高中数学:直接证明与间接证明练习
数学选修2-2苏教版2.2直接证明与间接证明(19张)
3.某个命题与正整数 n 有关,若 n=k(k∈N*)时该命题成立, 那么可推得 n=k+1 时该命题也成立,现在已知当 n=5 时该命题 不成立,那么可推得( C )
A.当 n=6 时该命题不成立 B.当 n=6 时该命题成立 C.当 n=4 时该命题不成立 D.当 n=4 时该命题成立
4.用反证法证明命题:若整系数一元二次方程 ax2+bx+c= 0(a≠0)存在有理数根,那么 a,b,c 中至少有一个是偶数.下列
假设中正确的是__②___. ①假设 a,b,c 都是偶数;②假设 a,b,c 都不是偶数; ③假设 a,b,c 至多有一个偶数;④假设 a,b,c 至多有两
个偶数.
5.若 a>b>0,则 a+1b>__b+1a(用“>”、“<”、“=”填空).
考点1 综合法
例1:已知 a,b,c 为正实数,a+b+c=1. 求证:(1)a2+b2+c2≥13; (2) 3a+2+ 3b+2+ 3c+2≤6.
解析:(1)证法一:a2+b2+c2-13=13(3a2+3b2+3c2-1) =13[3a2+3b2+3c2-(a+b+c)2] =13(3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc) =13[(a-b)2+(b-c)2+(c-a)2]≥0. ∴a2+b2+c2≥13. 证法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
图 10-2-1
综合法的思维过程是由因导果的顺序,是从A推演到B的途径, 但由A推演出的中间结论未必唯一,如B,B1,B2等,可由B,B1, B2能推演出的进一步的中间结论更多,如C1,C2,C3,C4等等, 最终能有一个(或多个)可推演出结论B即可.
2.分析法是一种执果索因的证明方法,又叫逆推法或执果索 因法.它常见的书面表达形式是:“要证…,只需证…”或“… ⇐…”.利用分析法证明“若 A 则 B”命题的分析法思考过程可用 如图 10-2-2 的框图表示为:
专题6.6 直接证明、间接证明、数学归纳法(原卷版)
第六篇不等式、推理与证明专题6.6直接证明、间接证明、数学归纳法【考纲要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点3.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题【命题趋势】1.直接证明与间接证明一般考查以不等式、数列、解析几何、立体几何、函数、三角函数为背景的证明问题.2.数学归纳法一般以数列、集合为背景,用“归纳—猜想—证明”的模式考查.【核心素养】本讲内容主要考查逻辑推理和数学运算的核心素养.【素养清单•基础知识】1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的__结论__出发,逐步寻求使它成立的充分条件,直至最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义一般地,假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题的成立,这样的证明方法叫作反证法.(2)用反证法证明的一般步骤①反设——假设原命题的结论不成立;②归谬——根据假设进行推理,直到推理中出现矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.用反证法证明命题“若p ,则q ”的过程可以用框图表示为 肯定条件p ,否定结论q ―→推出逻辑矛盾―→“若p ,则非q ”为假―→“若p ,则q ”为真【真题体验】1.用分析法证明:欲使①A >B ,只需②C <D ,这里①是②的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°3.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________.4.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是__________.5.(2019·湖北天门中学月考)设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.(2019·黑龙江大庆一模)设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k +1成立时,总可推出f (k +1)≥k +2成立”.那么,下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)时命题为真,进而需证n =__________时,命题亦真.【考法解码•题型拓展】考法一:分析法解题技巧:分析法证题的思路(1)先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【例1】 已知a >0,求证:a 2+1a 2-2≥a +1a -2.考法二:综合法归纳总结 :综合法证题的思路(1)分析条件选择方向:分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法.(2)转化条件组织过程:把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.(3)适当调整回顾反思:回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.【例2】 (1)设a ,b ,c ,d 均为正数,且a +b =c +d ,若ab >cd ,证明:①a +b >c +d ;②|a -b |<|c -d |.(2)(2019·长沙调考)已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.考法三:反证法归纳总结(1)适用范围:①“结论”的反面比“结论”本身更简单、更具体、更明确的题目;②否定性命题、唯一性命题、存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明法比较困难,往往用反证法.(2)推理关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.考法四:数学归纳法证明等式归纳总结:数学归纳法证明等式的思路和注意点(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确地写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【例1】求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).考法五:数学归纳法证明不等式归纳总结(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证明,则可考虑应用数学归纳法.(2)数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等方法证明.【例2】已知数列{a n},a n≥0,a1=0,a2n+1+a n+1-1=a2n,求证:当n∈N*时,a n<a n+1.考法六:归纳—猜想—证明归纳总结:“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决与正整数n有关的探索性问题、存在性问题中有着广泛的应用,其关键是归纳、猜想出公式.【例3】(2019·湖北孝感检测)数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.【易错警示】易错点一:反证法中未用到反设的结论【典例】设{a n}是公比为q的等比数列.设q≠1,证明:数列{a n+1}不是等比数列.【错解】:假设{a n+1}是等比数列.则{a n+1}的前三项为a1+1,a2+1,a3+1,即a1+1,a1q+1,a1q2+1.(a1+1)(a1q2+1)-(a1q+1)2=a21q2+a1+a1q2+1-a21q2-2a1q-1=a1(q2-2q+1)=a1(q-1)2≠0,所以(a1+1)(a1q2+1)≠(a1q+1)2,所以数列{a n+1}不是等比数列.(推理中未用到结论的反设)【错因分析】:错解在解题的过程中并没有用到假设的结论,故不是反证法.利用反证法进行证明时,首先对所要证明的结论进行否定性假设,并以此为条件进行归谬,得到矛盾,则原命题成立.【正解】:假设{a n+1}是等比数列.则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k +2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,因为a1≠0,所以2q k=q k-1+q k+1.又q≠0,所以q2-2q+1=0,所以q=1,这与已知q≠1矛盾.所以假设不成立,故数列{a n+1}不是等比数列.【误区防范】利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.【跟踪训练】设a>0,b>0,且a2+b2=1a2+1b2.证明:a2+a<2与b2+b<2不可能同时成立.【答案】见解析【解析】证明 假设a 2+a <2与b 2+b <2同时成立,则有a 2+a +b 2+b <4.而由a 2+b 2=1a 2+1b 2得a 2b 2=1,因为a >0,b >0,所以ab =1.因为a 2+b 2≥2ab =2(当且仅当a =b =1时,等号成立),a +b ≥2ab =2(当且仅当a=b =1时,等号成立),所以a 2+a +b 2+b ≥2ab +2ab =4(当且仅当a =b =1时,等号成立),这与假设矛盾,故假设错误.所以a 2+a <2与b 2+b <2不可能同时成立.易错点二:证明过程未用到归纳假设【典例】用数学归纳法证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *).【错解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k .那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12×⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【错因分析】:错误的原因在第二步,它是直接利用了等比数列的求和公式求出了当n =k +1时,式子12+122+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,不符合数学归纳法证明的步骤. 【正解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-12k +1=右边.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【误区防范】(1)用数学归纳法证明命题时常出现两种错误:一是n 0的值找错.二是证明命题n =k +1也成立时,没有用到n =k 时的归纳假设.(2)确定由n =k 变化到n =k +1的过程中项的变化情况时,要把握好项的变化规律以及首末项.【跟踪训练】 设a 1=1,a n +1=a 2n -2a n +2+1(n ∈N *),求a 2,a 3,a n ,并用数学归纳法证明你的结论.【答案】见解析【解析】a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1.下面用数学归纳法证明上式:当n =1时结论成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1+11 1.这就是说,当n =k +1时结论也成立.综上可知,a n =n -1+1(n ∈N *).【递进题组】1.欲证a 2+b 2-1-a 2b 2≤0,只需证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.a +b22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥02.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( )A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.123.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.4.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.5.设f (n )=1+12+13+…+1n (n ∈N *),求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).6.用数学归纳法证明:1+n2≤1+12+13+…+12n≤12+n(n∈N*).7.(2019·湖北部分重点中学联考)已知数列{x n}满足x1=12,且x n+1=x n2-x n(n∈N*).(1)用数学归纳法证明:0<x n<1;(2)设a n=1x n,求数列{a n}的通项公式.8.(2019·武穴中学月考)试证:n 为正整数时,f (n )=32n +2-8n -9能被64整除.【考卷送检】一、选择题1.用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时,正确的反设为( ) A .自然数a ,b ,c 都是奇数B .自然数a ,b ,c 都是偶数C .自然数a ,b ,c 中至少有两个偶数D .自然数a ,b ,c 都是奇数或至少有两个偶数2.分析法又称执果索因法,若用分析法证明“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<03.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +1 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零C .恒为正值D .无法确定正负5.已知a >b >0,且 ab =1,若 0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( )A .p >qB .p <qC .p =qD .p ≥q6.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2二、填空题7.设a =3+22,b =2+7,则a ,b 的大小关系为________.8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是________________.9.(2019·郑州一模)某题字迹有污损,大致内容是“已知|x |≤1,,用分析法证明|x +y |≤|1+xy |”.估计污损部分的文字内容为________.三、解答题10.(2019·永州一中月考)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 欲要证2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即证2a (a 2-b 2)+b (a 2-b 2)≥0,即证(a +b )(a -b )(2a +b )≥0.因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,所以2a 3-b 3≥2ab 2-a 2b .11.(2019·黄石二中期中)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定点F 的位置;若不存在,请说明理由.12.已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.13.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2 +b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).14.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).15.用数学归纳法证明1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).16.(2019·衡水高中调研)首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *.证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数.17.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n 与1的大小,并说明理由.。
直接证明与间接证明
第4讲直接证明与间接证明讲义讲义一、导入【教学建议】我们知道,合情推理所得结论的正确性是需要证明的,这正是数学区别于其他学科的显著特点,数学结论的正确性必须通过逻辑推理的方式加以证明.综合法和分析法是直接证明中最基本的两种方法,反证法是间接证明的一种直接方法.C先生上了公交车却发现没带钱包,售票员不由分说让他下车,一位小伙子微笑着递过一块钱,C 先生很感激.车上的人开始小声议论C 先生是骗钱的,就在C先生生气准备甩票下车的时候,借钱给他的小伙子大声问:“能不能借一下您的手机?”C先生递过手机,小伙子拨了个号码,说了两三分钟的话,C先生想这下可以证明我的清白了.下车后C先生打开手机愣住了,原来小伙子根本没有拨通电话,但是直接证明了他的清白.二、知识讲解知识点1 综合法1.用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键.2. 综合法证明数学命题的步骤第一步:分析条件,选择方向.认真发掘题目的已知条件,特别是隐含条件,分析已知与结论之间的联系,选择相关的公理、定理、公式、结论,确定恰当的解题方法.第二步:转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.知识点2 分析法1.分析法的推理过程也属于演绎推理,每一步推理都是严密的逻辑推理.2.分析法证明不等式的依据、方法与技巧.(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.知识点3 反证法1.反证法证明数学命题的一般步骤第一步:分清命题“p→q”的条件和结论;第二步:作出与命题结论q相矛盾的假定⌝q(反设);第三步:由p和⌝q出发,应用正确的推理方法,推出矛盾结果(归谬);第四步:断定产生矛盾结果的原因,在于开始所作的假定⌝q不真,于是原结论q成立,从而间接地证明了命题p→q为真.第三步中所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知条件矛盾,与临时假定矛盾以及自相矛盾等各种情况.2.反证法的适用对象作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:(1)直接证明需分多种情况的;(2)结论本身是以否定形式出现的一类命题——否定性命题;(3)关于唯一性、存在性的命题;(4)结论以“至多”、“至少”等形式出现的命题;(5)条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题.三、例题精析【教学建议】分析法和综合法是对立统一的两种方法.一个命题用何种方法证明,要能针对具体问题进行分析,灵活地运用各种证法.当不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目更是行之有效的方法.用反证法证题时,必须把结论的否定作为条件使用,否则就不是反证法.【题干】(1)设A =12a +12b ,B =2a +b(a >0,b >0),则A 、B 的大小关系为________. 【答案】A ≥B【解析】A -B =a +b 2ab -2a +b =)(24)(2b a ab ab b a +-+≥0. 【题干】(2)若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】 A【解析】 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .【题干】(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【答案】 1和3【解析】 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.【题干】(4)设数列{a n }的前n 项和为S n .若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是 例题1“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.【解析】(1)由已知,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m .所以{a n }是“H 数列”.(2)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下面证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 【题干】(1)欲证2−√5<√6−√7成立,只需证( )A .(2−√5)2<(√6−√7)2B .(2−√6)2<(√5−√7)2C .(2+√7)2<(√5+√6)2D .(2−√5−√6)2<(−√7)2【答案】C【解析】由分析法知,欲证2−√5<√6−√7,只需证2+√7<√6+√5,即证(2+√7)2<(√6+√5)2,故选C .【题干】(2)分析法又称执果索因法,已知x >0,用分析法证明1+x <1+x 2时,索的因是( ) A .x 2>1B .x 2>4C .x 2>0D .x 2>1【答案】 C【解析】 因为x >0,所以要证1+x <1+x 2,只需证(1+x )2<⎝⎛⎭⎫1+x 22, 即证0<x 24,即证x 2>0,因为x >0,所以x 2>0成立,故原不等式成立. 【题干】(3)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .【求证】1a +b +1b +c =3a +b +c . 例题2证明:要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立. 【题干】(1)用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________.【答案】 x ≠-1且x ≠1【解析】 “x =-1或x =1”的否定是“x ≠-1且x ≠1”.【题干】(2)设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤【答案】 C【解析】 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.【题干】(3)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不可能成等差数列.【解析】假设1a ,1b ,1c 成等差数列,则2b =1a +1c ,所以2ac=bc+ab.① 因为a ,b ,c 成等差数列,所以2b=a+c.②把②代入①,得2ac=b (a+c )=b ·2b.所以b 2=ac.③由②平方,得4b 2=(a+c )2.④把③代入④,得4ac=(a+c )2,所以(a-c )2=0.所以a=c.例题3代入②,得b=a,故a=b=c,所以数列a,b,c的公差为0.这与已知矛盾,因此假设错误.故1a ,1b,1c不可能成等差数列.。
2014届高三数学一轮复习 直接证明与间接证明提分训练题
直接证明与间接证明一、选择题1.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理( )A 小前提错B 结论错C 正确D 大前提错解析 大前提,小前提都正确,推理正确,故选C.答案 C2.在用反证法证明命题“已知a 、b 、c ∈(0,2),求证a (2-b )、b (2-c )、c (2-a )不可能都大于1”时,反证时假设正确的是( )A .假设a (2-b )、b (2-c )、c (2-a )都小于1B .假设a (2-b )、b (2-c )、c (2-a )都大于1C .假设a (2-b )、b (2-c )、c (2-a )都不大于1D .以上都不对解析 “不可能都大于1”的否定是“都大于1”,故选B.答案 B3.下列命题中的假命题是( ).A .三角形中至少有一个内角不小于60°B .四面体的三组对棱都是异面直线C .闭区间[a ,b ]上的单调函数f (x )至多有一个零点D .设a ,b ∈Z ,若a +b 是奇数,则a ,b 中至少有一个为奇数解析 a +b 为奇数⇔a ,b 中有一个为奇数,另一个为偶数,故D 错误.答案 D4.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( ).A .不成立B .成立C .不能断定D .能断定解析 ∵S n =2n 2-3n ,∴S n -1=2(n -1)2-3(n -1)(n ≥2),∴a n =S n -S n -1=4n -5(n =1时,a 1=S 1=-1符合上式).又∵a n +1-a n =4(n ≥1),∴{a n }是等差数列. 答案 B5.设a 、b 、c 均为正实数,则三个数a +1b 、b +1c 、c +1a( ). A .都大于2 B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6, 当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 D6.设a =lg 2+lg 5,b =e x(x <0),则a 与b 大小关系为( )A .a >bB .a <bC .a =bD .a ≤b 解析 ∵a =lg 2+lg 5=l g 10=1,而b =e x <e 0=1,故a >b .答案 A7.定义一种运算“*”:对于自然数n 满足以下运算性质:(n +1)*1=n *1+1,则n *1=( ).A .nB .n +1C .n -1D .n 2解析 由(n +1)*1=n *1+1,得n *1=(n -1) *1+1=(n -2)*1+2=…=n.答案 A二、填空题8.用反证法证明命题“若a ,b∈N,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为 .解析 由反证法的定义可知,否定结论,即“a ,b 中至少有一个能被3整除”的否定是“a ,b 都不能被3整除”.答案 a 、b 都不能被3整除9.要证明“3+7<25”可选择的方法有以下几种,其中最合理的是________(填序号). ①反证法,②分析法,③综合法.答案 ②10.设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是______.(填序号)解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.答案 ③11.如果a a +b b >a b +b a ,则a 、b 应满足的条件是________.解析 首先a ≥0,b ≥0且a 与b 不同为0.要使a a +b b >a b +b a ,只需(a a +b b )2>(a b +b a )2,即a 3+b 3>a 2b +ab 2,只需(a +b )(a 2-ab +b 2)>ab (a +b ),只需a 2-ab +b 2>ab , 即(a -b )2>0,只需a ≠b .故a ,b 应满足a ≥0,b ≥0且a ≠b .答案 a ≥0,b ≥0且a ≠b12.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的是_______.解析 ①②正确;③中a ≠c ,b ≠c ,a ≠b 可能同时成立,如a =1,b =2,c =3.选C.答案 ①② 三、解答题13.在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b +1b +c =3a +b +c ,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明. 解析 A 、B 、C 成等差数列.证明如下:∵1a +b +1b +c =3a +b +c , ∴a +b +c a +b +a +b +c b +c =3. ∴ca +b +a b +c =1,∴c (b +c )+a (a +b )=(a +b )(b +c ),∴b 2=a 2+c 2-ac .在△ABC 中,由余弦定理,得cos B =a 2+c 2-b 22ac =ac 2ac =12, ∵0°<B <180°,∴B =60°.∴A +C =2B =120°.∴A 、B 、C 成等差数列.14.已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2. 证明 a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2. 只需证|a |+|b |≤2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2),只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2,只需证|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0,上式显然成立,故原不等式得证.15.若a 、b 、c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ab >0. 又上述三个不等式中等号不能同时成立.∴a +b 2·b +c 2·c +a 2>abc 成立.上式两边同时取常用对数,得lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ), ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .16.(12分)已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a 与c 的大小;(3)证明:-2<b <-1.解析 (1)证明 ∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c ,∴1a 是f (x )=0的一个根.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a ≥c ,又∵1a ≠c ,∴1a >c .(3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b2a =x 1+x 22<x 2+x 22=x 2=1a ,即-b2a <1a .又a >0,∴b >-2,∴-2<b <-1.。
2014高考数学一轮汇总训练《直接证明与间接证明 》理 新人教A版
第六节直接证明与间接证明[备考方向要明了][归纳·知识整合]1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.[探究] 1.综合法与分析法有什么联系与差异?提示:综合法与分析法是直接证明的两种基本方法,综合法的特点是从已知看可知,逐步推出未知.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.分析法是从未知看需知,逐步靠拢已知.当命题的条件与结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体时,往往采用从结论出发,结合已知条件,逐步反推,寻求使当前命题成立的充分条件,把证明转化为判定这些条件是否具备的问题.2.间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[探究] 2.在什么情况下可考虑利用反证法证明问题?提示:反证法是间接证明的一种方法,它适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)若从正面证明,需要分成多种情形进行讨论,而从反面证明,只需研究一种或很少的几种情形.[自测·牛刀小试]1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的有( )A .2个B .3个C .4个D .5个解析:选D 由综合法、分析法和反证法的推理过程可知,①②③④⑤都正确. 2.(教材习题改编)要证明3+7<25,可选择的方法有以下几种,其中最合理的是( )A .综合法B .分析法C .反证法D .归纳法解析:选B 要证明3+7<25成立,可采用分析法对不等式两边平方后再证明. 3.用反证法证明“如果a >b ,那么3a >3b ”假设内容应是( ) A.3a =3bB.3a <3bC.3a =3b 且3a <3b D.3a =3b 或3a <3b解析:选D 假设结论不成立, 即3a >3b 的否定为3a ≤ 3b .4.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足________.解析:由余弦定理cos A =b 2+c 2-a 22bc<0,所以b 2+c 2-a 2<0,即a 2>b 2+c 2.答案:a 2>b 2+c 25.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的个数是________.解析:要使b a +a b ≥2,只要b a >0且a b>0,即a ,b 不为0且同号即可,故有3个. 答案:3[例1] 设a 、b 、c >0,证明a 2b +b 2c +c 2a≥a +b +c .[自主解答] ∵a 、b 、c >0,根据基本不等式,有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c . 三式相加:a 2b +b 2c +c 2a +a +b +c ≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c . ———————————————————利用综合法证明问题的步骤保持本例条件不变 ,试证明a 3+b 3+c 3≥13(a 2+b 2+c 2)·(a +b +c ).证明:∵a 、b 、c >0,∴a 2+b 2≥2ab , ∴(a 2+b 2)(a +b )≥2ab (a +b ),∴a 3+b 3+a 2b +ab 2≥2ab (a +b )=2a 2b +2ab 2, ∴a 3+b 3≥a 2b +ab 2.同理,b 3+c 3≥b 2c +bc 2,a 3+c 3≥a 2c +ac 2,将三式相加得,2(a 3+b 3+c 3)≥a 2b +ab 2+b 2c +bc 2+a 2c +ac 2.∴3(a 3+b 3+c 3)≥(a 3+a 2b +a 2c )+(b 3+b 2a +b 2c )+(c 3+c 2a +c 2b )=(a 2+b 2+c 2)(a +b +c ).∴a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).1.已知x +y +z =1,求证:x 2+y 2+z 2≥13.证明:∵x 2+y 2≥2xy ,x 2+z 2≥2xz ,y 2+z 2≥2yz , ∴2x 2+2y 2+2z 2≥2xy +2xz +2yz .∴3x 2+3y 2+3z 2≥x 2+y 2+z 2+2xy +2xz +2yz . ∴3(x 2+y 2+z 2)≥(x +y +z )2=1. ∴x 2+y 2+z 2≥13.[例2] 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.[自主解答] 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin x 1+x 22cos x 1cos x 2>sin x 1+x 21+cos x 1+x 2.由于x 1、x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).故cos x 1cos x 2>0,sin(x 1+x 2)>0, 1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.这由x 1、x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式是显然成立的.因此,12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.———————————————————分析法的适用条件当所证命题不知从何入手时,有时可以运用分析法获得解决,特别是对于条件简单而结论复杂的题目,往往行之有效,对含有根式的证明问题要注意分析法的使用.2.已知a >0,求证: a 2+1a 2-2≥a +1a-2.证明:要证 a 2+1a 2-2≥a +1a-2,只要证a 2+1a 2+2≥a +1a+ 2. ∵a >0,故只要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只要证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a , 只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.[例3] 设{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?[自主解答] (1)证明:若{S n }是等比数列,则S 22=S 1·S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2),∵a 1≠0,∴(1+q )2=1+q +q 2,解得q =0,这与q ≠0相矛盾,故数列{S n}不是等比数列.(2)当q=1时,{S n}是等差数列.当q≠1时,{S n}不是等差数列.假设q≠1时,S1,S2,S3成等差数列,即2S2=S1+S3,2a1(1+q)=a1+a1(1+q+q2).由于a1≠0,∴2(1+q)=2+q+q2,即q=q2,∵q≠1,∴q=0,这与q≠0相矛盾.综上可知,当q=1时,{S n}是等差数列;当q≠1时,{S n}不是等差数列.———————————————————1.反证法的解题原则反证法的原理是“正难则反”,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法.2.反证法中常见词语的否定形式3.求证:a,b,c为正实数的充要条件是a+b+c>0,且ab+bc+ca>0和abc>0.证明:必要性(直接证法):∵a,b,c为正实数,∴a+b+c>0,ab+bc+ca>0,abc>0,因此必要性成立.充分性(反证法):假设a,b,c是不全为正的实数,由于abc>0,则它们只能是两负一正,不妨设a<0,b<0,c>0.又∵ab+bc+ca>0,∴a(b+c)+bc>0,且bc<0,∴a(b+c)>0.①又a<0,∴b+c<0.而a+b+c>0,∴a+(b+c)>0,∴a>0.这与a<0的假设相矛盾.故假设不成立,原结论成立,即a,b,c均为正实数.另外证明:如果从①处开始,进行如下推理:a+b+c>0,即a+(b+c)>0.又a<0,∴b+c>0.则a(b+c)<0,与①式矛盾,故假设不成立,原结论成立,即a,b,c均为正实数.3个规律——利用综合法、分析法、反证法证题的一般规律(1)综合法证题的一般规律用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论.(2)分析法证题的一般规律分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.(3)反证法证题的一般规律反证法证题的实质是证明它的逆否命题成立.反证法的主要依据是逻辑中的排中律,排中律的一般形式是:或者是A,或者是非A.即在同一讨论过程中,A和非A有且仅有一个是正确的,不能有第三种情况出现.3个注意点——利用反证法证明问题应注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实相矛盾等,推导出的矛盾必须是明显的.易误警示——不等式证明中的易误点[典例] (2011·安徽高考)(1)设x≥1,y≥1,证明x+y+1xy ≤1x+1y+xy;(2)设1<a≤b≤c,证明log a b+log b c+log c a≤log b a+log c b+log a c. 证明:(1)由于x≥1,y≥1,所以x +y +1xy ≤1x +1y+xy ⇐⇒ xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy ·(x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立. (2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立. [易误辨析]1.证明问题(1)有两处易误点:①不能利用分析法将其正确转化,从而无法找到证明问题的切入口;②不能灵活运用综合法将作差后的代数式变形(即分解因式),从而导致无法证明不等式成立.2.证明问题(2)时常因忽视条件“1<a ≤b ≤c ”而不能挖掘出其隐含条件,即x =log a b ,y =log b c ,从而无法证明不等式.3.在选择证明方法时,一定要有“综合性选取”的意识,明确数学证明方法不是孤立的,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法表述解答或证明过程.[变式训练] 1.设函数f (x )=x n +bx +c (n ∈N *,b ,c ∈R ).(1)设n ≥2,b =1,c =-1,证明:f (x )在区间⎝ ⎛⎭⎪⎫12,1内存在唯一零点;(2)设n 为偶数,|f (-1)|≤1,|f (1)|≤1,求b +3c 的最小值和最大值. 解:(1)证明:当b =1,c =-1,n ≥2时,f (x )=x n+x -1.∵f ⎝ ⎛⎭⎪⎫12f (1)=⎝ ⎛⎭⎪⎫12n -12×1<0,∴f (x )在⎝ ⎛⎭⎪⎫12,1内存在零点. 又当x ∈⎝ ⎛⎭⎪⎫12,1时,f ′(x )=nx n -1+1>0,∴f (x )在⎝ ⎛⎭⎪⎫12,1上是单调递增的.∴f (x )在⎝ ⎛⎭⎪⎫12,1内存在唯一零点.(2)法一:由题意知⎩⎪⎨⎪⎧-1≤f -1≤1,-1≤f 1≤1,即⎩⎪⎨⎪⎧0≤b -c ≤2,-2≤b +c ≤0.由图象知,b +3c 在点(0,-2)处取到最小值-6, 在点(0,0)处取到最大值0,故b +3c 的最小值为-6,最大值为0. 法二:由题意知-1≤f (1)=1+b +c ≤1, 即-2≤b +c ≤0,① -1≤f (-1)=1-b +c ≤1, 即-2≤-b +c ≤0,② ①×2+②得-6≤2(b +c )+(-b +c )=b +3c ≤0,当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0, 所以b +3c 的最小值为-6,最大值为0.法三:由题意知⎩⎪⎨⎪⎧f -1=1-b +c ,f 1=1+b +c ,解得b =f 1-f -12,c =f 1+f -1-22,∴b +3c =2f (1)+f (-1)-3.又∵-1≤f (-1)≤1,-1≤f (1)≤1,∴-6≤b +3c ≤0, 当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0, 所以b +3c 的最小值为-6,最大值为0.一、选择题(本大题共6小题,每小题5分,共30分)1.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选 Aa +b2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是单调减函数,故f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎪⎫2ab a +b .2.(2013·成都模拟)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若“a +b =1”,则4ab =4a (1-a )=-4⎝ ⎛⎭⎪⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件.3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定解析:选C 假设P <Q ,要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a a +7<2a +7+2a +3a +4,只要证a 2+7a <a 2+7a +12,只要证0<12, ∵0<12成立,∴P <Q 成立.4.(2013·银川模拟)设a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( ) A .0 B .1 C .2D .3解析:选C ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.5.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B 由已知条件,可得⎩⎪⎨⎪⎧a +c =2b , ①x 2=ab , ②y 2=bc . ③由②③得⎩⎪⎨⎪⎧a =x 2b,c =y2b ,代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列.6.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C.12D.32解析:选D 据已知定义可得不等式x 2-x -a 2+a +1≥0恒成立,故Δ=1-4(-a 2+a +1)≤0,解得-12≤a ≤32,故a 的最大值为32.二、填空题(本大题共3小题,每小题5分,共15分)7.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________.答案:“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|则|f (x 1)-f (x 2)|≥12”8.(2013·株洲模拟)已知a ,b ,μ∈(0,+∞)且1a +9b=1,则使得a +b ≥μ恒成立的μ的取值范围是________.解析:∵a ,b ∈(0,+∞)且1a +9b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+⎝ ⎛⎭⎪⎫9a b+b a ≥10+29=16,∴a +b 的最小值为16.∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16. 答案:(0,16]9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法)令⎩⎪⎨⎪⎧f -1=-2p 2+p +1≤0,f 1=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝ ⎛⎭⎪⎫-3,32. 法二:(直接法)依题意有f (-1)>0或f (1)>0, 即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝ ⎛⎭⎪⎫-3,32.答案:⎝⎛⎭⎪⎫-3,32三、解答题(本大题共3小题,每小题12分,共36分) 10.已知a >0,1b -1a>1,求证:1+a >11-b. 证明:∵1b -1a>1,a >0,∴0<b <1, 要证1+a >11-b ,只需证1+a ·1-b >1, 只需证1+a -b -ab >1,只需证a -b -ab >0, 即a -b ab >1,即1b -1a>1. 这是已知条件,所以原不等式成立.11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r . 与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.12.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n , 求证:b n ·b n +2<b 2n +1.解:(1)由已知得a n +1=a n +1,则a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,1为公差的等差数列.故a n =1+(n -1)×1=n .(2)由(1)知,a n =n ,从而b n +1-b n =2n.b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=1-2n1-2=2n-1.因为b n ·b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2·2n +1+1)=-2n<0, 所以b n ·b n +2<b 2n +1.1.若a ,b ,c 是不全相等的正数,求证:lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),只需证a +b 2·b +c 2·c +a2>abc .(中间结果)∵a ,b ,c 是不全相等的正数, ∴由基本不等式得:a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,且上三式中由于a ,b ,c 不全相等,故等号不同时成立. ∴a +b 2·b +c 2·c +a2>a ·b ·c .(中间结果)∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .2.如图,已知BE ,CF 分别为△ABC 的边AC ,AB 上的高,G 为EF 的中点,H 为BC 的中点.求证:HG ⊥EF .证明:连接HE ,HF ,由CF ⊥AB ,且H 是BC 的中点,可知FH 是Rt△BCF 斜边上的中线,所以HF =12BC .同理可证HE =12BC .所以HF =HE ,从而△EHF 为等腰三角形. 又G 为EF 的中点,所以HG ⊥EF .3.已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25. 证明:假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25, 则a 1+a 2+a 3+a 4≤25+25+25+25=100, 这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误. 所以a 1,a 2,a 3,a 4中至少有一个数大于25.4.如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.(1)若CD =2,平面ABCD ⊥平面DCEF ,求直线MN 的长; (2)用反证法证明:直线ME 与BN 是两条异面直线.解:(1)如图,取CD 的中点G ,连接MG ,NG . 因为ABCD ,DCEF 为正方形,且边长为2, 所以MG ⊥CD ,MG =2,NG = 2. 因为平面ABCD ⊥平面DCEF , 所以MG ⊥平面DCEF ,可得MG ⊥NG . 所以MN =MG 2+NG 2= 6.(2)证明:假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN,由已知,两正方形不共面,故AB ⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,所以AB∥EN.又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾.故假设不成立.所以ME与BN不共面,它们是异面直线.。
高中数学推理证明题的常用证明方法及实例解析
高中数学推理证明题的常用证明方法及实例解析在高中数学中,推理证明题是一种常见的题型,要求学生运用已知的条件和基本的数学知识,通过逻辑推理和证明方法来得出结论。
这类题目不仅考察学生的数学思维能力,还培养了学生的逻辑思维和分析问题的能力。
本文将介绍一些常用的证明方法,并通过具体的题目解析,帮助读者更好地理解和应用这些方法。
一、直接证明法直接证明法是最常见的证明方法之一,它通过逻辑推理和运用已知条件来得出结论。
具体步骤如下:1. 首先,我们要明确问题的要求,即要证明的结论是什么。
2. 其次,我们要分析已知条件,找到与结论相关的条件和信息。
3. 然后,我们要根据已知条件和结论,通过逻辑推理和数学运算,一步一步地推导出结论。
4. 最后,我们要对证明过程进行总结,确保每一步的推理都是合理的,并且符合数学规律。
下面通过一个具体的例子来说明直接证明法的应用。
【例题】已知:直角三角形ABC中,∠B=90°,AB=BC。
证明:∠ABC=45°。
【解析】根据已知条件,我们可以得到∠B=90°和AB=BC。
接下来,我们通过直接证明法来证明∠ABC=45°。
由于∠B=90°,所以∠ABC+∠BCA=90°。
(三角形内角和定理)又因为AB=BC,所以∠BCA=∠ABC。
(等腰三角形的性质)将上述两个等式带入∠ABC+∠BCA=90°中,得到∠ABC+∠ABC=90°。
化简得到2∠ABC=90°,即∠ABC=45°。
因此,我们通过直接证明法证明了∠ABC=45°。
二、间接证明法间接证明法是一种通过反证法来证明结论的方法。
它假设结论不成立,然后通过逻辑推理推导出矛盾的结论,从而反驳了假设,证明了结论的正确性。
具体步骤如下:1. 首先,我们要明确问题的要求,即要证明的结论是什么。
2. 其次,我们要假设结论不成立,即假设反面命题成立。
高中数学选修1-2第二章课后习题解答
高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。
【金版教程】2021届高考数学大一轮总温习 6-6(2)直接证明与间接证明限时标准训练 理(1)
05限时标准特训A 级 基础达标1.[2021·皖北联考]假设P =a +a +7,Q =a +3+a +4(a ≥0),那么P ,Q 的大小关系( ) A .P >QB .P =QC .P <QD .由a 取值决定解析:假设P <Q ,∵要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a a +7<2a +7+2a +3a +4,只要证:a 2+7a <a 2+7a +12,只要证:0<12,∵0<12成立,∴P <Q 成立.答案:C2.[2021·三明模拟]设a ,b ∈R ,那么“a +b =1”是“4ab ≤1”的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件解析:假设“a +b =1”,那么4ab =4a (1-a )=-4(a -12)2+1≤1;假设“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;那么“a +b =1”是“4ab ≤1”的充分没必要要条件.答案:A3.[2021·张家口模拟]分析法又称执果索因法,假设用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0 解析:b 2-ac <3a⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.答案:C4.[2021·汕头模拟]设x ,y ,z >0,那么三个数y x +y z ,z x +z y ,x z +x y( ) A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2解析:假设这三个数都小于2,那么三个数之和小于6,又y x +y z +z x +z y +x z +x y =(y x +x y )+(y z +z y)+(z x +x z )≥2+2+2=6,当且仅当x =y =z 时取等号,与假设矛盾,故这三个数至少有一个不小于2.另取x =y =z =1,可排除A 、B.答案:C5.[2021·四平质检]设a ,b 是两个实数,给出以下条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤解析:①中假设a =34,b =12,那么a +b >1,故①不能;②中假设a =b =1,那么a +b =2,故②不能;③能,④中假设a =b =-2,那么a 2+b 2>2,故④不能;⑤中假设a =b =-2,那么ab >1,故⑤不能.∴只有③能,选C.答案:C6.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数解析:自然数a ,b ,c 中为偶数的情形为a ,b ,c 全为偶数;a ,b ,c 中有两个数为偶数;a ,b ,c 全为奇数;a ,b ,c 中恰有一个数为偶数,因此反设为a ,b ,c 中至少有两个偶数或都是奇数.答案:B7.不相等的三个正数a 、b 、c 成等差数列,而且x 是a 、b 的等比中项,y 是b 、c 的等比中项,那么x 2、b 2、y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:由已知条件,可得⎩⎪⎨⎪⎧ a +c =2b , ①x 2=ab , ②y 2=bc , ③由②③得⎩⎪⎨⎪⎧ a =x 2b ,c =y 2b ,代入①,得x 2b +y 2b=2b , 即x 2+y 2=2b 2.故x 2、b 2、y 2成等差数列,应选B.答案:B8.假设a ,b ,c 是不全相等的正数,给出以下判定:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判定正确的选项是________.解析:①②正确;③中a ≠c ,b ≠c ,a ≠b 可能同时成立,如a =1,b =2,c =3.答案:①②9.请阅读以下材料:假设两个正实数a 1,a 2知足a 21+a 22=1,那么a 1+a 2≤ 2. 证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,因此Δ≤0,从而得4(a 1+a 2)2-8≤0,因此a 1+a 2≤ 2.依照上述证明方式,假设n 个正实数知足a 21+a 22+…+a 2n=1时,你能取得的结论为________. 解析:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1,因为对一切实数x ,恒有f (x )≥0,因此Δ≤0,从而得4(a 1+a 2+…+a n )2-4n ≤0,因此a 1+a 2+…+a n ≤n . 答案:a 1+a 2+…+a n ≤n 10. 已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1. 解:假设a ,b ,c 均小于1,即a <1,b <1,c <1,那么有a +b +c <3,而a +b +c =2x 2-2x +12+3=2(x -12)2+3≥3, 二者矛盾;故a ,b ,c 至少有一个不小于1.11.[2021·南京联考]已知函数f (x )=a x +x -2x +1(a >1).(1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,由于a >1,ax 1<ax 2,∴ax 2-ax 1>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=x 2-2x 1+1-x 1-2x 2+1x 1+1x 2+1=3x 2-x 1x 1+1x 2+1>0,于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,即f (x 2)>f (x 1), 故函数f (x )在(-1,+∞)上为增函数.(2)证法一:假设存在x 0<0(x 0≠-1)知足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.证法二:假设存在 x 0<0(x 0≠-1)知足f (x 0)=0,①假设-1<x 0<0,则x 0-2x 0+1<-2,0<ax 0<1,∴f (x 0)<-1,与f (x 0)=0矛盾.②若x 0<-1,那么x 0-2x 0+1>0,1>ax 0>0,∴f (x 0)>0,与f (x 0)=0矛盾,故方程f (x )=0没有负数根.12.已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2.证明:a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2. 只需证|a |+|b |≤2|a +b |, 只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2),只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2,只需证|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0,上式显然成立,故原不等式得证.B 级 知能提升1.假设a ,b ∈R ,那么下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,∴a 2+b 2≥2(a -b -1)恒成立.答案:B 2.凸函数的性质定理为:若是函数f (x )在区间D 上是凸函数,那么关于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x nn ≤f (x 1+x 2+…+x nn ),已知函数y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值为________.解析:∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π),∴f A +f B +f C3≤f (A +B +C3)=f (π3), 即sin A +sin B +sin C ≤3sin π3=332, 因此sin A +sin B +sin C 的最大值为332. 答案:3323.已知二次函数f (x )=ax 2+bx +c 的图象与x 轴有两个不同的交点,假设f (c )=0且0<x <c 时,f (x )>0,(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.解:(1)证明:∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a, ∴x 2=1a (1a≠c ), ∴1a是f (x )=0的一个根. (2)假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f (1a )>0与f (1a )=0矛盾,∴1a≥c , 又∵1a ≠c ,∴1a>c . (3)证明:由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a, 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.。
直接证明与间接证明(新)
2
, b y 2z
2
3
,
c z 2x
2
6
,求证:a, b, c中至少有一个大于 0.
x2 4.已知函数f ( x) a (a 1) x 1 (1)证明:函数f ( x)在(1,)上为增函数;
x
(2)用反证法证明方程 f ( x) 0没有负数根.
•
用P表示已知条件、定义、定理、公理等,用Q表示 要证的结论,则分析综合法可用框图表示为: P1 P1 P2 … Pn P’ Q’ Qm … Q2 Q1 Q1 Q
14
P
15
用P表示已知条件,定义,定理,公理等,用Q表 示要证的结论,则上述过程可用框图表示为:
16
练习 已知 a, b, c 是不全相等的正数,求证:
反证法的思维方法:
正难则反
20
用反证法证题的一般步骤是什么?
(1)假设命题的结论不成立;即假设结论的反面成立 。
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)由矛盾判定假设不正确,从而肯定命题的结论正确 。
反设——归谬——存真
21
1、用反正法证明时,导出矛盾有那几种可能? (1)与原命题的条件矛盾;
只需证 ( 3 7 )2 (2 5 )2 只需证
21 5
只需证 21<25
因为 21<25成立,所以 3 7 2 5 成立.
练习.如图,SA⊥平面ABC,AB⊥BC,过A 作SB的垂线,垂足为E,过E作SC的垂线, 垂足为F,求证 AF⊥SC S
F 证明 : 要证 AF ⊥SC 立体几何适用分析法寻找 E 只需证:SC⊥平面AEF 思路,用综合法书写! 只需证:AE⊥SC A C 只需证:AE⊥平面SBC B 只需证:AE⊥BC 只需证:BC⊥平面SAB 因为:SA⊥平面ABC成立 只需证:BC⊥SA 只需证:SA⊥平面ABC 所以. AF⊥SC成立
直接证明与间接证明练习题(基础、经典、好用)
直接证明与间接证明一、选择题1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数2.要证:a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥03.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定4.(2013·东莞调研)对于平面α和共面的直线m 、n ,下列命题中真命题是( )A .若m ⊥α,m ⊥n ,则n ∥αB .若m ∥α,n ∥α,则m ∥nC .若m ⊂α,n ∥α,则m ∥nD .若m 、n 与α所成的角相等,则m ∥n5.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A二、填空题6.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是________.7.(2013·阳江月考)下面有3个命题:①当x >0时,2x +12x 的最小值为2;②若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,且其一个焦点与抛物线y 2=8x 的焦点重合,则双曲线的离心率为2.③在Rt △ABC 中,AC ⊥BC ,AC =a ,BC =b ,则△ABC 的外接圆半径r =a 2+b 22.类比到空间,若三棱锥S —ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为a 、b 、c ,则三棱锥S —ABC 的外接球的半径R =a 2+b 2+c 22. 其中错误..命题的序号为________. 8.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.三、解答题9.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3;(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.10.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试用反证法证明1a>c . 11.(2013·珠海模拟)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b+1b +c =3a +b +c,试问A 、B 、C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.解析及答案一、选择题1.【解析】 “自然数a ,b ,c 中恰有一个偶数”的否定为“a ,b ,c 中至少有两个偶数或都是奇数”.【答案】 B2.【解析】 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.【答案】 D3.【解析】 ∵P 2=2a +7+2a a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .【答案】 C4.【解析】 对于平面α和共面直线m 、n .设m ,n 确定的平面为β,对于C ,若m ⊂α,则m =α∩β,从而n ∥α可得m ∥n ,因此C 正确.【答案】 C5.【解析】 ∵a +b2≥ab ≥2ab a +b,又f (x )=(12)x 在R 上是减函数,∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 【答案】 A二、填空题6.【解析】 要使b a +a b ≥2,只要b a >0且a b >0,所以a ,b 不为0且同号即可,故有3个.【答案】 37.【解析】 对于①,2x +12x 取得最小值为2的条件是x =0,这与x >0相矛盾;易证②成立;对于③,可将该三棱锥补成长方体,其外接球的直径恰好是长方体的体对角线.【答案】 ①8.【解析】 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π),∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.【答案】 332 三、解答题9.【证明】 (1)x 是正实数,由基本不等式知 x +1≥2x ,1+x 2≥2x ,x 3+1≥2x 3,故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立).(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立.由(1)知,当x >0时,不等式成立.当x ≤0时,8x 3≤0,又(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0,此时不等式仍然成立.10.【证明】 (1)∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a ≠c ),∴1a 是f (x )=0的一个根.即1a 是函数f (x )的一个零点.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f (1a )>0与f (1a )=0矛盾,∴1a ≥c ,又∵1a ≠c ,∴1a >c .11.【解】 A 、B 、C 成等差数列,下面用综合法给出证明:∵1a+b+1b+c=3a+b+c,∴a+b+ca+b+a+b+cb+c=3,∴ca+b+ab+c=1,∴c(b+c)+a(a+b)=(a+b)(b+c),∴b2=a2+c2-ac.在△ABC中,由余弦定理,得cos B=a2+c2-b22ac=ac2ac=12,∵0°<B<180°,∴B=60°.∴A+C=120°=2B,∴A、B、C成等差数列.。
江苏高考直接证明与间接证明专题练习(附答案)
江苏高考直接证明与间接证明专题练习(附答案)直接证明是相关于直接证明说的,综合法和剖析法是两种罕见的直接证明。
以下是直接证明与直接证明专题练习,请考生查缺补漏。
【典例1】 (2021天津高考)q和n均为给定的大于1的自然数.设集合M={0,1,2,,q-1},集合A={x|x=x1+x2q++xnqn-1,xiM,i=1,2,,n}.(1)当q=2,n=3时,用罗列法表示集合A.(2)设s,tA,s=a1+a2q++anqn-1,t=b1+b2q++bnqn-1,其中ai,biM,i=1,2,,n.证明:假定an1及a0可知0,只需证1,只需证1+a-b-ab1,只需证a-b-ab1,即-1.这是条件,所以原不等式得证.考向3 反证法(高频考点) 【典例3】 (1)(2021山东高考改编)用反证法证明命题设a,b为实数,那么方程x3+ax+b=0至少有一个实根时,要做的假定是________.(2)(2021陕西高考)设{an}是公比为q的等比数列.推导{an}的前n项和公式;设q1,证明数列{an+1}不是等比数列.[思绪点拨] (1)至少的否认是少于.(2)分q=1和q1两种状况求解.用反证法证明.[解析] (1)a,b为实数,那么方程x3+ax+b=0至少有一个实根的否认为方程x3+ax+b=0没有实根.[答案] 方程x3+ax+b=0没有实根(2)设{an}的前n项和为Sn,当q=1时,Sn=a1+a1++a1=na1;当q1时,Sn=a1+a1q+a1q2++a1qn-1,qSn=a1q+a1q2++a1qn,①-得,(1-q)Sn=a1-a1qn,Sn=,Sn=证明:假定{an+1}是等比数列,那么对恣意的kN+,(ak+1+1)2=(ak+1)(ak+2+1),a+2ak+1+1=akak+2+ak+ak+2+1,aq2k+2a1qk=a1qk-1a1qk+1+a1qk-1+a1qk+1,a10,2qk=qk-1+qk+1.q0,q2-2q+1=0,q=1,这与矛盾.直接证明与直接证明专题练习及答案就分享到这里,查字典数学网预祝考生可以考上自己理想的大学。
数学自我小测:直接证明与间接证明(第课时)
自我小测1.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ"的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”,其过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.间接证法2.已知直线l,m,平面α,β,且l⊥α,mβ,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β。
其中正确的命题的个数是()A.1 B.2 C.3 D.43.在R上定义运算:a b=ab+2a+b,则满足x(x-2)<0的实数x的取值范围为()A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)4.在不等边三角形中,a为最长边,要想得到A为钝角的结论,三边a,b,c应满足条件()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c25.已知定义在R上的偶函数f(x)满足f(x+2)=-f(x),则f(9)的值为__________.6.设a>0,b>0,c>0,若a+b+c=1,则错误!+错误!+错误!的最小值为________.7.平面内有四边形ABCD和点O,错误!+错误!=错误!+错误!,则四边形ABCD为________.8.已知a>0,求证:错误!-错误!≥a+错误!-2.9.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=错误!,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.10.已知△ABC的三边a,b,c的倒数成等差数列.试分别用分析法和综合法证明∠B为锐角.参考答案1.解析:从证明过程来看,是从已知条件入手,经过推导得出结论,符合综合法的证明思路.答案:B2.解析:若l⊥α,mβ,α∥β,则l⊥β,所以l⊥m,①正确;若l⊥α,mβ,l⊥m,α与β可能相交,②不正确;若l⊥α,mβ,α⊥β,l与m可能平行,③不正确;若l⊥α,mβ,l∥m,则m⊥α,所以α⊥β,④正确.答案:B3.解析:x(x-2)=x(x-2)+2x+x-2<0x2+x-2<0-2<x<1。
直接证明与间接证明 知识点+例题+练习
教
学
过
程
1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。
高一数学直接证明与间接证明试题答案及解析
高一数学直接证明与间接证明试题答案及解析1.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度【答案】B【解析】一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B点评:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.2.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0B.a、b至少有一个为0C.a、b全不为0D.a、b中只有一个为0【答案】A【解析】把要证的结论否定之后,即得所求的反设.解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.点评:本题考查用反证法证明数学命题,得到“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,是解题的关键.3.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的假设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数【答案】D【解析】用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a,b,c中至少有两个偶数或都是奇数”,由此得出结论.解:用反证法证明某命题时,应先假设命题的否定成立,而:“自然数a,b,c中恰有一个偶数”的否定为:“a,b,c中至少有两个偶数或都是奇数”,故选D.点评:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的关键.4.用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方为()程存在实数根xA.整数B.奇数或偶数C.正整数或负整数D.自然数或负整数【答案】A【解析】本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“方程没有整数根”写出否定即可.解:根据反证法的步骤,假设是对原命题结论的否定“方程没有整数根”的否定“方程存在实数根x为整数”.为整数.即假设正确的是:方程存在实数根x故选A.点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.5.关于综合法和分析法说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.分析法又叫逆推证法或执果索因法D.综合法和分析法都是因果分别互推的两头凑法【答案】D【解析】根据综合法、分析法的定义可得结论.解:根据综合法的定义可得,综合法是执因导果法,是顺推法;根据分析法的定义可得,分析法是执果索因法,是直接证法.故选:D.点评:本题主要考查综合法、分析法的定义,属于基础题.6.某同学证明+<+的过程如下:∵﹣>﹣>0,∴<,∴<,∴+<+,则该学生采用的证明方法是()A.综合法B.比较法C.反证法D.分析法【答案】A【解析】从推理过程(是“执因索果”还是“执果索因”)即可得到答案.解:从推理形式来看,从﹣>﹣>0入手,推出<,继而得到<,最后得到+<+,是“执因索果”,是综合法证明,故选:A.点评:本题考查综合法与分析法,掌握二者的推理形式(“执因索果”为综合法,“执果索因”为分析法)是关键,属于中档题.7.已知a,b,c∈(0,1),则对于(1﹣a)b,(1﹣b)c,(1﹣c)a说法正确的是()A.不能都大于B.都大于C.都小于D.至少有一个大于【答案】A【解析】首先根据题意,通过反证法得出结论.解:假设(1﹣a)b,(1﹣b)c,(1﹣c)a中都大于即(1﹣a)b>,(1﹣b)c>,(1﹣c)a>,即>①>②>③①②③相加:++>由基本不等式++≤=矛盾所以假设不成立,∴(1﹣a)b,(1﹣b)c,(1﹣c)a中至少有一个不大于.故选:A.点评:本题考查反证法的应用,涉及不等式的证明与基本不等式的应用,属于中档题.8.要证:a2+b2﹣1﹣a2b2≤0,只要证明()A.2ab﹣1﹣a2b2≤0B.a2+b2﹣1﹣≤0C.﹣1﹣a2b2≤0D.(a2﹣1)(b2﹣1)≥0【答案】D【解析】将左边因式分解,即可得出结论.解:要证:a2+b2﹣1﹣a2b2≤0,只要证明(a2﹣1)(1﹣b2)≤0,只要证明(a2﹣1)(b2﹣1)≥0.故选:D.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.9.下面叙述正确的是()A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法C.综合法、分析法所用语气都是肯定的D.综合法、分析法所用语气都是假定的【答案】A【解析】根据综合法、分析法的定义与证题思路,可得结论.解:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式,是直接证明的方法.故选:A.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.10.要证明“”可选择的方法有以下几种,其中最合理的是.(填序号).①反证法,②分析法,③综合法.【答案】②【解析】分析不等式的形式,判断最合适证明的方法.解:因为,是含有无理式的不等式,如果利用反证法,其形式与原不等式相同,所以反证法不合适;综合法不容易找出证明的突破口,所以最还是的证明方法是分析法.故答案为:②.点评:本题考查反证法与分析法、综合法证明不等式的使用条件,基本知识的应用.11.证明命题:“f(x)=e x+在(0,+∞)上是增函数”,现给出的证法如下:因为f(x)=e x+,所以f′(x)=e x﹣,因为x>0,所以e x>1,0<<1,所以e x﹣>0,即f′(x)>0,所以f(x)在(0,+∞)上是增函数,使用的证明方法是()A.综合法B.分析法C.反证法D.以上都不是【答案】A【解析】由条件根据分析法和综合法的定义,可得结论.解:题中命题的证明方法是由所给的条件,利用所学的定理、定义、公式证得要证的结论,故此题的证明方法属于综合法,故选:A.点评:本题主要考查分析法和综合法的定义,属于基础题.12.分析法是从要证的不等式出发,寻求使它成立的()A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件【答案】A【解析】本题考查的分析法和综合法的定义,根据定义分析法是从从求证的结论出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.我们易得答案.解:∵分析法是逆向逐步找这个结论成立需要具备的充分条件;∴分析法是从要证的不等式出发,寻求使它成立的充分条件故选A点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.13.证明不等式的最适合的方法是()A.综合法B.分析法C.间接证法D.合情推理法【答案】B【解析】要证原不等式成立,只要证<,即证9+2<9+2,故只要证<,即证14<18,此种证明方法是分析法.解:要证明不等式,只要证<,即证9+2<9+2,故只要证<,即证14<18.以上证明不等式所用的最适合的方法是分析法.故选B.点评:本题考查的是分析法和综合法,解答此题的关键是熟知比较大小的方法.从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件,分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法.也称为因果分析,属于中档题.14.要证明+<2,可选择的方法有以下几种,其中最合理的是()A.综合法B.分析法C.反证法D.归纳法【答案】B【解析】要证+<2,需证<,即证…,显然用分析法最合理.解:用分析法证明如下:要证明+<2,需证<,即证10+2<20,即证<5,即证21<25,显然成立,故原结论成立.综合法:∵﹣=10+2﹣20=2(﹣5)<0,故+<2.反证法:假设+≥2,通过两端平方后导出矛盾,从而肯定原结论.从以上证法中,可知最合理的是分析法.故选B.点评:本题考查分析法的应用,考查分析与判定思维能力,属于中档题.15.设()A.都大于2B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于2【答案】C【解析】假设:中都小于2,则,但由于=≥2+2+2=6,出现矛盾,从而得出正确答案:中至少有一个不小于2.解:由于=≥2+2+2=6,∴中至少有一个不小于2,故选C.点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.16.已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,.则()A.A>B B.A<BC.A=B D.A与B的大小不确定【答案】C【解析】作出函数f(x)=|sinx|的图象,利用函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,确定切点坐标,然后利用三角函数的关系即可得到结论.解:作出函数f(x)=|sinx|的图象与直线y=kx(k>0)的图象,如图所示,要使两个函数有且仅有三个交点,则由图象可知,直线在()内与f(x)相切.设切点为A(α,﹣sinα),当x∈()时,f(x)=|sinx|=﹣sinx,此时f'(x)=﹣cosx,x∈().∴﹣cos,即α=tanα,∴==.即A=B.故选:C.点评:本题主要考查三角函数的图象和性质,利用数形结合是解决本题的关键.17.(2014•枣庄一模)在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a∈R,a*0=a;(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).则函数f(x)=(e x)*的最小值为()A.2B.3C.6D.8【答案】B【解析】根据性质,f(x)=(e x)*=1+e x+,利用基本不等式,即可得出结论.解:根据性质,f(x)=(e x)*=1+e x+≥1+2=3,当且仅当e x=时,f(x)=(e x)*的最小值为3.故选:B.点评:本题考查新定义,考查基本不等式的运用,正确理解新定义是关键.18.(2014•泸州一模)一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是()A.1025B.1035C.1045D.1055【答案】C【解析】由已知可设这只游行队伍的最少人数是n,则n﹣1是2,3,4的公倍数,即12的倍数,且n为5和倍数,进而可得答案.解:设这只游行队伍的最少人数是n∵每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.∴n﹣1是2,3,4的公倍数,即12的倍数即n﹣1=1008+12k,k∈N则n=1009+12k,k∈N又∵n为5的倍数故当k=3时,1045是满足条件的最少人数故选C点评:本题是典型的“韩信点兵”问题,解答的关键是将问题转化为公倍数问题.19.(2014•郴州三模)设集合A⊆R,如果x∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x为集合A的一个聚点.则在下列集合中:(1)Z+∪Z﹣;(2)R+∪R﹣;(3){x|x=,n∈N*};(4){x|x=,n∈N*}.其中以0为聚点的集合有()A.1个B.2个C.3个D.4个【答案】B【解析】根据集合聚点的新定义,我们逐一分析四个集合中元素的性质,并判断是否满足集合聚点的定义,进而得到答案.解:(1)对于某个a<1,比如a=0.5,此时对任意的x∈Z+∪Z﹣,都有|x﹣0|=0或者|x﹣0|≥1,也就是说不可能0<|x﹣0|<0.5,从而0不是Z+∪Z﹣的聚点;(2)集合{x|x∈R,x≠0},对任意的a,都存在x=(实际上任意比a小得数都可以),使得0<|x|=<a,∴0是集合{x|x∈R,x≠0}的聚点;(3)集合{x|x=,n∈N*}中的元素是极限为0的数列,对于任意的a>0,存在n>,使0<|x|=<a,∴0是集合 {x|x=,n∈N*}的聚点;(4)中,集合{x|x=,n∈N*}中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大,∴在a<的时候,不存在满足得0<|x|<a的x,∴0不是集合{x|x=,n∈N*}的聚点;故选:B点评:本题的考点是函数恒成立问题,主要考查的知识点是集合元素的性质,其中正确理解新定义﹣﹣集合的聚点的含义,是解答本题的关键.20.(2014•陕西模拟)已知[x]表示不超过实数x的最大整数(x∈R),如:[﹣1.3]=﹣2,[0.8]=0,[3.4]=3.定义{x}=x﹣[x],求{}+{}+{}+…+{}=()A.1006B.1007C.1008D.2014【答案】B【解析】利用新定义,代入计算可得结论.解:,,∴指数为奇次幂时,值为,为偶次幂时,值为∴原式=1007,故选:B.点评:本题考查简单的合情推理,考查新定义,考查学生的计算能力,比较基础.。
课题25 直接证明与间接证明
课题25 直接证明与间接证明知识梳理:(1)直接证明: 直接证明⎧⎨⎩综合法:___________________________分析法:___________________________(2)间接证明: 反证法:反证法的步骤:①②③④基础训练:1、 证明命题:“1()xx f x e e=+在(0,)+∞上是增函数”,小张同学给出的证法如下:'111(),(),0,1,0 1.x x x x x x f x e f x e x e e e e=+∴=->∴><< '10,()>0.()x x e f x f x e ∴->∴∞即在(0,+)上是增函数。
他使用的证明方法是①综合法 ②分析法 ③反证法 ④以上都不是2、 已知19,,(0,)1,a b m a b m m a b∈+∞+=+≥且则使得恒成立的的取值范围是 3、 某同学准备用反证法证明如下一个问题:函数()f x 在[0,1]上有意义,且(0)(1)f f =,如果对于不同的12,[0,1]x x ∈,都有1212()()f x f x x x -<-,求证:121()()2f x f x -<,那么他的反设应该是 4、 用反证法证明:若整系数一元二次方程20(0)ax bx c a ++=≠有有理数根,那么a 、b 、c 中至少有一个偶数时,反设为典型例题:例1、 设a,b 为互不相等的正数,且a+b=1,分别用分析法、综合法证明:114a b+>例2、已知a,b,c 均为正数,求证:222222()()()6a b c b c a c a b abc +++++≥例3、设3322,a b b a b ab ≠+>+均为正数,且a b,求证:a例4、求证:>例5、设a,b 是相异的正数,求证:关于x 的一元二次方程222()420a b x abx ab +++=没有实数根。
高中数学高考42第七章 不等式、推理与证明 7 6 直接证明与间接证明
跟踪训练 2 已知 a>0,证明: a2+a12- 2≥a+1a-2.
师生共研
题型三 反证法的应用
例 3 设 a>0,b>0,且 a+b=1a+1b.证明: (1)a+b≥2;
证明 由 a+b=1a+1b=aa+bb,a>0,b>0,得 ab=1.
由基本不等式及ab=1,
有 a+b≥2 ab=2,即 a+b≥2,当且仅当 a=b=1 时,等号成立.
7.如果 a a+b b>a b+b a成立,则 a,b 应满足的条件是_a_≥__0_,__b_≥__0_且__a_≠__b_. 解析 ∵a a+b b-(a b+b a) = a(a-b)+ b(b-a) =( a- b)(a-b) =( a- b)2( a+ b). ∴当 a≥0,b≥0 且 a≠b 时,( a- b)2( a+ b)>0. ∴a a+b b>a b+b a成立的条件是 a≥0,b≥0 且 a≠b.
(1)证明:数列T1n是等差数列; 证明 ∵an+1=TTn+n 1=11--aan+n 1 ⇒ an+1 = 1 ⇒ 1 - 1 =1,
1-an+1 1-an 1-an+1 1-an
∴Tn1+1-T1n=1,
又∵T1=1-a1=a1, ∴a1=12,∴T11=1-1 a1=2, ∴数列T1n是以 2 为首项,公差为 1 的等差数列.
师生共研
题型一 综合法的应用
例1 已知a,b,c>0,a+b+c=1.求证: (1) a+ b+ c≤ 3; 证明 ∵( a+ b+ c)2=(a+b+c)+2 ab+2 bc+2 ca≤(a+b+c)+(a+b)
+(b+c)+(c+a)=3,
∴ a+ b+ c≤ 3(当且仅当 a=b=c 时取等号).
6-6第六节 直接证明与间接证明练习题(2015年高考总复习)
第六节 直接证明与间接证明时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数解析 “至少有一个”的否定为“都不是”.故选B.答案 B2.要证a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0 解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.答案 D3.(2014·临沂模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系( )A .P >QB .P =QC .P <QD .由a 取值决定解析 假设P <Q ,∵要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a (a +7)<2a +7+2(a +3)(a +4), 只要证:a 2+7a <a 2+7a +12,只要证:0<12,∵0<12成立,∴P <Q 成立.答案 C4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0,故选A.答案 A5.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析 由已知条件,可得⎩⎪⎨⎪⎧ a +c =2b , ①x 2=ab , ②y 2=bc , ③由②③得⎩⎪⎨⎪⎧ a =x 2b ,c =y 2b ,代入①,得x 2b +y 2b =2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列,故选B.答案 B6.(2014·济南模拟)设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2解析 假设这三个数都小于2,则三个数之和小于6,又y x +y z +z x+z y +x z +x y =⎝ ⎛⎭⎪⎫y x +x y +⎝ ⎛⎭⎪⎫y z +z y +⎝ ⎛⎭⎪⎫z x +x z ≥2+2+2=6,与假设矛盾,故这三个数至少有一个不小于2.另取x =y =z =1,可排除A 、B.答案 C二、填空题(本大题共3小题,每小题5分,共15分)7.已知三个不等式①ab >0;②c a >d b ;③bc >ad .以其中两个作条件,余下一个作结论,则可组成________个正确命题.解析 ①②⇒③,①③⇒②;②③⇒①.答案 38.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,则a 5和b 5的大小关系为________.解析 方法1:设公比为q ,公差为d ,则a 3=a 1q 2,b 3=b 1+2d =a 1+2d ,故由a 3=b 3,得2d =a 1(q 2-1).又∵a 1≠a 3,∴q 2≠1.∴a 5-b 5=a 1q 4-(a 1+4d )=a 1q 4-[a 1+2a 1(q 2-1)]=a 1(q 2-1)2>0.∴a 5>b 5.方法2:∵在等比数列{a n }中,a 1≠a 3,∴公比不为1.∴a 1≠a 5.又∵a 1=b 1,a 3=b 3,a 5=a 3q 2>0(q 为公比),∴b 3=b 1+b 52=a 3=a 1a 5<a 1+a 52=b 1+a 52.∴a 5>b 5.答案 a 5>b 59.已知点A n (n ,a n )为函数y =x 2+1的图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为__________.解析 a n =n 2+1,b n =n .方法1:c n =n 2+1-n =1n 2+1+n 随n 的增大而减小,为减函数,∴c n +1<c n .方法2:c n +1=(n +1)2+1-(n +1),c n =n 2+1-n ,∴c n c n +1=n 2+1-n (n +1)2+1-(n +1)=(n +1)2+1+n +1n 2+1+n>1. ∴c n >c n +1.答案 c n >c n +1 三、解答题(本大题共3小题,每小题10分,共30分) 10.已知a >0,求证:a 2+1a 2-2≥a +1a -2. 证明 要证a 2+1a 2-2≥a +1a -2. 只要证a 2+1a 2+2≥a +1a + 2.∵a >0,故只要证⎝⎛⎭⎪⎫ a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a +22,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a 2≥2, 而上述不等式显然成立,故原不等式成立.11.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试用反证法证明1a >c .证明 (1)∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2.∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a ≠c ),∴1a 是f (x )=0的一个根,即1a 是函数f (x )的一个零点.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a ≥c , 又∵1a ≠c ,∴1a >c .12.(1)求证:当a >1时,不等式a 3+1a 3>a 2+1a 2成立; (2)要使上述不等式成立,能否将条件“a >1”适当放宽?若能,请放宽条件,并简述理由;若不能,请说明理由;(3)请你根据(1)(2)的结果,写出一个更为一般的结论,且予以证明.解 (1)证明:a 3+1a 3-a 2-1a 2=1a 3(a -1)(a 5-1),∵a >1,∴1a 3(a -1)(a 5-1)>0,故原不等式成立.(2)能将条件“a >1”适当放宽.理由如下:当a ≠1时,(a -1)与(a 5-1)同符号,所以(a -1)(a 5-1)>0,只需a >0且a ≠1就能使1a 3(a -1)(a 5-1)>0,故条件可以放宽为a >0且a ≠1.(3)根据(1)(2)的结果,可推知:若a >0且a ≠1,m >n >0,则有a m+1a m >a n +1a n . 证明如下:a m -a n +1a m -1a n =a n (a m -n -1)-1a m (a m -n -1)=1a m (a m -n -1)(a m +n -1),若a >1,则由m >n >0得a m -n -1>0,a m +n -1>0,知不等式成立, 若0<a <1,则由m >n >0得a m +n -1<0,a m +n -1<0知不等式成立.。
2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2
2.2 直接证明与间接证明第1课时直接证明1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式本题条件已知定义已知公理已知定理…?本题结论.2.综合法和分析法直接证明定义推证过程综合法从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件?…?…?结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法结论?…?…?已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例1] 已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2≥1 3 .[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论.[精解详析] ∵a2+19≥2a3,b2+19≥2b3,c2+19≥2c3,∴a2+19+b2+19+c2+19≥23a+23b+23c=23(a+b+c)=23.∴a2+b2+c2≥1 3 .[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a,b,c为不全相等的正数,且abc=1,求证:1a+1b+1c>a+b+c.证明:∵a>0,b>0,c>0,且abc=1,∴1a+1b+1c=bc+ca+ab.又bc+ca≥2bc·ca=2abc2=2c,同理bc+ab≥2b,ca+ab≥2a.∵a、b、c不全相等.∴上述三个不等式中的“=”不能同时成立.∴2(bc+ca+ab)>2(c+a+b),即bc+ca+ab>a+b+c,故1a+1b+1c>a+b+c.2.(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n),因为a⊥b,所以a·b=0,又因为aπ,n⊥π,所以a·n=0,故a·c=0,从而a⊥c.法二:如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.∵PO⊥π,aπ,∴直线PO⊥a.又a⊥b,b平面PAO,PO∩b=P,∴a⊥平面PAO.又c平面PAO,∴a⊥c.(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c 是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.[例2] 已知a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明(a-b)28a<a+b2-ab<(a-b)28b成立,只需证(a-b)24a<a+b-2ab<(a-b)24b成立,即证(a-b)24a<(a-b)2<(a-b)24b成立.只需证a-b2a<a-b<a-b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥ a+b.证明:要证ab+ba≥ a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥ a+b.[例3] 已知0<a≤1,0<b≤1,0<c≤1,求证:1+ab+bc+caa+b+c+abc≥1.[思路点拨] 因为0<a≤1,0<b≤1,0<c≤1,所以要证明1+ab+bc+caa+b+c+abc≥1成立,可转化为证明1+ab+bc+ca≥a+b+c+abc成立.[精解详析] ∵a>0,b>0,c>0,∴要证1+ab+bc+caa+b+c+abc≥1,只需证1+ab+bc+ca≥a+b+c+abc,即证1+ab+bc+ca-(a+b+c+abc)≥0.∵1+ab+bc+ca-(a+b+c+abc)=(1-a)+b(a-1)+c(a-1)+bc(1-a)=(1-a)(1-b-c+bc)=(1-a)(1-b)(1-c),又a≤1,b≤1,c≤1,∴(1-a)(1-b)(1-c)≥0,∴1+ab+bc+ca-(a+b+c+abc)≥0成立,即证明了1+ab+bc+caa+b+c+abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC中,三个内角A、B、C成等差数列.求证:1a+b+1b+c=3a+b+c.证明:要证1a+b+1b+c=3a+b+c,只需证a+b+ca+b+a+b+cb+c=3,即ca+b+ab+c=1,只需证c(b+c)+a(a+b)(a+b)(b+c)=1,即a2+c2+ab+bcb2+ab+ac+bc=1.下面证明:a2+c2+ab+bcb2+ab+ac+bc=1.∵A+C=2B,A+B+C=180°,∴B=60°. ∴b2=a2+c2-ac.∴a2+c2+ab+bcb2+ab+ac+bc=a2+c2+ab+bca2+c2-ac+ab+ac+bc=1.故原等式成立.6.若a,b,c是不全相等的正数.求证:lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.证明:要证lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c成立,即证lg a+b2·b+c2·c+a2>lg(abc)成立,只需证a+b2·b+c2·c+a2>abc成立,∵a+b2≥ab>0,b+c2≥bc>0,c+a2≥ca>0,∴a+b2·b+c2·c+a2≥abc>0,(*)又∵a,b,c是不全相等的正数,∴(*)式等号不成立,∴原不等式成立.1.综合法:由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法:执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P2;当由P1可以推出P2时,结论得证.一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是____________________.解析:a a+b b>a b+b a?a a-a b>b a-b ba(a-b)>b(a-b)?(a-b)(a-b)>0(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S在底面ABC上的射影为点O,∴SO⊥平面ABC,连接AO,BO,∵SA⊥BC,SO⊥BC,∴BC⊥平面SAO,∴BC⊥AO.同理可证,AC⊥BO.∴O为△ABC的垂心.答案:垂心5.已知函数f(x)=10x,a>0,b>0,A=f a+b2,B=f()ab,C=f2aba+b,则A,B,C的大小关系为____________________.解析:由a+b2≥ab≥2aba+b,又f(x)=10x在R上是单调增函数,所以fa+b2≥f()ab≥f 2aba+b,即A≥B≥C.答案:A≥B≥C二、解答题6.已知函数f(x)=log2(x+2),a,b,c是两两不相等的正数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.解:f(a)+f(c)>2f(b).证明如下:因为a,b,c是两两不相等的正数,所以a+c>2ac.因为b2=ac,所以ac+2(a+c)>b2+4b,即ac+2(a+c)+4>b2+4b+4,从而(a+2)(c+2)>(b+2)2.因为f(x)=log2(x+2)是增函数,所以log2(a+2)(c+2)>log2(b+2)2,即log2(a+2)+log2(c+2)>2log2(b+2).故f(a)+f(c)>2f(b).7.已知a>0,用分析法证明:a2+1a2-2>a+1a-2.证明:要证a2+1a2-2≥a+1a-2,只需证a2+1a2+2≥a+1a+ 2.因为a>0,故只需证a2+1a2+22≥a+1a+22,即a2+1a2+4 a2+1a2+4≥a2+2+1a2+2 2a+1a+2,从而只需证2a2+1a2≥2a+1a,只需证4a2+1a2≥2a2+2+1a2,即a2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*).证明:由c=0,得b n=S nn=a+n-12d.又b1,b2,b4成等比数列,所以b22=b1b4,即a+d22=a a+32d,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.第2课时间接证明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.若a、b、c都是奇数,则不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p则q”的过程可以用下面的框图表示:肯定条件p否定结论q→导致逻辑矛盾→“p且q”为假→“若p则q”为真(2)反证法证明命题“若p则q”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1?平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P?平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P?平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:原结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在)至少有两个至多有n-1个至少有n+1个6.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .证明:假设(1-a)b,(1-b)c,(1-c)a都大于1 4 .∵a,b,c∈(0,1),∴1-a>0,1-b>0,1-c>0,∴(1-a)+b2≥(1-a)b>14=12.同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .7.用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.证明:假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)<f(β).这与f(α)=0=f(β)矛盾.所以方程f(x)=0在区间 [a,b]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题;(3)“否定性”命题;(4)“惟一性”命题;(5)“必然性”命题;(6)“至多”“至少”类命题;(7)涉及“无限”结论的命题.2.用反证法证明问题的三个注意点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“1+ba,1+ab中至多有一个小于2”的反设为__________________.答案:1+ba,1+ab都小于 22.(山东高考改编)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根.答案:方程x3+ax+b=0没有实根3.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为____________________.解析:“a,b全为0”即是“a=0且b=0”,因此它的反设为“a≠0或b≠0”.答案:a,b不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为______________________.解析:对“且”的否定应为“或”,所以“x≠a且x≠b”的否定应为“x=a或x=b”.答案:x=a或x=b二、解答题6.(陕西高考)设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.解:(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n=a1(1-q n)1-q,∴S n=na1,q=1,a1(1-q n)1-q,q≠1.(2)证明:假设{a n+1}是等比数列,则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.7.设f(x)=x2+ax+b,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1 2 .证明:假设|f(1)|<12,|f(2)|<12,|f(3)|<12,则有-12<1+a+b<12,-12<4+2a+b<12,-12<9+3a+b<12.于是有-32<a+b<-12,①-92<2a+b<-72,②-192<3a+b<-172. ③由①、②得-4<a<-2,④由②、③得-6<a<-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P?直线a.求证:过点P和直线a平行的直线b有且只有一条.证明:(1)存在性:∵P?直线a,∴点P和直线a确定一个平面α.由平面几何知识知:在平面α内过点P能作出一条直线与直线a平行,故直线b存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:直接证明与间接证明练习1.(天津一中月考)用反证法证明命题:“a ,b ∈N ,若ab 可被5整除,那么a ,b 中至少有一个能被5整除.”时,假设的内容应该是( B )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不都能被5整除D .a 能被5整除解析:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立从而进行推证.命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 中至少有一个能被5整除.”的否定是“a ,b ∈N ,如果ab 可被5整除,那么a ,b 都不能被5整除”,故选B.2.(河北邢台模拟)用反证法证明命题“三角形的三个内角中至多有一个钝角”,假设正确的是( C )A .假设三角形的三个内角都是锐角B .假设三角形的三个内角都是钝角C .假设三角形的三个内角中至少有两个钝角D .假设三角形的三个内角中至少有两个锐角解析:“至多有一个”的否定是“至少有两个”.故选C.3.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的个数是( C )A .0B .1C .2D .3解析:由于a ,b ,c 不全相等,则a -b ,b -c ,c -a 中至少有一个不为0,故①正确;②显然正确;令a =2,b =3,c =5,满足a ≠c ,b ≠c ,a ≠b ,故③错误.4.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( A )A .A ≤B ≤C B .A ≤C ≤BC .B ≤C ≤AD .C ≤B ≤A解析:因为a +b 2≥ab ≥2ab a +b, 又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是单调减函数, 故f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b , 即A ≤B ≤C .5.设x ,y ,z ∈R +,a =x +1y ,b =y +1z ,c =z +1x ,则a ,b ,c 三个数( C )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2解析:假设a ,b ,c 都小于2,则a +b +c <6,而a +b +c =x +1y +y +1z +z +1x =⎝ ⎛⎭⎪⎫x +1x +⎝ ⎛⎭⎪⎫y +1y +⎝ ⎛⎭⎪⎫z +1z ≥2+2+2=6,与a +b +c <6矛盾,∴a ,b ,c 都小于2不成立.∴a ,b ,c 三个数至少有一个不小于2,故选C.6.在等比数列{a n }中,a 1<a 2<a 3是数列{a n }递增的( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a 1<a 2<a 3时,设公比为q ,由a 1<a 1q <a 1q 2得若a 1>0,则1<q <q 2,即q >1,此时,显然数列{a n }是递增数列,若a 1<0,则1>q >q 2,即0<q <1,此时,数列{a n }也是递增数列,反之,当数列{a n }是递增数列时,显然a 1<a 2<a 3.故a 1<a 2<a 3是等比数列{a n }递增的充要条件.7.设a =3+22,b =2+7,则a ,b 的大小关系为 a <b .解析:a =3+22,b =2+7,两式的两边分别平方,可得a 2=11+46,b 2=11+47,显然67,所以a <b .8.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为 c n >c n +1 .解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n , ∴c n 随n 的增大而减小,∴c n +1<c n .9.(长春模拟)若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是 ⎝ ⎛⎭⎪⎫-3,32 . 解析:若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎨⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32,故满足题干要求的p 的取值范围为⎝ ⎛⎭⎪⎫-3,32. 10.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是 钝角 三角形.解析:由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形. 由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾.所以假设不成立.假设△A 2B 2C 2是直角三角形,不妨设A 2=π2,则cos A 1=sin A 2=1,A 1=0,矛盾.所以△A 2B 2C 2是钝角三角形.11.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明:要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .12.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .证明:要证lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c ,只需证lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg abc , 只需证a +b 2·b +c 2·c +a 2>abc .因为a ,b ,c 是不全相等的正数,所以a +b 2≥ab ,b +c 2≥bc ,c +a 2≥ca (三个式子中等号不同时成立).所以显然有a +b 2·b +c 2·c +a 2>abc 成立,原不等式得证.13.已知函数f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22. 证明:要证明f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22, 因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22, 因此只要证明3x 1+3x 22≥3x 1·3x 2, 由于当x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,当且仅当x 1=x 2时,等号成立,故原结论成立. 14.已知四棱锥S ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.解:(1)证明:如图,由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,∴SA ⊥平面ABCD .(2)假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .15.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧ a 1=2+1,3a 1+3d =9+32,解得d =2, 故a n =2n -1+2,S n =n (n +2).(2)证明:由(1)得b n =S n n =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎨⎧q 2-pr =0,2q -p -r =0,∴⎝ ⎛⎭⎪⎫p +r 22=q 2=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成为等比数列.16.(衡阳调研)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1),所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.(2)证明:假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎨⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2. 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k ,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.。