圆锥曲线中弦长问题的解决策略
浅谈解决圆锥曲线问题的几种方法
浅谈解决圆锥曲线问题的几种方法
圆锥曲线是解析几何学中的重要内容,主要包括椭圆、双曲线和抛物线三种类型。
解决圆锥曲线问题需要掌握一定的数学知识和解题技巧。
下面将就几种常见的解决圆锥曲线问题的方法进行探讨。
一、几何法
对于一些简单的圆锥曲线问题,可以直接利用几何关系解决。
已知一个椭圆的焦点和一个点在椭圆上,要求确定这个点在椭圆上的位置。
可以通过对称关系把问题转化为确定这个点关于焦点和对称轴的对称点在椭圆上的位置,然后再通过对称关系确定原点的位置。
二、代数法
代数法是解决圆锥曲线问题的一种常用方法,主要是通过代数方程进行推导和计算。
已知一个椭圆的方程和一个点在椭圆上,要求确定这个点在椭圆上的位置。
可以将已知点的坐标代入椭圆的方程,得到一个含有未知数的代数方程,然后通过求解这个代数方程确定未知数的值,从而确定这个点在椭圆上的位置。
解决圆锥曲线问题可以采用多种方法,包括几何法、代数法、参数法和几何与代数相结合法。
根据具体问题的特点和要求选择适当的方法,可以使解决问题更加简单、直观和高效。
对于复杂的问题,可能需要综合运用多种方法,甚至借助计算机辅助求解。
只有不断学习和实践,才能更好地掌握解决圆锥曲线问题的方法,提高解题能力。
微考点6-2 圆锥曲线中的弦长面积类问题(解析版)
微考点6-2 圆锥曲线中的弦长面积类问题(三大题型)直线与圆锥曲线相交,弦和某个定点所构成的三角形的面积,处理方法:①一般方法:d AB S 21=(其中AB 为弦长,d 为顶点到直线AB 的距离),设直线为斜截式m kx y +=.进一步,d AB S 21==20011221214)(121k m y kx x x x x k ++--++②特殊方法:拆分法,可以将三角形沿着x 轴或者y 轴拆分成两个三角形,不过在拆分的时候给定的顶点一般在x 轴或者y 轴上,此时,便于找到两个三角形的底边长.12PAB PQA PQB A B S S S PQ y y ∆∆∆=+=-=12PAB PQA PQB A B S S S PQ x x ∆∆∆=+=-=③坐标法:设),(),,(2211y x B y x A ,则||211221y x y x S AOB -=∆④面积比的转化:三角形的面积比及其转化有一定的技巧性,一般的思路就是将面积比转化为可以利用设线法完成的线段之比或者设点法解决的坐标形式,通常有以下类型:1.两个三角形同底,则面积之比转化为高之比,进一步转化为点到直线距离之比2.两个三角形等高,则面积之比转化为底之比,进一步转化为长度(弦长之比)3.利用三角形面积计算的正弦形式,若等角转化为腰长之比4.面积的割补和转化⑤四边形的面积计算在高考中,四边形一般都比较特殊,常见的情况是四边形的两对角线相互垂直,此时我们借助棱形面积公式,四边形面积等于两对角线长度乘积的一半;当然也有一些其他的情况,此时可以拆分成两个三角形,借助三角形面积公式求解.⑥注意某条边过定点的三角形和四边形当三角形或者四边形某条边过定点时,我们就可以把三角形,四边形某个定顶点和该定点为边,这样就转化成定底边的情形,最终可以简化运算.当然,你需要把握住一些常见的定点结论,才能察觉出问题的关键.题型一:利用弦长公式距离公式解决弦长问题【精选例题】【例1】已知椭圆()2222:10x y E a b a b +=>>,1F ,2F 分别为左右焦点,点(1P,2P -⎛⎝在椭圆E 上.(1)求椭圆E 的离心率;(2)过左焦点1F 且不垂直于坐标轴的直线l 交椭圆E 于A ,B 两点,若AB 的中点为M ,O 为原点,直线OM交直线3x =-于点N ,求1ABNF 取最大值时直线l 的方程.则2222(2)(2)2x y x -+=-【跟踪训练】1.已知椭圆C :()222210x y a b a b +=>>,圆O :22320x y x y ++--=,若圆O 过椭圆C 的左顶点及右焦点.(1)求椭圆C 的方程;(2)过点()1,0作两条相互垂直的直线1l ,2l ,分别与椭圆相交于点A ,B ,D ,E ,试求AB DE +的取值范围.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型二:利用弦长公式距离公式解决三角形面积类问题【精选例题】圆心O 到直线CD 的距离为2||51m d k ==+联立22132y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得()2223k x ++()()()2226423360km k m ∆=-+->,可得设()11,A x y 、()22,B x y ,则12623km x x k -+=+()2222121236141k m AB kx x x x k=++-=+()()()(2222261322612k km k ⋅++-+【点睛】方法点睛:圆锥曲线中最值与范围问题的常见求法:(特征和意义,则考虑利用图形性质来解决;(首先建立目标函数,再求这个函数的最值,式长最值.P x y满足方程【例3】动点(,)【点睛】求解动点的轨迹方程,可通过定义法来进行求解型的轨迹的定义,由此来求得轨迹方程用不等式的性质、基本不等式等知识来进行求解【例4】已知椭圆C的中心在原点,一个焦点为(1)求椭圆C的标准方程;【点睛】思路点睛:本题第二小问属于直线与圆锥曲线综合性问题,设出过点达定理可得12y y +,12y y ,可求出1142ABF S a r =⋅⋅△,由此可求得直线【跟踪训练】(1)求椭圆C的标准方程;(2)判定AOMV(O为坐标原点)与理由.【答案】(1)2212xy+=;(2)面积和为定值,定值为【分析】(1)根据题意求,a b)方程为22221x ya b+=,焦距为2c,则2221b a c=-=,的标准方程为221 2xy+=.()0,1A,()0,1B-,直线l:x(1)求椭圆C的方程;(2)过B作x轴的垂线交椭圆于点①试讨论直线AD是否恒过定点,若是,求出定点坐标;若不是,请说明理由.△面积的最大值.②求AOD②设直线AD 恒过定点记为M 由上()222481224t m ∆=-+=⨯所以1222423t y y t +=+,122y y =)题型三:利用弦长公式距离公式解决定四边形面积问题【精选例题】(1)求椭圆的标准方程;(2)求四边形ABCD面积的最大值;(3)试判断直线AD与BC的斜率之积是否为定值,若是,求出定值;若不是,请说明理由【答案】(1)2214xy+=;(2)4;(3))当直线1l,2l中的一条直线的斜率不存在、另一条直线的斜率为1AB CD=⨯⨯=.4122当直线1l,2l的斜率都存在且不为0时,【跟踪训练】2.已知焦距为2的椭圆M :于A ,B 两点,1ABF V 的周长为(1)求椭圆M 的方程;F l)斜率不存在时.1l 方程为1x =,2l 方程为1134622ABCD S AB CD =⋅=⋅⋅=四边形斜率为0时.1l 方程为0y =,此时无法构成斜率存在且不为0时.设1l 方程为y =12.已知圆O :224x y +=,点点P 的轨迹为E .(1)求曲线E 的方程;(2)已知()1,0F ,过F 的直线m【点睛】方法点睛:设出直线的方程,与椭圆方程联立,根据韦达定理结合弦长公式得出弦长3.已知椭圆2222:1(x yEa b+=()2,1T,斜率为k的直线l与椭圆(1)求椭圆E的标准方程;(2)设直线AB的方程为6.已知椭圆(2222:1x y C a a b+=两点,且1ABF V 的周长最大值为(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上一动点(不与端点重合),则112AF AH AF AF +≤+=故当AB 过右焦点2F 时,ABF V 因为椭圆C 的离心率为c e a =22121,2A F a c A A a =-===则11214A PQ PA A S S =V V ,故PQ =设(,),(02)P P P P x y x <<,则又P 点在22143x y +=上,则又2(2,0)A ,所以直线2A P 的方程为)O 中,由OA l ⊥,2EOF EOA ∠=∠,则EOA V 中,cos 601OA OE =⋅=o ,则S 当直线l 的斜率不存在时,可得:1l x =±,代入方程可得:2114y +=,解得32y =±,可得MN 当直线l 的斜率存在时,可设:l y kx b =+,联立可得))得1(0,3)B ,2(1,0)F ,12B F k =所以直线MN 的斜率为33,所以直线()2231313x y =++=.消去y 并化简得13(1)求椭圆E的方程;(2)是否存在实数λ,使椭圆若不存在,请说明理由;(3)椭圆E的内接四边形ABCD4t4t【点睛】方法点睛:本题(2圆联立求出弦长,然后再结合基本不等式求解出最值11.已知椭圆221:184x yC+=与椭圆(1)求椭圆2C的标准方程:不妨设P 在第一象限以及x 故000022AP AQ k y y k x x -+⋅=⋅=-由题意知直线AP 存在斜率,设其方程为若直线l ,m 中两条直线分别与两条坐标轴垂直,则其中有一条必与直线所以直线l 的斜率存在且不为零,设直线()()1122,,,A x y B x y ,()1y k x ⎧=+。
解答圆锥曲线中点弦问题的三种途径
丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹与圆锥曲线的弦及其中点有关的问题称之为圆锥曲线中点弦问题.中点弦问题在解析几何试题中比较常见,侧重于考查圆锥曲线与直线的位置关系、弦长公式、中点坐标公式、直线的斜率以及韦达定理.下面谈一谈解答圆锥曲线中点弦问题的三种途径.一、利用韦达定理若一元二次方程ax 2+bx +c =0的两个根分别为x 1、x 2,则x 1+x 2=-b 2a,x 1x 2=c a ,这个定理即是韦达定理.运用韦达定理求解圆锥曲线中点弦问题,需先将圆锥曲线方程与弦所在的直线的方程联立,通过消元,构造一元二次方程;再利用韦达定理,建立关于弦端点的坐标的关系式,最后结合中点坐标公式进行求解.例1.过点A (2,1)的直线与椭圆x 216+y29=1相交于P ,Q 两点,若点A 恰是线段PQ 的中点,求直线PQ 的方程.解:设直线PQ 的斜率为k ,则直线PQ 的方程为y -1=k (x -2),将其与椭圆的方程x 216+y 29=1联立,并消去y 得,(16k 2+9)x 2+(-64k 2+32k )x +(64k 2-64k -128)=0,由韦达定理得x 1+x 2=-(-64k 2+32k )16k 2+9.又A (2,1),所以x 1+x 2=-(-64k 2+32k )16k 2+9=4,可得k =-98,所以直线的方程为y -1=-98(x -2),即9x +8y -26=0.当遇到中点弦问题时,应很快联想到韦达定理,将圆锥曲线的方程和直线的方程联立起来,构造一元二次方程,建立方程两根之间的关系式,这是解题的关键.二、采用点差法点差法是解答中点弦问题的常用方法.运用点差法解题,要先设出或明确圆锥曲线的方程、弦的两个端点的坐标、弦的中点坐标;然后将弦的两个端点的坐标代入圆锥曲线的方程中,并将两式作差;再根据中点坐标公式和直线的斜率公式进行求解.例2.已知椭圆C :x 24+y 23=1,过点P (1,1)的直线l交椭圆C 交于A ,B 两点,求AB 中点M 的轨迹方程.解:设点A (x 1,y 1),B (x 2,y 2),将其分别代入椭圆C :x 24+y 23=1中,可得ìíîïïïïx 124+y 123=1,x 224+y 223=1,将两式相减可得3()x 1-x 2(x 1+x 2)+4()y 1-y 2(y 1+y 2)=0,即3x +4y ∙y 1-y 2x 1-x 2=0.因为AB 所在直线的斜率与MP 的斜率相等,所以3x +4y ∙y -1x -1=0,化简得3x ()x -1+4y ()y -1=0,即为点M 的轨迹方程.运用点差法解题,可以达到设而不求的效果,大大减少计算量.但点差法的适用范围比较窄,只有在已知直线的方程、圆锥曲线的方程、弦中点的坐标三者中的两者时,才可运用此方法求解.三、运用导数法借助导数法来求解圆锥曲线中点弦问题,需要先对圆锥曲线的方程进行求导,得到曲线在某点处的切线的斜率,就能将其看作中点弦的斜率,再根据中点坐标公式求解.例3.过椭圆C :x 216+y 24=1内一点M (2,1)作直线l ,交椭圆于A ,B 两点,使M 点恰好是弦AB 的中点,求该直线的方程.解:对x 216+y 24求导,得2x 16+2y 4y ′,把M (2,1)代入2x 16+2y 4y ′=0,得y ′=-12,所以直线AB 的方程为y =-12x +2.本题运用导数法求解十分简单、便捷,但需明确曲线的切线的斜率与曲线在某点处的导数之间的关系,据此建立关系式,即可快速解题.总之,在求解圆锥曲线中点弦问题时,同学们要注意将中点与韦达定理、中点坐标公式、直线的斜率公式相关联起来,从中寻找到解题的突破口,灵活运用上述三种方法解题,这样才能有效提升解题的效率.(作者单位:江苏省阜宁县实验高级中学)45。
【新高考数学】专题01 圆锥曲线中的弦长问题(含解析)
专题01 圆锥曲线中的弦长问题一、单选题1.设椭圆长半轴长为a ,短半轴长为b ,半焦距为c ,则过焦点且垂直于长轴的弦长是( )A .2b aB .22c aC .2c aD .22b a2.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M点,则2||||FM AB 的取值范围为( )A .11,164⎛⎫⎪⎝⎭ B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭ D .11,82⎡⎫⎪⎢⎣⎭3.过椭圆9x 2+25y 2=225的右焦点且倾斜角为45°的弦长AB 的长为( ) A .5B .6C .9017D .74.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .⎣B .⎣C .⎣⎦D .⎣⎦二、多选题5.已知抛物线()220y px p =>的焦点为F ,过点F 的直线l 交抛物线于A 、B 两点,以线段AB 为直径的圆交y 轴于M 、N 两点,则( )A .若抛物线上存在一点()2,E t 到焦点F 的距离等于3,则抛物线的方程为24y x =B .若2AF BF =,则直线l 的斜率为C .若直线l 43p AB =D .设线段AB 的中点为P ,若点F 到抛物线准线的距离为2,则sin PMN ∠的最小值为12三、解答题6.如图,P 是直线:3l y x =+上一动点,过点P 且与l 垂直的直线l '交抛物线2:C y x =于A ,B 两点,点A 在P ,B 之间.(1)若l '过抛物线C 的焦点F ,求AB ;(2)求PA PB的最小值.7.已知椭圆22221x y a b+=(0a b >>)长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线l 过点(,0)A a -,且与椭圆相交于另一点B . (1)求椭圆的方程;(2)若线段AB l 的倾斜角. 8.已知直线l 经过抛物线26y x =的焦点F ,且与抛物线交于A 、B 两点. (1)若直线l 的倾斜角为60,求线段AB 的长; (2)若2AF =,求BF 的长.9.已知圆上224x y +=上任取一点P ,过点P 作y 轴的垂线段PQ ,垂足为Q ,当P 在圆上运动时,线段PQ 中点为M .(1)求点M 的轨迹方程;(2)若直线l 的方程为y =x -1,与点M 的轨迹交于A ,B 两点,求弦AB 的长.10.已知椭圆22:1(0)C a b a b+=>>的右焦点为F ,左、右顶点为A 、B ,3FA =,1FB =.(1)求椭圆C 的标准方程; (2)求直线12y x =+被椭圆C 截得的弦长. 11.已知直线:4380l x y --=与圆()()22:11M x y m ++-=相交. (1)求m 的取值范围;(2)若l 与M 相交所得弦长为8,求直线:40l x y '+-=与M 相交所得弦长.12.已知双曲线C 的标准方程为22136x y -=,12,F F 分别为双曲线C 的左、右焦点.(1)若点P 在双曲线的右支上,且12F PF ∆的面积为3,求点P 的坐标;(2)若斜率为1且经过右焦点2F 的直线l 与双曲线交于,M N 两点,求线段MN 的长度. 13.设抛物线24C y x =:,F 为C 的焦点,过F 的直线l 与C 交于A B ,两点. (1)设l 的斜率为2,求AB 的值; (2)求证:OA OB ⋅为定值.14.已知椭圆M :22213x y a +=()0a >的一个焦点为()1,0F -,左右顶点分别为A ,B .经过点F 的直线l与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆M 方程;(Ⅰ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅰ)记ⅠABD 与ⅠABC 的面积分别为1S 和2S ,求12S S -的最大值.15.已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫ ⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点. (1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度.16.已知椭圆()22:10E a b a b+=>>,O 为坐标原点,P 为椭圆上任意一点,1F ,2F 分别为椭圆的左、右焦点,且2b a =,过点()0,1M 的动直线l 与椭圆相交于A ,B 两点. (1)求椭圆E的标准方程;(2)当AB =l 的方程 17.如图,椭圆2222:1x y C a b+=(0a b >>)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,AB 4=.(Ⅰ)求椭圆的方程;(Ⅰ)求使AB CD +取最小值时直线AB 的方程.18.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,且过点F 的直线l 被抛物线C 所截得的弦长MN 为8. (1)求直线l 的方程;(2)当直线l 的斜率大于零时,求过点,M N 且与抛物线C 的准线相切的圆的方程.19.椭圆C :(222212x y m m m+=>,直线l 过点()1,1P ,交椭圆于A 、B 两点,且P 为AB 的中点. (1)求直线l 的方程;(2)若AB =,求m 的值.20.如图所示,已知圆()221:116F x y ++=上有一动点Q ,点2F 的坐标为()1,0,四边形12QF F R 为平行四边形,线段1F R 的垂直平分线交2F R 于点P ,设点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点2F 的直线l 与曲线C 有两个不同的交点A 、B ,问是否存在实数λ,使得2222AF BF AF BF λ+=⋅成立,若存在求出λ的值;若不存在,请说明理由.21.已知椭圆22:14x W y +=,直线l 过点(0,2)-与椭圆W 交于两点,A B ,O 为坐标原点.(1)设C 为AB 的中点,当直线l 的斜率为32时,求线段OC 的长; (2)当ⅠOAB 面积等于1时,求直线l 的斜率.22.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数;(2)若||AB =AFB △的周长.23.如图,过点(1,0)F 的直线l 与抛物线2:4C y x =交于,A B 两点.(1)若||8AB =,求直线l 的方程;(2)记抛物线C 的准线为l ',设直线,OA OB 分别交l '于点,N M ,求ON OM ⋅的值.24.设椭圆E :22221x y a b+=(a ,b >0)过M (2 ,N 1)两点,O 为坐标原点,(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由.25.折纸又称“工艺折纸”,是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长. 某些折纸活动蕴含丰富的数学内容,例如:用圆形纸片,按如下步骤折纸(如下图),步骤1:设圆心是O ,在圆内不是圆心处取一点,标记为F ; 步骤2:把纸片对折,使圆周正好通过F ; 步骤3:把纸片展开,于是就留下一条折痕;步骤4:不停重复步骤2和3,能得到越来越多条的折痕.所有这些折痕围成的图形是一个椭圆.若取半径为4的圆形纸片,设定点F 到圆心O 的距离为2,按上述方法折纸.(1)建立适当的坐标系,求折痕围成椭圆的标准方程; (2)求经过F ,且与直线FO 夹角为4π的直线被椭圆截得的弦长.四、填空题26.在平面直角坐标系xOy 中,过抛物线2:C y mx =的焦点F 作斜率为1的直线,与抛物线C 交于A ,B 两点.若弦AB 的长为6,则实数m 的值为__________.27.已知抛物线C : y 2=2px (p >0),直线l :y = 2x + b 经过抛物线C 的焦点,且与C 相交于A 、B 两点.若|AB | = 5,则p = ___.28.已知抛物线2:4,C x y =AB 为过焦点F 的弦,过,A B 分别作抛物线的切线,两切线交于点P ,设112200(,),(,),(,)A x y B x y P x y ,则下列结论正确的有________.Ⅰ若直线AB 的斜率为-1,则弦8AB =; Ⅰ若直线AB 的斜率为-1,则02x =; Ⅰ点P 恒在平行于x 轴的直线1y =-上; Ⅰ若点(,)M M M x y 是弦AB 的中点,则0M x x =.五、双空题29.已知抛物线()2:20C x py p =>的焦点为F ,直线():0l y kx b k =+≠与抛物线C 交于A ,B 两点,且6AF BF +=,线段AB 的垂直平分线过点()0,4M ,则抛物线C 的方程是______;若直线l 过点F ,则k =______.专题01 圆锥曲线中的弦长问题一、单选题1.设椭圆长半轴长为a ,短半轴长为b ,半焦距为c ,则过焦点且垂直于长轴的弦长是( )A .2b aB .22c aC .2c aD .22b a【答案】D 【分析】设椭圆焦点在x 轴上,椭圆的标准方程为()222210x y a b a b+=>>,将x c =或x c =-代入椭圆的标准方程,求出y ,由此可求得结果. 【详解】设椭圆焦点在x 轴上,椭圆的标准方程为()222210x y a b a b+=>>,将x c =或x c =-代入椭圆的标准方程得22221c y a b +=,2222222221y c a c b b a a a -∴=-==, 解得2b y a =±,因此,过焦点且垂直于长轴的弦长是22b a. 故选:D.2.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M点,则2||||FM AB 的取值范围为( )A .11,164⎛⎫⎪⎝⎭ B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭ D .11,82⎡⎫⎪⎢⎣⎭【答案】B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210m y my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解.【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A BM ,1,FM AB ==所以2||1||8FM AB =,设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为AB ===(k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零. 3.过椭圆9x 2+25y 2=225的右焦点且倾斜角为45°的弦长AB 的长为( ) A .5 B .6C .9017D .7【答案】C 【分析】求出焦点坐标和直线方程,与椭圆方程联立,利用韦达定理和弦长公式可得答案. 【详解】由9x 2+25y 2=225得,221259x y +=,2225,9a b ==,所以216c =,右焦点坐标为(4,0),直线AB 的方程为4y x =-,所以2241259y x x y =-⎧⎪⎨+=⎪⎩得2342001750x x -+=,设1122(,),(,)A x y B x y ,所以1212100175,1734x x x x +==,||AB ==9017==. 故选:C. 【点睛】本题主要考查直线与椭圆的弦长公式||AB =.4.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .⎣B .⎣C .⎣⎦D .⎣⎦【答案】B 【分析】先利用等面积法可得:12114222a r c y y ⨯⋅=⨯⋅-,求解出12y y -的值,然后根据弦长公式12AB y =-的取值范围. 【详解】设内切圆半径为r ,由题意得12114222a r c y y ⨯⋅=⨯⋅-得1228,43y y e ⎡⎤-=∈⎢⎥⎣⎦,1212AB y y y =-=-∈⎣. 故选:B. 【点睛】本题考查椭圆焦点三角形问题,考查弦长的取值范围问题,难度一般.解答时,等面积法、弦长公式的运用是关键.二、多选题5.已知抛物线()220y px p =>的焦点为F ,过点F 的直线l 交抛物线于A 、B 两点,以线段AB 为直径的圆交y 轴于M 、N 两点,则( )A .若抛物线上存在一点()2,E t 到焦点F 的距离等于3,则抛物线的方程为24y x =B .若2AF BF =,则直线l 的斜率为C .若直线l 43p AB =D .设线段AB 的中点为P ,若点F 到抛物线准线的距离为2,则sin PMN ∠的最小值为12【答案】AD 【分析】由抛物线的定义求得p 的值,可判断A 选项的正误;设直线l 的方程为2px my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,结合韦达定理可求得m 的值,可判断B 选项的正误;利用韦达定理结合抛物线的焦点弦长公式可判断C 选项的正误;设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,联立直线l 与抛物线的方程,求得点P 到y 轴的距离和AB ,可得出sin PMN ∠关于m 的表达式,可判断D 选项的正误. 【详解】对于A 选项,由抛物线的定义可得232pEF =+=,解得2p =, 所以,抛物线的标准方程为24y x =,A 选项正确; 对于B 选项,如下图所示: 抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,设点()11,A x y 、()22,B x y ,设直线AB 的方程为2p x my =+,联立222p x my y px⎧=+⎪⎨⎪=⎩,消去x 并整理得2220y mpy p --=,222440m p p ∆=+>恒成立,由韦达定理可得122y y mp +=,212y y p =-,由于2AF BF =,由图象可得2AF FB =,即1122,2,22p p x y x y ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭, 所以,122y y =-,可得121221222y y y y mp y y p =-⎧⎪+=⎨⎪=-⎩,解得4m =±,所以,直线l的斜率为1m=±B 选项错误; 对于C 选项,当直线lB选项可知,3m =,12y y p +=,由抛物线的焦点弦长公式可得)12128223AB x x p y y p p p p =++=++=+=,C 选项错误;对于D 选项,抛物线的焦点F 到准线的距离为2p =,则该抛物线的方程为24y x =. 设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,联立214x my y x=+⎧⎨=⎩,消去x 可得2440y my --=,216160m ∆=+>, 则124y y m +=,()21212242x x m y y m ∴+=++=+,()212241AB x x m =++=+,点P 到y 轴的距离为212212x x d m +==+, 所以,()22221111sin 1112222212dm PMN m m AB+∠===-≥-=++, 当且仅当0m =时,等号成立,D 选项正确.故选:AD. 【点睛】本题考查直线与抛物线的综合问题,考查了抛物线焦点弦的几何性质以及焦点弦长、焦半径的计算.本题中将直线方程与抛物线的方程联立,利用韦达定理得出点A 、B 的纵坐标所满足的关系,并结合了抛物线的焦点弦长公式进行计算,考查学生的运算求解能力,属于中等题. 三、解答题6.如图,P 是直线:3l y x =+上一动点,过点P 且与l 垂直的直线l '交抛物线2:C y x =于A ,B 两点,点A 在P ,B 之间.(1)若l '过抛物线C 的焦点F ,求AB ;(2)求PA PB的最小值.【答案】(1)2;(2.【分析】(1)先求出直线l '的方程,联立直线与抛物线,将韦达定理和弦长公式相结合即可得结果; (2)设:AB y x t =-+,联立方程组分别求出A ,B ,P 的纵坐标,将PA PB表示为关于t 的函数式,结合基本不等式即可得结果. 【详解】解:(1)由已知得1,04F ⎛⎫⎪⎝⎭,所以1:4l y x '=-+,联立得214y x y x⎧=-+⎪⎨⎪=⎩,消去x ,可得2104y y +-=,设点()11,A x y ,()22,B x y ,由根与系数的关系得121114y y y y +=-⎧⎪⎨=-⎪⎩,所以AB=122y y -==.(2)设:AB y x t =-+,由2y x ty x=-+⎧⎨=⎩,消去x ,可知20y yt +-=,∵有两个不同的交点,∴11404t t ∆=+>⇒>-,解得:A y =,B y =,由3y x t y x =-+⎧⎨=+⎩,得32P t y +=,由于点A 在点P ,点B 之间,所以1P A P B PA y y PBy y -===-,()0u u =>,所以288111151544PAu PBu u u u=-=-≥=++++当且仅当u =72t =时取等号. 故PA PB的最小值为1911-.【点睛】 关键点点睛:(1)直线弦长公式的应用;(2)将所求量表示为关于t 的函数,利用基本不等式求最值.7.已知椭圆22221x y a b+=(0a b >>)长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线l 过点(,0)A a -,且与椭圆相交于另一点B . (1)求椭圆的方程; (2)若线段ABl 的倾斜角. 【答案】(1)2214x y +=;(2)4π或34π. 【分析】(1)由题设列出基本量方程组,解得基本量,从而得方程.(2)设直线l 方程,代入椭圆方程得关于x 的一元二次方程,韦达定理整体思想及弦长公式得关于斜率的方程,解得斜率得直线方程. 【详解】(1)由题意可知22222212242b a a b a b c ⨯=⎧⎪⎪⨯⨯⨯=⎨⎪=+⎪⎩, 2a = ,1b =,c =。
圆锥曲线弦线问题的破解策略
圆锥曲线“弦线”问题及破解策略河北省承德市承德实验中学 康义武 邮编 067011圆锥曲线中的“弦线”问题既很普遍又很复杂,说普遍是因其很常见,说复杂是因其运算较大较烦.因此在复习这部分内容时,不仅要巩固知识深化方法,而且更重要的是一定要熟悉几种“弦线”问题的类型及破解策略.1. 定长弦——主用弦长公式例1(06安徽理)如图,F 为双曲线C :()222210,0x y a b a b -=>>的右焦点.P 为双曲线C 右支上一点,且位于x 轴上方,M 为左准线上一点,O 为坐标原点.已知四边形OFPM 为平行四边形,PF OF λ=.(1)写出双曲线C 的离心率e 与λ的关系式; (2)当1λ=时,经过焦点F 且平行于OP 的直线交双曲线于A 、B 点,若12AB =,求此时的双曲线方程.解析:此题第二问是典型的“定长弦”问题,可借助弦长公式,先导相关的一元二次方程,利用韦达定理即可得出所求.(1)∵四边形OFPM 是平行四边形,∴||||OF PM c ==,作双曲线的右准线交PM于H ,则2||||2a PM PH c=+,又2222222||||||2222PF OF c c e e a a PH c a e c c c cλλλλ=====----,220e e λ--=.(2)当1λ=时,2e =,2c a =,223b a =,双曲线为132222=-ay a x ,此时)215,23(a a P ,所以直线OP 的斜率为315,则直线AB 的方程为)2(315a x y -=,代入到双曲线方程得: 02920422=-+a ax x .设),(),,(2211y x B y x A ,则a x x 521-=+,429221a x x -=.又12AB =,则由弦长公式AB =得:a a a 124294253511222=⨯+⋅+=,解得1=a ,∴32=b .则所求方程为1322=-y x . 2. 定点弦——主用定比分点公式例2(06山东理)双曲线C 与椭圆22184x y +=有相同的焦点,直线y =x 3为C 的一条渐近线.(1)求双曲线C 的方程;(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当12PQ QA QB λλ== ,且3821-=+λλ时,求Q 点的坐标.解析:此题第二问是过定点的弦线问题,一般来讲,过定点的弦线问题大都可用定比分点公式加以解决.(1)设双曲线方程为22221x y a b-=.由椭圆22184x y +=求得两焦点为(20)(20)-,,,. ∴对于双曲线2C c =:.又y =为双曲线C 的一条渐近线,b a ∴=2213a b ==,,∴双曲线C 的方程为:2213y x -=. (2)由题意知直线l 的斜率k 存在且不等于零,所以设l 的方程:11224()()y k x A x yB x y =+,,,,,则40Q k ⎛⎫- ⎪⎝⎭,,1PQ QA λ= ,Q ∴分PA 的比为1λ. 由定比分点坐标公式得:1111111111144(1)14401x x k k y y λλλλλλλ⎧⎧-==-+⎪⎪+⎪⎪⇒⎨⎨+⎪⎪=-=⎪⎪+⎩⎩,,... 11()A x y ,在双曲线C 上,21221111616103k λλλ⎛⎫+∴--= ⎪⎝⎭, 整理得2221116(16)321603k k λλ∴-++-=. 同理有:2222216(16)321603k k λλ-++-=. 若2160k -=,则直线l 过顶点,不合题意,2160k ∴-≠.12λλ∴,是二次方程22216(16)321603k x x k -++-=的两根, 122328163k λλ∴+==--,24k ∴=,此时0∆>,2k ∴=±. ∴所求Q 的坐标为(20)±,. 3. 焦点弦——主用圆锥曲线统一定义例3(06湖南文)已知椭圆221143x y C +=:,抛物线22()2(0)C y m px p -=>:,且12C C ,的公共弦AB 过椭圆1C 的右焦点.(1)当AB x ⊥轴时,求m p ,的值,并判断抛物线2C 的焦点是否在直线AB 上; (2)是否存在m p ,的值,使抛物线2C 的焦点恰在直线AB 上?若存在,求出符合条件的m p ,的值,若不存在,请说明理由.解析:此题题设条件给出焦点弦,为简化运算,焦点弦问题最好用圆锥曲线的统一定义,这比直接利用弦长公式省事.(1)当AB x ⊥轴时,点A B ,关于x 轴对称,所以0m =,直线AB 的方程为1x =,从而点A 的坐标为312⎛⎫ ⎪⎝⎭,或312⎛⎫-⎪⎝⎭,. 因为点A 在抛物线上,所以924p =,即98p =. 此时2C 的焦点坐标为9016⎛⎫ ⎪⎝⎭,,该焦点不在直线AB 上.(2)假设存在m p ,的值使2C 的焦点恰在直线AB 上,由(I )知直线AB 的斜率存在,故可设直线AB 的方程为(1)y k x =-.由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得2222(34)84120k x k x k +-+-=. ……①设A B ,的坐标分别为1122()()x y x y ,,,,则12x x ,是方程①的两根,2122834k x x k+=+. 由2()2(1)y m px y k x ⎧-=⎨=-⎩消去y 得2()2kx k m px --=. ……② 因为2C 的焦点2p F m ⎛⎫'⎪⎝⎭,在(1)y k x =-上, 所以12p m k ⎛⎫=- ⎪⎝⎭,即2kp m k +=.代入②有222kp kx px ⎛⎫-= ⎪⎝⎭.x即22222(2)04k p k x p k x -++=. ……③ 由于12x x ,也是方程③的两根,所以2122(2)p k x x k++=. 从而22422228(2)834(43)(2)k p k k p k k k k +==+++,. ……④ 又AB 过12C C ,的焦点, 所以12121211||()()(2)(2)2222p p AB x x x x p x x =+++=++=-+-, 则2212223124124()424343k k P x x k k +=-+=-=++. ……⑤由④,⑤得422228412(43)(2)43k k k k k +=+++,即42560k k --=,解得26k =,于是k =43p =.因为2C 的焦点23F m ⎛⎫' ⎪⎝⎭,在直线1)y x =-上,所以26(1)3m =-.即m =m =.由上知,满足条件的m p ,存在,且m =m =,43p =.4. 中点弦——主用中点坐标公式例4(06北京文)椭圆C :22221(0)x y a b a b +=>>的两个焦点为12F F ,,点P 在椭圆C 上,且112PF F F ⊥,12414||||33PF PF ==,.(1)求椭圆C 的方程;(2)若直线l 过圆22420x y x y ++-=的圆心M ,交椭圆C 于A B ,两点,且A B ,关于点M 对称,求直线l 的方程.解析:中点弦也是很常见的,一般来讲,遇到中点弦基本都得用到中点坐标公式. (1)因为点P 在椭圆C 上,所以12263a PF PF a =+==,.在12Rt PF F △中,12F F ==c =,从而2224b a c =-=,所以椭圆C 的方程为22194x y +=.(2)设A B ,的坐标分别为1122()()x y x y ,,,.已知圆的方程为22(2)(1)5x y ++-=,所以圆心M 的坐标为(21)-,,从而可设直线l 的方程为(2)1y k x =++,代入椭圆C 的方程得2222(49)(3618)3636270k x k k x k k +++++-=.因为A B ,关于点M 对称,所以21221892249x x k kk ++=-=-+,解得89k =,所以直线l的方程为8(2)19y x =++,即89250x y -+=.。
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)
解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
热点6:弦或弦长为定值、最值问题-圆锥曲线高考热点终极破解
圆锥曲线高考考查热点分析热点六:弦或弦长为定值、最值问题1、已知△OFQ 的面积为26,OF FQ m ⋅=(1646m ≤≤,求OFQ ∠正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),26||,(1)OF c m c ==- 当 ||OQ 取得最小值时,求此双曲线的方程。
解析:(1)设OFQ θ∠=||||cos()1||||sin 62OF FQ mOF FQ πθθ⎧⋅-=⎪⎨⋅⋅=⎪⎩46tan θ⇒= 646m ≤≤4tan 1θ-≤≤-(2)设所求的双曲线方程为221111221(0,0),(,),(,)x y a b Q x y FQ x c y a b-= >> =-则∴11||||262OFQ S OF y ∆=⋅=146y = 又∵OF FQ m ⋅=,∴21116(,0)(,)()(1OF FQ c x c y x c c c ⋅=⋅-=-⋅= ) 22211126963,||12.8c x OQ x y c ∴= ∴=+=+≥当且仅当4c =时,||OQ 最小,此时Q 的坐标是(6,6)或(6,6)22222266141216a ab b a b ⎧⎧-==⎪⎪∴ ⇒⎨⎨=⎪⎩⎪+=⎩,所求方程为22 1.412x y -= 2、已知椭圆14222=+y x 两焦点分别为F 1、F 2,P 是椭圆在第一象限弧上一点,并满足121=⋅PF PF ,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点.(Ⅰ)求P 点坐标;(Ⅱ)求证直线AB 的斜率为定值;(Ⅲ)求△PAB 面积的最大值.解:(Ⅰ)由题可得)2,0(1F ,)20(2-F ,设)0,0(),(00000>>y x y x P 则)2,(001y x PF --=,)2,(001y x PF ---=,∴1)2(20221=--=⋅y x PF PF ,∵点),(00y x P 在曲线上,则1422020=+y x ,∴242020y x -=,从而1)2(242020=---y y ,得20=y .则点P 的坐标为)2,1(. (Ⅱ)由题意知,两直线PA 、PB 的斜率必存在,设PB 的斜率为)0(>k k ,则BP 的直线方程为:)1(2--x k y .由⎪⎩⎪⎨⎧=+-=-142)1(222y x x k y 得x k k x k )2(2)2(22-++ 04)2(2=--+k ,设),(B B y x B ,则2222222212)2(2,2)2(21k k k k k k x k k k x B B +--=-+-=+-=+,同理可得222)222k k k x A +-+=,则2224k kx x B A +=-,228)1()1(k kx k x k y y B A B A +=----=-.所以:AB 的斜率2=--=B A B A ABx x y y k 为定值. (Ⅲ)设AB 的直线方程:m x y +=2.由⎪⎩⎪⎨⎧=++=142222y x mx y ,得0422422=-++m mx x ,由0)4(16)22(22>--=∆m m ,得2222<<-m P 到AB 的距离为3||m d =, 则3||3)214(21||212m m d AB S PAB⋅⋅-=⋅=∆2)28(81)8(8122222=+-≤+-=m m m m 。
两类有关圆锥曲线中弦问题的解法
备考指南有关圆锥曲线中弦的问题对同学们的空间想象能力和分析能力有比较高的要求.这类问题往往涉及较多的变量,经常让考生捉摸不透,不知如何下手.只有熟悉并掌握几类经典题型及其解题规律,才能举一反三,从容应对有关圆锥曲线中弦的问题.接下来,通过例题,探讨一下两类有关圆锥曲线中弦问题及其解法.一、切点弦恒过定点问题很多圆锥曲线问题涉及了切点弦,切点弦有一些特殊的性质和特征,我们需要熟练掌握.例如,(1)如果过圆锥曲线的准线和长轴所在直线的交点作圆锥曲线的切点,则切点弦长正好与圆锥曲线的通径相等;(2)过椭圆右准线上任何一点,作椭圆的切线时,这个切点弦恒过椭圆的右焦点.在解答切点弦恒过定点问题时,我们可以灵活运用切点弦的这些特殊性质和特征来建立关系式,消去参数,进而求得切点弦的方程,最后根据一元一次方程有无数个解的性质求得定点的坐标.例1.已知椭圆C :x 24+y 2=1,若过椭圆C 的右准线l 上任意一点M 作两条椭圆的切线,切点分别为A 、B .试求证:直线AB 恒过一个定点.证明:设点M 的坐标为t )(t ∈R),A (x 1,y 1),B (x 2,y 2),所以直线MA 的方程为x 1x41y =1,又点M 在直线MA 上,所以1+ty 1=1,2+ty 2=1,联立方程可得,直线AB +ty =1,化简得:x =3(1-ty ),所以直线AB 恒过定点(3,0).由已知的椭圆方程可求得其右准线的方程,所以可直接设点M 的坐标,然后通过切线的方程表示出切点弦的方程,进而得到直线AB 恒过的定点坐标.二、相交弦过定点问题任意相交的弦肯定不过定点,但是如果两个满足一定条件的弦相交,就会恒过一定点.在解题时,要注意观察,学会根据相交弦的特征进行分析,寻找一些特殊的位置、点、关系,据此建立关系式,通过消元,求得相交弦的方程.在建立关系式时,要逐步减少变量,这样就容易发现并求出定点的坐标.例2.如图,若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任意一点,直线PA 1,PA 2分别与椭圆C :x 24+y 2=1交于M ,N通过椭圆的焦点?解:设M ()x 1,y 1,N (x 2,y 2),直线A 1M 的斜率为k 1,则直线A 1M 的方程为y =k 1(x +2),联立方程可得ìíîïïy =k 1(x +2x 24+y 2=1,消去y 并整理得:()1+4k 21x 2+16k 21x +16k 21-4=0,由交点的坐标可知,该方程的两个根为-2和x 1,根据韦达定理可得-2x 1=16k 21-41+4k 21,可得x 1=2-8k 211+4k 21,y 1=4k 11+4k 21,所以M 点的坐标为:(2-8k 211+4k 21,4k 11+4k 21),同理可得点N 的坐标为(8k 22-21+4k 22,-4k 21+4k 22),其中k 2为直线A 2N 的斜率.由于点P 的坐标为(t ,y p ),所以y p =k 1()t +2,y p =k 2(t -2),所以k 1-k 2k 1+k 2=-2t ,因为直线MN 的方程为:y -y 1x -x 1=y 2-y 1x 2-x 1,令y =0得:x =x 2y 1-x 1y 2y 1-y 2,将M ,N 的坐标代入上式,化简得:x =4t,由t >2,可得:0<4t<2.所以当4t=3时,MN 过椭圆的交点,此时t ,综上可知当t =相交弦MN 过椭圆的交点.先设出M 、N 的坐标;再由A 1、A 2的坐标,得到直线A 1M 、A 2M 的方程;然后通过联立方程,求出M 、N 点的坐标,进而求出直线MN 的方程.解答相交弦过定点问题,需要关注一些特殊点的位置,比如点P 的位置,既在直线l 上,也在直线PA 1、PA 2上,所以点P 的坐标满足这三个直线的方程,从而建立关系式.可见解答有关圆锥曲线中弦问题,需注意:(1)明确弦与圆锥曲线的位置关系;(2)关注弦与弦之间的位置关系;(3)根据弦的特征、性质,建立关系式;(4)掌握并灵活运用一些消元的技巧.(作者单位:江西省玉山县第一中学)52Copyright ©博看网. All Rights Reserved.。
浅谈圆锥曲线中的弦长
嗣
= 。
例3 :已知双 曲线 以原点为 中心 ,焦点在 轴 上,若虚半轴长为
23 直 线 与 双 曲线 的 相 交 弦 问题 .
即 = + b与Y = + 2 2 6成立,所以A = (一 ( b h~)= B √ : ) - 6 + 。
解 : 直线方程与双曲线方程联立 把
. .
例l :求直线 2— 一 = -吲 +t 2 0 x Y 1 0戊 } J一 , …1 所得的弦 长。 分析 :关于直线与 圆相交 的弦长 M题 ,不需要使用如下公式 A = B
√ 、 + :4 , } 肛, ) 可_ f I 在园中吲心到直线的距离d 弦长的一半 、
.
交弦长公式记为A : + (+ 4 B √ ) x 而许多 . , 资料中 的圆锥曲 线
相交弦长公式 为 A = B = } 。这 个公式不够直接 ,因 为
接下去是把直线方程 Y h+ 与圆锥曲线 A 十 + + : 进 = b x+ F 0
行联立消去 y得关于 的一 元二次方程 ,再由韦达定 得 X+ :与 .
解 :由圃方程得圆心为 ( I 半径 为 r , 所 以得圆心到直 线 0) , =/ 2,
+)4: 、 : X =/ 一t 三
.
, √p 4 8 得P 4 = , 所以 8+p , 一 或p 2 =
( 收稿 E期 :2 1 - 4 0 l 0 0 0 - 6)
x 一三 距 d4 所 弦 的 半=~ √ , 以 — 的 离 5 以 长 一 f:= : 所 y 丁, 2 J; 皇
全面素质和创新能力的提 高
圆锥曲线技巧提升篇:韦达定理联立及弦长问题
设点 A(x1 , y1 ), B(x2 , y2 ), C(x3 , y3 ), D(x4 , y4 ),
因为 AC 与 BD 同向,且|AC|=|BD|,故 | AC | | CB || BD | | CB |, | AB || CD |,
联立
y kx x2 4
y
1 ,
整理得
x2
B 两点都在曲线上时,通常称为弦长公式,根据前面的根差形式,弦长即可表达为:
| AB |
1 k 2 | x1 x2 |
1
k2
b2
△ a2k2
若是反设直线 x ty 1 ,则:
| AB |
1
1 t2
x1 x2
1 t2
y1 y2
特别地,在抛物线 y2 2 px( p 0) 中,若直线 AB 过焦点 F,根据抛物线定义,有
x4
16k 9 8k 2
64 9 8k
,所以
| CD |
1 k 2 | x1 x2 |
1 k2
( x1
x2 )2
4x1 x2
48(1 k 2 ) 9 8k 2
,
由|AB|=|CD|,即
4k 2
4
48(1 k 2 9 8k 2
)
,
整理即得 (8k 2 3)(k 2 1) 0 ,解得 k 2 1 (舍),或 k 2 3 , k 6 ,
| AB |
(x1 x2 )2 ( y1 y2 )2
1 k 2 | x1 x2 |
1
1 2 k
|
y1
y2
|
两点距离公式任何时候都可以使用,而若知道 A、B 两点所在直线的斜率,只需再知道它们横坐标
或纵坐标差值即可求两点距离.对于这两种情形,在后续的题型中都将出现,应懂得灵活应用.当 A、
圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
_点差法_解决圆锥曲线的中点弦问题
中来。 如我在教学《分数的基本性质》时,是这样导入的:唐僧师 话。 然后又让学生亲自验证,但验证的结果是:想唱歌的学生抽
徒走到半路上,口渴了,孙悟空摘了一个西瓜回来,把它平分成 到了跳舞,想跳舞的学生反而抽到了讲故事。 通过这样一系列
四块,一人一块,八戒大喊道:“猴哥,分给我太少了,我不干! ” 的活动, 让学生真正体验到在现实生活中存在着不确定的现
第一个音符就准确、悦耳、动听。 ”新课的导入就好比演奏家定 乐! 师:我想让大家通过抽签表演节目的形式为尚利明同学过
弦,音调定准了,就为整个演奏奠定了基础。 一堂课如果一开头 一次有意义的生日,你愿意吗? 这时孩子们兴奋极了,个个脸上
就讲得索然无味,如同嚼蜡,学生就难以提高兴趣。 所以一定要 乐开了花。 随后我往讲台桌上放了 4 个签,并向学生介绍:有唱
据 题 意 ,a2=(y1y2)2+(x1x2)2=(x1-x2)2=(x12-x22)2-(x1-x2)2
=(x1-x2)2[(x1+x2)2+1]=[(x1+x2)2-4x1x2]·[(x1+x2)2+1]
=[(2x0)2-4(2x02-y0)][(2x0)2+1]=4(y0+x02)(1+4x02),所 求 动
悟空又切了两刀,把西瓜平均分成八块,拿给八戒两块,八戒笑 象,随后导入新课。 选择学生熟悉的事物组织教学,学生积极性
着说:“这还差不多,能多吃一块。 ”讲完后我问学生:“八戒多吃 高,课堂气氛活跃,效果显而易见。
了吗? ”有的学生说多吃了,有的说没有。 我便及时导入:“今天,
四、通过动手操作,激发学生兴趣
可迎刃而解了。
二、求弦中点的轨迹方程
关于圆锥曲线弦长的“万能公式”及其应用
关于圆锥曲线弦长的“万能公式”及其应⽤
众所周知,我们把圆、椭圆、双曲线、抛物线统称为圆锥曲线(即⼆次曲线)。
⼀般直接⽤公式解决弦长问题时,计算量⼤,容易出错,这正是⾼考命题需要考查学⽣计算能⼒的⼀个重要⽅⾯。
我们通常⽤“设⽽不求”的⽅法,可得到其弦长公式。
这种“设⽽不求”的思想,在处理圆锥曲线相关问题中占有重要地位。
本⽂将给同学们介绍“圆锥曲线弦长万能公式”,⽤它来解题可以简化运算过程。
假设设直线l的⽅程为:y=kx m(特殊情况要讨论k的存在性),圆锥曲线为f(x,y)=0(可以是圆、椭圆、双曲线、抛物线),把直线l的⽅程代⼊⼆次曲线⽅程,可化为ax2 bx c=0,(或ay2 by c=0),不妨设直线和⼆次曲线的两交点为A(x1,y1),B(x2,y2),那么:x1,x2是⽅程ax2 bx c=0的两个实数解,于是有。
圆锥曲线的焦点弦长新解
圆锥曲线的焦点弦长新解张鹏举关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
一. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。
解:连结,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则弦长。
同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b 为短半轴,c为半焦距)结论:椭圆过焦点弦长公式:二. 双曲线的焦点弦长设双曲线,其中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。
解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得整理可得,同理,则可求得弦长。
(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得,整理可得,则因此焦点在x轴的焦点弦长为同理可得焦点在y轴上的焦点弦长公式其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。
三. 抛物线的焦点弦长若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|?(图4)解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得即则同理的焦点弦长为的焦点弦长为,所以抛物线的焦点弦长为由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。
圆锥曲线的弦长问题
THANKS
感谢观看
01
弦长是指连接圆锥曲线上的两点的线段的长度。
02
弦长的计算方法有多种,包括公式法、参数方程法、极坐标法
等。
弦长公式是计算弦长的常用方法,适用于不同圆锥曲线和不同
03
坐标系。
02
圆锥曲线弦长的公式与定 理
圆锥曲线的一般弦长公式
圆锥曲线的一般弦长公式为:$|AB| = frac{2sqrt{D^2 - 4F}}{sqrt{1 - k^2}}$,其中 $D$是曲线的一般方程中x和y的最高次项系数 乘积的一半,$F$是常数项,$k$是弦AB的斜 率。
研究弦长问题在工程学中的应用,如桥梁、建筑的设计等。
弦长问题与其他数学知识的结合
弦长问题与线性代数的结合
探讨弦长问题与线性代数之间的关系,如矩阵 变换、线性方程组等。
弦长问题与解析几何的结合
研究弦长问题与解析几何之间的关系,如参数 方程、极坐标等。
弦长问题与微积分的结合
探讨弦长问题与微积分之间的关系,如求曲线长度、面积等。
函数与导数
在解决函数与导数问题时,有时需要利用弦长公式进行计算。
综合题
在高考数学的综合题中,有时会涉及到弦长问题,需要考生综合 运用所学知识进行解决。
05
弦长问题的变式与拓展
弦长问题的变种形式
弦长与角度的关系
研究弦长与圆锥曲线上的角度之间的关系,如弦的中垂线与曲线的 交点等。
弦长与焦点的关系
探讨弦长与圆锥曲线的焦点距离之间的关系,以及在何种情况下弦 长达到最大或最小值。
实际生活中的弦长问题
01
02
03
桥梁设计
在桥梁设计中,需要计算 通过桥墩的弦长,以确保 桥梁的稳定性和安全性。
圆锥曲线中的弦长问题
圆锥曲线中的弦长问题左超杰【教学目的】1、熟练掌握直线与圆锥曲线位置关系的判断方法;2、能解决有关直线与圆锥曲线相交时的有关弦长等问题。
【重点难点】直线与圆锥曲线相交时弦长问题的处理方法。
【教学模式】解决思路一一例题讲解一一方法总结一一反馈练习一一课堂小结教学过程:一、基本知识考查:1、当直线与圆锥曲线相交于两点时,就产生了弦。
当弦过焦点时,为___ _________ ;当焦点弦垂直于圆锥曲线的轴时,弦为直线的斜率为k,交点坐标为2、弦长公式X i,y i ,x2 , y 2 ,弦长为d ,为直线的倾斜角①当k存在时:d __________________当k存在且不为0时:d②抛物线的弦长公式AB x1 x2、例题1、磨磨刀2、能力提咼2例1、过双曲线 x 2 L 1的左焦点F !作倾斜角为一的弦AB ,3 1 6求:1 |AB2 ABC 的周长F 2为双曲线的右焦点2、 2直线y x 与椭圆—y 24 4、5 1相交于A 、E 两点,贝V AB 等于 A 、 2B 、C 、4 J0 58、105已知双曲线方程为的直线与双曲线交 A 、 5 过抛物线y 2两点,如果 A 、 84、抛物线y 2A 、 p3、 B 、 2L 1,过其右焦点作一条垂直 与X 轴 4 5与A 、B 两点,贝y AB 等于3C 、44x 的焦点作直线交抛物线 6,那么AB 等于D 、 9于A 、B X 2, y 2x 2 B 、10C 、6D 、 4 2px(p 0)的所有焦点弦中,弦长 的最小值为 B 、2pC 、4pD 、不确定D 、想:弦AB所在的直线斜率为3呢例2:已知直线l:y k(x 2,2)交椭圆x2 9 y2 9于A、B两点,若为I的倾斜角,且线段AB的长不小于短轴的长,求的取值范围拓展:若把第一句话改为:直线I过椭圆的左焦点且交椭圆于A、B两点呢?深度拓展:若把线段AB的长不小于短轴的长,改为求线段AB长的取值范围呢?3、智能升华正方形ABCD的两个顶点A、B在抛物线y x2上,另两个顶点C、D在直线y x 4上,求正方形的面积。
圆锥曲线中弦长问题的解决策略
圆锥曲线中弦长问题的解决策略张秀梅张建强弦长问题在高考题及模拟题中经常岀现,从理论上讲,利用弦长公式| AB | .1 k2| x, x2| . 1 k2 . /a就能解决问题。
但实际中,除个别简单题(本文从略) 外,直接利用弦长公式会使问题变得非常繁琐。
本文试图对此进行系统的总结,给岀不同类型题目的解决策略。
一、两线段相等类型I有相同端点的不共线线段例1、( 2204,北京西城区二模)已知定点A( 2, 4),过点A做倾斜角为45的直线L,交抛物线寸 2px(p 0)于A、B两点,且| AB |、| BC |、| AC |成等比数列(1 )求抛物线方程;(2)问(1)中抛物线上是否存在D,使得| DB | | DC |成立?若存在,求出D的坐标。
策略分析:由于D、B、C三点不共线,要使得| DB | | DC |成立,只需取BC中点P,满足DP BC。
由于这种类型题目的常见性与基础性,我们再举一个例子作为练习:例2、( 2005,孝感二模)已知a (x,0),b (1, y),(a , 2b) (a ,2b)(1)求点P(x,y)的轨迹方程C;(2)若直线L: y kx b ( k 0)与曲线C交与AB两点,D(0, —1),且有| AD | | BD |,试求b 的取值范围。
类型II 共线线段例3、直线L与x轴不垂直,与抛物线y2 x 2交于AB两点,与椭圆X? 2y2 2交于CD两点,与x轴交于点M(x°,0),且| AC | | BD |,求X0的取值范围。
策略分析:不妨设A(x1, y1)在B(x2, y2)下方,C(x3, y3)在D(x4, y4)下方,由于ABCD共线,要使| AC | | BD |,只需x3 x1x2 x4,即x-i x2 x3x4,结合韦达定理可得结果。
二、三线段相等类型I正三角形例4、(2003,北京春招)已知动圆过定点P(1,0)且与定直线L:x=—1相切,点C在L上(1)求动圆圆心的轨迹M的方程;(2)设过点P且斜率为.3的直线与曲线M相交于AB两点①问三角形ABC能否为正三角形?若能,求点C坐标;若不能,说明理由;②问三角形ABC能否为钝角三角形?若能,求点C纵坐标的取值范围;若不能,说明理由。
巧用弦长公式 妙解圆锥曲线
客观题方面有不错的效果.当然,需要强调的是,几何并不能完全代替代数,这也是解析几何发展的重要依据与出发点.仅以上海高考一例说明此点并结束本文.在该题的解答中,代数工具的优势发挥得甚是明显,而几何上的观察则不易(如图20).例10 (2017年高考上海卷·理16)在平面直角坐标系xOy 中,已知椭圆221:1364x yC +=和22:C x + 219y =.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值.记{()|Ω=P Q P ,在1C 上,Q 为2C 上,且}OP OQ w ⋅= ,则Ω中元素的个数为( ). A .元素个数为2 B .元素个数为4C .元素个数为8D .含有无穷个元素 解析 不妨设(6cos 2sin )P θθ,,(cos 3sin )Q ϕϕ,,则(6cos 2sin )(cos 3sin )6(cos cos θθϕϕθϕ⋅==+ OP OQ ,,sin sin )6cos()θϕθϕ=−,故OP OQ ⋅的最大值6w =,当且仅当θϕ=时等号成立,即有无穷多组()P Q ,满足题意,选D .参考文献[1]钱珮玲.数学思想方法与中学数学(第二版)[M].北京:北京师范大学出版社,2008[2]刘绍学.普通高中课程标准实验教科书·数学4(必修)[M].北京:人民教育出版社,2004[3]兰琦.高中数学进阶教程(每日一题好题精选)[M].杭州:浙江大学出版社,2016[4]杜志建.金考卷·2020浙江新高考优秀模拟试卷汇编45套[M].乌鲁木齐:新疆青少年出版社,2019(本文系福建省教育科学“十三五”规划2018年度课题《高三数学微专题教学的设计与实践研究》(课题编号:FJJKXB18-652)的研究成果)巧用弦长公式 妙解圆锥曲线黄书虹 福建省泉州市培元中学(362000)在解决圆锥曲线有关线段的距离问题,经常要涉及弦长公式,如果用传统的弦长公式,计算量非常大.因此本文引出广义的弦长公式,适用于直线上任意两点的距离,极大地简化计算,有助于快速解决圆锥曲线问题. 直线与圆锥曲线相交弦长公式为: ||AB =12||x x =−,其中11()A x y ,,22()B x y ,是直线与圆锥曲线的交点.其实,这个公式也适用于直线上任意两点的距离公式,设11()A x y ,,22()B x y ,为直线:l y kx m =+上的任意两点,则||AB=12||x x −或12||||AB y y =−.利用这个距离公式,可以将线段的关系转化为点坐标关系,进而利用韦达定理解决.引例1 (2017年福建质检卷·文20)以抛物线ΓΓ于A B ,两点,且||2AB =. (I )建立适当的坐标系,求Γ的方程; (II )若过点A 且与Γ只有一个公共点的直线l 交Γ的对称轴于点C ,点D 在线段AB 上,直线CD 与Γ交于P Q ,两点,求证:||||||||PC QD PD QC ⋅=⋅.解析 (I )设Γ的顶点为O ,则圆O 的半径r =||2AB =,所以O 到直线AB 的距离为d = 1=,如图1,以O 为原点,过O 且垂直于Γ对称轴的直线为x 轴,Γ对称轴所在直线为y 轴,建立平面直角坐标系xOy ,由对称性,不妨设点A 在y 轴左侧,则(11)A −,,(11)B ,.设抛物线Γ的方程为22(0)x py p =>.因为A 在Γ上,所以2(1)−= 2p ,解得12p =.故抛物线Γ的标准方程为2x y =.(这里建系方法不唯一,抛物线也可以是开口向右)(II )由(I )知,Γ的方程为2y x =,所以2y x ′=,因为直线l 与Γ只有一个公共点,且与y 轴交于C ,所以直线l 为Γ的切线,所以直线l 的斜率为1|2x y =−′=−, 所以直线l 的方程为12(1)y x −=−+, 令0x =,得1y =−,故(01)C −,. 设直线CD 的方程为1(0)y kx k =−≠, 11()P x y ,,22()Q x y ,, 由21y kx y x =−= ,,得210x kx −+=,所以240k ∆=−>,即2k <−或2k >. 又12x x k +=,121x x ⋅=, 所以2212121y y x x ⋅=⋅=, 将1y =代入1y kx =−,得2x k =,即2(1)D k ,. 不妨设C P D Q ,,,自上而下顺序排列,依题意得,20x ≠,220x k−≠.图1法1 利用几何性质,应用三角形的相似关系,将线段关系转化为坐标关系.由三角形的相似比可得1122||||||||x x PC QC x x ==, 112222||||22||||x x PD k k QD x x k k −−+==−−, 因为122122()()x x x x k k −−−+1212222()20x x x x k k k=−+=−⋅=,所以112222x x k x x k−+=−,即||||||||PC PD QC QD =, 所以||||||||PC QD PD QC ⋅=⋅成立.法2 向量法 因为||||PC QD ⋅ ||||cos 0PC QD =⋅⋅ PC QD =⋅ 11222(1)(1)x y x y k=+⋅−−,,12122()(1)(1)x x y y k=−++−,||||||||cos 0PD QC PD QC PD QC ⋅=⋅⋅=⋅11222(1)(1)x y x y k =−−⋅−−−,,12122()()(1)(1)x x y y k=−−+−−−, 所以||||||||PC QD PD QC ⋅−⋅12121222()(1)(1)()()x x y y x x k k =−++−−−−12(1)(1)y y +−−−112112221x x x y y y y k ⋅−+−+− 212211221x x x y y y y k +⋅−++−−1212122()2220x x x x y y k=+−−+=,所以||||||||PC QD PD QC ⋅=⋅成立.法3 利用直线上两点的距离公式,将线段关系转化为坐标关系因为C P D Q ,,,都在直线l 上,所以11||0|PC x x =−=,22||0|QC x x =−=,1122||||+PDx x k k =−=-),2222|||()QD x x k k=−=−.因为122122()()x x x x k k −−−+1212222()20x x x x k k k=−+=−⋅=,所以112222x x k x x k−+=−,= 即||||||||PC PD QC QD =, 所以||||||||PC QD PD QC ⋅=⋅成立.注 本题主要考查坐标法、直线与圆的位置关系、抛物线的标准方程、直线与抛物线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、化归与转化思想等.引例2 (2018年福建质检卷·文20)在平面直角坐标系xOy 中,点F 的坐标为1(0)2,,以MF 为直径的圆与x 轴相切.(I )求点M 的轨迹E 的方程;(II )设T 是E 上横坐标为2的点,OT 的平行线l 交E 于A B ,两点,交E 在T 处的切线于点N .求证:25||||||2NT NA NB =⋅. 解析 (I )点M 的轨迹E 的方程为22x y =.(略)(II )由(I )得(22)T ,,所以直线OT 得斜率为1.因为//l OT ,所以可设直线l 的方程为+(0)y x m m ≠, 由212y x =,得y x ′=, 则E 在T 处的切线斜率为2|2x y =′=,所以切线方程为22y x =−. 由22y x m y x =+=− ,,得222x m y m =+ =+,, 所以(222)N m m ++,, 由2y x m x y =+=,,消y 得2220x x m −−=,由480m ∆=+>,得12m >−. 设11()A x y ,,22()B x y ,, 则122x x +=,122x x m ⋅=−.又2222||[(2)2][(22)2]5NT m m m +−++−.图2法1 向量法 11((2)(22))NA x m y m =−+−+,, 22((2)(22))NB x m y m =++-,-,因为N A B ,,在直线l 上,11+y x m =,22+y x m =,所以||||||||cos 0NA NB NA NB NA NB ⋅=⋅⋅=⋅12[(2)][(2)]x m x m +⋅+-- 12[(22)][(22)]y m y m ++⋅+-- 12[(2)][(2)]x m x m +⋅+--12[()(22)][()(22)]x m m x m m +++⋅++--2121222(2)()2(2)x x m x x m =−++++ 2244(2)2(2)2m m m m =−−+++=.故25||||||2NT NA NB =⋅成立. 法2 利用直线上任意两点的距离公式 因为N A B ,,在直线l 上,所以1|||(2)|NA x m =−+,2|||(2)|NB x m =−+, 12||||2|[(2)][(2)]|NA NB x m x m ⋅=−+⋅−+22121222(2)()2(2)2x x m x x m m =−++++=,故25||||||2NT NA NB =⋅成立. 注 本题主要考查抛物线的定义及标准方程、直线与抛物线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想等.引例3 (2019年泉州质检卷·文22)在直角坐标系xOy 中,直线l 的参数方程为2x t y nt =−+=,(t 为参数),其中0n >,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为θ= π()2ρ∈R ,曲线2C 的极坐标方程为2cos 21ρθ=. (I )求12C C ,的直角坐标方程;(II )已知点(20)P −,,l 与1C 交于点Q ,与2C 交于A B ,两点,且2||||||PA PB PQ ⋅=,求l 的普通方程. 解析 (I )12C C ,的直角坐标方程的直角坐标方程分别为0x =,221x y −=.(略) (II )法1 利用参数t 的几何意义 把2x t =−+,y nt =代入221x y −=, 得22(1)430n t t −+−=. 因为21240n ∆=+>恒成立, 所以12241t t n +=−−,12231t t n =−−, 设A B ,对应的参数分别为12t t ,,则1|||PA t =,2|||PB t =所以12|||||||PA PB t t ⋅=221223(1)||(1)||1n t t n n =+=+−. 又直线2x t l y nt =−+=,:(t 为参数)交1:0C x =交于x点Q ,则点Q 对应的参数2Q t =,(02)Q n ,,所以2222||(1)||4(1)Q PQ n t n =+=+. 由2||||||PA PB PQ ⋅=,得2223(1)||4(1)1n n n +=+−,所以23|1|4n −=.因为0n >,所以12n =, 代入直线l 的普通方程(2)y n x =+,得到1+12y x =或y = 注 本题直线l 的参数方程是非标准型,则||PA1||t ,而不是1||||PA t =,因此学生很容易在这个地方犯错,得出12||||||PA PB t t ⋅=,导致计算出错.利用这个方法需要对参数的几何意义有深刻的理解,而不是简单地代入公式.法2 利用直线上两点间的距离公式 直线l 的普通方程为(2)y n x =+,由(2)0y n x x =+=,,得(02)Q n ,,联立22(2)1y n x x y =+−=,,得2222(1)4(41)0n x n x n −+++=, 因为21240n ∆=+>恒成立,设11()A x y ,,22()B x y ,,则212241n x x n +=−−,2122411n x x n +=−. 因为A B P Q ,,,都在直线l 上,所以1|||2|PA x +,2|||2|PB x +,|||02|PQ =+由2||||||PA PB PQ ⋅=,得2212(1)|(2)(2)|4(1)n x x n +++=+, 即2222418|4|411n n n n +−+=−−, 所以23|1|4n −=,因为0n >,所以12n =,故直线l 的方程为1+12y x =或y =注 法2避免了直线的参数方程的误区,利用两点的距离公式12||||AB x x =−简化计算,学生相对容易接受.注 本题主要考查极坐标系与参数方程等基础知识,考查运算求解能力等,考查数形结合思想等,导向对直观想象等核心素养的关注.结束语直线上两点间的距离公式在圆锥曲线中的应用广泛,可以将线段关系转化为坐标关系,极大地简化计算.但是这个方法比较适用于各点是共线的情况,这样计算可以不用考虑直线斜率的问题.当然,参数法和向量法在圆锥曲线中也是很好的方法.一道高考不等式试题探析陈景文 福建省泉州市第七中学(362000)近日,笔者对2019年全国I卷理第23题深入探究,从问题条件及目标结构特点出发,寻求多元化解题策略,供读者参考研究. 问题呈现 已知a b c ,,为正数,且满足1abc =.证明: (1)222111b ca c ab ≤++++; (2)333()()()24a b bc c a +++≥++.1 解法展示此题是高考卷最后一题,命题者预期此题难度较小.此题题目简洁,内涵丰富,解题方向较广.对条件的结构特征与解题目标不同分析,会产生一些对今后高考复习有启示的解法.1.1 第一问证明解题目标中含有111a b c++与222a b c ++结构,分别为分式与整式,又没有齐次化,因此,解题时还须对目标进行适当的转化.结合1abc =,注意到1a +。
圆锥曲线中弦长问题的解决策略
圆锥曲线中弦长问题的解决策略张秀梅张建强弦长问题在高考题及模拟题中经常岀现,从理论上讲,利用弦长公式| AB | .1 k2| x, x2| . 1 k2 . /a就能解决问题。
但实际中,除个别简单题(本文从略) 外,直接利用弦长公式会使问题变得非常繁琐。
本文试图对此进行系统的总结,给岀不同类型题目的解决策略。
一、两线段相等类型I有相同端点的不共线线段例1、( 2204,北京西城区二模)已知定点A( 2, 4),过点A做倾斜角为45的直线L,交抛物线寸 2px(p 0)于A、B两点,且| AB |、| BC |、| AC |成等比数列(1 )求抛物线方程;(2)问(1)中抛物线上是否存在 D,使得| DB | | DC |成立?若存在,求出 D的坐标。
策略分析:由于D、B、C三点不共线,要使得| DB | | DC |成立,只需取BC中点P,满足DP BC。
由于这种类型题目的常见性与基础性,我们再举一个例子作为练习:例2、( 2005,孝感二模)已知a (x,0),b (1, y),(a , 2b) (a ,2b)(1)求点P(x,y)的轨迹方程C;(2)若直线L: y kx b ( k 0)与曲线C交与AB两点,D(0, — 1),且有| AD | | BD |,试求b 的取值范围。
类型II 共线线段例3、直线L与x轴不垂直,与抛物线y2 x 2交于AB两点,与椭圆X? 2y2 2交于CD两点,与x轴交于点M(x°,0),且| AC | | BD |,求X0的取值范围。
策略分析:不妨设A(x1, y1)在B(x2, y2)下方,C(x3, y3)在D(x4, y4)下方,由于ABCD共线,要使| AC | | BD |,只需x3 x1x2 x4,即x-i x2 x3x4,结合韦达定理可得结果。
二、三线段相等类型I正三角形例4、(2003,北京春招)已知动圆过定点 P(1,0)且与定直线L: x=— 1相切,点C在L上(1)求动圆圆心的轨迹 M的方程;(2)设过点P且斜率为.3的直线与曲线M相交于AB两点①问三角形ABC能否为正三角形?若能,求点 C坐标;若不能,说明理由;②问三角形ABC能否为钝角三角形?若能,求点C纵坐标的取值范围;若不能,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中弦长问题的解决策略
张秀梅 张建强
弦长问题在高考题及模拟题中经常出现,从理论上讲,利用弦长公式
a k x x k AB /1||1||2212∆+=-+=就能解决问题。
但实际中,除个别简单题(本文从略)
外,直接利用弦长公式会使问题变得非常繁琐。
本文试图对此进行系统的总结,给出不同类型题目的解决策略。
一、两线段相等
类型I 有相同端点的不共线线段 例1、(2204,北京西城区二模)
已知定点)4,2(--A ,过点A 做倾斜角为︒
45的直线L ,交抛物线)0(22>=p px y 于A 、
B 两点,且||||||
AC BC AB 、、成等比数列
(1)求抛物线方程;
(2)问(1)中抛物线上是否存在D ,使得||||
DC DB =成立?若存在,求出D 的坐标。
策略分析:由于D 、B 、C 三点不共线,要使得||||
DC DB =成立,只需取BC 中点P ,满足BC DP ⊥。
由于这种类型题目的常见性与基础性,我们再举一个例子作为练习: 例2、(2005,孝感二模)
已知)2()2(),,1(),0,(b a b a y b x a
-⊥+==
(1)求点P(x,y)的轨迹方程C ; (2)若直线L :b kx y +=(0≠k )与曲线C 交与AB 两点,D(0,-1),且有||||BD AD =,试求b
的取值范围。
类型II 共线线段
例3、直线L 与x 轴不垂直,与抛物线22+=x y 交于AB 两点,与椭圆2222=+y x 交于CD 两点,
与x 轴交于点M )0,(0x ,且||||
BD AC =,求0x 的取值范围。
策略分析:不妨设A ),(11y x 在B ),(22y x 下方,C ),(33y x 在D ),(44y x 下方,由于ABCD 共线,要使
||||BD AC =,只需4213x x x x -=-,即4321x x x x ==+,结合韦达定理可得结果。
二、三线段相等 类型I 正三角形
例 4、(2003,北京春招)
已知动圆过定点P(1,0)且与定直线L :x=-1相切,点C 在L 上 (1)求动圆圆心的轨迹M 的方程;
(2)设过点P 且斜率为3-的直线与曲线M 相交于AB 两点
①问三角形ABC 能否为正三角形?若能,求点C 坐标;若不能,说明理由;
②问三角形ABC 能否为钝角三角形?若能,求点C 纵坐标的取值范围;若不能,说明理由。
策略分析:对于本题涉及的正三角形问题,其突出特点是,落在直线上的两个顶点实际是已知的。
所以,只需设C (-1,y ),根据||||
AB BC =和||||AB AC =分别列方程求y 值,判断两个y 值是否相等。
例5、(2005,学海大联考六)
如图,在直角坐标系中,点A(-1,0)、B(1,0)、P(x,y))0(≠y ,设,,,与x 轴正方向
的夹角分别为αβγ,且πγβα
=++
(1)求点P 的轨迹G 的方程;
(2)设过点C )1,0(-的直线L 与轨迹G 交于 不同的两点MN ,问在x 轴上是否存在一点 E )0,(0x 使MNE ∆为正三角形?
策略分析:设直线L :y=kx-1,由韦达定理求出MN 中点F 的坐标,再根据1-=∙MN EF
k k ,求出
)0,34(
2
k k E --;利用弦长公式求出|MN |,再根据||||2
3
EF MN =解得3±=k 。
注意代入∆验证。
类型II 共线线段 例6、(2004,广东高考卷)
设直线λ与椭圆
116
252
2=+y x 相交于AB 两点,λ又与双曲线122=-y x 相交于CD 两点,CD 三等分线段AB ,求λ的方程。
策略分析:实质是||||||
DB CD AC ==。
当λ与x 轴垂直时,λ方程为241
25±
=x ;当λ与x 轴
不垂直时,先由||||DB AC =,利用例3的方法,求得0=k 或0=b ,然后分类讨论求出ABCD 的横
坐标,利用
3=,得出1316±
=b 和25
16±=k 。
三、线段成比例
类型I 两个已知点一个未知点 例7、(2005,黄冈调研)
已知椭圆C 的方程为)0(12222>>=+b a b x a x ,双曲线122
22=-b
x a x 的两条渐近线为21,L L ,过
椭圆的右焦点F 做直线L ,使1L L
⊥,又L 与2L 交于点P 。
设L 与椭圆的两个交点由上到下依次为AB ,
(1)当21L L 与夹角为︒
60,双曲线的焦距为4时,求椭圆C 的方程; (2)当λ=时,求λ的最大值。
策略分析:F 点和P 点的坐标皆可求,根据定比分点公式,求出A 点坐标,代入椭圆方程即可。
类型II 一个已知点两个未知点 例8、(2004,全国卷)
设双曲线C :12
22=-y a
x (a>0)与直线L :1=+y x 相交于两个不同的点AB
(1)求双曲线的离心率e 的取值范围; (2)设直线L 与y 轴的交点为P ,且PB PA 12
5
=
,求a 值。
策略分析:设A ),(11y x 、B ),(22y x 、)1,0(P ,由12
5
=知21
12
5
x x =
,于是,2211217x x x =
+,2
22112
5x x x =,前式平方除以后式消掉2x ,结合韦达定理即可求出a 。
注:更一般的,若某直线与圆锥曲线交点AB ,且
PB PA λ=,其中,),(00y x P ,则
)()(0201x x x x -=-λ,可以算出)()(0201x x x x -+-和))((0201x x x x --,利用例
8思想
求
解
;
或
者
,
使
用
以
下
技
巧
2
210212
2102122101020201)()(22)(1
x x x x x x x x x x x x x x x x x x x x x x ++-++--+=--+--=+λλ,结合韦达定理。