高中数学人教B版必修一第二章2.4.1《函数的零点》 教学设计

合集下载

新人教B版必修一2.4.1《函数的零点》教案

新人教B版必修一2.4.1《函数的零点》教案

2.3函数的应用(1)教学目标:初步掌握一次和二次函数模型的应用会解决较简单的实际应用问题教学重点:一次和二次函数模型的应用教学难点:数学建摸教学过程:一、复习引入:解决实际问题的步骤:数学模型解决问题现实生活中有些实际问题给出了图表数据信息,对这类问题就要求我们能够收集图表数据信息,建立适合的函数模型来解决问题二、讲述新课:1.阅读课本65页例1,完成下列问题(1)认真审题,找出关键点;(2)该问题可以抽象成什么样的数学模型;(3)求出数学模型的解;(4)做答。

2.阅读课本65页例2,完成下列问题(1)题目求什么,应怎样设未知量?(2)每天客房的租金收入与每间客房的租金、客房的出组数有怎样的关系?(3)试用列表法求解(4)试用函数关系式求解例3某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价四、夯实基础1. 1.某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y 与投放市场的月数x 之间的关系可写成2.某工厂签订了供货合同后组织工人生产某货物,生产了一段时间后,由于订货商想再多订一些,但供货时间不变,该工厂便组织工人加班生产,能反映该工厂生产的货物数量y 与时间x 的函数图象大致是()3.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x 、y 间的函数关系为():A .y=0.9576100x B 。

y=0.9576x 100 C 。

y=(1009576.0)x D 。

y=1-0.042100xx B x A x C x D4.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售。

这样,仍可获得25%的纯利。

求此个体户给这批服装定的新标价与原标价之间的函数关系。

5. 某蔬菜基地种植西红柿,由历年市场行情得出,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图⑴的一条折线表示;西红柿的种植成本与上市场时间的关系用图⑵的抛物线段表示图(2)⑴写出图⑴表示的市场售价与时间t 的函数关系式)(t f P =,写出图⑵表示的种植成本与时间t 的函数关系式)(t g Q =⑵认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大? 注意:市场售价和种植成本的单位:元/kg 210,时间单位:天五、能力提高:《中华人民共和国所得税法》规定,公民全月工资,薪金所得不超过800元的部某人一月份应交纳此项款26.78元,则他们当月工资,薪金所得等于( )A 800~900元B 900~1200元C 1200~1500元D 1500~2800元六、小结:函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下:符合。

人教新课标高中数学B版必修1《2.4.1 函数的零点》教学设计(表格式)

人教新课标高中数学B版必修1《2.4.1 函数的零点》教学设计(表格式)

2.4.1《函数的零点》教学设计课题:函数的零点教材:人教B版新课标高中数学必修1教学内容:第二章函数2.4.1函数的零点教材分析:一.教材的地位和作用本课时主要学习函数的零点,通过研究二次函数的图象性质归纳函数的零点的性质。

本节课的内容起到了承上启下的作用。

本节课重点在于研究函数的零点概念及其存在性,函数零点的概念及求法,函数零点与方程根之间的关系。

难点是理解方程的根与函数零点的关系,利用函数的零点作图。

通过本节课的学习进一步加深学生对函数概念及性质的理解和认识,使学生能够整理出较为系统的函数知识体系和完整的思维方式方法,并由此及彼,帮助后面函数的学习。

二.教学目标:1.知识目标:(1)理解函数零点的定义,能判断二次函数零点的存在性;(2)会求简单函数的零点。

理解函数零点和方程的根的关系。

(3)理解函数零点存在的判定条件。

2.能力目标:通过充分运用函数与方程,数形结合的数学思想方法教学,体验函数零点概念的形成过程,体会数形结合、等价转化的数学思想.同时注重培养学生对于解题方法的灵活性和多样性的掌握。

3.情感态度与价值观目标:感悟形与数不同的数学形态间的和谐统一美,培养学生对事物之间转化的辩证唯物主义观点的认识三.教学重点和难点重点:函数零点的概念及求法,函数零点与方程根之间的关系难点:理解方程的根与函数零点的关系,利用函数的零点作图.教学关键点:从实际出发,在学生获得一定感性认识的基础上,通过观察,比较,归纳进一步提升到理性认识,逐步形成完整的概念,在此基础上结合图象,运用数学结合的数学思想解决问题。

学情分析:学生已经学习过函数的基本性质,本节课函数关系的建立做好了知识准备,在此基础上进行函数的零点的学习,可以将对函数的认识进一步系统化和完善化。

教法分析:(一)教学方式教师引导,学生讨论,与启发探究相结合。

(二)教学手段借助几何画板和函数编辑器等教学软件和投影仪等,展示学生的做图结果,并演示高次函数的图像。

高中数学人教B版必修一学案:2.4.1函数的零点

高中数学人教B版必修一学案:2.4.1函数的零点

高一数学第二章第一课时学案2.5.1 函数的零点一、学习目标1、理解函数零点的意义,能判断二次函数零点的存在性。

2、会求简单函数的零点,了解函数的零点与方程根的关系。

3、能通过零点画出函数的图象,并研究其性质。

4、在函数与方程的联系中体验数学中的转化思想的意义和价值.二、自主学习1、引例:已知二次函数26y x x =--,试求当y=0时的x 值,并画出其图象,由图象观察当x 在何区间上使得y>0?y<0?。

2、零点的定义:一般地,如果函数))((D x x f y ∈=在实数α处的值等于,即 ,则α叫做这个函数的 。

在坐标系中表示 。

3、二次函数的零点:(1)△>0,方程02=++c bx ax 有 ,二次函数的图象与x 轴有 ,二次函数有 .(2)△=0,方程02=++c bx ax 有 ,二次函数的图象与x 轴有 ,二次函数有一个 .(3)△<0,方程02=++c bx ax 无 ,二次函数的图象与x 轴无 ,二次函数无 .4、二次函数零点的性质:当函数图象通过零点且穿过x 轴时,函数值 ;两个零点把x 轴分成三个区间,在每个区间上所有函数值 ;如果一个二次函数有一个二重零点,那么它通过这个二重零点时,函数值的符号 。

三、合作探究1、二次函数)0(2≠++=a c bx ax y 的是否一定有零点,判断依据是什么2、函数的零点与方程的根、函数图象与x 轴交点的关系:函数)(x f y =有零点⇔方程0)(=x f 有 ⇔函数)(x f y =的图象与x 轴 .3、函数零点的求法:求函数)(x f y =的零点即求 。

4、二次函数零点两侧的函数值有何变化?零点将x 轴分成几个区间,在每个区间上函数值有何特点?分别以下列函数为例说明①122+-=x x y ;②223y x x =--+;③322+-=x x y 。

四、典例示范例1、求下列函数的零点:①220y x x =--+;② 32332y x x x =+++;③()()22232y x x x =-++例2、求函数3222y x x x =--+的零点,并画出它的图象。

高中数学人教B版必修一学案:2.4.1 函数的零点

高中数学人教B版必修一学案:2.4.1 函数的零点

2.4函数与方程2.4.1函数的零点[学习目标]1.理解函数零点的概念.2.会求一次函数、二次函数的零点.3.初步了解函数的零点、方程的根、函数图象与x轴交点的横坐标之间的关系.[知识链接]考查下列一元二次方程与对应的二次函数:(1)方程x2-2x-3=0与函数y=x2-2x-3;(2)方程x2-2x+1=0与函数y=x2-2x+1;(3)方程x2-2x+3=0与函数y=x2-2x+3.请列表表示出方程的根,函数的图象及图象与x轴交点的坐标.答案[1.函数的零点(1)定义:一般地,如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.(2)性质①当函数图象通过零点且穿过x轴时,函数值变号.②两个零点把x轴分为三个区间,在每个区间上所有函数值保持同号.2.二次函数零点与二次方程实根个数的关系要点一求函数的零点 例1求下列函数的零点: (1)f (x )=-x 2-2x +3; (2)f (x )=x 4-1.解(1)∵f (x )=-x 2-2x +3=-(x +3)(x -1), ∴方程-x 2-2x +3=0的两根分别是-3和1. 故函数的零点是-3,1.(2)∵f (x )=x 4-1=(x 2+1)(x +1)(x -1), ∴方程x 4-1=0的实数根是-1和1. ∴函数的零点为±1. 规律方法函数零点的求法:(1)代数法:求方程f (x )=0的实数根;(2)几何法:对于不能用求根公式的方程f (x )=0,可以将它与函数y =f (x )的图象联系起来,图象与x 轴的交点的横坐标即为函数的零点. 跟踪演练1求函数y =(ax -1)(x +2)的零点. 解(1)当a =0时,令y =0得x =-2; (2)当a ≠0时,令y =0得,x =1a 或x =-2.①当a =-12时,函数的零点为-2;②当a ≠-12时,函数的零点为1a ,-2.综上所述:(1)当a =0或-12时,零点为-2;(2)当a ≠0且a ≠-12时,零点为1a ,-2.要点二函数零点个数的判断例2若函数f (x )=ax 2-x -1仅有一个零点,求实数a 的取值范围.解①若a =0,则f (x )=-x -1为一次函数,易知函数仅有一个零点;②若a ≠0,则函数f (x )为二次函数,若其只有一个零点,则方程ax 2-x -1=0仅有一个实数根(也可说成有两个相等的实数根), 故判别式Δ=1+4a =0,a =-14.综上,当a =0或a =-14时,函数仅有一个零点.规律方法判断或求形如函数y =ax 2+bx +c 的零点时,首先对a 分a ≠0和a =0两种情况讨论,然后对a ≠0的情况,利用判别式法判别相应一元二次方程根的情况,即可判断函数零点的情况.跟踪演练2判断下列函数的零点个数: (1)f (x )=x 2-7x +12; (2)f (x )=x 2-1x.解(1)由f (x )=0即x 2-7x +12=0, 得Δ=49-4×12=1>0,∴方程x 2-7x +12=0有两个不等的实数根. ∴函数f (x )有两个零点.(2)方法一由x 2-1x =0得x 2=1x ,令h (x )=x 2(x ≠0),g (x )=1x,在同一坐标系中画出h (x )和g (x )的图象知两图象只有一个交点, 故函数有一个零点.方法二令f (x )=0得x 2-1x =0即x 3-1=0(x ≠0), ∴x =1,即方程只有一个根. ∴函数有一个零点. 要点三函数零点性质的应用例3已知关于x 的二次方程ax 2-2(a +1)x +a -1=0有两个根,且一个根大于2,另一个根小于2,试求实数a 的取值范围.解令f (x )=ax 2-2(a +1)x +a -1,依题意知,函数f (x )有两个零点,且一个零点大于2,一个零点小于2.∴f (x )的大致图象如图所示:则a 应满足⎩⎪⎨⎪⎧ a >0,f (2)<0或⎩⎪⎨⎪⎧a <0,f (2)>0, 即⎩⎪⎨⎪⎧a >0,4a -4(a +1)+a -1<0, 或⎩⎪⎨⎪⎧a <0,4a -4(a +1)+a -1>0, 解得0<a <5, ∴a 的取值范围为(0,5).规律方法解决此类问题可设出方程对应的函数,根据函数的零点所在的区间分析区间端点函数值的符号,建立不等式,使问题得解.当函数解析式中含有参数时,要注意分类讨论. 跟踪演练3已知关于x 的二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解由已知抛物线f (x )=x 2+2mx +2m +1的图象与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56,∴-56<m <-12,故m 的取值范围是(-56,-12).1.函数y =x 2-4的图象与x 轴的交点坐标及其函数的零点分别是() A.(0,±2);±2B.(±2,0);±2C.(0,-2);-2D.(-2,0);2 答案B解析令x 2-4=0,得x =±2,故交点坐标为(±2,0),所以函数的零点为±2.2.若函数f (x )在定义域R 上的图象是连续的,图象穿过区间(0,4),且方程f (x )=0在(0,4)内仅有一个实数根,则f (0)·f (4)的值() A.大于0B.小于0 C.等于0D.无法判断 答案B解析由题意可知,函数在零点左边和右边的函数值是异号的,所以f (0)·f (4)<0. 3.如果二次函数y =x 2+mx +m +3有两个不同的零点,则m 的取值范围是() A.(-2,6) B.[-2,6]C.(-∞,-2)∪(6,+∞)D.{-2,6} 答案C解析由题意,得Δ=m 2-4(m +3)>0,即m 2-4m -12>0,∴m >6或m <-2. 4.函数f (x )=x -4x 的零点个数为()A.0B.1C.2D.无数个 答案C解析f (x )=x 2-4x,得x 1=2,x 2=-2,即函数有2个零点.5.若函数f (x )=x 2+ax +b 的零点是2和-4,则a =________,b =________. 答案2 -8解析∵2,-4是函数f (x )的零点, ∴f (2)=0,f (-4)=0,即⎩⎪⎨⎪⎧ 2a +b =-4,-4a +b =-16,解得⎩⎪⎨⎪⎧a =2,b =-8.1.函数是否有零点是针对相应方程是否有实数根而言的,若方程没有实数根,则函数没有零点.反映在图象上就是函数图象与x 轴无交点,如函数y =1或y =x 2+1就没有零点.2.判断函数的零点,可利用的结论:若函数y =f (x )在闭区间[a ,b ]上的图象是连续曲线,并且在区间端点的函数值符号相反,即f (a )·f (b )<0,则在区间(a ,b )内,函数y =f (x )至少有一个零点,即相应的方程f (x )=0在区间(a ,b )内至少有一个实数解.。

人教B版必修一高中数学第二章第四节《函数的零点》教案

人教B版必修一高中数学第二章第四节《函数的零点》教案

人教B版《必修一》第二章第四节《函数的零点》(第一课时)【教材分析与学情分析】1.本节课是人教B版《必修一》第二章第四节“函数与方程”的第一课时。

高一学生在学习本节内容之前,对三次函数的了解仅限于第二章的幂函数;而利用函数零点与方程根的关系作图也仅限于二次函数。

随着学习内容的加深与扩展,本节课的设计对学生来说,是一次思想方法上的突破和学习观念的提升。

2.任教班级学生数学基础良好。

【课型】新授课【教学目标】1.能说出函数零点的定义,会求简单函数的零点。

2.经历二次函数零点性质推广到一般连续函数的过程,体会“函数与方程”、“转化与化归”、、“数形结合”的数学精神。

3. 用数学的眼光发现问题,并用数学知识方法给予解决;在学习新知的过程中,体会数学的应用价值;树立正确的人生观、价值观以及爱国主义情怀。

【教学准备】1.多媒体技术;2.网络资源;3.三封信件4.图书文献资源和网络资源:对“我国女排发球技术研究”的查阅【教学方法】自主探究、合作探究【教学重点】函数零点的概念与求法,作三次函数图象【教学难点】作三次函数图象、解决简单应用问题【教学过程】(含时间分配)(先准备几封写好的信(其实为最后学习要点的引出埋下伏笔),鼓励课堂活动踊跃的学生)(一)新课引入(5分钟)1.情景引入(激发学生的好奇心)播放中国女排在2016年里约奥运会夺冠的视频,指出女排的夺冠与数学紧密相连。

2.问题引入(激发学生求知欲)(二)概念的形成与深化(5分钟)1.实例引入 ?062=--=y x x x y 取何值时,,当对于函数2.函数的零点3.概念深化 函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x 轴有交点(三)实践与探究(14分钟)1.自主尝试求下列函数的零点:2.总结升华(学生把一般二次函数零点的判定以表格形式给出)3.深入探究(学生自主探究)当二次函数有零点时,请由图象探究:(1)在零点的两侧,函数值符号是否改变?(2)相邻两个零点之间函数值的符号是否相同?1.你能画出函数y=2x+7的图象吗?22.你能画出函数y=x -x-6的图象吗?323.你能画出函数y=x -2x -x+2的图象吗?(1)236(2)y x y x =-+=222(3)(4)21(5)23y x x y x x y x x =+=-+=-+()=0f x x 使得函数的实数的值,叫做这个函数的零点.(学生自主完成)对于二次函数而言: (1)当函数图象穿过零点时,函数值变号; 当函数图象遇到零点但不穿过零点时,函数值不变号. (2)相邻两个零点之间的所有函数值保持同号.(师总结)推广:对任意函数,只要函数图象是连续不断的,上述性质同样成立.(四)应用举例(18分钟)1.(学生亲自投影,面对同学讲解做法,教师适当补充)在这4个区间内,取x 的一些值,以及零点,列出这个函数的对应值表: X … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 … Y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 … 在坐标系内,描点连线,作出图象.x y 0 x 1x 1 x 2 0yx 321.例求函数y=x -2x -x+2的零点,并画出它的图象.322211x x x --+-解:因为 =(x-2)(x-1)(x+1)所以函数的零点为, , 2.x 4--1-11122,+∞∞3个零点把轴分成个区间:(,),(,),(,),()*学生总结方法求函数y=f(x)零点的方法:求方程f(x)=0的根.(常用:因式分解)画三次函数图象的步骤:(1)求函数的零点,用其将x 轴分成几个区间;(2)利用在区间内适当取的x 值及零点,得到图象上的一些点;(3)描点连线,得到图象.2.自主尝试(学生黑板板演)*课下研究课题3.(回扣课头)例 2 研究发现:排球发球的成功率y%与抛球角度x(单位:度)近似满足二次函数关系:216144,25y x x =-+-(3090)x << 在一场排球比赛中,每位发球队员的成功率只有大于80%,才有利于比赛胜出。

函数零点的教学设计

函数零点的教学设计

函数的零点教案设计※教案背景(1)、课题:函数的零点(2)、教材版本:人教B版数学必修(一)第二章2.4.1函数的零点(3)、课时:1课时※教材分析(1)本节课的主要内容有函数零点的概念、函数零点存在性判定定理。

函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

(2)本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。

※教学目标:1、知识与技能(1)理解函数(结合二次函数)零点的概念。

(2)领会函数零点与相应方程的根的关系,掌握零点存在的判定条件。

2、过程与方法(1)通过观察例题的图象,发现函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。

(2)让学生归纳整理本节所学知识。

3、情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值,培养学生的观在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.体验数学内在美,激发学习热情,培养学生创新意识和科学精神。

※教学重点:是函数零点的概念及求法※教学难点:是利用函数的零点作图教学方法:※教学方法:以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,利用课件,视频等引导学生对问题的思考,运用学生自主学习、小组合作探究的教学方式。

※教学环节(一)、课前延伸1、知识链接,温故知新求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图象。

通过学生熟悉一元二次方程入手,观察函数图像与x轴的交点与相应方程根的关系,让学生建立数型结合的思想。

高中数学2.4函数与方程_函数的零点教案新人教B版必修1

高中数学2.4函数与方程_函数的零点教案新人教B版必修1

§2.4.1函数的零点(课前预习案)一、新知导学1.函数零点的概念:对于函数y=f (x ),我们把使 叫做函数y=f (x )的零点.2.变号零点与不变号零点:(1)当函数通过变号零点时,函数值变号;(2)相临两个零点之间的所有函数值保持同号。

3.函数零点与方程根的关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与 有交点⇔函数y=f(x)有 注意:函数的零点不是一个点,而是函数图象与x 轴交点的 .4.函数零点的判断:如果函数y=f (x )在区间[a,b]上的图象是连续不断的一条曲线,并且有 ,那么函数y=f(x)在区间 内有零点,即存在),(b a c ∈,使得0)(=c f ,c 也就是方程0)(=x f 的根.二、预习自测:1.求下列函数的零点:(1)452--=x x y ; (2)202++-=x x y ;(3); (4))23)(2()(22+--=x x x x f .2.观察二次函数f (x )=x 2-2x -3的图象:在区间[-2,1]上有零点______; f (-2)=_______,f (1)=_______,f (-2)·f (1)_____0(“<”或“>”). 在区间(2,4)上有零点______;f (2)·f (4)____0(“<”或“>”).§2.4.1函数的零点(课堂探究案)§2.4.1函数的零点(课后拓展案)1.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( )A.),6()2,(+∞--∞B.)6,2(-C.]6,2[-D.}6,2{-2.方程063223=-+-x x x 在区间[-2,4]上的根必定属于区间( )A.[-2,1]B.]4,25[C.]47,1[D.]25,47[ 3. 函数f (x )=x (x 2-16)的零点为( )A .(0,0),(4,0)B .0,4C .(–4,0),(0,0),(4,0)D .–4,0,4 4.若函数b ax x f +=)(有一个零点是2,那么函数ax bx x g -=2)(的零点是( )A.0,2B.0,21 C.0,-21 D.2,-21 5若函数()21f x mx x =--有且仅有一个零点,则实数m 的值是________。

高中数学人教B版必修一第二章《2.4.1 函数的零点》优质课公开课教案教师资格证面试试讲教案

高中数学人教B版必修一第二章《2.4.1 函数的零点》优质课公开课教案教师资格证面试试讲教案

高中数学人教B版必修一第二章《2.4.1 函数的零点》优质课公开课教案教师资格证面试试讲教案
1教学目标
根据课程标准要求,结合学生现有认知水平和本节课教学内容确定以下目标
1、知识与技能:
(1)理解函数(结合二次函数)零点的概念,会求简单函数的零点;
(2)领会函数零点与相应方程的根与函数图象与x轴交点的关系.
2、过程与方法:
(1)体验函数零点概念的形成过程,提高数学知识的综合应用能力;
(2)让学生归纳整理本节所学知识.
3、情感、态度与价值观:
在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.体验数学内在美,激发学习热情,培养学生创新意识和科学精神.
2学情分析
通过初中和高一前一阶段的学习,学生已具备一定知识储备和一定认知能力.通过平时的观察、了解、检测,学生对函数的基础知识和基本技能掌握达到了教学目标的要求,但在应用的灵活性和熟练程度上还是有所欠缺,并且对数学思想方法的领悟还需要加强,应对知识的综合应用和思想方法的提炼多下工夫.
3重点难点
重点:函数零点的概念及求法.
难点:是利用函数的零点作图.
4教学过程
4.1第一学时
教学活动
1【导入】复习引入
1、求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图象.。

高中数学_2.4.1 函数的零点教学设计学情分析教材分析课后反思

高中数学_2.4.1 函数的零点教学设计学情分析教材分析课后反思

《函数的零点》教学设计一、教学目标1、知识与技能:理解函数零点的意义,会求简单函数的零点,了解函数的零点与方程根的关系。

2、过程与方法:体验函数零点概念的形成过程,提高数学知识的综合应用能力。

3、情感态度价值观:让学生体会函数与方程相互转化的思想,体会数形结合的数学思想。

二、教学重点、难点重点:函数零点的概念以及求法;难点:利用函数的零点作图,函数与方程的转化。

三、教学方法采用学生活动为主,自主探究,合作交流的教学方法。

四、教学过程(一)创设情境,感知概念1.一元二次方程的根与二次函数图像的关系问题1:从该表你可以得出什么结论?由特殊到一般性的归纳:表2问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?学生讨论,得出结论:一元二次方程的根就是函数图象与x 轴交点的横坐标.意图:通过 回顾二次函数图象与x 轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备。

2、一般函数的图象与方程根的关系问题3:其他的函数与方程之间也有类似的关系吗?请举例!师生互动,在学生提议的基础上,老师加以改善,比较函数图象与x 轴的交点和相应方程的根的关系,从而得出一般的结论:方程f(x)=0有几个根,y =f(x)的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.设计意图:通过各种函数,将结论推广到一般函数,为零点概念做好铺垫.(二)辨析讨论,深化概念1. 概念:对于函数y =f(x),把使f(x)=0的实数x 叫做函数y =f(x)的零点.说明:①函数零点不是一个点,而是具体的自变量的取值.②求函数零点就是求方程f(x)=0的根。

2. 归纳函数的零点与方程的根的关系方程f(x)=0有实数根⇔函数y =f(x)的图象与x 轴有交点⇔函数f(x)有零点.小试牛刀:(1).函数)4()(2-=x x x f 的零点为 ( )A.)00(, ,)02(,B. 0,2C.)02(,- )00(,D. -2,0,2(2).函数(f设计意图:3.二次函数的零点个数如何判断?4.函数零点的性质?学生讨论后,得出结论。

高中数学 第二章 函数 2.4.1 函数的零点学案 新人教B版必修1-新人教B版高一必修1数学学案

高中数学 第二章 函数 2.4.1 函数的零点学案 新人教B版必修1-新人教B版高一必修1数学学案

2.4 函数与方程2.4.1 函数的零点1.理解函数零点的概念.(重点)2.会求一次函数、二次函数的零点.(重点)3.初步了解函数的零点、方程的根、函数图象与x 轴交点的横坐标之间的关系.(重点、难点)[基础·初探]教材整理1 函数的零点阅读教材P 70~P 71“例”以上部分内容,完成下列问题. 1.定义如果函数y =f (x )在实数α处的值等于零,即f (α)=0,则α叫做这个函数的零点. 2.性质(1)当函数图象通过零点且穿过x 轴时,函数值变号.(2)两个零点把x 轴分为三个区间,在每个区间上所有函数值保持同号.判断(正确的打“√”,错误的打“×”) (1)所有的函数都有零点.( )(2)若方程f (x )=0有两个不等实根x 1,x 2,则函数y =f (x )的零点为(x 1,0),(x 2,0).( )(3)f (x )=x -1x只有一个零点.( )【答案】 (1)× (2)× (3)×教材整理2 二次函数零点与一元二次方程 实根个数的关系阅读教材P 70“倒数第2行”~P 71“例”以上的内容,完成下列问题.判别式Δ Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx+c (a >0)的图象一元二次方程ax 2+bx +c =0的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实根二次函数y =ax 2+bx+c 的零点有两个零点x 1,x 2有一个二重零点x 1=x 2没有零点已知函数f (x )=x 2-2x +a 的图象全部在x 轴的上方,则实数a 的取值范围是________.【导学号:97512030】【解析】 函数f (x )的图象是开口向上的抛物线,所以Δ=4-4a <0,a >1. 【答案】 (1,+∞)[小组合作型]求函数的零点(1)函数y =1+1x的零点是( ) A .(-1,0) B .x =-1 C .x =1D .x =0(2)求下列函数的零点. ①f (x )=-x 2-2x +3; ②f (x )=x 4-1.【精彩点拨】 求函数对应方程的根,即为函数的零点. 【自主解答】 (1)令1+1x=0,解得x =-1,故选B.(2)①由于f (x )=-x 2-2x +3=-(x +3)(x -1),所以方程-x 2-2x +3=0的两根是-3,1. 故函数的零点是-3,1.②由于f (x )=x 4-1=(x 2+1)(x +1)(x -1), 所以方程x 4-1=0的实数根是-1,1. 故函数的零点是-1,1.【答案】 (1)B (2)①-3,1 ②-1,1求函数的零点时,通常转化为解方程f x =0,若方程f x =0有实数根,则函数f x 存在零点,该方程的根就是函数f x 的零点;否则,函数f x 不存在零点.[再练一题]1.函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.【导学号:60210059】【解析】 ∵函数f (x )=ax +b 有一个零点是2,∴2a +b =0,即b =-2a , ∴g (x )=bx 2-ax =-2ax 2-ax =-ax (2x +1), ∵-ax (2x +1)=0,即x =0,x =-12,∴函数g (x )=bx 2-ax 的零点是0,-12.【答案】 0,-12函数零点个数的判断判断下列函数零点的个数. (1)f (x )=x 2-7x +12;(2)f (x )=x 2-1x .【精彩点拨】 (1)中f (x )为一元二次函数,解答本题可判断对应的一元二次方程的根的个数;(2)中函数零点可用解方程法转化为两个熟知的基本初等函数求图象交点个数.【自主解答】 (1)由f (x )=0,即x 2-7x +12=0,得Δ=49-4×12=1>0, ∴方程x 2-7x +12=0有两个不相等的实数根3,4.∴函数f (x )有两个零点. (2)法一 由x 2-1x =0,得x 2=1x.令h (x )=x 2(x ≠0),g (x )=1x.在同一坐标系中画出h (x )和g (x )的图象,如图所示,两函数图象只有一个交点,故函数f (x )=x 2-1x只有一个零点.法二 令f (x )=0,即x 2-1x=0.∵x ≠0,∴x 3-1=0.∴(x -1)(x 2+x +1)=0. ∴x =1或x 2+x +1=0.∵方程x 2+x +1=0的根的判别式Δ=12-4=-3<0, ∴方程x 2+x +1=0无实数根.∴函数f (x )只有一个零点.确定函数零点个数的方法1.一元n 次方程根的个数的问题,一般采用分解因式法来解决. 2.一元二次方程通常用判别式来判断根的个数.3.指数函数和对数函数等超越函数零点个数的问题,一般用图象法来解决. 4.利用函数的单调性判断函数零点的个数.[再练一题]2.判断函数y =x 3-3x 2-2x +6的零点个数. 【解】 y =x 3-3x 2-2x +6 =x 2(x -3)-2(x -3) =(x 2-2)(x -3),令y =0,则x =±2或x =3, 显然有三个零点.[探究共研型]函数零点的应用探究1 设F (g (x )有何关系? 【提示】 F (x )的零点是函数y =f (x )与y =g (x )的图象的交点的横坐标.探究2 若函数f (x )=x 2-2x +a 有零点,则实数a 的取值范围是什么?【提示】 若函数f (x )=x 2-2x +a 有零点,则方程x 2-2x +a =0有根.故Δ=(-2)2-4a ≥0,故a ≤1.若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 【精彩点拨】 把问题转化为方程|2x-2|=b 有根问题,进而应用数形结合的思想转化为y =|2x -2|与y =b 图象的交点问题.【自主解答】 由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示,则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 【答案】 (0,2)已知函数有零点方程有根求参数取值范围常用的方法:1直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.2分离参数法:先将参数分离,转化成求函数值域问题加以解决.3数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.[再练一题] 3.若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则a 的取值范围是( ) A .a >15B .a >15或a <-1C .-1<a <15D .a <-1【解析】 根据函数零点的性质,f (1),f (-1)一正一负,f (1)=a +1,f (-1)=-5a +1所以⎩⎪⎨⎪⎧a +1>0-5a +1<0或⎩⎪⎨⎪⎧a +1<0-5a +1>0,解得a >15或a <-1.【答案】 B1.下列四个函数图象,在区间(-∞,0)内,函数f i (x )(i =1,2,3,4)中有零点的是( )A .B .C . D.【解析】 由函数图象可知,f 2(x )在(-∞,0)上与x 轴有交点,故f 2(x )在(-∞,0)上有零点.【答案】 B2.函数y =2x -4的零点是( ) A .2B .(2,0) C.⎝ ⎛⎭⎪⎫12,0 D.12【解析】 由2x -4=0,得x =2,即函数y =2x -4的零点是2. 【答案】 A3.已知函数y =f (x )是R 上的奇函数,其零点为x 1,x 2,x 3,x 4,x 5,则x 1+x 2+x 3+x 4+x 5=________.【解析】 由奇函数的对称性知:若f (x 1)=0, 则f (-x 1)=0,即零点关于原点对称,且f (0)=0, 故x 1+x 2+x 3+x 4+x 5=0. 【答案】 04.若函数f (x )=ax 2-x -1只有一个零点,则实数a =________.【解析】 (1)当a =0时,函数为y =-x -1,显然该函数的图象与x 轴只有一个交点,即函数只有一个零点.(2)当a ≠0时,函数y =ax 2-x -1是二次函数.因为y =ax 2-x -1只有一个零点,所以关于x 的方程ax 2-x -1=0有两个相等的实数根,所以Δ=0,即1+4a =0,解得a =-14.【答案】 0或-145.已知关于x 的二次方程ax 2-2(a +1)x +a -1=0有两个根,且一个根大于2,另一个根小于2,试求实数a 的取值范围.【解】 令f (x )=ax 2-2(a +1)x +a -1,依题意知,函数f (x )有两个零点,且一个零点大于2,一个零点小于2.∴f (x )的大致图象如图所示:则a 应满足⎩⎪⎨⎪⎧a >0,f 2<0,或⎩⎪⎨⎪⎧a <0,f 2>0,即⎩⎪⎨⎪⎧a >0,4a -4a +1+a -1<0,或⎩⎪⎨⎪⎧a <0,4a -4a +1+a -1>0,解得0<a <5,∴a 的取值范围为(0,5).。

《函数的零点》课堂教学设计

《函数的零点》课堂教学设计

《函数的零点》课堂教学设计《函数的零点》讲堂教课方案《函数的零点》讲堂教课方案一.教课内容本课内容选自经全国中小学教材鉴定委员会2004 年初审经过的人教版一般高中课程标准试验教科书,数学必修①, B 版第二单元《函数》中的《函数的零点》,新讲课,第一课时。

1.知识背景2. 4 节《函数与方程》作为新课程改革试验教材中的新增内容,其课程目标是想经过对本节的学习,使学生学会用二分法求函数零点近似解的方法,从中领会函数与方程之间的联系,同时达到“方法建立、技术运用、算法浸透”这一隐性的教课目的。

成立实际问题的函数模型,利用已知函数模型解决问题,作为一条主线贯串了全章的一直,而方程的根与函数的零点的关系、用二分法求函数零点的近似解,是在成立和运用函数模型的大背景下睁开的。

方程的根与函数的零点的关系、用二分法求函数零点的近似解中均蕴涵了“函数与方程的思想” ,这也是本章浸透的主要数学思想.2.本节内容《函数的零点》经过对二次函数图像的绘制、剖析,获得零点的观点,从而进一步研究一般函数零点存在性的判断,这些活动就是想让学生在认识初等函数的基础上,对函数图像进行崭新的认识,在函数与方程的联系中体验数学中的转变思想的意义和价值。

二.学生剖析1.认知起点建构主义的基本主张以为学习是一个踊跃主动的建构过程,学习者不是被动地接受外在信息,而是依据先前认知构造主动地有选择性地知觉外在信息,建构目前事物的意义,因此课程实行决不是教师给学生灌注知识、技术,也不是学生只被动地陷于接受、记忆、模拟和练习等低等而无聊的活动。

高中数学课程应当是学生在自主研究、着手实践、合作沟通、阅读自学等学习数学的方式下,师生之间、学生之间进行快乐而有效的多边互动。

全部这些活动都需要学生在知识起点方面有所准备。

经过对 2.2 节的学习,学生已经2/11对一次函数、二次函数的性质与图像有了深刻认识,此时学生对初等函数的实质属性、初等函数的图像与性质的联系有了较高层次的认识,因此在本节课提出函数零点的观点,不会显得忽然,反而对学生的认知过程有很好的帮助。

人教B版高中数学必修一教案-2.4.1 函数的零点

人教B版高中数学必修一教案-2.4.1 函数的零点

《函数的零点》教学设计一、教学内容分析本课题是普通高中课程标准实验教科书数学1(必修)人教B版第二章《函数》,第4节函数与方程的第一课时,本节课的主要内容是函数零点的定义,函数零点存在性的判定方法.其目的是使学生体会函数与方程之间的联系.为下一节《二分法》做准备.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.本章主要渗透了“函数与方程”和“数形结合”的数学思想.二、教学目标分析知识与技能目标:理解函数零点的意义,了解函数的零点与方程根的关系,会求简单函数的零点,能判断二次函数零点的存在性,并能对零点存在定理进行简单的应用.过程与方法目标:引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力.;体验函数零点存在定理的形成过程,初步感受零点存在定理在解题中的应用.情感态度与价值观目标:让学生初步体会事物间相互转化以及特殊到一般的辨证思想.三、教学基本条件分析1.学生条件:学生有较好的数学基础和数学理解能力,喜欢思考,乐于探究.2.前期内容准备:前面学习一次函数和二次函数时,教师对函数和方程的联系已经做了适当的渗透.3.教学媒体条件:支持幻灯片展示.四、教学重难点分析教学重点:函数零点的定义的理解.教学难点:正确理解函数零点的判定方法的不可逆性;函数与方程的联系及应用.五、教学过程设计(一)开门见山,揭示课题前几节课我们一起整理了一次函数和二次函数的图象与性质,初步学习了研究函数的一般方法,今天我们通过研究函数的另一个重要知识,来进一步感受函数与方程的联系.问题引入:已知二次函数y=x 2-x-6,试问x取什么值时,y=0?方程有几个根,y=f(x)的图象与x轴就有几个交点;方程的根就是图象与x轴交点的横坐标.-2、3在方程中称为实数根,对函数来说称为零点.(板书课题)函数的零点定义:如果函数在实数x0处的值等于零,即f(x0)=0,则x0叫做这个函数的零点.注意:零点不是点.设计意图:因为对这个定义的直观理解不难,所以直接给出,意为锻炼学生的数学阅读理解的能力,同时教师对这个概念暂时不加分析的处理为后面的设计作铺垫.由此得出:函数与方程的关系.(二)设问疑问,引导探究 例1:求出下列函数的零点,并作出函数的图象.(1)y =x 2-2x +1 (2)y =x 2+x +1解:过程略.设计意图:加深对概念的理解.让学生知道二重(二阶)零点的含义;不是所有的函数都有零点. (幻灯片展示)上面我们给出的三个函数都是一元二次函数,那么你能总结出对于一般的一元二次函数y=ax 2+bx +c (a ≠0),它的零点的情况与什么有关?预设答案:与方程的判别式有关.当△>0时,一元二次方程有两个不等的实数根x 1,x 2,相应的二次函数的图象与x 轴有两个交点 (x 1,0),(x 2,0),函数有两个零点x 1,x 2;【变号零点】当△=0时,一元二次方程有两个相等的实数根x 1= x 2,相应的二次函数的图象与x 轴有一个交点 (x 1,0),函数有一个二重零点x 1;【二阶零点】当△<0时,一元二次方程没有实数根,相应的二次函数的图象与x 轴没有交点,函数没有零点. 设计意图:让学生在总结二次函数零点情况的过程中,理清方程的根、函数图象与x 轴交点的横坐标和函数的零点之间的逻辑关系.通过图象看到函数零点的性质:①图象通过零点穿过x 轴时,函数值变号.——变号零点;②零点把x 轴分成的每个区间上函数值保持同号.研究函数的零点也就是研究相应方程的实数根,也就是研究函数的图象与x 轴的交点情况.(三)利用方程,研究函数例2.求函数y =x 3-2x 2-x +2的零点并画出函数的图象(简图).问题1:函数零点把x 轴分成了几部分?请考察在函数每个区间内函数值的符号.问题2:请仔细观察表格,你能发现哪些规律?(让学生观察发现)预设答案:零点两侧符号相反.问题3:是所有函数零点两侧函数值的符号都相反吗?预设答案:不是,譬如函数y =x 2-2x +1.只有变号零点两侧符号相反.设计意图:学生应用函数与方程的联系,通过方程研究函数的性质,做出函数的简图.同时,研究的过程也是在为后面发现零点存在定理作方法上的铺垫.(四) 探究发现“零点存在定理”1.探究发现例3:已知函数f (x )=x +b 在(-1,1)上存在零点,求b 的取值范围.解:法一:求零点;(由教师引导)法二:由题意:f (-1)·f (1)<0,解得b ∈(-1,1).通过以上分析,请同学们思考,函数在某区间(a ,b )上是否存在零点,与该区间的端点函数值的符号情况是否有某种关系?探究:若函数y =f (x ) 在区间(a , b )内满足f (a )·f (b )<0,则f (x ) 在区间(a , b )内是否存在零点?下面我们一起探究函数的零点存在的充分条件.学生先独立完成,再通过小组讨论,最后全班交流.探究①:观察图象,归纳函数y=f(x)在区间端点的函数值f(a),f(b)的正负情况.预设答案:f (a)·f (b)<0或f (a)·f (b)>0.探究②:函数y=f (x)具备了什么条件,就可确定函数在区间(a,b)上存在零点呢?预设答案:f (a)·f (b)<0.探究③:具备上述特征的函数y=f(x)是否在区间(a,b)上一定存在零点?预设答案:不是.反例:y=1x或画图验证.所以函数的图象在[a,b]上必须是连续不断的.探究④:如果连续函数f(x)满足f (a)·f (b)<0,则在区间(a,b)上存在唯一的零点吗?预设答案:不对.反例画图验证.应表述为“至少存在一个”.师生归纳总结:函数y=f(x)在(a,b)上存在零点的条件.预设答案:①函数图象连续不断;②区间端点函数值满足f (a)·f (b)<0.2.函数存在零点的条件如果函数y=f (x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f (a)·f (b)<0,那么,函数y=f (x)在区间(a,b)内至少存在一个零点,即存在c∈(a,b),使得f (c)=0.(五)总结升华问题:通过本节课的学习,你在知识、数学思想方法等方面有哪些收获?设计意图:通过小结,理清思路,归纳总结,更好的掌握知识技能,理解数学思想方法,提高解决问题的经验.学生活动,教师进行简要的概括和升华.(六)作业课本P72练习A 1、2;P75习题2-4A 3、4、5、6.六、板书设计(略)七、课后反思方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题.首先要让学生认识到学习函数的零点的必要性其次教学要把握内容结构,突出思想方法像这些中学新增内容的教学,教学就要取得成功的确不易,需要一个不断实践以及实践后的反思的过程,在实践与反思的过程中,不仅要妥善解决上述问题,还要不断地发现和解决新的问题,这样,教学效果才会逐步得到改善..。

高中数学 2.4.1《函数的零点》学案 新人教b版必修1

高中数学 2.4.1《函数的零点》学案 新人教b版必修1

2.4.1函数的零点学习目标:理解函数零点的意义, 能判断函数零点的存在性,会求简单函数的零点,了解函数零点与方程跟的关系.学习难点:利用函数的零点作图.学习重点:函数零点的概念及求法一.自主达标1.如果函数y=f(x)在实数处的值等于零,即f(x)=0,则x叫做.2.把一个函数的图像与叫做这个函数的零点.3.二次函数y=a2x+bx+c(a 0),当Δ=2b-4ac>0时,二次函数有个零点;Δ=2b-4ac=0时,二次函数有个零点;Δ=2b-4ac<0时,二次函数有个零点.4.二次函数零点的性质:(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),.(2)在相邻的两个零点之间所有.二。

典例解析例1.若函数f(x)=2x+ax+b的两个零点是2和-4,求a,b的值.例2.求证:方程52x-7x-1=0的一个根在(-1,0)上,另一个根在(1,2)上.限时训练1.判断下列函数在给定的区间上是否存在零点.(1).f(x)=x3-3x-18, x∈[1,8] (2)f(x)=x3-x-1, x∈[-1,2]2.二次函数y = x2+mx+(m+3)有两个不同的零点,则m的取值范围是()A.(-∞,2)∪(6,+∞)B.(-2,6)C.[-2,6 ]D.[-2,6)5.函数f(x)=x-x的零点是( ) A.0 B.1 C.2 D.无数个6.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-27.若函数f(X)在[0,4]上的图像是连续的,且方程f(x)=0在(0,4)内仅有一个实数根,则发f(0)x f(4)的值( ) A.大于0 B.小于0 C.等于0 D.无法判断8.若函数f(x)=m2x +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )A.1 B.2 C.3 D.4 9.f(x)=xx 1-,方程f(4x)=x的根是( ) A.-2 B.2 C.-0.5 D.0.510.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,则方程f(x)在[-1,1]内A .可能有3个实数根B .可能有2个实数根 C. 有唯一的实数根 D .没有实数根11.设f (x ) = 12x 5x -3++,则在下列区间中,使函数f (x )有零点的区间是( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]9.已知函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解12.已知函数y = f(x)=x2-1,则函数f(x+1)的零点是:________.13.方程x3-2x-5=0在区间 [2,3]内有实根,取区间中点 x0=2.5,那么下一个有根区间是:___________ .14.若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是:_____________.15.关于x的方程2k2x-2x-3k=0的两根一个大于1,一个小于1,则实数的取值范围.16.若函数f(x)=2x-ax-b的两个零点时2和3,则函数g(x)=b2x-ax-1的零点.三、解答题17.已知函数f(x)=2(m-1)2x-4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.18.求函数f(x)=x3-2x2-x+2的零点,则画出它的大致图像.19.方程x2+(m-2)x+5-m =0.(1).两根都大于2,求m的取值范围.(2).一根大于2,另一根小于2,求m的取值范围.(3).两根分别在区间(2,3)和之间(3,4),求m的取值范围.。

高中数学人教B版必修一2.4.1函数的零点教案

高中数学人教B版必修一2.4.1函数的零点教案
A.0 B.1 C.2 D.无数个
2.函数f(x)= 的零点是( )
A.1,2,3 B.-1,1,2 C.0,1,2D.-1,1,-2
3.若函数f(x)=m +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )
A.1 B.2 C.3 D.4
4.f(x)= ,方程f(4x)=x的根是( )
学科:数学
课题:2.4.1函数的零点
教学目标(三维融通表述):
1.通过讲解学生理解理解函数零点的概念与性质,会求函数的零点,能判断二次
函数零点的存在性,了解函数的零点与方程的根之间的关系,初步形成用函数的观点处理问题的意识。
2.在对二次函数的零点与方程根的关系研究过程中,体会由特殊到一般的思维方
法,通过由零点的性质作函数图像的过程及函数零点的性质的总结,渗透“数形结合”的思想方法。
4.二次函数零点的性质:
(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),.
(2)在相邻的两个零点之间所有
例1:已知函数 ,(1)当 取何值时, (2)作出函数的图像。
例2、求函数 的零点,并指出 时, 的取值范围。
例3.求函数 的零点,并画出它的图像
1.函数f(x)=2 -mx+3有一个零点为1.5,则f(1)=
会讨论零点个数,会解二次不等式
8分钟
15分钟
20分钟
引导学生理解
1.如果函数y=f(x)在实数a处的值等于零,即f(a)=0,则a叫做.
2.把一个函数的图像与叫做这个函数的零点.
3.二次函数y=a +bx+c(a 0),当Δ= -4ac>0时,二次函数有个零点;Δ= -4ac=0时,二次函数有个零点;Δ= -4ac<0时,二次函数零点.

(人教B版)必修一名师精品:2.4.1《函数的零点》教案设计(含答案)

(人教B版)必修一名师精品:2.4.1《函数的零点》教案设计(含答案)

示范教案整体设计教学分析函数作为高中的重点知识有着广泛应用,与其他数学内容有着密切联系.课本选取探究具体的一元二次方程的根与其对应的二次函数的图象与x轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.本节设计特点是由特殊到一般,由易到难,这符合学生的认知规律;本节体现的数学思想是:“数形结合”思想和“转化”思想.本节充分体现了函数图象和性质的应用.因此,把握课本要从三个方面入手:新旧知识的联系,学生认知规律,数学思想方法.另外,本节也是传统数学方法与现代多媒体完美结合的产物.三维目标1.让学生明确“方程的根”与“函数的零点”的密切联系,学会结合函数图象性质判断方程根的个数,学会用多种方法求方程的根和函数的零点.2.通过本节学习让学生掌握“由特殊到一般”的认知规律,在今后学习中利用这一规律探索更多的未知世界.3.通过本节学习不仅让学生学会数学知识和认知规律,还要让学生充分体验“数学语言”的严谨性,“数学思想方法”的科学性,体会这些给他们带来的快乐.重点难点教学重点:根据二次函数图象与x轴的交点的个数判断一元二次方程的根的个数;函数零点的概念.教学难点:理解函数的零点.课时安排1课时教学过程导入新课思路1.(情境导入)据新华社体育记者报道:昨晚足球比赛跌宕起伏,球迷经历了大喜到大悲,再到大喜的过程(领先则喜,落后即悲).请问:整场足球比赛出现几次“比分相同”的时段?学生思考或讨论回答:点拨:足球比赛有“落后”“领先”“比分相同”,函数值有“负”“正”“零”,函数图象与足球比赛一样跌宕起伏.由此导入课题,为后面学习埋好伏笔.思路2.(事例导入)(多媒体动画演示)一枚炮弹从地面发射后,炮弹的高度随时间变化的函数关系式为h=20t-5t2,问炮弹经过多少秒回到地面?炮弹回到地面即高度h=0,求方程20t-5t2=0的根,得t=4秒.如下图所示.思路3.(直接导入)教师直接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点.推进新课新知探究提出问题①求方程x2-2x-3=0的根,画函数y=x2-2x-3的图象.②求方程x2-2x+1=0的根,画函数y=x2-2x+1的图象.③求方程x2-2x+3=0的根,画函数y=x2-2x+3的图象.④观察函数的图象发现:方程的根与函数的图象和x轴交点的横坐标有什么关系?⑤归纳函数零点的概念.⑥如何判断一元二次方程根的个数,如何判断二次函数图象与x轴交点的个数,它的零点情况是怎样的?⑦怎样判断函数是否有零点?⑧函数的图象不易画出,又不能求相应方程的根时,怎样判断函数是否有零点?活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路:①先求方程的两个根,找出抛物线的顶点,画出二次函数的图象(图甲).甲乙丙②方程有一个根,说明抛物线的顶点在x轴上(图乙).③方程没有实数根,抛物线与x轴没有交点,找出抛物线的顶点是画二次函数图象的关键(图丙).④方程的根与函数的图象和x轴交点的横坐标都是实数.⑤对于其他函数这个结论正确吗?⑦可以利用“转化思想”.⑧足球比赛中从落后到领先是否一定经过“平分”?由此能否找出判断函数是否有零点的方法?函数图象穿过x轴则有零点,怎样用数学语言描述呢?讨论结果:①方程的两个实数根为-1,3,图象如图甲.②方程的实数根为1,图象如图乙.③方程没有实数根,图象如图丙.④方程的根就是函数的图象与x轴交点的横坐标.⑤一般地,如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.在坐标系中表示图象与x轴的公共点是(α,0)点.⑥我们知道,对于二次函数y=ax2+bx+c:当Δ=b2-4ac>0时,方程ax2+bx+c=0有两个不相等的实数根x1,x2,相应的二次函数的图象与x轴有两个交点(x1,0)、(x2,0),这时说二次函数y=ax2+bx+c有两个零点;当Δ=b2-4ac=0时,方程ax2+bx+c=0有两个相等的实数根x1=x2(重根),相应的二次函数的图象与x轴有唯一的交点(x1,0),这时说二次函数y=ax2+bx+c有一个二重的零点或说有二阶零点;当Δ=b2-4ac<0时,方程ax2+bx+c=0没有实数根,相应的二次函数的图象与x轴没有交点,这时二次函数y=ax2+bx+c没有零点.⑦方程f(x)=0有实根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.⑧观察二次函数f(x)=x2-2x-3的图象,我们发现函数f(x)=x2-2x-3在区间[-2,1]上有零点.计算f(-2)与f(1)的乘积,发现这个乘积特点是小于零.在区间[2,4]同样如此.可以发现,f(-2)f(1)<0,函数y=x2-2x-3在区间(-2,1)内有零点x=-1,它是方程x2-2x -3=0的一个根.同样地,f(2)f(4)<0,函数y=x2-2x-3在(2,4)内有零点x=3,它是方程x2-2x-3=0的另一个根.因此可得以下结论:若函数y=f(x)在闭区间[a,b]上的图象是连续曲线,并且在区间端点的函数值符号相反,即f(a)f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解.应用示例思路1例求函数y=x3-2x2-x+2的零点,并画出它的图象.解:因为x3-2x-x+2=x2(x-2)-(x-2)=(x-2)(x2-1)=(x-2)(x-1)(x+1),所以已知函数的零点为-1,1,2.3个零点把x轴分成4个区间:(-∞,-1),(-1,1),(1,2),[2,+∞).在这4个区间内,取x的一些值,以及零点,列出这个函数的对应值表:在直角坐标系内描点连线,这个函数的图象如上图所示.不难看出,这一函数图象通过三个零点时,函数值分别改变了符号,并且在每个区间内,函数值保持同号.变式训练1. 判断函数y=|x-1|-2零点的个数.解:通过分类讨论把绝对值函数转化为分段函数,作出函数图象,如下图所示.函数y=|x-1|-2的图象与x轴有两个交点,所以函数y=|x-1|-2有两个零点.2.求证:函数f(x)=2x2-3x-2有两个零点.证法一:因为一元二次方程2x2-3x-2=0的判别式Δ=32+4×2×2=25>0,所以一元二次方程2x2-3x-2=0有两个不相等的实根.所以函数f(x)=2x2-3x-2有两个零点.证法二:因为一元二次方程2x2-3x-2=0可化为(2x+1)(x-2)=0,所以一元二次方程2x 2-3x -2=0有两个不相等的实根x 1=2,x 2=-12.所以函数f(x)=2x 2-3x -2有两个零点.证法三:因为函数f(x)=2x 2-3x -2的图象是一条开口向上的抛物线,且顶点在x 轴的下方,即f(0)=-2<0,所以函数f(x)=2x 2-3x -2有两个零点.如下图.思路2例 若方程2ax 2-x -1=0在(0,1)内有解,求实数a 的取值范围. 活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导: ①有解包括有一解和有两解,要分类讨论.②用一般解法固然可以,若结合函数图象观察分析,可以找到捷径. ③有两种情况:a =0,或a≠0,Δ≥0. 解:令f(x)=2ax 2-x -1,(1)当方程2ax 2-x -1=0在(0,1)内恰有一个解时,f(0)·f(1)<0或a≠0且Δ=0, 由f(0)·f(1)<0,得(-1)(2a -2)<0,所以a >1.由Δ=0,得1+8a =0,a =-18,所以方程为-14x 2-x -1=0,即x =-2(0,1)(舍去).综上可得a >1.(2)当方程2ax 2-x -1=0在(0,1)内有两个解时,则⎩⎪⎨⎪⎧ a>0,f 0>0,f 1>0,0<14a<1,f 14a <0或⎩⎪⎨⎪⎧a<0,f 0<0,f 1<0,0<14a <1,f 14a >0,容易解得实数a 不存在. 变式训练若方程ax 2+3x +4a =0的根都小于1,求实数a 的取值范围. 解:(1)当a =0时,x =0满足题意. (2)当a≠0时,设f(x)=ax 2+3x +4a.方法一:若方程ax 2+3x +4a =0的根都小于1,则⎩⎪⎨⎪⎧ Δ=9-16a 2≥0,-32a <1,af 1>0,∴⎩⎪⎨⎪⎧-34≤a≤34,a>0或a<-1.5,a>0或a<-0.6.∴0<a≤34.知能训练1.判定方程(x -2)(x -5)=1有两个相异的实数解,且一个大于5,一个小于2.分析:转化判断函数f(x)=(x -2)(x -5)-1在(-∞,2)和(5,+∞)内各有一个零点. 解:考虑函数f(x)=(x -2)(x -5)-1,有 f(5)=(5-2)(5-5)-1=-1, f(2)=(2-2)(2-5)-1=-1.又因为f(x)的图象是开口向上的抛物线(如下图),所以抛物线与横轴在(5,+∞)内有一个交点,在(-∞,2)内也有一个交点.所以方程(x -2)(x -5)=1有两个相异的实数解,且一个大于5,一个小于2.点评:这里说“若f(a)·f(b)<0,则在区间(a ,b)内,方程f(x)=0至少有一个实数解”,指出了方程f(x)=0实数解的存在,并不能判断具体有多少个实数解.2.已知m ∈R ,设P :x 1和x 2是方程x 2-ax -2=0的两个根,不等式|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立;Q :函数f(x)=3x 2+2mx +m +43有两个不同的零点,求使P 和Q同时成立的实数m 的取值范围.解:由题意知x 1+x 2=a ,x 1x 2=-2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8. 当a ∈[1,2]时,a 2+8的最小值为3.要使|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立,只需|m -5|≤3,即2≤m≤8.由已知得Q 中:f(x)=3x 2+2mx +m +43的判别式Δ=4m 2-12(m +43)=4m 2-12m -16>0,得m <-1或m >4.综上,要使P 和Q 同时成立,只需⎩⎪⎨⎪⎧2≤m≤8,m<-1或m>4,解得实数m 的取值范围是(4,8].3.关于x 的方程x 2-ax +a 2-7=0的两个根一个大于2,另一个小于2,求实数a 的取值范围.解:设f(x)=x 2-ax +a 2-7,图象为开口向上的抛物线(如下图).因为方程x 2-ax +a 2-7=0的两个根一个大于2,另一个小于2,所以函数f(x)=x 2-ax +a 2-7的零点一个大于2,另一个小于2.即函数f(x)=x 2-ax +a 2-7的图象与x 轴的两个交点在点(2,0)的两侧. 只需f(2)<0,即4-2a +a 2-7<0,所以-1<a <3. 拓展提升问题:如果函数y =f(x)在区间[a ,b]上的图象是连续不断的一条曲线,并且f(a)f(b)>0,那么函数y =f(x)在区间(a ,b)内是否有零点?可能有几个零点?活动:学生先思考或讨论,再回答.利用函数图象进行探索分析: ①有没有零点?②零点的个数是奇数还是偶数?解:零点个数可以是任意自然数.下面讨论在区间[-3,3]上函数零点个数, (1)可能没有零点如图甲.甲乙(2)可能有一个零点如图乙. (3)可能有两个零点如图丙.丙丁(4)可能有三个零点如图丁.(5)可能有n(n∈N+)个零点,图略.点评:在区间[-3,3]上函数零点个数可以是任意自然数.借助计算机可以验证同学们的判断,激发学生学习的兴趣.课堂小结学习方法:由特殊到一般的方法.数学思想:转化思想、数形结合思想.作业课本本节练习B1、2.设计感想本节以事例导入,该事例是学生很感兴趣的话题,发人深思而紧贴本节主题,为后面讲解埋好了伏笔.因为二次函数、二次方程永远是高考的重点,所以本节结合二次函数的图象性质详实讨论了有关二次函数的零点和二次方程的根的问题.本节不仅选用了一些传统经典的题目进行方法总结,还搜集了一些最新的高三模拟题加以充实提高.另外,本节目的明确、层次分明、难度适中,对学生可能产生兴趣的问题进行了拓展,希望大家喜欢.备课资料[备选例题]例求下列函数的零点,并画出函数的图象.(1)y=-x2-x+2;(2)y=(x2-2)(x2-3x+2).活动:教师点拨提示:求函数的零点可转化为求相应方程的根.解:(1)如图甲,令y=0,即-x2-x+2=0,解得x1=-2,x2=1.所以所求函数的零点为-2,1.(2)如图乙,令y=0,即(x2-2)(x2-3x+2)=0,解得x1=2,x2=-2,x3=1,x4=2.所以所求函数的零点为2,-2,1,2.甲(设计者:赵冠明)。

人教B版高中数学必修1-2.4《函数的零点》教学教案2

人教B版高中数学必修1-2.4《函数的零点》教学教案2

2.4.1 函数的零点本节课选自《普通高中课程标准实验教课书数学I必修本(B版)》第70-72页的第二章2.4.1函数的的零点.本节是课标教材新增的教学内容,通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.给出函数零点概念的目的是要用函数的观点统摄中学代数知识,把所有的中学代数问题都统一到函数的思想指导之下.函数的零点是“函数与方程”这一单元的第一节内容,因此应该用适当的方式来说明函数与方程的关系,以突出用方程来研究函数的性质,用函数来研究解决方程的相关问题.但是教材中只体现了函数的零点与方程的解的关系,没有对函数与方程的联系与区别这方面的内容加以阐述.教学实践证明,学生在学习了“函数的零点”这一内容之后,仍然对函数与方程的关系没有较明确的认识.因此,本人认为应该利用一次函数与一元一次方程和二次函数与一元二次方程的关系来说明函数与方程的关系,让学生对函数与方程的关系有一个初步的感知,进而使学生体会学习函数零点的意义.因此在教学中我结合两点思考,将教学设计分为四个阶段.一、对函数零点定义的思考第一阶段:研究方程的根与函数的零点例题1:问题1:解方程①6x-1=0 ;②3x2+6x-1=0 ③④3x3+6x-1=0第一、二两题学生容易回答.第三题和第四题学生无法解答,产生疑惑引入课题.事实上,学生大多不清楚为什么要研究函数的零点,因为在此之前他们都能用公式法求方程的根.如果带着这样的疑虑学习,必然会降低其求知欲,从而影响学习的效果.所以,教学时可首先考虑解决这一问题.通过举例让学生知道,有些方程不能用公式法求解,为了研究更多方程的根,就有必要学习函数的零点.这样做,还为接下来学习二分法埋下了伏笔.问题2:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:如图①方程与函数②方程与函数③方程与函数教师引导学生解方程、画函数图象、分析方程的根与图象和x轴交点坐标的关系,推广到一般的方程和函数引出零点概念.零点概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的.同时,让学生填表格根据概念,让学生理解函数y=f(x)的零点与函数y=f(x)的图象与x轴交点有什么关系,概括总结两个结论(请学生总结).1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数.例如函数的零点为x=-1,32)函数零点的意义:函数的零点就是方程实数根,亦即函。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的零点》课堂教学设计一.教学内容本课内容选自经全国中小学教材审定委员会2004年初审通过的人教版普通高中课程标准试验教科书,数学必修①,B 版第二单元《函数》中的《函数的零点》,新授课,第一课时。

1.知识背景2.4节《函数与方程》作为新课程改革试验教材中的新增内容,其课程目标是想通过对本节的学习,使学生学会用二分法求函数零点近似解的方法,从中体会函数与方程之间的联系,同时达到“方法构建、技术运用、算法渗透”这一隐性的教学目标。

建立实际问题的函数模型,利用已知函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求函数零点的近似解,是在建立和运用函数模型的大背景下展开的。

方程的根与函数的零点的关系、用二分法求函数零点的近似解中均蕴涵了“函数与方程的思想”,这也是本章渗透的主要数学思想. 2.本节内容《函数的零点》通过对二次函数图像的绘制、分析,得到零点的概念,从而进一步探索一般函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,对函数图像进行全新的认识,在函数与方程的联系中体验数学中的转化思想的意义和价值。

二.教学目标知识与技能:(1)通过对二次函数增图像的描绘,理解函数零点的概念,体会我们在研究和解决问题过程的一般思维方法。

(2)通过对一般函数图像的描绘分析,领会函数零点与相应方程之间的关系,掌握零点存在的判定条件。

(3)培养学生对事物的观察、归纳能力和探究能力。

过程与方法: 通过画函数图像,分析零点的存在性。

情感态度与价值观: 使学生再次领略“数形”的有机结合,渗透由抽象到具体的思想,理解动与静的辨证关系,体会数学知识之间的紧密联系。

三.教学重点重点:理解零点的概念,判定二次函数零点的个数,会求函数的零点.具体流程设计一、创设情境画函数322--=x x y 的图像,并观察其图象与其对应的一元二次方程0322=--x x[师生互动]师:引导学生通过配方,画函数图象,分析方程的根与图象和x 轴交点坐标的关系。

生:独立画图,独立思考。

设计意图:通过数与形的结合说明函数图像与性质的关系。

再次利用《几何画板》绘制函数122+-=x x y 、223y x x =-+的图像,并观察它们的图像与对应的一元二次方程2210x x -+=、223=0x x -+的根的关系。

[师生互动]师:引出零点的概念,将上述结论推广到一般的一元二次方程和二次函数又怎样? 生:完成解答,观察、思考、总结、概括得出结论,并进行交流.设计意图:利用《几何画板》的帮助,使学生的认知起点与新知识平顺对接,形成零点概念的初步认识。

几个特殊的函数与方程又具有很强的概括性,包括方程有两不相等的根、两相等的根、无根的情况,研究它们有利于培养学生思维的完整性,为学生 归纳方程与函数的关系铺好了台阶。

二、组织探究对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点(zero point). 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.[师生互动]师:引导学生仔细体会理解零点的概念,进而感悟其中的思想方法生:结合图像认真理解函数零点的意义,并对零点出现的条件进行思考,根据函数零点的意义探索其求法.设计意图:通过函数零点概念的形成过程,让学生对零点的概念由初步的认识到掌握,并且对一般概念的形成过程有一个更深刻的认识三、意义构建函数零点的求法: 求函数)(x f y =的零点:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. [师生互动]师:引导学生就将由图象得到的概念进一步深化,得到函数零点的求法。

生:得到函数零点的求解方法,第一:代数法,即求解函数对应的方程; 第二:几何法,画出函数图像,找出零点。

设计意图:深刻认识图象与函数性质的关系,并掌握用几何法求函数的零点。

二次函数()20y ax bx c a =++≠零点个数的判定方法:师生互动]师:引导学生运用函数零点的意义探索二次函数零点的情况.生:根据函数零点的意义,探索研究二次函数的图像的性质,完全独立完成对二次函数零点情况的分析 ,总结概括形成结论,并进行交流。

设计意图:让学生对特殊的函数零点产生直观认识,深化零点概念四、探索研究(Ⅰ)观察二次函数32)(2--=x x x f 的图象①在区间[3,1]-上有零点______;(3)f -=______,=)1(f _______,()(3)1f f -⋅_____0(>或<). ②在区间[2,4]上有零点______;)2(f ·(5)f ____0(>或<).结论:二次函数零点的性质 (1)当函数的图象通过零点时(不是二重零点)函数的值变号. (2)相邻两个零点之间的所有函数值保持同号.(Ⅱ)观察下面函数)(x f y =的图象①在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(>或<). ②在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(>或<). ③在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(>或<).结论:零点存在性定理 如果函数()y f x =在区间[],a b 上的图象是连续不间断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(),a b 内至少存在一个零点,即存在(),c a b∈,使得()0f c =,这个c 也就是方程()0f x =的根.注意:(1)此性质成立的前提:函数图象是连续不间断的一条曲线;(2)零点c 并不一定是唯一的,但一定存在;(3)()()0>•b f a f 是函数)(x f y =在区间()b a ,内有零点的充分条件。

但是若函数)(x f y =是一次、二次函数时,则()()0>•b f a f 是函数)(x f y =在区间()b a ,内有零点的充要条件。

[师生互动]师:引导学生结合教师所提出的问题及函数图像,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系。

生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析。

设计意图:如何由函数零点的概念过度到函数零点的判定方法是本节课的难点,这样设计,有得于营造气氛,调动学生的积极性,内容由浅入深,既展现了知识的形成过程,又体现了能力的培养,符合素质教育的思想。

五、例题研究例题1:求函数223y x x =--+的零点,并指出0y >,0y =时,x 的取值范围.解:由2230x x --+=得,123,1x x =-= ∴函数223y x x =--+的零点为-3,1.223y x x =--+=()214x -++,画出图象,由图象观察可得:当31x -<<时,0y >当3x <-或1x >时,0y <,∴函数的零点为-3 ,0y >时,x 的取值范围是()3,1-0y <时,x 的取值范围是()(),31,-∞-⋃+∞.例题2:求函数3222y x x x =--+∵3222x x x --+()()222x x x =---()()221x x =--()()()211x x x =--+∴函数的零点为-1,1,2三个零点把x 轴分成四个区间:(],1-∞-,[]1,1-,[列表→描点→连线说明:求三次函数的零点关键是能正确地进行因式分解,而作它的图象,可先由零点分析出函数值的正负变化情况,再进行适当的取点。

因式分解的方法主要有:提取公因式法,分组分解法,公式法,十字相乘法等. [师生互动]师:引导学生探索判断函数零点的方法,指出可以借助计算机画函数的图象,结合图象对函数有一个零点形成直观的认识.生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.设计意图:体现零点存在的判定思想,让学生自己动手做数学,玩数学,体会数学,感受成功,在这些综合性、趣味性强的练习中,充分体现了尝试教学和愉快教学。

六、尝试练习1.利用函数图象判断下列方程有没有根,有几个根: (1)0532=++-x x ; (2)3)2(2-=-x x ; (3)x x 692-=-; (4)532522+=+x x x2.求出下列函数的零点,并画出函数的草图:(1)33)(3+--=x x x f ; (2)(1)(2)y x x x =--; (3)2(1)(1)(3)y x x x =-++;(4)x x x x x f ++-+=)4)(3)(2(3)(.[师生互动]师:结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数,并再次明确学习目标生:认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的重要作用,并总结出确定函数零点的一般步骤。

设计意图:拓展学生思维,培养思考能力,突出数形结合的思想。

七、作业反馈1. 教材P 77练习A 第1、2题; 2. 求下列函数的零点: (1)302++-=x x y ;(2))23)(2()(22+--=x x x x f .。

相关文档
最新文档