2020-2021郑州市第七中学七年级数学上期末一模试卷带答案
2020-2021七年级数学上期末一模试卷带答案
2020-2021七年级数学上期末一模试卷带答案一、选择题1.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15 D .0.8×40%x ﹣x =15 2.若x =5是方程ax ﹣8=12的解,则a 的值为( ) A .3B .4C .5D .63.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是04.下列方程变形中,正确的是( ) A .由3x =﹣4,系数化为1得x =34- B .由5=2﹣x ,移项得x =5﹣2C .由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=1 D .由 3x ﹣(2﹣4x )=5,去括号得3x+4x ﹣2=55.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( ) A .350元 B .400元 C .450元 D .500元 6.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-47.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中: ①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( ) A .1个 B .2个 C .3个 D .4个 8.钟表在8:30时,时针与分针的夹角是( )度.A .85B .80C .75D .709.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =-B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 10.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( ) A .2.897×106B .28.94×105C .2.897×108D .0.2897×10711.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③12.已知x =y ,则下面变形错误的是( ) A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 二、填空题13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.14.已知﹣5a 2m b 和3a 4b 3﹣n 是同类项,则12m ﹣n 的值是_____. 15.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元. 16.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.17.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x -,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.18.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.若()2320m n -++=,则m+2n 的值是______。
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 5.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-26.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab += 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣3 8.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°9.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 12.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,213.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯14.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .150二、填空题16.已知单项式245225n m xy x y ++与是同类项,则m n =______.17.|-3|=_________;18.9的算术平方根是________19.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-20.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___21.若方程11222m x x --=++有增根,则m 的值为____. 22.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.23.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.24.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.25.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)26.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).27.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.28.已知代数式235x -与233x -互为相反数,则x 的值是_______. 29.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.30.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.34.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 35.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.36.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 2.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°3.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .64.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3 B .-3C .±3D .+65.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm6.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm7.方程3x +2=8的解是( ) A .3B .103C .2D .128.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A.45人B.120人C.135人D.165人二、填空题13.﹣30×(1223-+45)=_____.14.若a a-=,则a应满足的条件为______.15.如图,在数轴上点A,B表示的数分别是1,–2,若点B,C到点A的距离相等,则点C所表示的数是___.16.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC=,若OC6=,则线段AB的长为______.17.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 21.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.22.数字9 600 000用科学记数法表示为 .23.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题25.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.26.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.27.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.28.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?29.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)30.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.31.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.32.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.B解析:B 【解析】 【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案. 【详解】解:∵一个角的补角是130︒, ∴这个角为:50︒,∴这个角的余角的度数是:40︒. 故选:B . 【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.4.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.5.C解析:C 【解析】 【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.7.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】解:移项、合并得,36x=,化系数为1得:2x=,故选:C.【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)× =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 14.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.16.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 17.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.18.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.19.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.20.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.21.【解析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 22.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.23.5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+BC=8+3=11cm ;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x -【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、压轴题25.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.26.(1)13-;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C表示的数为a,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-3+2t=1-t,解得:t=43,∴41 3233 -+⨯=-,∴点P和点Q相遇时的位置所对应的数为13 -;(2)∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,若点P和点Q在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.27.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC 第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC =∠AOC -∠AON =90°-∠MOC 即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON 列方程求解即可.【详解】(1)①∵∠AOC =30°,OM 平分∠BOC ,∴∠BOC =2∠COM =2∠BOM =150°,∴∠COM =∠BOM =75°.∵∠MON =90°,∴∠CON =15°,∠AON +∠BOM =90°,∴∠AON =∠AOC ﹣∠CON =30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.28.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.本题考查了一元一次方程的应用.解题的关键是分类讨论.29.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.30.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314.【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =,∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.31.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,。
2020-2021郑州市七年级数学上期末试卷及答案
2020-2021郑州市七年级数学上期末试卷及答案一、选择题1.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个 B .2个C .3个D .4个2.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a3.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个.A .2B .3C .4D .54.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1D .(-1)n x 2n +15.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中:①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( ) A .1个B .2个C .3个D .4个6.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C7.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 8.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是( )A.63B.70C.96D.1059.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()A.4cm B.5cm C.6cm D.7cm10.关于的方程的解为正整数,则整数的值为()A.2B.3C.1或2D.2或311.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+612.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=12AB C.AE=34AB D.AD=12CB二、填空题13.如果方程2x+a=x﹣1的解是﹣4,那么a的值为_____.14.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块;(2)第n个图案有白色地面砖______块.15.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2020的值为___.16.已知多项式kx2+4x﹣x2﹣5是关于x的一次多项式,则k=_____.17.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____18.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度. 19.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.三、解答题21.一个角的补角比它的余角的2倍大20゜,求这个角的度数.22.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值 (单位:千克) -1 -0.5 0 0.5 1 1.5 箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克? (2)若苹果每千克售价4元,则这15箱苹果可卖多少元? 23.解方程(1)2(4)3(1)x x x --=- (2)1-314x -=32x+ 24.解方程:(1)()43203x x --= (2)23211510x x -+-= 25.已知点O 为直线AB 上的一点,∠BOC =∠DOE =90°(1)如图1,当射线OC 、射线OD 在直线AB 的两侧时,请回答结论并说明理由; ①∠COD 和∠BOE 相等吗? ②∠BOD 和∠COE 有什么关系?(2)如图2,当射线OC 、射线OD 在直线AB 的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:①3a+2b无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a−33a=23a,∴原式计算错误,故此选项符合题意;⑤∵a⩽0,−|a|=a,∴原式计算错误,故此选项符合题意;故选D2.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.B解析:B 【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B .4.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负, ∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.5.B解析:B 【解析】 【分析】根据图示,可得c <a <0,b >0,|a |+|b |=|c |,据此逐项判定即可. 【详解】 ∵c <a <0,b >0, ∴abc >0,∴选项①不符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴b +c <0, ∴a (b +c )>0, ∴选项②符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴-a +b =-c , ∴a -c =b ,∴选项③符合题意.∵a cb ab c++=-1+1-1=-1, ∴选项④不符合题意, ∴正确的个数有2个:②、③. 故选B . 【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.6.C解析:C 【解析】 【分析】根据相反数的定义进行解答即可. 【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C. 【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.7.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.8.C解析:C 【解析】 【分析】设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=967,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.9.A解析:A【解析】【分析】从AD的中点C入手,得到CD的长度,再由AB的长度算出DB的长度.【详解】解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10-3-3=4cm.故答案选:A.【点睛】本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.10.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.11.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.D解析:D【解析】【分析】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14AB,即可知A、B、C均正确,则可求解【详解】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14 AB,选项A,AC=14AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=12AB,选项正确选项C,AE=3AC⇒AE=34AB,选项正确选项D,因为AD=2AC,CB=3AC,所以2AD CB3,选项错误故选D.【点睛】此题考查的是线段的等分,能理解题中:C,D,E是线段AB的四等分点即为AC=CD=DE=EB=14AB,是解此题的关键二、填空题13.【解析】【分析】把x=﹣4代入方程得到一个关于a的一次方程即可求解【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1解得:a=3故答案是:3【点睛】本题考查了一元一次方程方程的求解掌握一元一次方程的解解析:【解析】【分析】把x=﹣4,代入方程得到一个关于a的一次方程,即可求解.【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1,解得:a=3.故答案是:3.【点睛】本题考查了一元一次方程方程的求解,掌握一元一次方程的解法是解题的关键.14.18块(4n+2)块【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:61014所以可以发现每一个图形都比它前一个图形多4个白色地砖所以可以得到第n个图案有白色地面砖(4n+2)解析:18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块, 第n 个图应该有(4n+2)块. 【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.15.﹣1010【解析】【分析】先求出前6个值从而得出据此可得答案【详解】当a1=0时a2=﹣|a1+1|=﹣1a3=﹣|a2+2|=﹣1a4=﹣|a3+3|=﹣2a5=﹣|a4+4|=﹣2a6=﹣|a5解析:﹣1010. 【解析】 【分析】先求出前6个值,从而得出221||2n n a a n n -=-+=-,据此可得答案. 【详解】 当a 1=0时, a 2=﹣|a 1+1|=﹣1, a 3=﹣|a 2+2|=﹣1, a 4=﹣|a 3+3|=﹣2, a 5=﹣|a 4+4|=﹣2, a 6=﹣|a 5+5|=﹣3, …∴a 2n =﹣|a 2n ﹣1+2n |=﹣n , 则a 2020的值为﹣1010, 故答案为:﹣1010. 【点睛】本题主要考查数字的变化规律,解题的关键是计算出前几个数值,从而得出221||2n n a a n n -=-+=-的规律.16.【解析】【分析】根据多项式的次数的定义来解题要先找到题中的等量关系然后列出方程求解【详解】多项式kx2+4x ﹣x2﹣5是关于的一次多项式多项式不含x2项即k -1=0k =1故k 的值是1【点睛】本题考査解析:【解析】 【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解. 【详解】多项式kx 2+4x ﹣x 2﹣5是关于的一次多项式,∴多项式不含x 2项,即k -1=0,k =1. 故k 的值是1. 【点睛】本题考査了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.17.80【解析】【分析】根据标价×=售价求解即可【详解】解:设该商品的标价为x 元由题意08x =64解得x =80(元)故答案为:80元【点睛】考查了销售问题解题关键是掌握折扣售价标价之间的关系解析:80【解析】【分析】根据标价×10折扣=售价,求解即可. 【详解】解:设该商品的标价为x 元由题意0.8x =64解得x =80(元)故答案为:80元.【点睛】考查了销售问题,解题关键是掌握折扣、售价、标价之间的关系. 18.160【解析】∵4至9的夹角为30°×5=150°时针偏离9的度数为30°×=10°∴时针与分针的夹角应为150°+10°=160°故答案为160° 解析:160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°,∴时针与分针的夹角应为150°+ 10°=160°.故答案为160°. 19.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM 为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN 为∠DBE 的平分线∴∠EBN=∠EBD=×6解析:5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM 为∠CBE 的平分线,∴∠EBM=12∠CBE =12×75°=37.5°, ∵BN 为∠DBE 的平分线,∴∠EBN=12∠EBD=12×60°=30°, ∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°. 20.42或11【解析】【分析】由程序图可知输出结果和x 的关系:输出结果=4x-2当输出结果是166时可以求出x 的值若计算结果小于等于149则将结果4x-2输入重新计算结果为166由此求出x 的之即可【详解解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.三、解答题21.这个角的度数是20°.【解析】试题分析:设这个角的度数是x ,则它的补角为:180,x -余角为90x -;根据题意列出方程,再解方程即可,试题解析:设这个角的度数是x ,则它的补角为:180,x -余角为90x -;由题意,得:(180)2(90)20.x x ---=解得:20.x =答:这个角的度数是20.22.(1)2.5;(2)1216【解析】【分析】(1)最重的一箱苹果比标准质量重1.5千克,最轻的一箱苹果比标准质量轻1千克,则两箱相差2.5千克;(2)先求得15箱苹果的总质量,再乘以4元即可.【详解】解:(1)1.5﹣(﹣1)=2.5(千克).答:最重的一箱比最轻的一箱多重2.5千克;(2)(﹣1×1)+(﹣0.5×3)+0×4+0.5×3+1×2+1.5×2=﹣1﹣1.5+0+1.5+2+3=4(千克).20×15+4=304(千克)304×4=1216(元).答:这15箱苹果可卖1216元.【点睛】本题考查了正负数和有理数的加减混合运算,理解正负数的意义是解答此题的关键.23.(1)52x =-;(2)15x =- 【解析】【分析】(1)先去括号,再移项、合并同类项,系数化为1即可得答案;(2)先去分母,再去括号、移项、合并同类项,系数化为1即可得答案;【详解】(1)2(4)3(1)x x x --=-去括号得:2833x x x -+=-移项合并得:25x =-系数化为1得:52x =-. (2)1-314x -=32x + 去分母得:()43123x x --=+(), 去括号得:43126x x -+=+,移项、合并同类项得:51x =-,系数化为1得:15x =-. 【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤为:去分母、去括号、移项、合并同类项、系数化为1;熟练掌握解一元一次方程的解法及步骤是解题关键.24.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110---=,x xx=,2178.5x=.25.(1)①∠COD=∠BOE,理由见解析;②∠BOD+∠COE=180°,理由见解析;(2)①∠COD=∠BOE,②成立【解析】【分析】(1)①根据等式的性质,在直角的基础上都加∠BOD,因此相等,②将∠BOD+∠COE转化为两个直角的和,进而得出结论;(2)①根据同角的余角相等,可得结论,②仍然可以将∠BOD+∠COE转化为两个直角的和,得出结论.【详解】解:(1)①∠COD=∠BOE,理由如下:∵∠BOC=∠DOE=90°,∴∠BOC+∠BOD=∠DOE+∠BOD,即∠COD=∠BOE,②∠BOD+∠COE=180°,理由如下:∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,∴∠BOD+∠AOE=180°﹣90°=90°,∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,(2)①∠COD=∠BOE,∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,∴∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.【点睛】本题考查角度的和差计算,找出图中角度之间的关系,熟练掌握同角的余角相等是解题的关键.。
2020-2021七年级数学上期末一模试卷及答案
2020-2021七年级数学上期末一模试卷及答案一、选择题1.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个 B .2个 C .3个 D .4个2.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 3.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( )A .16号B .18号C .20号D .22号4.下面的说法正确的是( )A .有理数的绝对值一定比0大B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等5.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .2 6.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( )A .不赚不亏B .赚8元C .亏8元D .赚15元 7.下列计算结果正确的是( ) A .22321x x -= B .224325x x x += C .22330x y yx -= D .44x y xy +=8.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米 9.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5± 10.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm11.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a 是方框①,②,③,④中的一个数,则数a 所在的方框是( )A .①B .②C .③D .④ 12.如图所示,C 、D 是线段AB 上两点,若AC=3cm ,C 为AD 中点且AB=10cm ,则DB=( )A .4cmB .5cmC .6cmD .7cm二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n 个图有____颗棋子(用含n 的代数式示).14.若25113m n a b -+与-3ab 3-n 的和为单项式,则m+n=_________. 15.某同学做了一道数学题:“已知两个多项式为 A 、B ,B=3x ﹣2y ,求 A ﹣B 的 值.”他误将“A ﹣B”看成了“A+B”,结果求出的答案是 x ﹣y ,那么原来的 A ﹣B 的值应该是 .16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.17.如图,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC=_____cm .18.如图,将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后个数是7,第4行最后一个数是10,…依此类推,第20行第2个数是_____,第_____行最后一个数是2020.19.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度.20.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.三、解答题21.凤凰景区的团体门票的价格规定如下表购票人数1~55 56~110 111~165 165以上 价格(元/人) 10 9 8 7某校七年级(1)班和(2)班共112人去凤凰景区进行研学春游活动,当两班都以班为单位分别购票,则一共需付门票1060元.(1)你认为由更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班53人也一同前去春游时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需付门票多少元?22.已知:点C 在直线AB 上,AC=8cm ,BC=6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.23.如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =18cm ,AC =4CD . (1)图中共有 条线段;(2)求AC 的长;(3)若点E 在直线AB 上,且EA =2cm ,求BE 的长.24.如图,数轴的单位长度为1.(1)如果点A ,D 表示的数互为相反数,那么点B 表示的数是多少?(2)如果点B ,D 表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是____.25.计算: (1)223(3)3(2)|4|-÷-+⨯-+-(2)1515158124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:①3a+2b 无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a ²,∴原式计算错误,故此选项符合题意; ④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D2.D【解析】【分析】【详解】解:由数轴上a,b两点的位置可知0<a<1,a<﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b<0,故选项A错;数轴上右边的数总比左边的数大,所以a﹣b>0,故选项B错误;因为a,b异号,所以ab<0,故选项C错误;因为a,b异号,所以ba<0,故选项D正确.故选:D.3.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.4.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.5.D解析:D【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.6.C解析:C【解析】试题分析:设盈利的进价是x元,则x+25%x=60,x=48.设亏损的进价是y元,则y-25%y=60,y=80.60+60-48-80=-8,∴亏了8元.故选C.考点:一元一次方程的应用.7.C解析:C【解析】【分析】根据合并同类项法则逐一进行计算即可得答案.【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误故选:C【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.8.B解析:B【解析】【分析】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,根据长方形的周长公式列式计算即可.【详解】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,所以图2中两块阴影部分周长和为:2222224m a n a n m a a n (厘米)故选:B【点睛】本题考查的是列代数式及整式的化简,能根据图形列出代数式是关键.9.A解析:A【解析】【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4, ∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.10.B解析:B【解析】【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm,宽为ycm,根据题意得:7-x=3y,即7=x+3y,则图②中两块阴影部分周长和是:2×7+2(6-3y)+2(6-x)=14+12-6y+12-2x=14+12+12-2(x+3y)=38-2×7=24(cm).故选B.【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.11.B解析:B【解析】【分析】先假定一个方框中的数为A,再根据日历上的数据规律写出其他方框中的数,相加得5a+5,即可作出判断.【详解】解:设中间位置的数为A,则①位置数为:A−7,④位置为:A+7,左②位置为:A−1,右③位置为:A+1,其和为5A=5a+5,∴a=A−1,即a为②位置的数;故选B.【点睛】本题主要考查一元一次方程的应用,关键在于题干的理解.12.A解析:A【解析】【分析】从AD的中点C入手,得到CD的长度,再由AB的长度算出DB的长度.解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10-3-3=4cm.故答案选:A.【点睛】本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.二、填空题13.n(n+2)﹣1【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系找到规律利用规律求解即可【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×解析:[n(n+2)﹣1].【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×5﹣1=14个黑棋子;第4图有4×6﹣1=23个黑棋子;第5图有5×7﹣1=34个黑棋子…图n有n(n+2)﹣1个黑棋子.故答案为:34;[n(n+2)﹣1].【点睛】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.4【解析】【分析】若与-3ab3-n的和为单项式a2m-5bn+1与ab3-n是同类项根据同类项的定义列出方程求出nm的值再代入代数式计算【详解】∵与-3ab3-n的和为单项式∴a2m-5bn+1与解析:4【解析】若25113m n a b -+与-3ab 3-n 的和为单项式,a 2m-5 b n+1 与ab 3-n 是同类项,根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算.【详解】 ∵25113m n a b -+与-3ab 3-n 的和为单项式, ∴a 2m-5 b n+1 与ab 3-n 是同类项,∴2m-5=1,n+1=3-n ,∴m=3,n=1. ∴m+n=4.故答案为4.【点睛】本题考查的知识点是同类项的定义,解题关键是熟记同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同.15.﹣5x+3y 【解析】【分析】先根据题意求出多项式A 然后再求A-B 【详解】解:由题意可知:A+B=x-y ∴A=(x-y )-(3x-2y )=-2x+y ∴A-B=(-2x+y )-(3x-2y )=-5x+3解析:﹣5x+3y .【解析】【分析】先根据题意求出多项式A ,然后再求A-B .【详解】解:由题意可知:A+B=x-y ,∴A=(x-y )-(3x-2y )=-2x+y ,∴A-B=(-2x+y )-(3x-2y )=-5x+3y .故答案为:-5x+3y .【点睛】本题考查多项式的加减运算,注意加减法是互为逆运算.16.99【解析】(+()+()+25×4=-1+100=99故答案为99解析:99【解析】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99.故答案为99.17.【解析】解:CD=DB ﹣BC=7﹣4=3cmAC=2CD=2×3=6cm 故答案为6 解析:【解析】解:CD =DB ﹣BC =7﹣4=3cm ,AC =2CD =2×3=6cm .故答案为6.18.674【解析】【分析】根据图中前几行的数字可以发现数字的变化特点从而可以写出第n 行的数字个数和开始数字从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020【详解】解:由图可知第一行1个解析:674【解析】【分析】根据图中前几行的数字,可以发现数字的变化特点,从而可以写出第n 行的数字个数和开始数字,从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020.【详解】解:由图可知,第一行1个数,开始数字是1,第二行3个数,开始数字是2,第三行5个数,开始数字是3,第四行7个数,开始数字是4,…则第n 行(2n ﹣1)个数,开始数字是n ,故第20行第2个数是20+1=21,令2020﹣(n ﹣1)=2n ﹣1,得n =674,故答案为:21,674.【点睛】考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出相应的数字所在的位置.19.160【解析】∵4至9的夹角为30°×5=150°时针偏离9的度数为30°×=10°∴时针与分针的夹角应为150°+10°=160°故答案为160° 解析:160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°,∴时针与分针的夹角应为150°+ 10°=160°.故答案为160°. 20.100【解析】【分析】设进价是x 元则(1+20)x =200×06解方程可得【详解】解:设进价是x 元则(1+20)x =200×06解得:x =100则这件衬衣的进价是100元故答案为100【点睛】考核知解析:100【解析】【分析】设进价是x 元,则(1+20%)x =200×0.6,解方程可得. 【详解】解:设进价是x 元,则(1+20%)x =200×0.6,解得:x =100.则这件衬衣的进价是100元.故答案为100.【点睛】考核知识点:一元一次方程的应用.三、解答题21.(1)有更省钱的购票方式,能节省164元;(2)(2)班人数为52,(1)班人数为60;(3)共需1162元【解析】【分析】(1)最节约的办法就是团体购票,节省的钱=1060-团体票价;(2)由(1)班人数多于(2)班及两班共112人可知两班人数不相等,且(1)班人数多于55,(2)班人数小于等于55,设出未知数求解即可;(3)还是采用团体购票,总人数是165,可买166张票,票价可降低1元,总票价=总人数×单位票价.【详解】(1)当两班合在一起共同买票时,每张票价为8元,则总票价为:112×8=896元, 节省:1060-896=164元,答,有更省钱的购票方式,能节省164元;(2)设(2)班人数为x ,(1)班人数为112-x ,(1)班人数多于(2)班人数,故1≤x≤55,56≤112-x≤110,则(2)班每张票价为10元,(1)班人每张票价为9元,则有()1091121060x x +-=,解得:52x =,11260x -=,答:(2)班人数为52人,(1)班人数为60人;(3)三个班的人数加起来为165人,可买166张票每张票价可降低1元,每张票价为7元,则总票价为:166×7=1162元, 答:共需1162元.【点睛】本题考查一元一次方程的应用,主要是找准确等量关系,要注意考虑全面,购票最省钱的办法就是团体购票.22.7cm 或1cm【解析】【分析】分类讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得答案.【详解】当点C在线段AB上时,如图1,由点M、N分别是AC、BC的中点,得MC=12AC=12×8cm=4cm,CN=12BC=12×6cm=3cm,由线段的和差,得MN=MC+CN=4cm+3cm=7cm;当点C在线段AB的延长线上时,如图2,由点M、N分别是AC、BC的中点,得MC=12AC=12×8cm=4cm,CN=12BC=12×6cm=3cm.由线段的和差,得MN=MC﹣CN=4cm﹣3cm=1cm;即线段MN的长是7cm或1cm.【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.23.(1)5(2)12cm(3)16cm或20cm【解析】【分析】(1)线段的个数为n n-12(),n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE =AB+AE =18+2=20cm .综上所述:BE 的长为16cm 或20cm .【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段.24.(1)-1;(2)点A 表示的数的绝对值最大.理由是点A 的绝对值是4最大;(3)2或10;【解析】【分析】(1)先确定原点,再求点B 表示的数,(2)先确定原点,再求四点表示的数,(3)分两种情况①点M 在AD 之间时,②点M 在D 点右边时分别求解即可.【详解】(1)根据题意得到原点O ,如图,则点B 表示的数是-1;(2)当B ,D 表示的数互为相反数时,A 表示-4,B 表示-2,C 表示1,D 表示2, 所以点A 表示的数的绝对值最大.点A 的绝对值是4最大.(3)2或10.设M 的坐标为x .当M 在A 的左侧时,-2-x=2(4-x ),解得x=10(舍去)当M 在AD 之间时,x+2=2(4-x ),解得x=2当M 在点D 右侧时,x+2=2(x-4),解得x=10故答案为:①点M 在AD 之间时,点M 的数是2②点M 在D 点右边时点M 表示数为10.【点睛】本题主要考查了数轴,解题的关键是熟记数轴的特点.25.(1)-3(2)0【解析】【分析】(1)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)原式=()99324-÷+⨯-+-=164--+=-3.(2)原式= ()15812429⎛⎫-⨯-+- ⎪⎝⎭, = 15029⎛⎫-⨯ ⎪⎝⎭=0.【点睛】题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
2020-2021郑州中学七年级数学上期末第一次模拟试卷带答案
2020-2021郑州中学七年级数学上期末第一次模拟试卷带答案一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .+3mB .﹣3mC .+13mD .﹣5m3.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A .x+1=2(x ﹣2)B .x+3=2(x ﹣1)C .x+1=2(x ﹣3)D .1112x x +-=+ 4.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .5.下列结论正确的是( )A .c>a>bB .1b >1cC .|a|<|b|D .abc>0 6.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .57.-4的绝对值是( )A .4B .C .-4D .8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元9.已知x =y ,则下面变形错误的是( )A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 10.若a =2,|b |=5,则a +b =( )A .-3B .7C .-7D .-3或7 11.关于的方程的解为正整数,则整数的值为( ) A .2 B .3 C .1或2 D .2或312.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.一件商品的售价为107.9元,盈利30%,则该商品的进价为_____.14.若13a +与273a -互为相反数,则a=________. 15.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元.16.若312x a +与2415x a +-的和是单项式,则x 的值为____________. 17.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是______. 18.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x 米,根据题意列方程为_____.19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.20.用科学记数法表示24万____________.三、解答题21.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车?请解答上述问题.22.(1)解方程: 8753x x +=-(2)先化简,再求值:2222(32)2(2)a b ab ab a b ---,其中2a =,1b =-23.已知点O 为直线AB 上的一点,∠BOC =∠DOE =90°(1)如图1,当射线OC 、射线OD 在直线AB 的两侧时,请回答结论并说明理由; ①∠COD 和∠BOE 相等吗?②∠BOD 和∠COE 有什么关系?(2)如图2,当射线OC 、射线OD 在直线AB 的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:元2×6+4×(8-6)=20(1)若该户居民2月份用水12.5m3,则应收水费元;(2)若该户居民3、4月份共用水20m3(4月份用水量超过3月份),共交水费64元,则该户居民3,4月份各用水多少立方米?25.某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,α∠表示,故本选项正确;C、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.B解析:B【解析】【分析】根据正数和负数表示相反意义的量,可得答案.【详解】水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作-3m,故选B.【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.3.C解析:C【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有13122x x+++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2xx++=-即x+1=2(x−3)故选C.4.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.5.B解析:B【解析】【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案.【详解】解:由图可知1,01,1a b c <-<<>∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B .【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.6.C解析:C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C .【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.7.A解析:A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆. 8.B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.9.D解析:D【解析】解:A.B、C的变形均符合等式的基本性质,D项a不能为0,不一定成立.故选D.10.D解析:D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.11.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.12.B解析:B【解析】【分析】根据数轴上的两数位置得到a>0、b<0,b距离远点距离比a远,所以|b|>|a|,再挨个选项判断即可求出答案.【详解】A. a+b<0 故此项错误;B. ab<0 故此项正确;C. |a|<|b| 故此项错误;D. a+b<0, a﹣b>0,所以a+b<a﹣b, 故此项错误.故选B.【点睛】本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.二、填空题13.83元【解析】【分析】设该商品的进价是x元根据售价﹣进价=利润列出方程并解答【详解】设该商品的进价是x元依题意得:1079﹣x=30x解得x=83故答案为:83元【点睛】本题考查一元一次方程的应用读解析:83元【解析】【分析】设该商品的进价是x元,根据“售价﹣进价=利润”列出方程并解答.【详解】设该商品的进价是x元,依题意得:107.9﹣x=30%x,解得x=83,故答案为:83元.【点睛】本题考查一元一次方程的应用,读懂题意,掌握好进价、售价、利润三者之间的关系是解题的关键.14.【解析】根据题意列出方程+=0直接解出a 的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a ﹣7=0合并同类项得:3a ﹣4=0化系数为1得:a ﹣=0故答案为 解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0,合并同类项得:3a ﹣4=0,化系数为1得:a ﹣43=0, 故答案为43. 15.元【解析】【分析】依据题意建立方程求解即可【详解】解:设售货员应标在标签上的价格为x 元依据题意70x=90×(1+5)可求得:x=135故价格应为135元考点:一元一次方程的应用解析:元【解析】【分析】依据题意建立方程求解即可.【详解】解:设售货员应标在标签上的价格为x 元,依据题意70%x=90×(1+5%)可求得:x=135,故价格应为135元.考点:一元一次方程的应用.16.3【解析】【分析】两个单项式的和仍为单项式则这两个单项式为同类项【详解】解:由题意可知该两个单项式为同类项则3x+1=2x+4故x=3故答案为:3【点睛】本题考查了同类项的定义掌握两个单项式的和仍为解析:3【解析】【分析】两个单项式的和仍为单项式,则这两个单项式为同类项.【详解】解:由题意可知该两个单项式为同类项,则3x+1=2x+4,故x=3故答案为:3.【点睛】本题考查了同类项的定义,掌握两个单项式的和仍为单项式,则这两个单项式为同类项是解题的关键.17.8【解析】【分析】根据题意得出单项式与是同类项从而得出两单项式所含的字母ab 的指数分别相同从而列出关于mn 的方程再解方程即可求出答案【详解】解:∵单项式与的和仍是单项式∴单项式与是同类项∴∴∴故答案 解析:8【解析】【分析】根据题意得出单项式12m a b -与212n a b 是同类项,从而得出两单项式所含的字母a 、b 的指数分别相同,从而列出关于m 、n 的方程,再解方程即可求出答案.【详解】 解:∵单项式12m a b -与212n a b 的和仍是单项式 ∴单项式12m a b -与212n a b 是同类项 ∴m-1=22=n⎧⎨⎩ ∴m=3n=2⎧⎨⎩ ∴3=2=8m n故答案为:8.【点睛】本题考查了同类项的定义,所含字母相同,并且相同字母的指数也相同,解题的关键是灵活运用定义.18.2x ﹣2×15=340×2【解析】【分析】设这时汽车离山谷x 米根据司机按喇叭时汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离列出方程求解即可【详解】设按喇叭时汽车离山谷x 米根据题意列方程解析:2x ﹣2×15=340×2【解析】【分析】设这时汽车离山谷x 米,根据司机按喇叭时,汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离,列出方程,求解即可.【详解】设按喇叭时,汽车离山谷x 米,根据题意列方程为 2x ﹣2×15=340×2. 故答案为:2x ﹣2×15=340×2. 【点睛】本题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系,列方程. 19.45°【解析】【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.20.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数解析:52.410⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】24万5240000 2.410==⨯故答案为:52.410⨯【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.三、解答题21.有39人,15辆车【解析】【分析】找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x 辆车,则有3(x ﹣2)人,根据题意得:2x +9=3(x ﹣2)解的:x =153(x ﹣2)=39答:有39人,15辆车.【点睛】本题运用了列一元一次方程解应用题的知识点,找准等量关系是解此题的关键.22.(1)310x =-;(2)7a 2b -4ab 2,-36 【解析】【分析】(1)根据解一元一次方程的方法解方程即可;(2)先去括号,再合并同类项,化简为7a 2b -4ab 2 ,再代入求值即可.【详解】(1)8753x x +=-移项得,73x 58x +=-,合并得,103x =-,系数化为1得,310x =-; (2)原式=3a 2b -2ab 2-2ab 2+4a 2b =7a 2b -4ab 2,当a =2,b =-1时,原式=-28-8=-36.【点睛】本题考查一元一次方程的解法和整式的化简求值,熟练掌握一元一次方程的解法和整式的运算法则是解题的关键.23.(1)①∠COD =∠BOE ,理由见解析;②∠BOD +∠COE =180°,理由见解析;(2)①∠COD =∠BOE ,②成立【解析】【分析】(1)①根据等式的性质,在直角的基础上都加∠BOD ,因此相等,②将∠BOD +∠COE 转化为两个直角的和,进而得出结论;(2)①根据同角的余角相等,可得结论,②仍然可以将∠BOD +∠COE 转化为两个直角的和,得出结论.【详解】解:(1)①∠COD =∠BOE ,理由如下:∵∠BOC =∠DOE =90°,∴∠BOC +∠BOD =∠DOE +∠BOD ,即∠COD =∠BOE ,②∠BOD +∠COE =180°,理由如下:∵∠DOE =90°,∠AOE +∠DOE +∠BOD =∠AOB =180°,∴∠BOD +∠AOE =180°﹣90°=90°,∴∠BOD +∠COE =∠BOD +∠AOE +∠AOC =90°+90°=180°,(2)①∠COD =∠BOE ,∵∠COD +∠BOD =∠BOC =90°=∠DOE =∠BOD +∠BOE ,∴∠COD =∠BOE ,②∠BOD +∠COE =180°,∵∠DOE =90°=∠BOC ,∴∠COD +∠BOD =∠BOE +∠BOD =90°,∴∠BOD +∠COE =∠BOD +∠COD +∠BOE +∠BOD =∠BOC +∠DOE =90°+90°=180°,因此(1)中的∠BOD 和∠COE 的关系仍成立.【点睛】本题考查角度的和差计算,找出图中角度之间的关系,熟练掌握同角的余角相等是解题的关键.24.(1) 48;(2) 3月份用水8m 3,4月份用水量为12m 3【解析】【分析】(1)根据价目表列出式子,计算有理数运算即可得;(2)根据价目表,对3月份的用水量分情况讨论,再根据水费分别建立方程求解即可得.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元故答案为:48;(2)设3月份用水3xm ,则4月份用水()320x m - 依题意,分以下三种情况:①当3月份用水不超过36m 时则()226448201064x x +⨯+⨯+--= 解得:2263x =>(不符题意,舍去) ②当3月份用水超过36m ,但不超过310m 时则()()264626448201064x x ⨯+-+⨯+⨯+⨯--=解得:810x =<(符合题意)此时,32020812()x m -=-=③当3月份用水超过310m 时由4月份用水量超过3月份用水量可知,不合题意综上,3月份用水38m ,4月份用水量为312m .【点睛】本题考查了一元一次方程的实际应用,读懂题意,正确建立方程是解题关键. 25.780个【解析】【分析】首先设原计划每小时生产x 个零件,然后根据零件总数量的关系列出一元一次方程,从而得出x 的值,然后得出生产零件的总数.【详解】解:设原计划每小时生产x 个零件,则后来每小时生产(x+5)个零件,根据题意可得: 26x=24(x+5)-60解得:x=30则26x=26×30=780(个) 答:原计划生产780个零件.【点睛】本题考查一元一次方程的应用.。
河南省郑州市2020-2021年度 七年级上学期期末测试模拟卷
期末达标检测卷一、选择题(每题3分,共30分)1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.在下列单项式中,与2xy 是同类项的是( )A.2x 2y 2B.3yC.xyD.4x3.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A.3cmB.6cmC.9cmD.12cm5.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1096.已知一个三角形的周长是3m -n ,其中两边长的和为m +n -4,则这个三角形的第三边的长为( )A.2m -4B.2m -2n -4C.2m -2n +4D.4m -2n +47.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )8.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.49.如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE =100°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和为360°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和的最大值为15,最小值为11.其中说法正确的个数有( )A.1个B.2个C.3个D.4个10.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm 2,第②个图形的面积为8cm 2,第③个图形的面积为18cm 2……则第⑩个图形的面积为( )A.196cm 2B.200cm 2C.216cm 2D.256cm 2二、填空题(每题3分,共30分)11.-3的倒数是________;|-3|=________.12.单项式-2x 2y 5的系数是 ,次数是 W. 13.已知多项式9a +20与4a -10的差等于5,则a 的值为 .14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.如图①所示的∠AOB 纸片,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = °.16.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 017的值为________.17.若a -2b =3,则9-2a +4b 的值为 W.18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2016个格子中的整数是-2.19.可以盈利50元,那么这款大衣每件的标价是 元.20.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(21题6分,22题、23题、24题、每题8分,其余每题10分,共60分) 21.计算:(1)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(2)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(3)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).22.先化简再求值:(1)-9y +6x 2+3⎝ ⎛⎭⎪⎫y -23x 2,其中x =2,y =-1;(2)2a 2b -[2a 2+2(a 2b +2ab 2)],其中a =12,b =1.23.解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;24.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元(用含字母的式子表示)?并计算当a =300,b =200时的旅游费用.25.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:(1)甲、乙两班联合给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?26.如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m,计算:(1)窗户的面积;(2)窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).27.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE 的度数之间的关系,说明理由.。
七年级上册郑州市第七中学数学期末试卷试卷(word版含答案)
七年级上册郑州市第七中学数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。
2020-2021七年级数学上期末一模试卷含答案 (7)
2020-2021七年级数学上期末一模试卷含答案 (7)一、选择题1.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b < 2.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3 3.若x =5是方程ax ﹣8=12的解,则a 的值为( )A .3B .4C .5D .6 4.下列方程变形中,正确的是( )A .由3x =﹣4,系数化为1得x =34-B .由5=2﹣x ,移项得x =5﹣2C .由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=1 D .由 3x ﹣(2﹣4x )=5,去括号得3x+4x ﹣2=5 5.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中:①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( )A .1个B .2个C .3个D .4个6.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁 7.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( )A .2个B .3个C .4个D .5个8.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm9.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么a-2=b-3C.如果,那么a=b D.如果a2=3a,那么a=310.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2B.4C.6D.811.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为()A.2小时B.2小时20分C.2小时24分D.2小时40分12.a,b在数轴上的位置如图所示,则下列式子正确的是()A.a+b>0 B.ab<0 C.|a|>|b| D.a+b>a﹣b二、填空题13.如图,数轴上A、B两点之间的距离AB=24,有一根木棒MN,MN在数轴上移动,当N移动到与A、B其中一个端点重合时,点M所对应的数为9,当N移动到线段AB的中点时,点M所对应的数为_____.14.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).15.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____.16.若2a +1与212a +互为相反数,则a =_____. 17.用科学记数法表示24万____________. 18.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度.19.已知关于x 的一元一次方程1999(x +1)﹣3=2(x +1)+b 的解为x =9,那么关于y 的一元一次方程1999y ﹣3=2y +b 的解y =_____. 20.已知整式32(1)7(3)2m n x x m x ---++-是关于x 的二次二项式,则关于y 的方程(33)5n m y my -=--的解为_____.三、解答题21.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?22.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-.23.(1)解方程: 8753x x +=-(2)先化简,再求值:2222(32)2(2)a b ab ab a b ---,其中2a =,1b =-24.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?25.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:由数轴上a ,b 两点的位置可知0<a <1,a <﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b <0,故选项A 错;数轴上右边的数总比左边的数大,所以a ﹣b >0,故选项B 错误;因为a ,b 异号,所以ab <0,故选项C 错误;因为a ,b 异号,所以b a<0,故选项D 正确. 故选:D . 2.A解析:A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.3.B解析:B【解析】【分析】把x=5代入方程ax-8=12得出5a-8=12,求出方程的解即可.【详解】把x =5代入方程ax ﹣8=12得:5a ﹣8=12,解得:a =4.故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.4.D解析:D【解析】【分析】根据解方程的方法判断各个选项是否正确,从而解答本题.【详解】解:3x=﹣4,系数化为1,得x=﹣43,故选项A错误;5=2﹣x,移项,得x=2﹣5,故选项B错误;由123168-+-=x x,去分母得4(x﹣1)﹣3(2x+3)=24,故选项C错误;由 3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D正确,故选:D.【点睛】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.5.B解析:B【解析】【分析】根据图示,可得c<a<0,b>0,|a|+|b|=|c|,据此逐项判定即可.【详解】∵c<a<0,b>0,∴abc>0,∴选项①不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)>0,∴选项②符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴-a+b=-c,∴a-c=b,∴选项③符合题意.∵a cba b c++=-1+1-1=-1,∴选项④不符合题意,∴正确的个数有2个:②、③.故选B.【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.6.D解析:D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.7.C解析:C【解析】【分析】【详解】解:(−3) ²=9,212⎛⎫--⎪⎝⎭=−14,(-1)2009=−1,-22=−4,−(−8)=8,3|-|4-=34,则所给数据中负数有:212⎛⎫-- ⎪⎝⎭,(-1)2009,-22,3|-|4-,共4个故选C8.B解析:B【解析】【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm,宽为ycm,根据题意得:7-x=3y,即7=x+3y,则图②中两块阴影部分周长和是:2×7+2(6-3y)+2(6-x)=14+12-6y+12-2x=14+12+12-2(x+3y)=38-2×7=24(cm).故选B.【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.9.C解析:C【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】解:A、等式的左边加2,右边加3,故A错误;B、等式的左边减2,右边减3,故B错误;C、等式的两边都乘c,故C正确;D、当a=0时,a≠3,故D错误;故选C.【点睛】本题主要考查了等式的基本性质,等式性质:10.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.11.C解析:C【解析】【分析】设停电x小时.等量关系为:1-粗蜡烛x小时的工作量=2×(1-细蜡烛x小时的工作量),把相关数值代入即可求解.【详解】解:设停电x小时.由题意得:1﹣14x=2×(1﹣13x),解得:x=2.4.12.B解析:B【解析】【分析】根据数轴上的两数位置得到a>0、b<0,b距离远点距离比a远,所以|b|>|a|,再挨个选项判断即可求出答案.【详解】A. a+b<0 故此项错误;B. ab<0 故此项正确;C. |a|<|b| 故此项错误;D. a+b<0, a﹣b>0,所以a+b<a﹣b, 故此项错误.故选B.【点睛】本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.二、填空题13.21或﹣3【解析】【分析】设MN的长度为m当点N与点A重合时此时点M 对应的数为9则点N对应的数为m+9即可求解;当点N与点M重合时同理可得点M对应的数为﹣3即可求解【详解】设MN的长度为m当点N与点解析:21或﹣3.【解析】【分析】设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,即可求解;当点N与点M重合时,同理可得,点M对应的数为﹣3,即可求解.【详解】设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,当点N到AB中点时,点N此时对应的数为:m+9+12=m+21,则点M对应的数为:m+21﹣m=21;当点N与点M重合时,同理可得,点M对应的数为﹣3,故答案为:21或﹣3.【点睛】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.14.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形第一个图案有4个基本图形则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型解析:3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型15.70°【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份每一份是30°借助图形找出5时40分时针和分针之间相差的大格数用大格数乘30°即可【详解】钟表两个数字之间的夹角为:度5点40分时针解析:70°【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出5时40分时针和分针之间相差的大格数,用大格数乘30°即可.【详解】钟表两个数字之间的夹角为:36030 12=度5点40分,时针到6的夹角为:40 30301060-⨯=度分针到6的夹角为:23060⨯=度时针和分针的夹角:60+10=70度故答案为:70°.【点睛】本题考查了钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动112︒⎛⎫⎪⎝⎭,并且利用起点时间时针和分针的位置关系建立角的图形.16.﹣1【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.17.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数解析:52.410⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】24万5240000 2.410==⨯故答案为:52.410⨯【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.18.160【解析】∵4至9的夹角为30°×5=150°时针偏离9的度数为30°×=10°∴时针与分针的夹角应为150°+10°=160°故答案为160° 解析:160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°,∴时针与分针的夹角应为150°+ 10°=160°.故答案为160°. 19.【解析】【分析】令x =y ﹣1后代入(x+1)﹣3=2(x+1)+b 可得:y ﹣3=2y+b 由题意可知y ﹣1=9【详解】解:令x =y ﹣1后代入(x+1)﹣3=2(x+1)+b 可得:y ﹣3=2y+b 该方程解析:【解析】【分析】令x =y ﹣1后代入1999(x +1)﹣3=2(x +1)+b 可得:1999y ﹣3=2y +b ,由题意可知y ﹣1=9.【详解】解:令x =y ﹣1后代入1999(x +1)﹣3=2(x +1)+b ,可得:1999y ﹣3=2y +b , 该方程的解为x =9,∴y ﹣1=9,∴y =10,故答案是:10.【点睛】 此题考查一元一次方程的解.解题的关键是理解一元一次方程的解的定义,注意此题涉及换元法,整体的思想.20.【解析】【分析】由题意根据多项式的定义求出m 和n 的值进而代入关于的方程并解出方程即可【详解】解:∵是关于的二次二项式∴解得将代入则有解得故答案为:【点睛】本题考查多项式的定义以及解一元一次方程熟练掌 解析:56y = 【解析】【分析】由题意根据多项式的定义求出m 和n 的值,进而代入关于y 的方程并解出方程即可.【详解】解:∵32(1)7(3)2m n x x m x ---++-是关于x 的二次二项式, ∴10,30m n m --=+=解得3,4m n =-=-,将3,4m n =-=-代入(33)5n m y my -=--,则有(129)35y y -+=-, 解得56y =. 故答案为:56y =. 【点睛】 本题考查多项式的定义以及解一元一次方程,熟练掌握多项式的定义以及解一元一次方程的解法是解题的关键.三、解答题21.(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【解析】【分析】(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件,根据题意列出方程即可求出x 的值,然后根据“获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y 折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件 由题意可得:22x +30(12x +15)=6000 解得:x=150 ∴购进乙商品12×150+15=90件 ∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y 折销售由题意可得:(29-22)×150+(40×10y -30)×90×3-1950=180 解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.22.2ab -,4-.【解析】【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.23.(1)310x =-;(2)7a 2b -4ab 2,-36 【解析】【分析】(1)根据解一元一次方程的方法解方程即可;(2)先去括号,再合并同类项,化简为7a 2b -4ab 2 ,再代入求值即可.【详解】(1)8753x x +=-移项得,73x 58x +=-,合并得,103x =-,系数化为1得,310x =-; (2)原式=3a 2b -2ab 2-2ab 2+4a 2b =7a 2b -4ab 2,当a =2,b =-1时,原式=-28-8=-36.【点睛】本题考查一元一次方程的解法和整式的化简求值,熟练掌握一元一次方程的解法和整式的运算法则是解题的关键.24.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【解析】【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案②比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.25.先安排整理的人员有10人【解析】试题分析:等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.试题解析:设先安排整理的人员有x 人,依题意得,2(15)16060x x ++= 解得, x=10.答:先安排整理的人员有10人. 考点:一元一次方程。
2020-2021七年级数学上期末一模试卷(及答案) (7)
2020-2021七年级数学上期末一模试卷(及答案) (7)一、选择题1.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 2.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<03.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个4.8×(1+40%)x ﹣x =15故选:B .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.5.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A .x+1=2(x ﹣2)B .x+3=2(x ﹣1)C .x+1=2(x ﹣3)D .1112x x +-=+ 7.下列说法错误的是( )A .2-的相反数是2B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是08.下列结论正确的是( )A .c>a>bB .1b >1c C .|a|<|b| D .abc>09.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy += 10.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( )A .2.897×106B .28.94×105C .2.897×108D .0.2897×107 11.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120° 12.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或3 二、填空题13.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.14.一根长80cm 的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1kg 可使弹簧增长2cm ,正常情况下,当挂着xkg 的物体时,弹簧的长度是____cm .(用含x 的代数式表示)15.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________.16.观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母n 表示自然数,请把你观察到的规律用含有n 的式子表示出来: 17.如图所示是一组有规律的图案,第l 个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为_______ (用含n 的式子表示).18.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.19.用科学记数法表示24万____________.20.如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第n 个图案中正三角形的个数是__________.三、解答题21.凤凰景区的团体门票的价格规定如下表 购票人数1~55 56~110 111~165 165以上 价格(元/人) 10 9 8 7某校七年级(1)班和(2)班共112人去凤凰景区进行研学春游活动,当两班都以班为单位分别购票,则一共需付门票1060元.(1)你认为由更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班53人也一同前去春游时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需付门票多少元?22.如图,线段AB 上有一任意点C ,点M 是线段AC 的中点,点N 是线段BC 的中点,当AB=6cm 时,(1)求线段MN 的长.(2)当C 在AB 延长线上时,其他条件不变,求线段MN 的长.23.解方程:(1)()()235312--=+-x x x (2)216323+-=+x x 24.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.25.8x =5200x =6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m 元/台,则有:m (1+14%)=5700解得:m =5000答:这种品牌电脑的进价为5000元/台.【点睛】本题考查一元一次方程的实际运用,理解题意,搞清优惠的计算方法,找出题目蕴含的数量关系解决问题.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.【详解】由数轴可得:a<b<0<c,∴a+b+c<0,故A错误;|a+b|>c,故B错误;|a−c|=|a|+c,故C正确;ab>0 ,故D错误;故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.3.C解析:C【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.无5.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A .2a 与3b 不是同类项,所以不能合并,故本选项不合题意;B .2a 2+3a 2=5a 2,故本选项不合题意;C .2a 2b +3a 2b =5a 2b ,正确;D .2a 2﹣3a 2=﹣a 2,故本选项不合题意.故选:C .【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.6.C解析:C【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊, ∴乙有13122x x +++=只, ∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”, ∴311,2x x ++=- 即x +1=2(x −3) 故选C. 7.D【解析】试题分析:﹣2的相反数是2,A 正确;3的倒数是13,B 正确; (﹣3)﹣(﹣5)=﹣3+5=2,C 正确;﹣11,0,4这三个数中最小的数是﹣11,D 错误,故选D .考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.8.B解析:B【解析】【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案.【详解】解:由图可知1,01,1a b c <-<<>∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B .【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.9.C解析:C【解析】【分析】根据合并同类项法则逐一进行计算即可得答案.【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误故选:C【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.10.A解析:A【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将2897000用科学记数法表示为:2.897×106.故选A.考点:科学记数法—表示较大的数.11.B解析:B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解. 12.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.二、填空题13.0【解析】根据题意得:a<0<b<c∴a<0c−b>0a+b−c<0∴|a|+|c−b|−|a+b−c|=−a+(c−b)+(a+b−c)=−a+c−b+a+ b−c=0故答案为0点睛:本题考查了整式解析:0【解析】根据题意得:a<0<b<c,∴a<0,c−b>0,a+b−c<0,∴|a|+|c−b|−|a+b−c|=−a+(c−b)+(a+b−c)=−a+c−b+a+b−c=0.故答案为0.点睛:本题考查了整式的加减,数轴,绝对值的知识,根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.14.(80+2x)【解析】【分析】一根长80cm的弹簧每增加1kg可使弹簧增长2cm当增加xkg的物体时弹簧的长度增加2xcm由此可得答案【详解】根据题意知弹簧的长度是(80+2x)cm故答案为:(80解析:(80+2x).【解析】【分析】一根长80cm的弹簧,每增加1kg可使弹簧增长2cm,当增加xkg的物体时,弹簧的长度增加2xcm,由此可得答案.【详解】根据题意知,弹簧的长度是(80+2x)cm.故答案为:(80+2x).【点睛】此题考查列代数式,理解题意,找出数量关系是解决问题的关键.15.10℃【解析】【分析】用最高温度减去最低温度然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】2-(-8)=2+8=10(℃)故答案为10℃【点睛】本题考查了有理数的减法掌握减去一个数解析:10℃【解析】【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.2-(-8),=2+8,=10(℃).故答案为10℃.【点睛】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.16.【解析】【分析】根据题意分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律用n 表示可得答案【详解】根据题意分析可得:解析:()221121n n n n n +-=++=+【解析】【分析】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律,用n 表示可得答案.【详解】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;… 若字母n 表示自然数,则有:(n+1)2-n 2=2n+1;故答案为(n+1)2-n 2=2n+1. 17.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形第一个图案有4个基本图形则第n 个图案的基础图形有4+3(n-1)=3n+1个考点:规律型解析:3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n-1)=3n+1个考点:规律型18.②③④【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的①的位置出现重叠的面所以不能围成正方体将图1的正方形放在图2中的②③④的位置均能围成正方体故答案解析:②、③、④【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体, 将图1的正方形放在图2中的②③④的位置均能围成正方体,故答案为②③④.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.19.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数解析:52.410⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】24万5240000 2.410==⨯故答案为:52.410⨯【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.20.4n+2【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个【详解】∵第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个解析:4n +2【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【详解】∵第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4; 第三个图案正三角形个数为2+2×4+4=2+3×4; …∴第n 个图案正三角形个数为2+(n-1)×4+4=2+4n=4n+2. 故答案为:4n+2.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力,根据已知图形发现变化与不变的部分及变化部分按照何种规律变化是关键.三、解答题21.(1)有更省钱的购票方式,能节省164元;(2)(2)班人数为52,(1)班人数为60;(3)共需1162元【解析】【分析】(1)最节约的办法就是团体购票,节省的钱=1060-团体票价;(2)由(1)班人数多于(2)班及两班共112人可知两班人数不相等,且(1)班人数多于55,(2)班人数小于等于55,设出未知数求解即可;(3)还是采用团体购票,总人数是165,可买166张票,票价可降低1元,总票价=总人数×单位票价.【详解】(1)当两班合在一起共同买票时,每张票价为8元,则总票价为:112×8=896元, 节省:1060-896=164元,答,有更省钱的购票方式,能节省164元;(2)设(2)班人数为x ,(1)班人数为112-x ,(1)班人数多于(2)班人数,故1≤x≤55,56≤112-x≤110,则(2)班每张票价为10元,(1)班人每张票价为9元,则有()1091121060x x +-=,解得:52x =,11260x -=,答:(2)班人数为52人,(1)班人数为60人;(3)三个班的人数加起来为165人,可买166张票每张票价可降低1元,每张票价为7元,则总票价为:166×7=1162元, 答:共需1162元.【点睛】本题考查一元一次方程的应用,主要是找准确等量关系,要注意考虑全面,购票最省钱的办法就是团体购票.22.(1)3cm ;(2)3cm【解析】【分析】(1)由于点M 是AC 中点,所以MC=12AC ,由于点N 是BC 中点,则CN=12BC ,而MN=MC+CN=12(AC+BC )=12AB ,从而可以求出MN 的长度;(2)当C 在AB 延长线上时,由于点M 是AC 中点,所以MC=12AC ,由于点N 是BC 中点,则CN=12BC ,而MN=MC-CN=12(AC-BC )=12AB ,从而可以求出MN 的长度. 【详解】解:(1)如图:∵点M 是AC 中点,点N 是BC 中点,∴MC=12AC ,CN=12BC , ∴MN=MC+CN=12(AC+BC )=12AB=12×6=3(cm ); (2)当C 在AB 延长线上时,如图:∵点M 是AC 中点,点N 是BC 中点,∴MC=12AC ,CN=12BC , ∴MN=MC-CN=12(AC-BC )=12AB=12×6=3(cm ); 【点睛】 本题考查了两点间的距离.不管点C 在哪个位置,MC 始终等于AC 的一半,CN 始终等于BC 的一半,而MN 等于MC 加上(或减去)CN 等于AB 的一半,所以不管C 点在哪个位置MN 始终等于AB 的一半.23.(1)1x =-;(2)34x =【解析】【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,去括号,然后移项合并,系数化为1,即可得到答案;【详解】解:(1)()()235312--=+-x x x∴235312x x x -+=+-,∴1x =-;(2)216323+-=+x x ∴()()3211826x x +=+-,∴6318212x x +=+-,∴43x =,∴34x =. 【点睛】 本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤和方法.24.12a b =⎧⎨=-⎩. 【解析】试题分析:将x +y =5与2x -y =1组成方程组,解之可得到x 、y 的值,然后把x 、y 的值代入另外两个方程,解答即可得到结论.试题解析:解:由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得:23x y =⎧⎨=⎩. 把23x y =⎧⎨=⎩代入4ax +5by =-22,得:8a +15b =-22.① 把23x y =⎧⎨=⎩代入ax -by -8=0,得:2a -3b -8=0.② ①与②组成方程组,得:815222380a b a b +=-⎧⎨--=⎩,解得:12a b =⎧⎨=-⎩. 25.无。
河南省郑州市2020-2021学年七年级上期期末模拟试卷及答案
DABC郑州市2020-2021学年七年级上期期末模拟数学试题(时间:90分钟 满分:100分)一、选择题(每题3分,共30分)1. 移动互联网已经全面进入人们的日常生活,目前全国4G 用户总数达到12.8亿,其中12.8亿用科学记数法表示为( ) A. 12.8×108 B. 128×107C. 1.28×109D. 1.28×10102. 下列运算正确的是( )A .3x+6y=9xyB .-a 2-a 2=0C .2(3x+2)=6x+2D .-(3x -2y)=-3x+2y3. 有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设. ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线. ④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有( ) A .①② B .①③C .②④D .③④4. 下列图形中,可能是右面正方体的展开图的是( )A. B. C. D.5. 下列调查中适合采用普查方式的是( )A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解郑州市中小学生环保意识6.下列说法中错误的是( )A .−32x 2y 的系数是−32B .0是单项式C .23xy 的次数是1 D .-x 是一次单项式7. 如图,AB=12,C 为AB 的中点,点D 在线段AC 上,且AD :CB=1:3,则DB 的长度为( )A .4B .6C .8D .108. 某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100DABC9. 钟表在8:25时,时针与分针的夹角是( )度. A .101.5° B .102.5° C .120° D .125°10. 如图,按此规律,第6行最后一个数字是16,第( )行最后一个数是2020. A .673 B .674 C .1008 D .1010二、填空题(每题3分,共15分) 11. 78°54′= °.12. 已知关于x 的方程4-(a -1)x |a|=0是一元一次方程,则该方程的解为x=________.13. 幻方是中国传统游戏,要求是:将数字安排在正方形格子中, 使每行、列和对角线上的数字和相等,如图是一个三阶幻方, 那么标※所填的数是 .14. 如图所示,将两块三角板的直角顶点重叠,若∠AOD=124°,则∠BOC= .15. 线段AB=6,在直线AB 上截取线段BC=3AB ,D 为线段AB 的中点,E 为线段BC 的中点,那么线段DE 的长为 .三、解答题(共46分)16.(6分)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示应该位置的小方块的个数,请在右边的方格中画出这个几何体的主视图和左视图.17.(7分)先化简,再求值:x 2y -(xy -x 2y)-2(-xy+x 2y)-5,其中x=-1,y=2.12 3 4 3 4 5 6 7 4 6 7 8 9 10 ……图1图25% 15%30%CBAD选项图1图2图3图①图②图③18.(7分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?19. (8分)列方程或方程组解应用题为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款元,在乙商店付款元;(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?20.(8分)多边形上或内部的一点与多边形各顶点的连线,可以将多边形分割成若干个小三角形.如图,给出了四边形的三种具体分割方法,分别将四边形分割成了2个、3个、4个小三角形,这样我们就可以借助研究三角形的经验研究四边形了.图1被分割成2个小三角形,图2被分割成3个小三角形,图3被分割成4个小三角形;(1)请按照上述三种方法分别将图中的六边形进行分割,并写出每种方法所得到的小三角形的个数:图①被分割成个小三角形、图②被分割成个小三角形、图③被分割成个小三角形;(2)如果按照上述三种分割方法分别分割n边形,请写出每种方法所得到的小三角形的个数(用含n的代数式写出结论即可,不必画图);按照上述图①、图②、图③的分割方法,n边形分别可以被分割成、、个小三角形.21. (9分)已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC= 度;∠FOD= 度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.22. (10分)如图,数轴上A,B两点对应的有理数分别为x A=-5和x B=6,动点P从点A出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A 之间往返运动.设运动时间为t秒.(1)当t=2时,点P对应的有理数x P= ,PQ= ;(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.50%图1图25%15%30%C B AD 选项100908070605040302010人数/人DAB 图①图②图③郑州市2020-2021学年七年级上期期末模拟数学试题参考答案一、选择题1.C2.D3.C4.C5.C6.C7.D8.B9.B 10.B 二、选择题11.78.9° 12.-2 13.17 14.56° 15.6或12 三、解答题 16.17. 解:原式=x 2y -xy+x 2y+2xy -2x 2y -5=xy -5, 当x=-1,y=2时,原式=-1×2-5=-7.18. 解:(1)本次调查活动采取了抽样调查方式; 由图知A 类有60人,占30%,则本次一共调查了60÷30%=200人; (2)选 B 的人数:200×50%=100(人),选项B 的部分补充如下图所示:(3)3000×(1-30%-50%-15%)=150, 答:估计全校可能有150名学生平均每天参加体育活动的时间在0.5小时以下.19. 解:(1)在甲商店付款:5×100+1×25=525(元) 在乙商店付款:(5×100+6×25)×90%=585(元) 故答案是:525;585;(2)由题意得:5×100+(x -5)×25=(5×100+25x)×90%, 解得:x=30,答:购买30盒乒乓球时,在甲、乙两家商店付款相同.20. 解:(1)如图所示:可以发现所分割成的三角形的个数分别是4个,5个,6个; 故答案为:4;5;6;(2)结合两个特殊图形,可以发现:第一种分割法把n 边形分割成了(n -2)个三角形; 第二种分割法把n 边形分割成了(n -1)个三角形;第三种分割法把n边形分割成了n个三角形.故答案为:(1)4,5,6;(2)(n-2);(n-1);n 21.(1) 70°80°(2) (2)当x=60°,∠EOF=90°+60°=150°;设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t=253,答:当射线OE'与射线OF'重合时至少需要253秒;(3) (3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360-10t=8t-150+90或360-10t+360-8t+90=360-150,t= 103或403或703或1003.22.(1)-3 5 (2)1或7 (3)6。
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q 2.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1 B .2C .3D .43.下列因式分解正确的是()A .21(1)(1)xx x +=+-B .()am an a m n +=-C .2244(2)mm m +-=-D .22(2)(1)aa a a --=-+4.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 5.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④6.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对7.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 8.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米9.下列图形中,哪一个是正方体的展开图( )A .B .C .D .10.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯C .6510⨯D .510⨯11.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人13.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元14.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+115.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.17.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________18.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-19.当a=_____时,分式13a a --的值为0. 20.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.21.如图,若12l l //,1x ∠=︒,则2∠=______.22.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.23.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.=,若24.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC =,则线段AB的长为______.OC625.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.26.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.27.五边形从某一个顶点出发可以引_____条对角线.28.8点30分时刻,钟表上时针与分针所组成的角为_____度.29.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的.30.若2a﹣b=4,则整式4a﹣2b+3的值是______.三、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.32.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 33.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.34.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.35.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?36.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.37.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 6a +(c ﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.38.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】 【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .2.B解析:B 【解析】 【分析】根据线段中点的性质,可得AC 的长. 【详解】解:由线段中点的性质,得AC =12AB =2. 故选B . 【点睛】本题考查了两点间的距离,利用了线段中点的性质.3.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.4.D解析:D 【解析】 【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程. 【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.5.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.6.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.8.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.9.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 10.B解析:B【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.11.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B .12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.13.A解析:A【解析】【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.14.B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.2【解析】解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.17.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b 的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261-++-+=(a-1)x2+(b-6)x+1,x bx ax x由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.18.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 19.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.20.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键. 21.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.22.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣,故答案为:30﹣. 考点:列代数式 23.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】 【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 24.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.25.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图, “横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.26.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.27.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.28.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.29.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.30.11【解析】【分析】对整式变形得,再将2a﹣b=4整体代入即可.【详解】解:∵2a﹣b=4, ∴=,故答案为:11. 【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11 【解析】 【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可. 【详解】 解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=, 故答案为:11. 【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.三、压轴题31.(1)75°,150°;(2)15°;(3)15°. 【解析】 【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和; (2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF . 【详解】解:(1)∵∠BOC =30°,∠AOB =45°, ∴∠AOC =75°,∴∠AOC +∠BOC +∠AOB =150°;答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°; 故答案为:75;(2)设∠2=x ,则∠1=3x +30°, ∵∠1+∠2=90°, ∴x +3x +30°=90°, ∴x =15°, ∴∠2=15°, 答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.32.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.33.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:。
2020-2021学年河南省郑州市七年级(上)期末数学试卷(解析版)
2020-2021学年河南省郑州市七年级第一学期期末数学试卷一、选择题(共10小题,每题3分,共30分).1.下列四个数中,最小的数是()A.﹣3B.0C.﹣1D.72.在本学期第一章的数学学习中,我们曾经辨认过从正面、左面、上面三个不同的方向观察同一物体时看到的形状图.如图是马老师带领的数学兴趣小组同学搭建的一个几何体,这个几何体由6个大小相同的正方体组成,你认为从左面看到的几何体的形状应该为()A.B.C.D.3.学习了数据的调查方式后,悠悠采取以下调查数据的方式展开调查,你认为他的调查方式选取合适的为()A.为了解一批防疫物资的质量情况,选择普查B.为了解郑州市居民日平均用水量,选择普查C.为了解郑州市中小学生对新冠病毒传播途径的知晓率,选择抽样调查D.为了解运载火箭零件的质量情况,选择抽样调查4.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段5.2020年12月12日,国家主席习近平在气候雄心峰会上强调:到2030年单位国内生产总值二氧化碳排放量将比2005年下降65%以上,森林积蓄量将比2005年增加60亿立方米等,为全球应对气候变化做出更大贡献.其中60亿立方米用科学记数法表示正确的为()A.6×108立方米B.0.6×109立方米C.60×108立方米D.6×109立方米6.郑州市实施垃圾分类以来,为了调动局民参与垃圾分类的积极性,学府小区开展了垃圾分类积分兑换奖品活动,随机抽取了若干户12月份的积分情况,并对抽取的样本进行了整理,得到下列不完整的统计表:积分x/分频数频率0≤x<5060.150≤x<100120.2100≤x<20024ax≥200180.3根据以上信息可得()A.a=0.2B.a=0.3C.a=0.4D.a=0.57.用一个平面去截四棱柱,截面形状不可能是()A.三角形B.四边形C.六边形D.七边形8.如图,轩轩将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?为解决这个问题,轩轩设正方形的边长为xcm,则依题意可得方程为()A.4x=5(x﹣4)B.4(x﹣4)=5x C.4x=5(x+4)D.4(x+4)=5x 9.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”(图1所示),把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方(图2所示).观察图1、图2,请你探究出洛书三阶幻方中的奇数和偶数的位置、数和数之间的数量关系所呈现的规律,并用这个规律,求出图3幻方中a b的值为()A.0B.﹣1C.﹣2D.﹣310.轩轩在数学学习中遇到一个有神奇魔力的“数值转换机”,按如图所示的程序计算.若开始输入的值x为正整数,最后输出的结果为41,则满足条件的x值最多有()个.A.1B.2C.3D.4二.填空题(每题3分,共15分)11.若将一个圆等分成三个扇形,则其中一个扇形圆心角的度数为°.12.举例说明代数式8a3的意义:.13.某公司近三年来的产品价格如下表所示(元/500克):年份201820192020产品单价(元/500克) 1.46 1.92 2.53该公司若根据上述信息制作统计图,并据此向物价部门申请涨价,你认为两幅图中,图是该公司制作的.14.小王是丹尼斯百货负责A品牌羊毛衫的销售经理,一件A品牌羊毛衫的进价为600元,加价50%后进行销售.临近年末,小王发现还有积货,所以决定打折出售,结果每件仍获利120元,则A品牌羊毛衫应按折销售.15.如图1,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段长度是另外一条长度的2倍,则称点C是线段AB的“好点”.如图2,已知AB=16cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动;点Q从点B出发,以1cm/s 的速度沿BA向点A匀速运动,点P,Q同时出发,当其中一点到达终点时,运动停止.设运动的时间为t(s),当t=s时,Q为线段AB的“好点”.三.解答题(共55分)16.计算:﹣23÷4+|﹣3|×(﹣1)2020.17.在期末复习期间,悠悠碰到了这样一道习题:如图所示是一个正方体表面展开图,正方体的每个面上都写着一个整式,且相对两个面上的整式的和都相等.请根据展开图回答下列问题:(1)与A相对的面是;与B相对的面是;(填大写字母)(2)悠悠发现A面上的整式为:x3+2x2y+1,B面上的整式为:,C面上的整式为:,D面上的整式为:﹣2(x2y+1),请你计算:F面上的整式.18.某学校开展了主题为“我帮父母做家务”的实践活动,倡导学生心怀感恩、孝敬父母,在家多帮父母做家务.校学生会在七、八、九三个年级随机抽取了部分学生,就“平均每天帮父母做家务所用时长”进行了调查,过程如下:【收集数据】做家务所用时长t(分钟)级别:A:0≤t<10;B:10≤t<20;C:20≤t<30;D:30≤t<40;E:t≥40;通过调查得到的一组数据:DCCADABADBBEDDEDBCCEECBDEEDDEDBBCCDCEDDABDDCDDEDCE【整理数据】抽样调查50名学生帮父母做家务所用时长人数统计表做家务所用时长级别频数A:0≤t<104B:10≤t<208C:20≤t<3010D:30≤t<4018E:t≥4010【描述数据】(1)补全条形统计图;(2)图2是根据该校初中各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,若该校七年级共有400名学生,请你估计全校学生中帮父母做家务所用时长不低于半小时(包含半小时)人数约为多少?(3)根据本次实践活动主题,假如你是学生会中的一员,请你给全校同学发出一条倡议.19.请用自己的年龄编一道问题,设出未知数,列方程并解答.(题目中不能出现真实姓名)20.用火柴棒按图中的方式搭图形:按图示规律填空:图形标号①②③④⑤火柴棒根数5913a b(1)a=,b=;(2)按照这种方式搭下去,则搭第n个图形需要火柴棒的根数为;(用含n的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2021个图形需要的火柴棒根数.21.如图,已知∠AOB=120°,△COD是等边三角形(三条边都相等,三个角都等于60°的三角形),OM平分∠BOC.(1)如图1,当∠AOC=30°时,∠DOM=;(2)如图2,当∠AOC=100°时,∠DOM=;(3)如图2,当∠AOC=α(0°<α<180°)时,求∠DOM的度数,请借助图3填空.解:因为∠AOC=α,∠AOB=120°,所以∠BOC=∠AOC﹣∠AOB=α﹣120°,因为OM平分∠BOC,所以∠MOC=∠BOC=(用α表示),因为△COD为等边三角形,所以∠DOC=60°,所以∠DOM=∠MOC+∠DOC=(用α表示).(4)由(1)(2)(3)问可知,当∠AOC=β(0°<β<180°)时,直接写出∠DOM的度数.(用β来表示,无需说明理由)22.寒风凛凛、爱心涌动,临近传统佳节,我市某学校部分师生冒着严寒为50km外的夕阳红敬老院送去过节物资,并为老人们表演节目.学校司机小李开车以60km/h的速度带着师生和物资从学校出发,同时志愿者小王开车以90km/h的速度从敬老院出发,前去迎接小李车上的部分学生到敬老院给老人们表演节目,小王接到学生以后立刻返回敬老院(学生下车和上车的时间不计),学校司机小李开车行驶多长时间时两车相距5km?写出答案,并说明理由.参考答案一、选择题(共10小题,每题3分,共30分).1.下列四个数中,最小的数是()A.﹣3B.0C.﹣1D.7解:﹣3<﹣1<0<7,所以,最小的数是﹣3,故选:A.2.在本学期第一章的数学学习中,我们曾经辨认过从正面、左面、上面三个不同的方向观察同一物体时看到的形状图.如图是马老师带领的数学兴趣小组同学搭建的一个几何体,这个几何体由6个大小相同的正方体组成,你认为从左面看到的几何体的形状应该为()A.B.C.D.解:从左面看,底层是两个小正方形,上层的左边是一个小正方形.故选:B.3.学习了数据的调查方式后,悠悠采取以下调查数据的方式展开调查,你认为他的调查方式选取合适的为()A.为了解一批防疫物资的质量情况,选择普查B.为了解郑州市居民日平均用水量,选择普查C.为了解郑州市中小学生对新冠病毒传播途径的知晓率,选择抽样调查D.为了解运载火箭零件的质量情况,选择抽样调查解:A.为了解一批防疫物资的质量情况,适合采用抽样调查方式,故本选项不符合题意;B.为了解郑州市居民日平均用水量,适合采用抽样调查方式,故本选项不符合题意;C.为了解郑州市中小学生对新冠病毒传播途径的知晓率,适合采用抽样调查方式,故本选项符合题意;D.为了解运载火箭零件的质量情况,适合采用全面调查方式,故本选项不合题意;故选:C.4.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段解:A、直线MN与直线NM是同一条直线,原说法正确,故本选项不符合题意;B、射线PM与射线MN不一定是同一条射线,原说法错误,故本选项符合题意;C、射线PM与射线PN是同一条射线,原说法正确,故本选项不符合题意;D、线段MN与线段NM是同一条线段,原说法正确,故本选项不符合题意;故选:B.5.2020年12月12日,国家主席习近平在气候雄心峰会上强调:到2030年单位国内生产总值二氧化碳排放量将比2005年下降65%以上,森林积蓄量将比2005年增加60亿立方米等,为全球应对气候变化做出更大贡献.其中60亿立方米用科学记数法表示正确的为()A.6×108立方米B.0.6×109立方米C.60×108立方米D.6×109立方米解:因为60亿=6000000000,所以60亿用科学记数法表示为6.0×109.故选:D.6.郑州市实施垃圾分类以来,为了调动局民参与垃圾分类的积极性,学府小区开展了垃圾分类积分兑换奖品活动,随机抽取了若干户12月份的积分情况,并对抽取的样本进行了整理,得到下列不完整的统计表:积分x/分频数频率0≤x<5060.150≤x<100120.2100≤x<20024ax≥200180.3根据以上信息可得()A.a=0.2B.a=0.3C.a=0.4D.a=0.5解:a==0.4,故选:C.7.用一个平面去截四棱柱,截面形状不可能是()A.三角形B.四边形C.六边形D.七边形解:四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.8.如图,轩轩将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?为解决这个问题,轩轩设正方形的边长为xcm,则依题意可得方程为()A.4x=5(x﹣4)B.4(x﹣4)=5x C.4x=5(x+4)D.4(x+4)=5x 解:设正方形的边长为xcm,则第一个长条的长为xcm,宽为4cm,第二个长条的长为(x ﹣4)cm,宽为5cm,依题意得:4x=5(x﹣4).故选:A.9.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”(图1所示),把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方(图2所示).观察图1、图2,请你探究出洛书三阶幻方中的奇数和偶数的位置、数和数之间的数量关系所呈现的规律,并用这个规律,求出图3幻方中a b的值为()A.0B.﹣1C.﹣2D.﹣3解:观察图1和图2,根据数字关系可得出幻方满足的条件是:每行每列和每条对角线上的数字之和都相等,∴图3中满足:b+2+3=0+2+4=5+a+3,∴a=﹣2,b=1,即a b=﹣2,故选:C.10.轩轩在数学学习中遇到一个有神奇魔力的“数值转换机”,按如图所示的程序计算.若开始输入的值x为正整数,最后输出的结果为41,则满足条件的x值最多有()个.A.1B.2C.3D.4解:由题意可得,当输入x时,3x﹣1=41,解得:x=14,即输入x=14,输出结果为41;当输入x满足3x﹣1=14时,解得x=5,即输入x=5,结果为14,再输入14可得结果为41,;同理:当输入9x﹣4时,3(9x﹣4)﹣1=41,即:27x﹣13=41,解得:x=2,当输入27x﹣13时,3(27x﹣13)﹣1=41,即:81x﹣40=41,解得:x=1,∵x为正整数,∴x的值可取1或2或5或14,故选:D.二.填空题(每题3分,共15分)11.若将一个圆等分成三个扇形,则其中一个扇形圆心角的度数为120°.解:三个圆心角为120°的扇形,可以拼成一个圆,因此将一个圆等分成三个扇形,则其中一个扇形圆心角的度数为360°÷3=120°,故答案为:120.12.举例说明代数式8a3的意义:如一个正方体的棱长是a,一个正方体的体积是a3,那么8个正方体的体积是8a3.解:如一个正方体的棱长是a,一个正方体的体积是a3,那么8个正方体的体积是8a3.故答案为:如一个正方体的棱长是a,一个正方体的体积是a3,那么8个正方体的体积是8a3.13.某公司近三年来的产品价格如下表所示(元/500克):年份201820192020产品单价(元/500克) 1.46 1.92 2.53该公司若根据上述信息制作统计图,并据此向物价部门申请涨价,你认为两幅图中,图2是该公司制作的.解:图1是从1.46元的基础上连续增长2次,远远超出了1.5元,达到了2.53元;图2是从1.46元的基础上连续增长2次,还没有达到5元,综上,该公司向物价部门申请涨价应选择2,故答案为:2.14.小王是丹尼斯百货负责A品牌羊毛衫的销售经理,一件A品牌羊毛衫的进价为600元,加价50%后进行销售.临近年末,小王发现还有积货,所以决定打折出售,结果每件仍获利120元,则A品牌羊毛衫应按8折销售.解:设A品牌羊毛衫应按x折销售,依题意有600×(1+50%)×0.1x=600+120,解得x=8.故A品牌羊毛衫应按8折销售.故答案为:8.15.如图1,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段长度是另外一条长度的2倍,则称点C是线段AB的“好点”.如图2,已知AB=16cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动;点Q从点B出发,以1cm/s 的速度沿BA向点A匀速运动,点P,Q同时出发,当其中一点到达终点时,运动停止.设运动的时间为t(s),当t=8或s时,Q为线段AB的“好点”.解:∵动点P运动速度快,∴动点P先到达终点,∴动点P到达终点需要16÷2=8(s),当到达8秒时,运动停止.①当点Q时AB中点时,AB=2AQ=2BQ,此时,AQ=BQ=12AB=8,∴t=8;②当AQ=2BQ时,BQ=AB=,∴t=;③当BQ=2AQ时,BQ=QB=,此时t=>8,不合题意,舍去;综上所述,t=8s或s.故答案为:8或.三.解答题(共55分)16.计算:﹣23÷4+|﹣3|×(﹣1)2020.解:原式=﹣8÷4+3×1=﹣2+3=1.17.在期末复习期间,悠悠碰到了这样一道习题:如图所示是一个正方体表面展开图,正方体的每个面上都写着一个整式,且相对两个面上的整式的和都相等.请根据展开图回答下列问题:(1)与A相对的面是D;与B相对的面是F;(填大写字母)(2)悠悠发现A面上的整式为:x3+2x2y+1,B面上的整式为:,C面上的整式为:,D面上的整式为:﹣2(x2y+1),请你计算:F面上的整式.解:(1)由正方体表面展开图的“相间、Z端是对面”可得,“A”与“D”是对面,“B”与“F”是对面,“C”与“E”是对面,故答案为:D,F;(2)由题意得,A+D=B+F,即(x3+2x2y+1)+[﹣2(x2y+1)]=()+F,所以F=x2y﹣1.18.某学校开展了主题为“我帮父母做家务”的实践活动,倡导学生心怀感恩、孝敬父母,在家多帮父母做家务.校学生会在七、八、九三个年级随机抽取了部分学生,就“平均每天帮父母做家务所用时长”进行了调查,过程如下:【收集数据】做家务所用时长t(分钟)级别:A:0≤t<10;B:10≤t<20;C:20≤t<30;D:30≤t<40;E:t≥40;通过调查得到的一组数据:DCCADABADBBEDDEDBCCEECBDEEDDEDBBCCDCEDDABDDCDDEDCE【整理数据】抽样调查50名学生帮父母做家务所用时长人数统计表做家务所用时长级别频数A:0≤t<104B:10≤t<208C:20≤t<3010D:30≤t<4018E:t≥4010【描述数据】(1)补全条形统计图;(2)图2是根据该校初中各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,若该校七年级共有400名学生,请你估计全校学生中帮父母做家务所用时长不低于半小时(包含半小时)人数约为多少?(3)根据本次实践活动主题,假如你是学生会中的一员,请你给全校同学发出一条倡议.解:(1)补全条形统计图如图1:(2)由题可知:帮父母做家务所用时长不低于半小时(包含半小时)人数为28人,所以×100%=56%.因为七年级总人数占全校总人数的40%,而七年级学生人数为400人,所以全校共有400÷40%=1000人,由样本中得到:帮父母做家务所用时长在半小时以上(包含半小时)的人数所占的百分比为56%,所以全校学生中帮父母做家务所用时长在半小时以上(包含半小时)人数约1000×56%=560人,答:全校学生中帮父母做家务所用时长在半小时以上(包含半小时)人数约560人;(3)感恩父母,从我做起,从身边小事做起(合理即可).19.请用自己的年龄编一道问题,设出未知数,列方程并解答.(题目中不能出现真实姓名)解:小明今年9岁,我的年龄比小明的年龄4倍少24,我的年龄多少?设我的年龄x岁,根据题意可得:x+24=9×4,解得x=12.故我的年龄是12岁.20.用火柴棒按图中的方式搭图形:按图示规律填空:图形标号①②③④⑤火柴棒根数5913a b(1)a=17,b=21;(2)按照这种方式搭下去,则搭第n个图形需要火柴棒的根数为4n+1;(用含n的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2021个图形需要的火柴棒根数.解:(1)按图示规律填空:图形标号①②③④⑤火柴棒根数59131721故答案为:17,21;(2)由(1)可得出规律:4n+1,即照这样的规律摆下去,搭第n个图形需要4n+1根火柴棒;故答案为:4n+1;(3)当n=2021时,4×2021+1=8085,所以第2021个图形需要的火柴棒8085根.21.如图,已知∠AOB=120°,△COD是等边三角形(三条边都相等,三个角都等于60°的三角形),OM平分∠BOC.(1)如图1,当∠AOC=30°时,∠DOM=15°;(2)如图2,当∠AOC=100°时,∠DOM=50°;(3)如图2,当∠AOC=α(0°<α<180°)时,求∠DOM的度数,请借助图3填空.解:因为∠AOC=α,∠AOB=120°,所以∠BOC=∠AOC﹣∠AOB=α﹣120°,因为OM平分∠BOC,所以∠MOC=∠BOC=﹣60°(用α表示),因为△COD为等边三角形,所以∠DOC=60°,所以∠DOM=∠MOC+∠DOC=(用α表示).(4)由(1)(2)(3)问可知,当∠AOC=β(0°<β<180°)时,直接写出∠DOM 的度数.(用β来表示,无需说明理由)解:(1)∵∠AOC=30°,∠AOB=120°,∴∠BOC=120°﹣30°=90°,∵OM平分∠BOC,∴∠COM=90°÷2=45°,∴∠MOD=60°﹣45°=15°.故答案为:15°.(2)∵∠AOC=100°,∠AOB=120°,∴∠BOC=120°﹣100°=20°,∵OM平分∠BOC,∴∠COM=20°÷2=10°,∴∠MOD=60°﹣10°=50°.故答案为:50°.(3)解:因为∠AOC=α,∠AOB=120°,所以∠BOC=∠AOC﹣∠AOB=α﹣120°,因为OM平分∠BOC,所以∠MOC=∠BOC=﹣60°(用α表示),因为△COD为等边三角形,所以∠DOC=60°,所以∠DOM=∠MOC+∠DOC=(用α表示).故答案为:,﹣60°,.(4)当∠AOC=β(0°<β<180°)时,∠DOM=.因为∠AOC=β,∠AOB=120°,所以∠BOC=∠AOC﹣∠AOB=β﹣120°,因为OM平分∠BOC,所以∠MOC=∠BOC=﹣60°,因为△COD为等边三角形,所以∠DOC=60°,所以∠DOM=∠MOC+∠DOC=.22.寒风凛凛、爱心涌动,临近传统佳节,我市某学校部分师生冒着严寒为50km外的夕阳红敬老院送去过节物资,并为老人们表演节目.学校司机小李开车以60km/h的速度带着师生和物资从学校出发,同时志愿者小王开车以90km/h的速度从敬老院出发,前去迎接小李车上的部分学生到敬老院给老人们表演节目,小王接到学生以后立刻返回敬老院(学生下车和上车的时间不计),学校司机小李开车行驶多长时间时两车相距5km?写出答案,并说明理由.解:①在两车相遇之前,设从出发到两车相距5km时的时间为t1h,由题可知:60t1+90t1+5=50.解得t1=;②在两车相遇之后到两车相距5km时,设当两车相遇时所需时间为xh,由题可知60x+90x=50,解得x=,设当两车相遇之后到两车相距5km时所需时间为t2h,由题可知:90t2﹣60t2=5.解得:t2=,所以此时学校司机小李开车行驶的时间为+=(h);③当小王回到敬老院,小李距离敬老院5km时,设小李行驶t3h两车相距5km,由题可知:60t3+5=50.解得:t3=,综上所述,学校司机小李开车行驶h或h或h时,两车相距5km.。
2020-2021学年郑州市七年级上学期期末数学试卷(附解析)
2020-2021学年郑州市七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.25.被除数扩大10倍,除数扩大100倍,商.A. 扩大10倍B. 缩小10倍C. 不变2.下列四个图形是如图的展开图的是()A.B.C.D.3.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A. 随机抽取该校一个班级的学生B. 随机抽取该校一个年级的学生C. 随机抽取该校一部分男生D. 分别从该校初一、初二、初三年级中各随机抽取10%的学生4.如图所示,所画出的数轴正确的是A. B.C. D.5.经过平面上的三点中的任两点可以画直线()A. 3条B. 1条C. 1条或3条D. 以上都不对6.已知∠1与∠2互为余角,若∠1=35°,则∠2的度数是()A. 55°B. 35°C. 145°D. 65°7.已知关于x的方程2x−m−5=0的解是x=−2,则m的值为()A. 9B. −9C. 1D. −18.使(ax2−2xy+y2)−(−x2+bxy+2y2)=5x2−9xy+cy2成立的a,b,c的值依次是()A. 4,−7,−1B. −4,−7,−1C. 4,7,−1D. 4,7,19.两个有理数的和是正数,积是负数,那么这两个有理数是()A. 其中绝对值大的数是正数,另一个是负数B. 其中绝对值大的数是负数,另一个是正数C. 绝对值相等的数D. 一个数是另一个数的相反数的倒数10.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A. 1条B. 2条C. 4条D. 8条二、填空题(本大题共5小题,共15.0分)11.代数式a×11应该写成______.212.2014年“原创新春祝福微博大赛”作品充满了对马年的浓浓祝福,主办方共收到原创祝福短信作品62800条,将62800用科学记数法表示为______ .13.一个正方体每一个面上都写有汉字,其一种平面展开图如图所示,那么在正方体中和“都”字相对的字是______.14.用长12cm的铁丝围成一个长是宽2倍的长方形,则长方形的面积是______.15.数轴上有A、B两点,若A表示−2且AB=3,则点B表示的数是.三、解答题(本大题共7小题,共55.0分)16.长方体的主视图与俯视图如图所示,这个长方体的体积是多少?17.目前节能灯在城市已基本普及,今年安徽省面向县级及农村地区推广,为响应号召,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)设商场购进甲种节能灯x只,求出商场销售完节能灯时总利润w与购进甲种节能灯x之间的函数关系式.(3)如何进货,商场销售完节能灯时获利13500元?18. 某中学兴趣小组为了解全校学生星期六和星期日在家使用手机的情况,兴趣小组随机抽取若干名学生,调查他们周末两天的使用手机时间,并根据调查结果绘制了下面两幅不完整的统计表和统计图.根据图表信息,解答下列问题:阅读时间(小时)频数(人)频率1≤x<290.152≤x<3a m3≤x<4180.34≤x<512n5≤x<660.1合计b1(1)填空:a=______,b=______,m=______,n=______:(2)将频数分布直方图补充完整;(3)这个中学的学生共有1200人,根据上面信息来估算全校学生中周末两天使用手机时间不低于4小时的学生大约有多少人?19. 高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?20. 如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+2|+(c−8)2=0,b=1,(1)a=______,c=______;(2)若将数轴折叠,使得A点与B点重合,则点C与数______表示的点重合.(3)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒4个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=______,AC=______,BC=______.用含t的代数式表示)(4)请问:3AB−(2BC+AC)的值是否随着时间t的变化而改变?若变化,请说明理由:若不变,请求其值.21. 已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,设线段NO的中点为P,线段PO−AM的值是否变化?若不变求其值.22. 如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,求∠MON的度数.。
七年级上册郑州市第七中学数学期末试卷试卷(word版含答案)
七年级上册郑州市第七中学数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为________,边长为________.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是________ .(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 ________.【答案】(1)5;;(2)(3)【解析】【解答】解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5,边长= ,(2)根据勾股定理可求出图中直角三角形的斜边长= ,然后根据线段和差关系求出A点表示的数是,(3)根据图可知:阴影部分的面积是6个小正方形的面积,即为6,所以拼成的新正方形的面积是6,则新正方形的边长= .【分析】(1)剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长;(2)直角三角形的最大的边就是斜边,根据勾股定理可以算出其斜边的长度是,根据同圆的半径相等得出表示-1的点到A点的距离是,利用线段的和差得OA=-1,从而得出A点所表示的数;(3)利用三角形的面积计算方法可以算出图中阴影部分的面积是6个小正方形的面积,剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长。
2.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【答案】(1)解:∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM= AC=5厘米,CN= BC=3厘米,∴MN=CM+CN=8厘米;(2)解:∵点M,N分别是AC,BC的中点,∴CM= AC,CN= BC,∴MN=CM+CN= AC+ BC= a;(3)解:①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤ 时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t= ;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t= ;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或 .【解析】【分析】(1)根据线段中点的定义得出CM,CN的长,进而根据MN=CM+CN即可算出答案;(2)方法同(1);(3)分类讨论:①当0<t≤5时,C是线段PQ的中点;②当5<t≤ 时,P为线段CQ的中点;③当<t≤6时,Q为线段PC的中点;④当6<t≤8时,C为线段PQ的中点;分别根据线段中点将线段分成的两条线段相等,列出方程,求解即可。
2020-2021郑州市初一数学上期末一模试题带答案
2020-2021郑州市初一数学上期末一模试题带答案一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个 B .两个C .三个D .四个3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 4.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 5.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( ) A .不赚不亏B .赚8元C .亏8元D .赚15元6.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中:①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( ) A .1个B .2个C .3个D .4个7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁8.用四舍五入按要求对0.06019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.06(精确到千分位) C .0.06(精确到百分位)D .0.0602(精确到0.0001)9.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯ B .62.410⨯ C .52.410⨯ D .42410⨯ 10.钟表在8:30时,时针与分针的夹角是( )度.A .85B .80C .75D .7011.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120°12.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③二、填空题13.某物体质量为325000克,用科学记数法表示为_____克.14.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…依此类推,则a 2020的值为___.15.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值 是 .16.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____. 17.如图,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC=_____cm .18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n19.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.已知:如图,平面上有A、B、C、D、F五个点,根据下列语句画出图形:(Ⅰ)直线BC与射线AD相交于点M;(Ⅱ)连接AB,并反向延长线段AB至点E,使AE=12 BE;(Ⅲ)①在直线BC上求作一点P,使点P到A、F两点的距离之和最小;②作图的依据是.22.已知在数轴上A,B两点对应数分别为-3,20.(1)若P点为线段AB的中点,求P点对应的数.(2)若点A以每秒3个单位,点B以每秒2个单位的速度同时出发向右运动多长时间后A,B两点相距2个单位长度?(3)若点A,B同时分别以2个单位长度秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.①经过t秒后A与M之间的距离AM(用含t的式子表示)②几秒后点M到点A、点B的距离相等?求此时M对应的数.23.探索练习:某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票是每张8元,学生票是每张5元,筹得票款6950元.问成人票与学生票各售出多少张?24.已知∠AOB=90°,OC是一条可以绕点O转动的射线,ON平分∠AOC,OM平分∠BOC.(1)当射线OC转动到∠AOB的内部时,如图(1),求∠MON得度数.(2)当射线OC转动到∠AOB的外时(90°<∠BOC<∠180°),如图2,∠MON的大小是否发生变化,变或者不变均说明理由.25.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)﹣2+(﹣65)×(﹣23)+(﹣65)×173【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,α∠表示,故本选项正确;C、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.3.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】【详解】解:由数轴上a,b两点的位置可知0<a<1,a<﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b<0,故选项A错;数轴上右边的数总比左边的数大,所以a﹣b>0,故选项B错误;因为a,b异号,所以ab<0,故选项C错误;因为a,b异号,所以ba<0,故选项D正确.故选:D.5.C解析:C【解析】试题分析:设盈利的进价是x元,则x+25%x=60,x=48.设亏损的进价是y元,则y-25%y=60,y=80.60+60-48-80=-8,∴亏了8元.故选C.考点:一元一次方程的应用.6.B解析:B【解析】【分析】根据图示,可得c<a<0,b>0,|a|+|b|=|c|,据此逐项判定即可.【详解】∵c<a<0,b>0,∴abc>0,∴选项①不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)>0,∴选项②符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴-a+b=-c,∴a-c=b,∴选项③符合题意.∵a cba b c++=-1+1-1=-1,∴选项④不符合题意,∴正确的个数有2个:②、③.故选B.【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.7.D解析:D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.B解析:B【解析】A.0.06019≈0.1(精确到0.1),所以A选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B选项的说法错误;C.0.06019≈0.06(精确到百分),所以C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D选项的说法正确。
【三套打包】精选郑州市七年级上数学期末考试一模模拟试题【含答案】
新七年级(上)数学期末考试试题及答案一.选择题(满分30 分,每小题 3 分)1.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6 B.5 C.4 D.32.若a>0,b<0,|a|<|b|,则a+b 的计算结果是()A.0 B.正数C.负数D.以上三种都有可能3.当x=﹣1 时,代数式3x+1 的值是()A.﹣1 B.﹣2 C.4 D.﹣44.如图,C 为线段AB 上一点,D 为线段BC 的中点,AB=20,AD=14,则AC 的长为()A.10 B.8 C.7 D.65.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7 个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元6.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+67.若平面内有点A、B、C,过其中任意两点画直线,则最多可以画的条数是()A.3 条B.4 条C.5 条D.6 条8.如图所示,直线AB⊥CD 于点O,直线EF 经过点O,若∠1=26°,则∠2 的度数是()A.26°B.64°C.54°D.以上答案都不对9.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y =0.其中一元一次方程的个数是()A.2 B.3 C.4 D.510.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式二.填空题(共8 小题,满分24 分,每小题3 分)11.已知|a+1|+(b﹣3)2=0,则a b=.12.已知单项式x a y3 与﹣4xy4﹣b 是同类项,那么a﹣b 的值是.13.若2a﹣b=1,则4a﹣2b+2=.14.某种商品的进价为300 元,售价为550 元.后来由于该商品积压,商店准备打折销售,但要保证利润率为10%,则该商品可打折.15.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,通过观察,用所发现的规律确定22017 的个位数字是.16.一个角的度数是35°28',则它的余角的度数为.17.计算| ﹣|+| ﹣|+| ﹣|﹣| ﹣|=.18.在扇形统计图中,其中一个扇形的圆心角是216°,则这部分扇形所表示的部分占总体的百分数是.三.解答题(共8 小题,满分66 分)19.(16分)(1)计算:(﹣1)3﹣×[2﹣(﹣3)2](2)计算:(﹣12)+(+30)﹣(+65)﹣(﹣47)(3)计算:39 ×(﹣12)(4)计算:(﹣1000)×(﹣﹣0.1)(5)化简:﹣4(a3﹣3b)+(﹣2b2+5a3)(6)化简:2a﹣2(﹣0.5a+3b﹣c)20.(8分)解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)(x﹣5)=3﹣(x﹣5)(3)﹣1=(4)x﹣(x﹣9)=[x+ (x﹣9)](5)﹣=0.5x+221.(6分)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.(7分)如图,直线A B、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE 22.的反向延长线.(1)求∠1,∠2,∠3 的度数;(2)判断OF 是否平分∠AOD,并说明理由.23.(6分)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.24.(7分)把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25 本.这个班有多少学生?25.(7分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72 套,每套减价3 元,但商店获得同样多的利润.求每套课桌椅的成本.26.(9分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018 年9 月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40 人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100 人,估计每周使用手机时间在2 小时以上(不含2 小时)的人数.参考答案一.选择题1.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6 B.5 C.4 D.3【分析】根据单项式的概念判断即可.解:x2,﹣m,0 是单项式,故选:D.【点评】本题考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.2.若a>0,b<0,|a|<|b|,则a+b 的计算结果是()A.0 B.正数C.负数D.以上三种都有可能【分析】利用异号两数相加的法则判断即可得到结果.解:∵a>0,b<0,|a|<|b|,∴a+b 的结果为负数.故选:C.【点评】此题考查了绝对值,有理数的加法,熟练掌握加法法则是解本题的关键.3.当x=﹣1 时,代数式3x+1 的值是()A.﹣1 B.﹣2 C.4 D.﹣4【分析】把x 的值代入解答即可.解:把x=﹣1 代入3x+1=﹣3+1=﹣2,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.4.如图,C 为线段AB 上一点,D 为线段BC 的中点,AB=20,AD=14,则AC 的长为()A.10 B.8 C.7 D.6【分析】先根据AB=20,AD=14 求出BD 的长,再由D 为线段BC 的中点求出BC 的长,进而可得出结论.解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D 为线段BC 的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.故选:B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7 个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元【分析】用4 个足球的价钱加上7 个篮球的价钱即可.解:买4 个足球、7 个篮球共需要(4m+7n)元.故选:A.【点评】此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.6.(3分)下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+6【分析】根据等式的性质2,A 方程的两边都乘以6,B 方程的两边都乘以4,C 方程的两边都乘以15,D 方程的两边都乘以6,去分母后判断即可.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.若平面内有点A、B、C,过其中任意两点画直线,则最多可以画的条数是()A.3 条B.4 条C.5 条D.6 条【分析】根据两点确定一条直线,判断即可.解:平面内有点A、B、C,过其中任意两点画直线,则最多可以画的条数是3 条,故选:A.【点评】此题考查了直线的性质:两点确定一条直线,熟练掌握直线的性质是解本题的关键.8.如图所示,直线AB⊥CD 于点O,直线EF 经过点O,若∠1=26°,则∠2 的度数是()A.26°B.64°C.54°D.以上答案都不对【分析】已知∠1,且∠DOF 与∠1 是对顶角,可求∠DOF,再利用∠DOF 与∠2 互余,求∠2.解:∵∠1=26°,∠DOF 与∠1 是对顶角,∴∠DOF=∠1=26°,又∵∠DOF 与∠2 互余,∴∠2=90°﹣∠DOF=90°﹣26°=64°.故选:B.【点评】此题主要考查了垂线的定义和对顶角的性质,难度不大.9.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y =0.其中一元一次方程的个数是()A.2 B.3 C.4 D.5【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.解:①是分式方程,故①错误;②0.3x=1,即0.3x﹣1=0,符合一元一次方程的定义.故②正确;③,即9x+2=0,符合一元一次方程的定义.故③正确;④x2﹣4x=3 的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x﹣6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0 中含有2 个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是 3 个.故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二.填空题(共8 小题,满分24 分,每小题 3 分)11.已知|a+1|+(b﹣3)2=0,则a b=﹣1 .【分析】根据非负数的性质求出a、b 的值,再将它们代入a b 中求值即可.解:∵|a+1|+(b﹣3)2=0,∴a+1=0,b﹣3=0,∴b=3,a=﹣1,则a b=(﹣1)3=﹣1.故答案为:﹣1【点评】本题主要考查了非负数的性质,解题的关键是掌握:几个非负数的和等于0,则每一个算式都等于0.12.已知单项式x a y3 与﹣4xy4﹣b 是同类项,那么a﹣b 的值是0 .【分析】根据同类项的定义进行计算即可.解:∵单项式x a y3 与﹣4xy4﹣b 是同类项,∴a=1,3=4﹣b,则b=1,∴a﹣b=1﹣1=0,故答案为:0.【点评】本题考查了同类项的定义,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.13.若2a﹣b=1,则4a﹣2b+2= 4 .【分析】利用整体思想直接求出4a﹣2b 的值,代入4a﹣2b+2 即可.解:∵2a﹣b=1,∴4a﹣2b=2(2a﹣b)=2×1=2.解得4a﹣2b+2=2+2=4.【点评】此题由已知条件不能求出a 和b 的值,但可根据整体思想求出4a﹣2b 的值,体现了整体思想在解题中的作用.14.某种商品的进价为300 元,售价为550 元.后来由于该商品积压,商店准备打折销售,但要保证利润率为10%,则该商品可打 6 折.【分析】可设商店可打x 折,则售价是550×0.1x=55x 元.根据等量关系:利润率为10% 就可以列出方程,解方程即可求解.解:设商店可打x 折则550×0.1x﹣300=300×10%,解得x=6.即商店可打6折.故答案为:6.【点评】本题考查一元一次方程的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.15.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,通过观察,用所发现的规律确定22017 的个位数字是 2 .【分析】先找出规律,求出2017÷4=504…1,即可得出答案.解:∵2017÷4=504…1,∴22017 的个位数字是2,故答案为:2.【点评】本题考查了尾数特征的应用,能根据已知找出规律是解此题的关键.16.一个角的度数是35°28',则它的余角的度数为54°32′.【分析】根据互为余角的两个角的和等于90°列式进行计算即可得解.解:180°﹣35°28′=54°32′.故答案为:54°32′.【点评】本题考查了余角和补角,解决本题的关键是熟记互为余角的和等于90°.17.计算| ﹣|+| ﹣|+| ﹣|﹣| ﹣|=0 .【分析】先依据绝对值的性质化去绝对值符号,再依据有理数的混合运算进行计算即可.解:| ﹣|+| ﹣|+| ﹣|﹣| ﹣|=﹣+ ﹣+ ﹣﹣(﹣)=﹣+ ﹣+ ﹣﹣+=0故答案为:0.【点评】本题主要考查了有理数的混合运算,在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.18.在扇形统计图中,其中一个扇形的圆心角是216°,则这部分扇形所表示的部分占总体的百分数是60% .【分析】用扇形的圆心角÷360°即可.解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.三.解答题(共8 小题,满分66 分)19.(16分)(1)计算:(﹣1)3﹣×[2﹣(﹣3)2](2)计算:(﹣12)+(+30)﹣(+65)﹣(﹣47)(3)计算:39 ×(﹣12)(4)计算:(﹣1000)×(﹣﹣0.1)(5)化简:﹣4(a3﹣3b)+(﹣2b2+5a3)(6)化简:2a﹣2(﹣0.5a+3b﹣c)【分析】(1)先算乘方与括号内的运算,再算乘法,最后算加减;(2)先将减法转化为加法,再根据加法法则计算即可;(3)利用分配律计算即可;(4)利用分配律计算即可;(5)(6)先去括号,再合并同类项即可.解:(1)(﹣1)3﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=;(2)(﹣12)+(+30)﹣(+65)﹣(﹣47)=﹣12+30﹣65+47=﹣77+77=0;(3)39 ×(﹣12)=(40﹣)×(﹣12)=﹣480+=﹣479 ;(4)(﹣1000)×(﹣﹣0.1)=﹣300+500﹣200+100=100;(5)﹣4(a3﹣3b)+(﹣2b2+5a3)=﹣4a3+12b﹣2b2+5a3=a3+12b﹣2b2;(6)2a﹣2(﹣0.5a+3b﹣c)=2a+a﹣6b+2c=3a﹣6b+2c.【点评】本题考查了整式的加减,整式加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.也考查了有理数的混合运算,掌握运算法则是解题的关键.20.(8分)解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)(x﹣5)=3﹣(x﹣5)(3)﹣1=(4)x﹣(x﹣9)=[x+ (x﹣9)](5)﹣=0.5x+2【分析】各方程整理后,去分母,去括号,移项合并,把未知数系数化为1,即可求出解.解:(1)去括号得:20﹣y=﹣1.5y﹣2,移项合并得:0.5y=﹣22,解得:y=﹣44;(2)去分母得:x﹣5=9﹣2x+10,移项合并得:3x=24,解得:x=8;(3)去分母得:3x+6﹣12=6﹣4x,移项合并得:7x=12,解得:x=;(4)去括号得:x﹣x+1=x+ x﹣1,去分母得:9x﹣x+9=3x+x﹣9,移项合并得:4x=﹣18,解得:x=﹣;(5)方程整理得:4x﹣2﹣=0.5x+2,去分母得:12x﹣6﹣5x﹣15=1.5x+6,移项合并得:5.5x=27,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.解:原式=x﹣2x+ y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6 .【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.(7分)如图,直线A B、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE 22.的反向延长线.(1)求∠1,∠2,∠3 的度数;(2)判断OF 是否平分∠AOD,并说明理由.【分析】(1)根据邻补角的定义,即可求得∠2 的度数,根据角平分线的定义和平角的定义即可求得∠3 的度数;(2)根据OF 分∠AOD 的两部分角的度数即可说明.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE 是∠BOC 的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF 平分∠AOD.【点评】此题综合考查了角平分线的定义、平角的定义和对顶角相等的性质.23.(6分)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3 时,原式=1×(﹣3)2=9.【点评】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.24.(7分)把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25 本.这个班有多少学生?【分析】可设有x 名学生,根据总本数相等和每人分3 本,剩余20 本,每人分4 本,缺25 本可列出方程,求解即可.解:设有x 名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45.答:这个班有45 名学生.【点评】本题考查了一元一次方程的应用,根据该班人数表示出图书数量得出等式方程是解题关键.25.(7分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72 套,每套减价3 元,但商店获得同样多的利润.求每套课桌椅的成本.【分析】每套利润×套数=总利润,在本题中有两种方案,虽然单价不同,但是总利润相等,可依此列方程解应用题.解:设每套课桌椅的成本x 元.则:60×(100﹣x)=72×(100﹣3﹣x).解之得:x=82.答:每套课桌椅成本82 元.【点评】列方程解应用题,重点在于准确地找出相等关系,这是列方程的依据.此题主要考查了一元一次方程的解法.26.(9分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018 年9 月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“ 手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40 人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为35%,圆心角度数是126度;(2)补全条形统计图;(3)该校共有学生2100 人,估计每周使用手机时间在2 小时以上(不含2 小时)的人数.(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360 即可得到结果;【分析】(2)求出3 小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2 小时以上(不含2 小时)的百分比乘以2100 即可得到结果.解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为:35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×=1344(人),则每周使用手机时间在 2 小时以上(不含2 小时)的人数约有1344 人.最新七年级(上)期末考试数学试题及答案一、选择题(本大题共14小题,共42.0分)1.的相反数是A. B. 6 C. D.2.大于-4.3且小于2的整数有A. 4个B. 5个C. 6个D. 7个3.数据2500000用科学记数法表示为()A. B. C. D.4.数轴上表示数12和表示数-4的两点之间的距离是()A. 8B.C. 16D.5.下列计算的结果中正确的是A. B.C. D.6.若|a|=1,|b|=4,且ab<0,则a+b的值为A. B. C. 3 D.7.某品牌电脑原价为x元,先降价y元,又降低20%,两次降价后的售价为A. x y元B. x y元C. x y元D. x y元8.如图所示的几何体的俯视图是A.B.C.D.9.如图,AB=1.6,延长AB至点C,使得AC=4AB,D是BC的中点,则AD等于A. B. C. 4 D.10.如图,AO⊥BO于点O,∠AOC=∠BOD,则∠COD等于A.B.C.D.11.如图,直线a∥b,c∥d,∠1=56°40′,则∠2等于A.B.C.D.12.已知∠2是∠1的余角,∠3是∠2的补角,且∠1=38º,则∠3等于A. B. C. D.13.如图,下列条件中能判断AB∥DC的是A. ∠ ∠B. ∠ ∠C. ∠ ∠D. ∠ ∠14.如图,一张地图上有A,B,C三地,B地在A地的东北方向,若∠BAC=103°,则C地在A地的A. 北偏西方向B. 北偏西方向C. 北偏西方向D. 西北方向二、填空题(本大题共4小题,共12.0分)15.若a-2b=-3,则代数式1-a+2b的值为______.16.如图,直线AB,CD交于点O,OE平分∠AOD,若∠1=36°,则∠BOE=_____度.17.如图,在四边形ABCD中,点E在AD的延长线上,若∠A=∠EDC,∠C=2∠B,则∠C=_____度.18.如图是一组有规律的图案,它们是由边长相同的正方形和等边三角形镶嵌而成,按照这样的规律继续摆下去,第n个图案有__________个三角形(用含n的代数式表示).三、计算题(本大题共1小题,共6.0分)19.计算(1);(2);(3).四、解答题(本大题共5小题,共40.0分)20.先化简,再求值.,其中,.21.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若这20筐白菜的进货价为每千克x元,售价为每千克y元(x<y),则出售这批白菜可获利润多少元?(用含x、y的代数式表示)(注:第(1)、(2)小题列出算式,并计算)22.如图,点D是∠AOB的角平分线OC上的任意一点.(1)按下列要求画出图形.①过点D画DE∥OA,DE与OB交于点E;②过点D画DF⊥OC,垂足为点D,DF与OB交于点F;③过点D画DG⊥OA,垂足为点G,量得点D到射线OA的距离等于_____mm(精确到1mm);(2)在(1)所画出的图形中,若∠AOB=nº,则∠EDF=____________度(用含n的代数式表示).23.如图,在下列解答中,填写适当的理由或数学式:(1)∵EB∥DC,(已知)∴∠DAE=∠__. (___________________________________)(2)∵∠BCF+∠AFC=180°,(已知)∴ ____∥___. (___________________________________)(3)∵ ____∥___,(已知)∴∠EFA=∠ECB . (___________________________________)24.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:①∠BAD=2∠F;②∠E+∠F=90°.注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)AD∥BC,理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠______,(____________________________ )∴AD∥BC(____________________________ )(2)AB与EF的位置关系是:_______________.∵BE平分∠ABC,(已知)∴∠ABE=∠ABC. (角平分线的定义)又∵∠ABC=2∠E, (已知),即∠E=∠ABC,∴∠E=∠_____. (_____________________________ )∴______∥_____ . (_____________________________ )答案和解析1.【答案】D【解析】【分析】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键, 依据相反数的定义求解即可.【解答】解:的相反数是.故选D.2.【答案】C【解析】【分析】本题考查了比较有理数的大小,可根据数轴把满足条件的数找出来即可.【解答】解:大于-4.3且小于2的整数有:-4,-3,-2,-1,0,1,一共有6个.故选C.3.【答案】C【解析】【分析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.由此即可解答此题.【解答】解:将2500000用科学记数法表示为2.5×106.故选C.4.【答案】C【解析】【分析】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键. 直接根据数轴上两点间的距离公式求解即可.【解答】解:∵|12-(-4)|=16,∴数轴上表示数12和-4的两点之间的距离的是16.故选C.5.【答案】D【解析】【分析】本题考查了合并同类项,利用系数相加字母和字母的指数不变是解题关键. 根据合并同类项,系数相加字母和字母的指数不变,可得答案【解答】解:A.不是同类项不能合并,故A错误;B.原式=4x,故B错误;C.原式=4x²,故C错误;D.原式=-2xy,故D正确.故选D.6.【答案】A【解析】【分析】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.7.【答案】A【解析】【分析】本题考查了列代数式,正确理解降低的百分率是关键.首先求得原价为m元,先降价n元后的价格,然后降低20%后的售价就是m-n元的1-20%倍.【解答】解:电脑原价为x元,先降价y元后的价格是x-y元,则又降低20%后的售价是:(x-y)(1-20%)=0.8(x-y).故选A.8.【答案】D【解析】【分析】本题考查了简单几何体的三视图,根据题意,从几何体上面看到的视图即为几何体的俯视图,可得答案.【解答】解:几何体的俯视图是故选D.9.【答案】C【解析】【分析】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.根据AC与AB 的关系,可得AC的长,根据线段的和差,可得BC的长,根据线段中点的性质,可得AD的长,再根据线段的和差,可得答案.【解答】解:由AC=4AB,AB=1.6,得AC=6.4,由线段的和差,得BC=AC-AB=6.4-1.6=4.8由点D是线段BC的中点,得BD=BC=×4.8=2.4,AD=AB+BD=1.6+2.4=4.故选C.10.【答案】B【解析】【分析】本题主要考查垂直的定义以及等量代换的应用.根据垂直的定义以及等量代换得到结论.【解答】解:∵∠AOC=∠BOD,∴∠AOB=∠COD,∵AO⊥BO,∴∠AOB=∠COD=90°.故选B.11.【答案】C【解析】【分析】本题考查了平行线的性质,解题时注意:运用两直线平行,内错角相等是解答此题的关键. 根据平行线的性质得到∠3=∠1,∠2+∠3=180°,即可得到结论.【解答】解:∵a∥b,∴∠3=∠1=56°40′,又∵c∥d,∴∠2=180°-∠3=180°-56°40′=123°20′ .故选C.12.【答案】B【解析】【分析】本题考查了余角和补角的知识,互余的两角之和为90°,互补的两角之和为180°,是需要我们熟练记忆的内容. 根据互余的两角之和为90°,互补的两角之和为180°,即可得出答案【解答】解:∠2=90°-38°=52°,∠3=180°-52°=128°.故选B.13.【答案】D【解析】【分析】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平. 根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【解答】解:A.∠1=∠3 ,可得BC∥AD;B.∠C+∠ADC=180º,可得BC∥AD;C.∠A=∠C,不能判定 AB∥DC;D.∠2=∠4 ,可得AB∥CD.故选D.14.【答案】A【解析】【分析】本题主要考查了方位角. 根据方向角,可得∠EFA=45º,根据角的和差得出∠DAC=∠BAC-∠DAB=103°-45º=58°,再根据方位角的概念可得答案.【解答】解:如图:∵B地在A地的东北方向,∴∠DAB=45º,∵∠BAC=103°,∴∠DAC=∠BAC-∠DAB=103°-45º=58°.∴C地在A地的北偏西58°方向 .故选A.15.【答案】4【解析】【分析】此题考查了代数式求值,利用了整体代入法,熟练掌握运算法则是解本题的关键,原式后两项提取-1变形后,将a-2b代入计算即可求出值.【解答】解:∵a-2b=-3,∴1-a+2b=1-(a-2b)=1-(-3)=4,故答案为4.16.【答案】108【解析】【分析】本题考查了对顶角的性质、角平分线定义的应用.由∠1=36°,根据对顶角相等求出∠DOB=36°,根据邻补角的定义得出∠AOD的度数,再根据角平分线定义求出∠DOE,再∠BOE=∠DOB+∠DOE相加即可.【解答】解:∵∠1=36°,∴∠DOB=∠1=36°,∴∠AOD=180-∠DOB=144º,∵OE平分∠AOD,∠DOE=∠AOD=72º.∠BOE=∠DOB+∠DOE=36º+72º=108º.故答案为108.17.【答案】120【解析】【分析】本题主要考查平行线的判定和性质.根据∠A=∠EDC得出DC∥AB,再根据平行线性质得出∠C+∠B=180°,最后根据∠C=2∠B可求出∠C.【解答】解:∵∠A=∠EDC,∴DC∥AB,∴∠C+∠B=180º,∵∠C=2∠B,∴∠C+∠C=180º.∠C=120º.故答案为120.18.【答案】3n+1【解析】【分析】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题. 由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.故答案为3n+1.19.【答案】解:(1)原式=+=-2(2)原式=+=-8+30-28=-6;(3)原式=+==(-1)××100=-24.【解析】本题主要考查有理数的混合运算.(1)先算乘除,后算加法;(2)先算乘方,再算第一个乘法,再用乘法分配律计算;(3)先算括号(括号里先算乘方,再算乘法,最后算加法),乘方,再算乘除.20.【答案】解:原式=4x²-2x²y-(2xy²-2x²y+3x²-xy²)=4x²-2x²y-xy²+2x²y-3x²=x²-xy².当,时,原式=.【解析】本题主要考查整式的加减以及代数式求值.先把原式化简,再把x、y的值代入计算.21.【答案】解:(1)最重的一筐超过2.5千克,最轻的差3千克,2.5-(-3)=5.5(千克),答:最重的一筐比最轻的一筐重5.5千克;(2)(-3)×1+(-2)×4+(-1.5)×2+3×0+1×2+2.5×8=-3-8-3+2+20=8(千克).答:20筐白菜总计超过8千克.;(3)(25×20+8)(y-x)=508(y-x)(元).答:出售这批白菜可获利润508(y-x)元.【解析】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.(1)根据最重的一筐与最轻的一筐相减即可;(2)将20筐白菜的重量相加计算即可;(3)将总质量乘以每千克的利润即可.22.【答案】解:(1)①②③如图1所示;③ 20(允许误差范围20±3);(2)(90-n) .【解析】【分析】本题主要考查平行线以及垂线的画法.(1)①按照平移的方法画出DE∥OA;②按照画垂线的方法,过点D画DF⊥OC,垂足为点D;③用直尺量下DG=20mm;(2)根据平行线的性质以及角平分线的定义解答.【解答】解:(1)按下列要求画出图形.①,②见答案;③ 20(允许误差范围20±3);(2)∵D是∠AOB的角平分线OC上的任意一点.∴∠AOD=∠AOB=nº,∵DE∥OA∴∠ODE=∠AOD=nº,∵DF⊥OC,∴∠ODF=90º最新人教版七年级(上)期末模拟数学试卷及答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣32.下列说法中错误的是()A.0既不是正数,也不是负数B.0是最小的整数C.0的相反数是0D.0的绝对值是03.下面的几何体中,主视图为圆的是()A.B.C.D.4.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图B.条形图C.直方图D.扇形图5.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1056.下列调查中,适合采用全面调查(普查)方式的是()A.了解成都电视台“教育在线”栏目的收视率B.了解某班同学数学成绩C.了解全国快递包裹产生包装垃圾的数量D.了解成都市七年级学生身高情况7.如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAMC.∠BAM=2∠CAM D.2∠CAM=∠BAC8.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021郑州市第七中学七年级数学上期末一模试卷带答案一、选择题1.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯2.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个 B .两个C .三个D .四个3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 4.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折 B .八五折C .八折D .七五折5.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.016.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯7.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 8.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 9.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( )A .2.897×106B .28.94×105C .2.897×108D .0.2897×10710.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)11.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是( )A .63B .70C .96D .105 12.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙)A .75︒B .105︒C .120︒D .125︒二、填空题13.若关于x 的一元一次方程12018x-2=3x+k 的解为x=-5,则关于y 的一元一次方程12018(2y+1)-5=6y+k 的解y=________. 14.若13a+与273a -互为相反数,则a=________.15.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.16.一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则()xyz 的值为___.17.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.18.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x 米,根据题意列方程为_____.19.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.20.已知关于x的一元一次方程1999(x+1)﹣3=2(x+1)+b的解为x=9,那么关于y的一元一次方程1999y﹣3=2y+b的解y=_____.三、解答题21.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)-1-0.500.51 1.5箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)若苹果每千克售价4元,则这15箱苹果可卖多少元?22.计算题(1)(3)(5)-+-(2)111 12+436⎛⎫⨯-⎪⎝⎭23.如图所示,已知∠BAC=∠EAD=90o.(1)判断∠BAE与∠CAD的大小关系,并说明理由.(2)当∠EAC=60o时,求∠BAD的大小.(3)探究∠EAC与∠BAD的数量关系,请直接写出结果,不要求说明理由.24.某校组织七年级师生旅游,如果单独租用45座客车若干辆,则好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加旅游的人数.(2)已知租用45座的客车日租金为每辆250元,60座的客车日租金为每辆300元,在只租用一种客车的前提下,问:怎样租用客车更合算?25.如图,直线SN为南北方向,OB的方向是南偏东60°,∠SOB与∠NOC互余,OA 平分∠BON.(1)射线OC的方向是.(2)求∠AOC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C . 【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.3.A解析:A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】2180000的小数点向左移动6位得到2.18, 所以2180000用科学记数法表示为2.18×106, 故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.A解析:A 【解析】 【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可. 【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x⨯=+ 解得:x=9.答:该商品的打9折出售。
故选:A. 【点睛】本题考查一元一次方程的应用——应用一元一次方程解决销售问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.B解析:B 【解析】 【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可. 【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03. ∵44.9不在该范围之内,∴不合格的是B . 故选B .6.B解析:B 【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x=- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.8.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:Q 单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m,n的值是解题的关键.9.A解析:A【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将2897000用科学记数法表示为:2.897×106.故选A.考点:科学记数法—表示较大的数.10.D解析:D【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律.11.C解析:C【解析】【分析】设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=967,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.12.D解析:D【解析】【分析】【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角.故选D.【点睛】本题考查角的计算.二、填空题13.-3【解析】【分析】先把x=-5代入x-2=3x+k求出k的值再把k代入(2y+1)-5=6y+k解方程求出y值即可【详解】∵关于x的一元一次方程x-2=3x+k的解为x=-5∴-2=-15+k解得解析:-3【解析】【分析】先把x=-5代入12018x-2=3x+k求出k的值,再把k代入12018(2y+1)-5=6y+k,解方程求出y值即可.【详解】∵关于x的一元一次方程12018x-2=3x+k的解为x=-5,∴52018-2=-15+k,解得k=122013 2018,∴12018(2y+1)-5=6y+1220132018, 解得y=-3. 故答案为-3 【点睛】本题考查了一元一次方程的解及解一元一次方程,使等式两边成立的未知数的值叫做方程的解,熟练掌握一元一次方程的解法是解题关键.14.【解析】根据题意列出方程+=0直接解出a 的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a ﹣7=0合并同类项得:3a ﹣4=0化系数为1得:a ﹣=0故答案为解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0, 合并同类项得:3a ﹣4=0, 化系数为1得:a ﹣43=0, 故答案为43. 15.两点确定一条直线【解析】【分析】根据直线的公理确定求解【详解】解:答案为:两点确定一条直线【点睛】本题考查直线的确定:两点确定一条直线熟练掌握数学公理是解题的关键解析:两点确定一条直线 【解析】 【分析】根据直线的公理确定求解. 【详解】解:答案为:两点确定一条直线. 【点睛】本题考查直线的确定:两点确定一条直线,熟练掌握数学公理是解题的关键.16.【解析】【分析】正方体的表面展开图相对的面之间一定相隔一个正方形根据这一特点确定出相对面再根据相对面上的两个数字互为倒数解答【详解】正方体的表面展开图相对的面之间一定相隔一个正方形x 与是相对面y 与2解析:18-【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数字互为倒数解答. 【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“13”是相对面, “y”与“2”是相对面, “z”与“-1”是相对面,∵各相对面上所填的数字互为倒数,∴()xyz =18-.【点睛】此题考查正方体相对两个面上的文字,解题关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.17.99【解析】(+()+()+25×4=-1+100=99故答案为99解析:99 【解析】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99. 故答案为99.18.2x ﹣2×15=340×2【解析】【分析】设这时汽车离山谷x 米根据司机按喇叭时汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离列出方程求解即可【详解】设按喇叭时汽车离山谷x 米根据题意列方程解析:2x ﹣2×15=340×2 【解析】 【分析】设这时汽车离山谷x 米,根据司机按喇叭时,汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离,列出方程,求解即可. 【详解】设按喇叭时,汽车离山谷x 米, 根据题意列方程为 2x ﹣2×15=340×2. 故答案为:2x ﹣2×15=340×2. 【点睛】本题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系,列方程.19.100【解析】【分析】设进价是x 元则(1+20)x =200×06解方程可得【详解】解:设进价是x元则(1+20)x=200×06解得:x=100则这件衬衣的进价是100元故答案为100【点睛】考核知解析:100【解析】【分析】设进价是x元,则(1+20%)x=200×0.6,解方程可得.【详解】解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.【点睛】考核知识点:一元一次方程的应用.20.【解析】【分析】令x=y﹣1后代入(x+1)﹣3=2(x+1)+b可得:y﹣3=2y+b由题意可知y﹣1=9【详解】解:令x=y﹣1后代入(x+1)﹣3=2(x+1)+ b可得:y﹣3=2y+b该方程解析:【解析】【分析】令x=y﹣1后代入1999(x+1)﹣3=2(x+1)+b可得:1999y﹣3=2y+b,由题意可知y﹣1=9.【详解】解:令x=y﹣1后代入1999(x+1)﹣3=2(x+1)+b,可得:1999y﹣3=2y+b,该方程的解为x=9,∴y﹣1=9,∴y=10,故答案是:10.【点睛】此题考查一元一次方程的解.解题的关键是理解一元一次方程的解的定义,注意此题涉及换元法,整体的思想.三、解答题21.(1)2.5;(2)1216【解析】【分析】(1)最重的一箱苹果比标准质量重1.5千克,最轻的一箱苹果比标准质量轻1千克,则两箱相差2.5千克;(2)先求得15箱苹果的总质量,再乘以4元即可.【详解】解:(1)1.5﹣(﹣1)=2.5(千克).答:最重的一箱比最轻的一箱多重2.5千克;(2)(﹣1×1)+(﹣0.5×3)+0×4+0.5×3+1×2+1.5×2=﹣1﹣1.5+0+1.5+2+3=4(千克).20×15+4=304(千克)304×4=1216(元).答:这15箱苹果可卖1216元.【点睛】本题考查了正负数和有理数的加减混合运算,理解正负数的意义是解答此题的关键.22.(1)-8;(2)5【解析】【分析】(1)根据有理数的加法法则进行计算即可;(2)去括号,再计算加减即可.【详解】(1)(3)(5)8-+-=-;(2)11112+3425 436⎛⎫⨯-=+-=⎪⎝⎭.【点睛】本题考查有理数的运算,解题时需注意,若先去括号比较简单,则应先去括号,再计算加减.23.(1)∠BAE=∠CAD,理由见解析;(2)120︒;(3)∠EAC+∠BAD=180︒.【解析】【分析】(1)由同角的余角相等可得;(2)当∠EAC=60o时,可求得∠BAE=30o,从而得出∠BAD的度数.(3)根据第(2)得出的∠BAD的度数,可得出二者的数量关系.【详解】(1)解:∠BAE与∠CAD的大小关系是:∠BAE=∠CAD理由是:∠BAE+∠EAC=∠EAC+∠CAD=90o所以,由同角的余角相等可得,∠BAE=∠CAD .(2)解:当∠EAC=60o时,已知∠BAC=∠EAD=90o.所以,∠BAE=∠BAC-∠EAC=90o-60o=30o.因此,∠BAD=∠BAE+∠EAD=30o+90o=120o.(3)解:∠EAC 与∠BAD 的数量关系是:∠EAC+∠BAD=180o .【点睛】本题考查的知识点是角的计算,根据已知条件判断两角的大小并探究两角之间的数量关系,考验了学生探究归纳的能力.24.(1)该校参加社会实践活动有225人;(2)该校租用60座客车更合算.【解析】【分析】(1)设该校参加旅游有x 人,根据租用客车的数量关系建立方程求出其解即可;(2)分别计算出租用两种客车的数量,就可以求出租用费用,再比较大小就可以求出结论.【详解】解:(1)设该校参加旅游有x 人,根据题意,得:15_14560x x +=, 解得:x=225,答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆), 需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×250=1250(元), 租用60座客车需:4×300=1200(元), ∵1250>1200,∴该校租用60座客车更合算.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,有理数大小的比较的运用,解答时租用不同客车的数量关系建立方程是关键.25.(1)北偏东30°;(2)∠AOC =30°.【解析】【分析】(1)先根据余角的定义计算出∠NOC ,然后得到OC 的方向;(2)由OB 的方向是南偏东60°得到∠BOE=30°,则∠NOB=120°,根据OA 平分∠NOB 得到∠NOA=60°,再根据角的和差计算即可.【详解】解:(1)由OB 的方向是南偏东60°,可得∠SOB =60°,∵∠SOB 与∠NOC 互余,∴∠NOC =90°﹣∠SOB =30°,∴OC 的方向是北偏东30°;故答案为:北偏东30°;(2)∵OB 的方向是南偏东60°,∴∠BOE =30°,∴∠NOB=30°+90°=120°,∵OA平分∠BON,∴∠NOA=12∠NOB=60°,∵∠NOC=30°,∴∠AOC=∠NOA﹣∠NOC=60°﹣30°=30°.【点睛】本题考查了方向角:方向角是从正北或正南方向到目标方向所形成的小于九十度的角.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度,若正好为45度,则表示为正西(东)南(北).。