表3、高频电路实验装置四、实验电路说明幅度调制就是载波的振幅受调制信号的控制作周期性的变化,变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比,通常称高频信号为载波信号,低频信号为调制信号,调幅器即为产生调幅信号的装置。

图5-1 1496芯片内部电路图本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对,由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5、V6的恒流源,进行调幅时,载波信号加V1-V4的输入端,即引脚的“8”、“10”之间,调制信号加在差动放大器V5、V6的输入端,即引脚的“1”、“4”之间,“2”、“3”脚外接1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚(6)、(12)之间)输出。

用1496集成电路构成的调幅器电路如图5-2所示,图中Rp1用来调节引出脚“1”、“4”之间的平衡,Rp2用来调节“8”、“10”脚之间的平衡,三极管V为射极跟随器,以提高调幅器带负载的能力。

五、实验内容实验电路图见图5-2图5-2 1496构成的调幅器1、直流调制特性的测量(1)调Rp2电位器使载波输入端平衡,在调制信号输入端1N2加有效值为10mv,频率为1KHz的正弦信号,调节Rp2电位器使输出端信号最小,然后去掉输入信号。

实验五振幅调制

实验五振幅调制

四)振幅调制实验电路图2-1 调制信号及DSB信号波形)DSB信号反相点观察为了清楚地观察双边带信号过零点的反相,必须降低载波的频率。

本实验可将载波频率降低为果是DDS高频信号源可直接调至100KHZ;如果是其它信号源,需另配100KHZ的函数发生器)调制信号仍为1KHZ(幅度300mv)。

图2-2 DSB信号反相点观察由图可见,过零点的波形为反向。

图2-3 调制信号正半周期DSB与载波比较图2-4 调制信号负半周期DSB与载波比较由图可见:在调制信号正半周期间,DSB信号波形与载波波形同相;在调制信号负半周期间,DSB信号波形与载波波形反相。

与预期一致,实验结果正确。

4.SSB(单边带调制)波形观察单边带(SSB)是将抑制载波的双边带(DSB)通过边带滤波器滤除一个边带而得到的。

本实验利用滤波与计数鉴频模块中的带通滤波器作为边带滤波器,该滤波器的中心频率110KHZ左右,通频带约12KHZ。

为了利用该带通滤波器取出上边带而抑制下边带。

双边带(DSB)的载波频率应取104KHZ。

具体操作方法如下:图2-6 AM正常波形调整电位器8W03,可以改变调幅波的调制度。

在观察输出波形时,改变音频调制信号的频率及幅度,随之变化。

实验结果正确。

2)不对称调制度的AM波形观察在AM正常波形调整的基础上,改变8W02,可观察到调制度不对称的情形。

最后仍调到调制度对称的情形。

图2-8 调制度为100%的AM波形图2-9 过调制AM波形)增大载波幅度时的调幅波观察保持调制信号输入不变,逐步增大载波幅度,并观察输出已调波。

可以发现:当载波幅度增大到某值时,已调波形开始有失真;而当载波幅度继续增大时,已调波形包络出现模糊。

最后把载波幅度复原(200mv)。

图2-11 调制度为100%的三角波调幅波形图2-12 过调制时的三角波调幅波波形五、实验总结通过对DSB信号与调制度为100%时AM波形的而比较,可见AM波形幅度比DSB信号小,但AM波形的频率。

高频实验五 模拟乘法器幅度调制实验报告

高频实验五  模拟乘法器幅度调制实验报告

实验五 模拟乘法器幅度调制实验实验六 调幅波同步解调实验实验五 模拟乘法器幅度调制实验 一.实验目的1. 通过实验了解集成模拟乘法器MC1496的典型应用电路工作原理,通过调整外部电路的元件参数,得到AM 波和DSB-SC 波。

2. 通过实验,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论,并研究调制信号、载波信号与已调波之间的关系。

3.掌握在示波器上观察调幅波和测量调幅指数的方法。

二、实验使用仪器1.集成模拟乘法调幅实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4.低频双通道信号源 5.高频信号源三、实验基本原理与电路 1.调幅信号的分析(一) 普通调幅波(AM )(表达式、波形、频谱、功率)(1).普通调幅波(AM )的数学表达式、波形 设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为 :t U u c cm c ωcos = 普通调幅波(AM )的表达式为:AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos式中,a m 称为调幅系数或调幅指数。

由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波包络的变化速度越大。

一般a m 小于或等于1。

如果a m >1,调幅波产生失真,这种情况称为过调幅。

未调制状态调制状态图5-1 调幅波的波形(2). 普通调幅波(AM )的频谱 普通调幅波(AM )的表达式展开得:t U m t U m t U u c cm a c cm a c cm AM )cos(21)cos(21cos Ω-+Ω++=ωωω (5-2) 它由三个高频分量组成。

将这三个频率分量用图画出,便可得到图5-2所示的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。

幅度调制实验报告

幅度调制实验报告

幅度调制实验报告幅度调制实验报告引言:幅度调制是一种常见的调制技术,广泛应用于无线通信领域。

本实验旨在通过实际操作,深入理解幅度调制的原理和应用。

实验目的:1. 掌握幅度调制的基本原理;2. 理解调制信号对载波的幅度变化的影响;3. 学会使用示波器观察和分析调制信号和调制后的信号。

实验器材:1. 信号发生器;2. 功率放大器;3. 幅度调制器;4. 示波器;5. 电缆和连接线。

实验步骤:1. 搭建实验电路,将信号发生器、功率放大器和示波器依次连接;2. 调节信号发生器的频率和幅度,选择适当的载波频率和调制信号频率;3. 观察示波器上的波形,记录调制信号和调制后的信号的幅度变化;4. 调节调制信号的幅度,观察对调制后信号的影响;5. 调节载波频率,观察对调制后信号的影响。

实验结果与分析:通过实验观察和记录,可以得到以下结论:1. 调制信号的幅度变化会直接影响到调制后的信号的幅度变化。

当调制信号的幅度较小时,调制后的信号幅度变化较小;而当调制信号的幅度较大时,调制后的信号幅度变化较大。

2. 调制信号的频率对调制后信号的幅度变化没有明显的影响。

在实验中,我们调节了调制信号的频率,但观察到的调制后信号的幅度变化基本保持不变。

3. 载波频率的变化会导致调制后信号的幅度变化。

当载波频率与调制信号频率接近时,调制后信号的幅度变化较大;而当载波频率与调制信号频率相差较大时,调制后信号的幅度变化较小。

实验总结:通过本次实验,我们深入了解了幅度调制的原理和应用。

幅度调制是一种常用的调制技术,可以在无线通信中实现信号的传输和解调。

在实际应用中,我们需要根据具体的需求选择适当的调制信号和载波频率,以达到最佳的调制效果。

同时,本实验还加深了我们对示波器的使用和波形分析的理解。

示波器是一种重要的测试仪器,可以用于观察和分析各种信号的波形特征,对于调制信号和调制后信号的观察和分析起到了关键的作用。

在今后的学习和实践中,我们将继续深入研究和应用幅度调制技术,探索更多的调制方法和应用场景,为无线通信领域的发展做出更大的贡献。

幅度调制实验讲义

幅度调制实验讲义

实验五 幅度调制一、 实验目的1、 通过实验了解振幅调制的工作原理。

2、 掌握用实现AM 、DSB 和SSB 的调制方法,并研究已调波与调制信号,载波之间的关系3、 掌握用示波器测量调幅系数的方法。

二、实验内容1、 利用二极管平衡调制电路和模拟乘法器分别实现AM 、DSB 调制。

2、 用示波器观察正常调幅波(AM )波形,并测量其调幅系数。

3、 用示波器观察平衡调幅波(抑制载波的双边带波形DSB )波形。

4、 (选做)利用基极调制电路和集电极调制电路实现AM 。

5、 (选做)在产生DSB 波的基础上,利用滤波器生成向导设计滤波器,实现SSB三、 实验仪器1、 Multisim 仿真软件2、 仿真交流信号源3、 仿真示波器4、 泰克示波器四、实验原理幅度调制就是使载波的振幅随调制信号的参数变化规律而变化,这个变化的周期与调制信号的周期相同,而振幅变化则与调制信号的振幅成正比。

受本实验中载波是由高频信号源产生的465KHz 高频信号,1KHz 的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

振幅调制就是用低频调制信号去控制高频载波信号的振幅,使载波的振幅随调制信号成正比地变化。

经过振幅调制的高频载波称为振幅调制波(简称调幅波)。

调幅波有普通调幅波(AM )、抑制载波的双边带调幅波(DSB )和抑制载波的单边带调幅波(SSB )三种。

1.普通调幅波(AM )(1)调幅波的表达式、波形设调制信号为单一频率的余弦波:()cos cos 2m m u t U t U Ft πΩΩΩ=Ω= (1)载波信号为()cos cos 2c cm c cm c u t U t U f t ωπ== (2)为了简化分析,设两者波形的初相角均为零,因为调幅波的振幅和调制信号成正比,由此可得调幅波的振幅为()cos (1cos )(1cos )AM cm a m m cm a cmcm a U t U k U TU U k t U U m t ΩΩ=+Ω=+Ω=+Ω (3) 式中,m a a cmU m k U Ω= 其中,a m 称为调幅指数或调幅度,它表示载波振幅受调制信号控制程度,a k 为由调制电路决定的比例常数。

(完整版)实验五16QAM调制与解调实验

(完整版)实验五16QAM调制与解调实验

实验五16QAM调制与解调实验【实验目的】使学生了解16QAM的调制与解调原理;能够通过MATLAB对其进行调制和解调;比较解调前后功率谱密度的差别。

【实验器材】装有MATLAB软件的计算机一台【实验原理】1. 16QAM 是用两路独立的正交4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。

它是2ASK 体制的推广,和2ASK 相比,这种体制的优点在于信息传输速率高。

2. 正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。

16 进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM 的产生有2 种方法:(1)正交调幅法,它是有2 路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2 路独立的四相位移相键控信号叠加而成。

3. 16QAM 信号采取正交相干解调的方法解调,解调器首先对收到的16QAM 信号进行正交相干解调,一路与cosωc t 相乘,一路与sinωc t 相乘。

然后经过低通滤波器,低通滤波器LPF 滤除乘法器产生的高频分量,获得有用信号,低通滤波器LPF 输出经抽样判决可恢复出电平信号。

【实验内容与步骤】1. MATLAB软件的设置:对路径的设置,设置成路径指向comm2文件夹;2. 在命令行输入start指令,然后输入num值,如3,之后按照内容3输入参考代码。

3. 新建一个扩展名为M的文件,输入以下程序:M=16;k=log2(M);x=randint(30000,1);%产生二进制随机数y=modulate(modem.qammod('M',16,'InputType','Bit'),x);%调制EbNo=-5:1:10;%信噪比s_b2d=bi2de(reshape(x,k,length(x)/k).','left-msb');%二进制变为十进制for n=1:length(EbNo)snr(n)=EbNo(n)+10*log10(k);%Ratio of symbol energy to noise power spectral densityynoisy=awgn(y,snr(n),'measured');%加入高斯白噪声z=demodulate(modem.qamdemod('M',16,'OutputType','Bit'),ynoisy);%解调r_b2d=bi2de(reshape(z,k,length(z)/k).','left-msb');%二进制变为十进制[sym(n),sym_rate(n)]=symerr(s_b2d,r_b2d);%计算仿真误码率,不是误比特率。

幅度调制实验报告结论

幅度调制实验报告结论

一、实验背景幅度调制(AM)是无线通信中常用的一种调制方式,它通过改变载波的幅度来传递信息。

本实验旨在通过搭建调幅和解调电路,加深对幅度调制原理的理解,掌握幅度调制和解调的基本方法,并分析实验过程中出现的现象。

二、实验目的1. 理解幅度调制的原理,掌握调幅和解调电路的搭建方法。

2. 观察和分析调幅和解调过程中信号的波形变化。

3. 掌握使用示波器等仪器测量信号参数的方法。

4. 分析实验过程中出现的问题,提高实验技能。

三、实验原理幅度调制是指将信息信号(基带信号)叠加到高频载波上,使载波的幅度随信息信号的变化而变化。

调幅方式分为全调幅(AM)和单边带调制(SSB)等。

解调是指从已调信号中恢复出原始信息信号的过程。

本实验采用全调幅方式,使用集成模拟乘法器MC1496作为调制和解调电路的核心元件。

调制电路将基带信号与高频载波相乘,实现调幅。

解调电路则通过检测调幅信号的包络,恢复出原始信息信号。

四、实验内容1. 搭建调幅电路,观察调制信号波形。

2. 搭建解调电路,观察解调信号波形。

3. 使用示波器测量调制和解调信号的参数,如幅度、频率等。

4. 分析实验过程中出现的问题,并提出改进措施。

五、实验结果与分析1. 调制信号波形实验中,我们使用示波器观察了调制信号的波形。

调制信号波形由基带信号和高频载波两部分组成。

基带信号为正弦波,高频载波为等幅正弦波。

调制后的信号波形为调幅信号,其包络线随基带信号的变化而变化。

2. 解调信号波形实验中,我们使用解调电路从调幅信号中恢复出原始信息信号。

解调后的信号波形与基带信号相似,但幅度有所减小。

这表明解调电路能够有效地从调幅信号中恢复出原始信息信号。

3. 信号参数测量实验中,我们使用示波器测量了调制和解调信号的参数,如幅度、频率等。

测量结果表明,调制信号和基带信号的幅度、频率等参数基本一致,表明调制和解调电路工作正常。

4. 实验问题分析在实验过程中,我们发现以下问题:(1)调制信号和基带信号的幅度存在差异,这可能是因为调制电路中的放大器增益设置不当。

实验五 振幅键控、移频键控、移相键控调制实验

实验五  振幅键控、移频键控、移相键控调制实验

实验五振幅键控、移频键控、移相键控调制实验一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。

3、掌握相对码波形与2PSK信号波形之间的关系、绝对波形与2DSPK信号波形之间的关系4、掌握2ASK、2FSK、2DPSK信号的频谱特性。

二、实验内容1、观察绝对码、相对码波形。

2、观察2ASK、2FSK、2DPSK信号波形3、观察2ASK、2FSK、2DPSK信号频谱三、实验器材信号源模块数字调制模块频谱分析模块20M双踪示波器频率计四、实验原理1、2ASK调制原理在振幅键控中载波幅度是随着基带信号而变化的。

将载波在二进制基带信号1或0的控制下通或段,即用载波幅度的有无来代表信号中的“1”或“0”,这样就可以得到2ASK信号,这种二进制振幅键控方式称为通——段键控(OOK)。

2ASK 信号典型的时域波形如图所示,其时域数学表达式为S2ASK(t)=an*Acosωct则S(t)的功率谱密度表达式为PS(f)=fsP(1-P)G(f)2+fs2(1-p)2)0(G2()fς2ASK 信号的双边功率谱密度表达式为()()()[]()()[]22222222ASK )0()1(41)1(41P c c s c c s f f f f G p p f f f G f f G p p f f -++-+-++-=ςς 上式表明2ASK 信号的功率谱密度由两个部分组成:(1)由g (t )经线性幅度调制所形成的双边带连续谱;(2)由被调载波分量确定的载频离散谱。

2ASK 信号的普零点带宽为B2PSK=(fc+Rs)-(fc-Rs)=2Rs=2/Ts2ASK 的原理框图2、2FSK 调制原理2FSK 信号时用载波频率的变化来表征被传信息上网状态的,被调载波的频率随二进制序列0、1状态而变化,即载波为f0时代表传0,载波为f1是代表1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五幅度调制器实验
一、实验目的:
1. 掌握集成模拟乘法器的基本工作原理;
2. 掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点;
3. 学习调制系数m及调制特性(m~ UΩm )的测量方法,了解m<1 和m=1及 m>1时调
幅波的波形特点。

二、预习要求:
1. 预习幅度调制器的有关知识;
2. 认真阅读实验指导书,分析实验电路中用1496乘法器调制的工作原理,并分析计算
各引脚的直流电压;
3. 了解调制系数m的意义及测量方法;
4. 分析全载波调幅信号的特点;
5. 了解实验电路中各元件作用。

三、实验电路说明:
本实验电路如图7-5所示。

图7-5
图中MC1496芯片引脚1和引脚4接两个51Ω和两个75Ω电阻及51K电位器用来调节输入馈通电压,调偏W,有意引入一个直流补偿电压,由于调制电压uΩ与直流补偿电压相串联,相当于给调制信号uΩ叠加了某一直流电压后与载波电压uc相乘,从而完成普通调幅。

如需要产生抑制载波双边带调幅波,则应仔细调节W,使MC1496输入端电路平衡。

另外,调节W也可改变调制系数m。

1496芯片引脚2和引脚3之间接有负反馈电阻R3,用来扩展u Ω的输入动态范围。

载波电压uc由引脚8输入。

MC1496芯片输出端(引脚6)接有一个由并联L1、C5回路构成的带通滤波器,原因是
考虑到当uc幅度较大时,乘法器内部双差分对管将处于开关工作状态,其输出信号中含有
3ωc±Ω、5ωc±Ω、……等无用组合频率分量,为抑制无用分量和选出ωc±Ω分量,故不能用纯阻负载,只能使用选频网络。

四、实验仪器:
1. 双踪示波器
2. 万用表
3. 实验箱及幅度调制、解调模块
4、高频信号发生器
五、实验内容及步骤:
1.接通电源;
2.调节高频信号源使其产生fc=10MHz幅度为200mV左右的正弦信号作为载波接到幅度调制电路输入端TP1,从函数波发生器输出频率为fΩ=1KHz左右幅度为600mV左右的正弦调制信号到幅度调制电路输入端TP2,示波器接幅度调制电路输出端TP3;
3.反复调整uΩ的幅度和W及C5使之出现合适的调幅波,观察其波形并测量调制系数m;
4.调整uΩ的幅度和W及C5,同时观察并记录m< 1、m=1及m>1时的调幅波形;
5 在保证fc、fΩ和Ucm一定的情况下测量m—UΩm曲线。

六、实验报告要求:
1. 整理各实验步骤所得的数据和波形,绘制出m—U Ωm调制特性曲线;
2. 分析各实验步骤所得的结果。

相关文档
最新文档