大学物理 第六章(中国农业出版社 张社奇主编)答案
大学物理第06章习题分析与解答.doc
6-1某一热力学系统经历一个过程后,吸收了400J的热量,并对环境做功300J,则系统的内能()o(A)减少了100J (B)增加了100J (C)减少了700J (D)增加了700J解:由热力学第一定律2 = AE + W可得AE = 2 - VV = 400 - 300=100J 故选B6-2对于理想气体系统来说,在下列过程中,哪个过程中系统所吸收的热量、内能的增量和对外做功三者均为负值( )?(A) 等容降压过程(B)等温膨胀过程(C)绝热膨胀过程(D)等压压缩过程解:等容过程不做功,故A不正确;等温过程内能不变,故B不正确;绝热过程与外界不交换热量,故C不正确;对于等压压缩过程:体积减小,系统对外界做负功,表现为外界对系统做功;易知压缩过程温度降低,则内能减少;等压过程e p = vC^T ,温度降低,则必放热。
故选D6-3系统分别经过等压过程和等体过程,如果两过程中的温度增加值相等,那么()o(A)等压过程吸收的热量小于等体过程吸收的热量(B)等压过程吸收的热量等于等体过程吸收的热量(C)等压过程吸收的热量大于等体过程吸收的热量(D)无法确定解:等压过程吸收的热量Q p = vC^T ;等容过程吸收的热量e v=^c v Ar,由于C p > C v ,故选 C6-4 一台工作于温度分别为327°C和27°C的高温热源与低温热源之间的卡诺热机,每经历一次循环吸热2000J ,则对外界做功( )o(A) 2000J ( B ) 1000J ( C ) 4000J ( D ) 500J解:卡诺热机循环效率?/= —=1-^=1- —则W = 1000J,故选BQ吸心600 26・5系统从外界获得的能量,一部分用来_______ ,另一部分用来对外界做功。
解:详见热力学第一定律6-6空气压缩机在一次压缩过程中,活塞对气缸内的气体做功为2xlO4J,同时气体的内能增加了1.5X104J O试问:此压缩过程中,气体_______________ (填“吸收”或“放出”)的热量等于 ___________ J。
教师用习题解答第6章,大学物理答案
思 考 题6.1 0q F E=与r r qE ˆ420πε= 两公式有何区别和联系?公式中的q 0有何要求? 答:前式为电场(静电场、运动电荷的电场)电场强度的定义式,后一式仅是静止点电荷产生的电场分布。
静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此点产生的场强之和。
公式中的q 0必须足够小,以保证q 0放入电场中后在实验精度内对原电场的电荷分布不产生可觉察的影响;它的几何线度必须足够小,以保证它在空间电场中的位置有确切的意义。
6.2 电力线、电通量和电场强度的关系如何?电通量的正负表示什么意义? 答:电力线为描述电场中场强分布的有向曲线。
电力线上各点的切线方向与该点的场强方向相同,曲线的疏密代表该点场强的大小,也就是说电场中某点场强的大小等于穿过该点附近垂直于电场方向单位面积所通过的电力线条数。
如果电场空间有一面元S d,通过此面元的电力线条数就是通过这面元的电通量,它和电场强度的关系为S d E Φd e⋅=,所以穿过电场中任意面积S 上的电通量为⎰⋅=ΦSeS d E 。
对于非闭合曲面,电通量的正负仅代表曲面各处法线的方向与该处场强方向的夹角为锐角还是钝角;对闭合曲面,规定自内向外的方向为各处面元的法向的正方向,所以电通量为正表示电力线从内部穿出的条数多于从外部穿入的条数,为负则反之。
6.3 如果通过闭合面S 的电通量Φe 为零,能否肯定面S 上每一点的场强都等于零? 答:不能。
通过闭合面S 的电通量Φe 为零,0=⋅⎰S S d E,只是说明穿入、穿出闭合面S 的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。
只要有穿入、穿出,面上该处的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。
6.4 四个相等的点电荷放在正方形的四个顶点上,问是否可以以四边形中心为球心作一个球面,利用高斯定理求出它们所产生的场强?对此球面高斯定理是否成立?答 :由于此四个点电荷产生的电场不具有球对称性,在以四边形中心为球心作的高斯球面上,各点的场强无论其大小还是与球面面元的夹角都不是常数,因此不能对上述球面利用高斯定理求出它们所产生的场强。
大学物理(普通物理)考试试题及答案张社奇版
⼤学物理(普通物理)考试试题及答案张社奇版《普通物理》考试题开卷()闭卷(∨)适⽤专业年级姓名: ________ 学号: ______ ;考试座号 _______ 年级: __________ 本试题⼀共3道⼤题,共7页,满分100分。
考试时间120分钟。
注:1、答题前,请准确、清楚地填各项,涂改及模糊不清者,试卷作废2、试卷若有雷同以零分记。
3、常数⽤相应的符号表⽰,不⽤带⼊具体数字运算。
4、把题答在答题卡上。
⼀、选择(共15⼩题,每⼩题2分,共30分)41、⼀质点在某瞬时位于位⽮r(x,y)的端点处,对其速度的⼤⼩有四种意见,即dr dr (1) (2)dt dtds(3)—dt(4)[ 阳⼼)F列判断正确的是( D )A.只有(1)(2)正确;B.只有(2)正确;C.只有(2)(3)正确;D.只有(3)(4)正确。
2、下列关于经典⼒学基本观念描述正确的是(B )A、⽜顿运动定律在⾮惯性系中也成⽴,B、⽜顿运动定律适合于宏观低速情况,C、时间是相对的, D 、空间是相对的。
3、关于势能的描述不正确的是(D )A势能是状态的函数B、势能具有相对性C势能属于系统的D、保守⼒做功等于势能的增量4、⼀个质点在做圆周运动时,则有:(B)任课教师:系(室)负责⼈:A 切向加速度⼀定改变,法向加速度也改变。
B 切向加速度可能不变,法向加速度⼀定改变。
A. ⾓动量守恒,动能守恒; B ?⾓动量守恒,机械能守恒。
C.⾓动量守恒,动量守恒; D ⾓动量不守恒,动量也不守恒。
6、⼀圆盘绕通过盘⼼且垂直于盘⾯的⽔平轴转动,轴间摩擦不计,两个质量相同、速度⼤⼩相同、⽅向相反并在⼀条直线上(不通过盘⼼)的⼦弹,它们同时射⼊圆盘并且留在盘内,在⼦弹射⼊后的瞬间,对于圆盘和⼦弹系统的⾓动量 L 和圆盘的⾓速度?.则有(C ) A. L 不变,?.增⼤;mmB.两者均不变f /C.L 不变,⼆减⼩D. 两者均不确⽦ I7、均匀细棒OA 可绕通过其⼀端 0⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰,今使棒从⽔平位置由静⽌开始⾃由下落,在棒摆到竖直位置的过程中,下列说法正确的是( C )A. ⾓速度从⼩到⼤,⾓加速度不变;B. ⾓速度从⼩到⼤,⾓加速度从⼩到⼤;C. ⾓速度从⼩到⼤,⾓加速度从⼤到⼩;D. ⾓速度不变,⾓加速度为 08、在过程中如果 ____ C _______ ,则刚体对定轴的⾓动量保持不变。
物理学教程上册课后答案第六章
第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。
大学物理电场部分答案
第六章电荷得电现象与磁现象序号学号姓名专业、班级一选择题[ C ]1 、一带电体可作为点电荷处理得条件就是(A)电荷必须呈球形分布。
(B)带电体得线度很小。
(C)带电体得线度与其它有关长度相比可忽略不计。
(D)电量很小。
[ D ]2.真空中一“无限大”均匀带负电荷得平面如图所示,其电场得场强分布图线应就是(设场强方向向右为正、向左为负)(A)ﻩﻩ(B)ﻩ(C) ﻩﻩ(D)二填空题1.在点电荷系得电场中,任一点得电场强度等于________________________________略________________________________________________,这称为场强叠加原理。
2.静电场中某点得电场强度,其数值与方向等于_________略_______________________________________________________________________________________________________。
3.两块“无限大”得带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示,试写出各区域得电场强度。
Ⅰ区得大小 , 方向向右。
Ⅱ区得大小,方向向右。
Ⅲ区得大小 , 方向向左。
4.A、B为真空中两个平行得“无限大”均匀带电平面,已知两平面间得电场强度大小都为E0 , 两平面外侧电场强度大小都为E0/ 3,图。
则A、B两平面上得电荷面密度分别为=,= 。
三计算题1.一段半径为a得细圆弧,对圆心得张角为θ0,其上均匀分布有正电荷q,如图所示,试以a,q,θ0表示出圆心O处得电场强度。
解:建立如图坐标系,在细圆弧上取电荷元,电荷元视为点电荷,它在圆心处产生得场强大小为:方向如图所示。
将分解,由对称性分析可知,圆心O处得电场强度2、有一无限长均匀带正电得细棒L,电荷线密度为λ,在它旁边放一均匀带电得细棒AB,长为l,电荷线密度也为λ,且AB与L垂直共面,A端距L为a,如图所示。
大学物理第6章习题参考答案
第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
大学物理第六章课后习题答案
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理答案6.第六章
大学物理答案6.第六章第六章机械运动和机械波思考题6-35简谐振动中相位为φ、π+φ、2π+φ、3π+φ、….时描述的是同一运动状态吗?为什么?6-36 对一简谐振动系统,画出其动能和势能关于时间变量的曲线,并分析两者反相的物理意义。
6-37 将单摆摆线从铅直方向拉到φ角的位置撒手任其摆动。
这里φ角是初相位吗?若不是,它将对应什么物理量?6-38 若以一装满水的空心球作为单摆的摆钟,并让水从球体缓慢流出,试描述其摆动周期的变化情况。
6-39 利用受迫振动的稳定解(6.19)式说明为什么恒力不能导致受迫振动。
(提示:恒力的频率ω可视为零)6-40 在太空中能听到声音吗?为什么?6-41 在较长时间间隔(Δt>>T)内,任意以t为变量的正弦(或余弦)型函数的平均值均为零,例如:==0,其中α是任意常数。
试据此推导(6.11)、(6.12)及(6.40)式。
6-42 海啸是一种波长约为几十至几百千米、在海水中传播的波动现象。
它在深海区域并不易被察觉,但一旦海啸接近岸边往往会造成巨大的灾害。
试从能量角度分析其中的原因。
6-43 描述机械波时间周期性的物理量由周期T、频率v和圆频率ω给出。
类似地,我们可以用λ、1λ、2πλ描述波的空间周期性,试说明这三个量对应的物理意义。
6-44 试解释弦乐器的以下现象:(1)较松的弦发生的音调较低,而较紧的弦则音调较高;(2)较细的弦发生的音调较高,而较粗的弦则音调较低(古人称之为“小弦大声,大弦小声”);(3)正在振动的两端固定的弦,若用手指轻按弦的中点时,音调变高到两倍,若改按弦的三分之一处时,音调增至三倍;(4)用力弹拨琴弦(而非用手指按弦)时,能同时听到若干音调各异的声音。
(提示:音调高低与弦振动的频率成正比。
此外,在(4)情形中弦以基频振动的同时还以若干泛频振动。
)习题6-1 如题6-1图所示,用一根金属丝把一均匀圆盘悬挂起来,悬线oc 通过圆盘质心,圆盘呈水平状态,这个装置称为扭摆,当使圆盘转过一个角度时,金属丝受到扭转,从而产生一个扭转的恢复力矩。
大学物理第六章静电场习题答案
大学物理第六章静电场习题答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第六章静电场习题6-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F=++=合y轴方向有()()21322232cos242433304q qQF F Fa aqq Qaθπεπεπε=+=+=+=合得33Q q=-(2)这种平衡与三角形的边长无关。
6-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。
设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。
解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===22)sin2(π41sincosθεθθlqFTmgTe解得θπεθtan4sin2mglq=6-3 在氯化铯晶体中,一价氯离子Cl-与其最邻近的八个一价铯离子Cs+构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。
(1)由对称性可知F1= 0(2)2912222001.9210N43q q eFr aπεπε-===⨯方向如图所示6-4 长l= cm的直导线AB上均匀地分布着线密度95.010C mλ-=⨯的正电荷。
试求:(1)在导线的延长线上与导线B端相距15.0cma=处P点的场强;(2)在导线的垂直平分线上与导线中点相距25.0d cm=处Q点的场强。
解:(1)如图所示,在带电直线上取线元x d,其上电量q d在P点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l Qx E 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。
《大学物理》 第二版 课后习题答案 第六章
习题解析6-1在坐标原点及0)点分别放置电量61 2.010Q C -=-⨯及62 1.010Q C -=⨯的点电荷,求1)P -点处的场强。
解 如图6.4所示,点电荷1Q 和2Q 在P 产生的场强分别为 1122122201102211,44Q r Q r E E r r r r πεπε== 而12123,,2,1r i j r j r r =-=-==,所以()()11111222011011662203111441 2.010 1.010422113.9 6.810Q r Q r E E E r r r r j j i j N C πεπεπε--=+=+⎛⎫-⨯-⨯-=+ ⎪ ⎪⎝⎭≈-+⨯∙总 6-2 长为15l cm =的直导线AB 上,设想均匀地分布着线密度为915.0010C m λ--=⨯⋅,的正电荷,如图6.5所示,求:(1)在导线的延长线上与B 端相距1 5.0d cm =处的P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处的Q 点的场强。
解 (1)如图6.5(a )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴的正方向。
在导线AB 上坐标为x处,取一线元dx ,其上电荷为 dq dx λ= 它在P 点产生的场强大小为 2200111442dq dxdE r l d x λπεπε==⎛⎫+- ⎪⎝⎭方向沿x 轴正方向。
导线AB 上所有线元在P 点产生的电场的方向相同,因此P 点的场强大小为()1212122000112112992122111114442115.0010910 6.75105102010dq dx E r d l d l d x V m λπεπεπε------⎛⎫===- ⎪-⎛⎫⎝⎭+- ⎪⎝⎭⎛⎫=⨯⨯⨯⨯-=⨯∙ ⎪⨯⨯⎝⎭⎰方向沿x 轴正方向。
(2)如图6.5(b )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴正方向,垂直于AB 的轴为y 轴,在导线AB 上坐标为x 处,取一线元dx ,其上的电荷为 dq dx λ= 它在Q 点产生的电场的场强大小为 22220021144dq dx dE r d x λπεπε==+ 方向如图6.5(b )所示。
大学物理第六章习题解答和分析
6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长.分析 纵波在固体中传播,波速由弹性模量与密度决定。
解:波速ρ/E u =,波长νλ/u =0.4m λ==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-= (1)求波的振幅、波速、频率及波长; (2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.分析 与标准方程比较即可确定其特征参量。
解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = /2 2.5/2 1.25Hz νωπππ=== 2, 2.0m ππλλ== 2.5/u m s λν== (2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-= x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.题图6-2分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。
依旋转矢量法可求t=0时的各点的相位。
解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出 t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样?分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。
大学物理答案第6章备课讲稿
2
2
N 1 mv2
3 RTNm
N Am
3 =M
3 M mol RT=
RT M mol ρV= 7.31×106 J.
2
2
2
2
△ E= M M mol
1
iR △ R△ T =
2
ρV
M
mol
1 iR △ R△ T = 4 .16 ×10 4 J
2
12
v2
12
v22
12
v12
= 3R M mol 1 2 T2
数与 T 成反比。
解 :由 v
8RT 则速率分布函数可化为 m
f (v) 4
3
mv 2
m
2
e 2RT
v2
2 RT
2
4v
32 2v
3e
v
v2
速率在 v v △v 区间内分子数 N 为
4
N
Nf (v ) v
32N
2
v
1
e
v
可见:
N v 1 ( T) 1
6- 8 一密封房间的体积为 5× 3× 3m3,室温为 20℃,室内空气分子热运动的平均平动
π 2182
10 2182
速度在 vp ~ vp10 米 /秒间的分子数
2
2182 2
N 2 N 4 2182 e 2182 π 2182
10 2182
2
故
N 1 3000 N 2 2182
e
3000 2
0.78
e 2182
6- 6 有 N个粒子,其速率分布函数为
f (v) dN C Ndv
( v0> v>0)
第6章大学物理(I-1)教材课后习题答案
当 t
2
时, I i
100 0.5 0.12 20 0.987 A 100
B N 0 I , 2a
51
(2)因为圆电流在圆心处的磁场强度为
所以该感应电流在圆心 O 处的磁感应强度为
B
6.3
N 0 I 100 4 0.987 6.2 103 T 2a 2 0.1
向沿 badcb)
i
L Fm mg θ
安培力: Fm BlI i , 水平向右。安培力在斜面上 投影为
6.10 解图
BlI icos Fm
重力在斜面上投影为
B 2l 2 cos2 v R
f 下 mg sin
m dv ( Bl sin ) 2 mg sin v dt R
i
d m lI cos(t ) b 0 0 ln dt 2 a
题 6.3 解图
6.4 如题 6.4 图所示,导体棒 ab 与金属轨道 ca 和 db 接触, 整个线框放在 B 0.50 T 的均匀磁场中,磁场方向与图面垂直。 (1)若导体棒以 4.0 m s-1 的速度向右运动,求棒内感应电动 势的大小和方向; (2)若导体棒运动到某一位 置时,电路的电阻为 0.20 ,求此时棒所受 的力。摩擦力可不计。 (3)比较外力做功的功 率和电路中所消耗的热功率。 解 (1)因为回路中的磁通量为由牛顿第源自定律可得运动方程为由此可得
dv ( Bl sin ) 2 ( Bl sin ) 2 gmR sin g sin v (v ) dt mR mR ( Bl cos ) 2
dv ( Bl cos ) 2 dt gmR sin mR v ( Bl cos ) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)
0.03
cos[4
(t
9 20
)
]
0.03
cos[4
t
14
5
]m
(2) uT u 2 20 2 10m
4
O点振动比A点振动在相位上提前
2 x 2 5
10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75
0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0
波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75
该点的初相位
2
t
2
3
2
0.3cos 2 t m
波向x轴正方向传播时的波动方程:
y(
x,
t
)
0.3
cos
2
t
x 100
m
(2)若波沿x轴负方向传播时,则点O振动落后于点p 3 2 原点O振动方程:
yo
0.3 cos
2
t
2
3
2
x 1m处的初相位
u
12
6
3
1m/s
2
3
56
T 2 2
O•
x
t 0
原点的振动相位比x=1.0m处落后
2
x
2
12
1
6
则 O 0
y(x,t) 0.4cos[ (t x)]m
6
6.6 图示为平面简谐波在t=0 时的波形图,设此简谐 波的频率为250Hz ,且此时图中点P的运动方向向 上. 求(1)该波的波动方程;(2)在距原点为7.5m处质 点的运动方程与t=0该点的振动速度.
0.3cos 2 t
m
波向x轴负方向传播3cos
2
t
x 100
m
6.4 (1)若取 x 轴方向向左,则此时波向 x 轴负向传播,
则波动方程为
y(x,t) 0.03cos[4 (t x ) ]m
20
D点振动方程为
y/m 0.10 0.05
O
-0.10
P
u
10.0m
x/m
解:(1) 由图知,A 0.1m,=20m
u 5000m/s,=2 500
t=0 时点p向上运动,故波沿Ox 轴负向传播,则
y(0, 0) 0.05m v(0,0)<0
原点初相位
0
3
故波动方程为:
t=0
Δt
Δx u
0.13 1.56 103
8.33105 s
A点与B点的相位差为
Δx
(2) Δφ φB φA 2π λ
u 1.56 103
λ
0.52m
ν 3000
波长 Δφ 2π Δx 2π 13 π
λ
52 2
(3) vm Aω 0.001 2π 3000 18.8m/ s
解:已知
u 100m/s, xp 75.0m,
yp
0.3 cos
2
t
2
m,
2 , 1s, u 100m
(1)若波沿x轴正方向传播时,
O点振动在相位上超前p 点
2 x 2 75 3
100
2
原点O振动方程:
yO
0.3 cos
5
u 2.5m/s,=10 ,=uT u 2 0.5m, = 5Hz
2
(2) vmax A, amax A 2
(3) x0.2 t 1
10 (t
2 5
x)
46
x 0.2
5
t 1
6.8
2
1
2
(r2
r1 )
6.1 频率为3000Hz的声波,以1560m/s的传播速度沿 一波线传播,经过波线上的A点后,再经0.13m而传 至B点。求:(1) B点的振动比A点落后的时间。(2) 波 在A、B两点振动时的相位差是多少?(3) 设波源作简 谐振动,振幅为1mm,求振动速度的最大值,是否 与波的传播速度相等?
解: (1) B点比A点落后的时间为
6.10
2
H2
d 2
2
d
k
2
H
h2
d 2
2
d
k
1 2
y(x,t) 0.03cos[4 (t x )]m
20
D点振动方程为
yD
(t
)
0.03
cos[4
(t
14 20
)]
0.03
cos[4
t
14
5
]m
6.5 由图知,A 0.4m
t 5
x 1.0m处 t 0, y 0.2, v 0 t 5.y 0, v 0