动量守恒定律及应用练习题

合集下载

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。

动量守恒定律的综合应用练习及答案

动量守恒定律的综合应用练习及答案

1.如图所示,以质量m=1kg 的小物块(可视为质点),放置在质量为M=4kg 的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v ₀=2m/s 向左匀速运动。

在长木板的左侧上方固定着一个障碍物A ,当物块运动到障碍物A 处时与A 发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s ²。

(1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s(2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m ,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2(3)要使物块不会从长木板上滑落,长木板至少为多长?2m2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B 放在斜面上,开始时A,B 之间的距离为1米,B 与C 的距离为0.6米,现将A B 同时由静止释放.已知A 、B 与轨道的动摩擦因数分别为√3/5和√3/2 ,A 、B 质量均为m ,g 取10m/s²,设最大静摩擦力等于滑动摩擦力,A 、B 发生碰撞时为弹性碰撞。

物体A,B 可以看作是质点,不计在斜面与平面转弯处的机械能损失,则(1)经过多长时间滑块A,B 第1次发生碰撞. 1s(2)滑块B 停在水平轨道上的位置与C 点儿的距离是多少?m 1033.如图所示,光滑的轨道固定在竖直平面内,其O 点左边为水平轨道,O 点右边的曲面轨道高度h 等于0.45米,左右两段轨道在O 点平滑连接.质量m=0.10kg 的小滑块a 由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg 的小滑块b 发生碰撞,碰撞后现小滑块a 恰好停止运动,取重力加速度g=10m/s²,求(1)小滑块a 通过O 点时的速度大小3m/s (2)碰撞后小滑块b 的速度大小1m/s(3)碰撞后碰撞过程中小滑块a 、b 组成的系统损失的机械能。

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

(物理)物理动量守恒定律练习题20篇含解析

(物理)物理动量守恒定律练习题20篇含解析

(2)若入射氦核以 v0=3×107m/s 的速度沿两核中心连线方向轰击静止氮核。反应生成的氧 核和质子同方向运动,且速度大小之比为 1:50。求氧核的速度大小。
【答案】(1)吸收能量,1.20MeV;(2)1.8×106m/s
【解析】
(1)这一核反应中,质量亏损:△m=mN+mHe-mO-mp=14.00753+4.00387-17.00454-1.00815=-
考查了动量守恒定律的应用名师点睛要使两车不相撞甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同以甲车球与乙车为系统由系统动量守恒列出等式再以球与乙车为系统由系统动量守恒列出等式联立求解形滑板n滑板两端为半径的14圆弧面
(物理)物理动量守恒定律练习题 20 篇含解析
一、高考物理精讲专题动量守恒定律
【答案】 vB 4m / s hp 0.75m
【解析】
试题分析:(i)B 球总地面上方静止释放后只有重力做功,根据动能定理有
mB gh
1 2
mB vB 2
可得 B 球第一次到达地面时的速度 vB 2gh 4m / s (ii)A 球下落过程,根据自由落体运动可得 A 球的速度 vA gt 3m / s
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
由动量守恒得:2mV2=mv1(1 分)
损失的动能为:ΔE′=

(完整版)动量守恒定律习题及答案

(完整版)动量守恒定律习题及答案

动量守恒定律及答案一.选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统,动量守恒B.枪和车组成的系统,动量守恒C.因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量守恒D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零2.静止的实验火箭,总质量为M,当它以对地速度为v0喷出质量为△m的高温气体后,火箭的速度为()A.B.﹣C.D.﹣3.据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。

最初静止的运载火箭点火后喷出质量为M的气体后,质量为m的卫星(含未脱离的火箭)的速度大小为v,不计卫星受到的重力和空气阻力。

则在上述过程中,卫星所受冲量大小为()A.Mv B.(M+m)v C.(M﹣m)v D.mv4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。

在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是()A.由于大锤不断的敲打,小车将持续向右运动B.由于大锤与小车之间的作用力为内力,小车将静止不动C.在大锤的连续敲打下,小车将左右移动D.在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒5.设a、b两小球相撞,碰撞前后都在同一直线上运动。

若测得它们相撞前的速度为v a、v b,相撞后的速度为v a′、v b′,可知两球的质量之比等于()A.B.C.D.6.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg•m/s,B球的动量是6kg•m/s,A球追上B球时发生碰撞,则碰撞后A、B 两球的动量可能为()A.p A=0,p B=l4kg•m/sB.p A=4kg•m/s,p B=10kg•m/sC.p A=6kg•m/s,p B=8kg•m/sD.p A=7kg•m/s,p B=8kg•m/s7.质量为m1=2kg和m2的两个物体在光滑的水平面上正碰,碰撞时间不计,其χ﹣t(位移﹣时间)图象如图所示,则m2的质量等于()A.3kg B.4kg C.5kg D.6kg8.如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1m/s、v2=2m/s的速度做相向运动,碰撞后两球粘在一起以0.5m/s的速度向左运动,则甲、乙两球的质量之比为()A.1:1B.1:2C.1:3D.2:19.质量为1kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图甲所示。

(完整word)动量守恒定律经典习题(带答案)

(完整word)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。

2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。

6kg,木块与小车之间的摩擦系数为0。

2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。

分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。

解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。

解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。

解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。

2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。

(完整版)动量守恒定律经典习题(带答案)

(完整版)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。

物理动量守恒定律练习题20篇及解析

物理动量守恒定律练习题20篇及解析

物理动量守恒定律练习题20篇及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

物理动量守恒定律练习题20篇

物理动量守恒定律练习题20篇

物理动量守恒定律练习题20篇一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.5.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第1次碰撞后两小球的速度;(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离.【答案】(1)043v 013v 方向均与0v 相同 (2)065L v (3)9L 【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒;(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+222201122111222m v m v m v =+ 整理得:210122m v v m m =+,212012m m v v m m -=+解得1043v v =,2013v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有11x v t =,22x v t =由几何关系知:122x x L += 整理得:065Lt v =(3)两小球第2次碰撞时的位置与挡板的距离:235x L x L =-= 以向左为正方向,第2次碰前A 的速度043A v v =,B 的速度为013B v v =-,如图所示.设碰后A 的速度为A v ',B 的速度为B v '.根据动量守恒定律和机械能守恒定律,有1212A B A B m v m v m v m v ''+=+; 2222121211112222A B AB m v m v m v m v ''+=+ 整理得:12212()2A B A m m v m v v m m -+'=+,21112()2B A B m m v m v v m m -+'=+解得:089A v v '=-,079B v v '=设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则B x x v t '''-=,A x x v t '''+=整理得:9x L '=6.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.7.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。

高考物理动量守恒定律的应用题20套(带答案)

高考物理动量守恒定律的应用题20套(带答案)

高考物理动量守恒定律的应用题20套(带答案)一、高考物理精讲专题动量守恒定律的应用1.距水平地面高5 m 的平台边缘放有一质量为1 kg 的木块,一质量为20 g 的子弹水平射入木块,并留在木块内,木块在子弹的冲击下掉落到水平地面上,测得木块落地位置到平台边缘的水平距离为3 m .不计空气阻力,重力加速度g =10 m/s 2.求: (1)子弹射入木块前瞬间的速度大小; (2)子弹射入木块的过程中所产生的内能. 【答案】(1)153 m/s (2)229.5 J 【解析】 【分析】(1)子弹射入木块过程,子弹和木块组成的系统动量守恒;子弹射入木块后与木块一起做平抛运动.据此列方程求解即可;(2)由能量守恒可知,系统减小的动能转化成内能.据此列方程即可求解. 【详解】(1)子弹射入木块后与木块一起做平抛运动,有212h gt =vt =x 解得:v =3 m/s子弹射入木块过程,子弹和木块组成的系统动量守恒,有 mv 0=(m+M)v 解得:v 0=153 m/s . (2)由能量守恒可知22011()22Q mv m M v =-+ 解得:Q =229.5 J .2.如图,水平地面上有一木板B ,小物块A (可视为质点)放在B 的右端,B 板右侧有一厚度与B 相同的木板C .A 、B 以相同的速度一起向右运动,而后B 与静止的C 发生弹性碰撞,碰前瞬间B 的速度大小为 2 m/s ,最终A 未滑出C .已知A 、B 的质量均为 1 kg ,C 的质量为 3 kg ,A 与B 、C 间的动摩擦因数均为0.4,B 、C 与地面间的动摩擦因数均为0.1,取重力加速度g = 10 m/s 2.求:(1)碰后瞬间B 、C 的速度;(2)整个过程中A 与C 之间因摩擦而产生的热量; (3)最终B 的右端与C 的左端之间的距离.【答案】(1)v B = -1 m/s v C = 1 m/s (2)Q = 0.5 J (3)d = 1.25 m 【解析】【分析】 【详解】(1)设B 、C 两板碰后速度分别为v B 、v C ,根据动量守恒定律和能量守恒定律有0B B B C C m v m v m v =+ ①2220111222B B B C C m v m v m v =+ ② 由①②式代入数据得v B = -1 m/s v C = 1 m/s ③(2)B 、C 两板碰后A 滑到C 上,A 、C 相对滑动过程中,设A 的加速度为a A ,C 的加速度为a C ,根据牛顿第二定律有1A A A m g m a μ= ④()12A A C C C m g m m g m a μμ-+= ⑤由⑤式可知在此过程中C 做匀速直线运动,设经时间t 后A 、C 速度相等,此后一起减速直到停下,则有0C A v v a t =- ⑥在t 时间内A 、C 的位移分别为02CA v v s t +=⑦ C C s v t = ⑧A 、C 间的相对位移:A C s s s ∆=- ⑨A 、C 之间因摩擦而产生的热量为:1A Q m g s μ=∆ ⑩ 由③④⑤⑥⑦⑧⑨⑩式代入数据得:Q = 0.5 J ⑪ (3)碰撞完成后B 向左运动距离s B 后静止,根据动能定理有22102B B B B m gs m v μ-=- ⑫设A 、C 一起减速到静止的位移为s AC ,根据动能定理有()()22102A C AC A C Cm m gs m m v μ-+=-+ ⑬ 最终B 的右端与C 的左端之间的距离 d = s C + s B + s AC ⑭由⑧⑫⑬⑭代入数据得:d = 1.25 m ⑮3.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv sh== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.4.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ;(2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t .【答案】(1)sin A a g θ=;0B a =(23) 【解析】 【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-=0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L =解得:A v =所用时间由:1v A at =,解得:1t =对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+解得:10,B v v ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x =解得:2t =从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+解得:t =5.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

动量守恒定律及其应用习题(附答案)

动量守恒定律及其应用习题(附答案)

动量守恒定律及其应用习题(附答案)1. 如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg·m/s,则(A)A.左方是A 球,碰撞后A 、B 两球速度大小之比为2:5B.左方是A 球,碰撞后A 、B 两球速度大小之比为1:10C.右方是A 球,碰撞后A 、B 两球速度大小之比为2:5D.右方是A 球,碰撞后A 、B 两球速度大小之比为1:102. 有一则“守株待兔”的古代寓言,设兔子的头部受到大小等于自身重量的打击时,即可致死.假若兔子与树桩作用时间大约为s 2.0,则若要被撞死,兔子奔跑的速度至少为()/102s m g =( C ) A.s m /1 B.s m /5.1 C.s m /2 D.s m /5.23. 向空中抛出一手榴弹,不计空气阻力,当手榴弹的速度恰好是水平方向时,炸裂成a 、b 两块,若质量较大的a 块速度方向仍沿原来的方向,则( CD ) A.质量较小的b 块的速度方向一定与原速度方向相反 B.从炸裂到落地这段时间内,a 飞行的水平距离一定比b 的大 、b 两块一定同时落到水平地面aD.在炸裂过程中,a 、b 两块受到的爆炸力的冲量大小一定相等4. 两木块A 、B 质量之比为2∶1,在水平地面上滑行时与地面间的动摩擦因数相同,则A 、B 在开始滑行到停止运动的过程中,滑行的时间之比和距离之比( AD ) A.初动能相同时分别为1∶2和1∶2 B.初动能相同时分别为1∶2和1∶4 C.初动量相同时分别为1∶2和1∶2 D.初动量相同时分别为1∶2和1∶45. 在我们日常的体育课当中,体育老师讲解篮球的接触技巧时,经常这样模拟:当接迎面飞来的篮球,手接触到球以后,两臂随球后引至胸前把球接住.这样做的目的是( D ) A.减小篮球的冲量 B.减小篮球的动量变化 C.增大篮球的动量变化 D.减小篮球的动量变化率6.在光滑的水平面上,有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为m/s kg 5A ⋅=P ,m/s kg 7B ⋅=P ,如图所示.若两球发生正碰,则碰后两球的动量增量A P ∆、B P ∆可能是( B ) A.m/s kg 3A ⋅=∆P ,m/s kg 3B ⋅=∆PB.m/s kg 3A ⋅-=∆P ,m/s kg 3B ⋅=∆PC.m/s kg 3A ⋅=∆P ,m/s kg 3B ⋅-=∆PD.m/s kg 10A ⋅-=∆P ,m/s kg 10B ⋅=∆P7. 材料不同的两个长方体,上下粘结在一起组成一个滑块,静止在光滑的水平面上.质量为m 的子弹以速度0v 水平射入滑块,若射击上层,子弹的深度为d 1;若射击下层,子弹的深度为d 2,如图所示.已知d 1>d 2.这两种情况相比较( B )A.子弹射入上层过程中,子弹对滑块做功较多B.子弹射人上层过程中,滑块通过的距离较大C.子弹射入下层过程中,滑块受到的冲量较大D.子弹射入下层过程中,滑块的加速度较小8. 如图所示,质量相同的两个小物体A 、B 处于同一高度。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

动量守恒定律 典型例题及练习题

动量守恒定律 典型例题及练习题

动量典型例题及练习【例题1】两块高度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =2kg ,m B =0.9kg 。

它们的下底面光滑,但上表面粗糙。

另有一质量m =0.1kg的物体C(可视为质点)以v C =10m/s 的速度恰好水平地滑动A 的上表面,物体C 最后停在B 上,此时B 、C 的共同速度v =0.5m/s,求(1)C 刚离开A 时,木块C 的速度(2)木块A 最终的速度为多大?﹡练习1、如图,在光滑水平面上的两平板车的质量分别为M 1=2kg 和M 2=3kg ,在M 1光滑的表面上放有一质量为m =1kg 的滑块,与M 1一起以5m/s 的速度向右运动,M 2静止。

M 1 与M 2 相撞后以相同的速度一起运动,但没有连接。

m 最后滑上M 2,并因摩擦停在上M 2 ,求两车最终的速度。

﹡练习2、如图所示,在一光滑的水平面上有两块相同的木板B 和C 。

重物A (可以视为质点),位于B 的右端,A 的质量是2kg ,B 、C 的质量都是10kg 。

现A 和B 以2m/s 的速度滑向静止的C ,B 和C 发生正碰,碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 之间的摩擦因数μ=0.2。

已知A 滑到C 的右端而未掉下。

试问: C 至少多长A 不会掉下?【例题2】如图所示,在光滑水平面上有A 、B 两辆小车,水平面的左侧有一竖直墙,在小车B 上坐着一个小孩,小孩与B 车的总质量是A 车质量的10倍。

两车开始都处于静止状态,小孩把A车以相对于地面的速度v 推出,A 车与墙壁碰后仍以原速率返回,小孩接到A 车后,又把它以相对于地面的速度v 推出。

每次推出,A 车相对于地面的速度都是v ,方向向左。

则小孩把A 车推出几次后,A 车返回时小孩不能再接到A 车?﹡练习3、甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M =30kg ,乙和他的冰车的质量也是30kg 。

动量守恒定律的应用练习题及答案

动量守恒定律的应用练习题及答案

动量守恒定律的应用练习题一、选择题1、M置于光滑平面上,上表面粗糙且足够长,木块m 以初速度v滑上车表面,则:A.m的最终速度为mv/(M+m)B.因车表面粗糙,故系统动量不守恒C.车面越粗糙,小车M获得动量越大D.m速度最小时,M速度最大2、光滑槽M1静止于光滑平面上,小球m从M右上方无初速度滑下,当滑到左方最高处时,M将:A.静止B.向左运动C.向右D.无法确定3、如图光滑水平面上有质量相等的A和B两个物体,B上装有一轻质弹簧,B原来静止,A以速度v正对B滑行,当弹簧压缩到最短时,有:A.A的速度减小到零B.A和B具有相同的速度C.此时B的加速度达到最大D.此时B的速度达到最大4、两船质量均为M静止于湖面上,a_上站有质量为M /2的人,现人以水平速度v从a跳到b船,再从b跳到a,多次来回跳跃,经n次后(不计水的阻力),ab两船(包括人):A.动量大小比为1:1 B.速率比为1:1C.若n为奇数,则速率比为3:2 D.若n为偶数,则速率比为2:35、如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,如果物体A被水平速度为vo的子弹射中并嵌在物体A中。

已知物体A的质量是B物体质量的3/4,子弹的质量是B物体质量的1/4,则弹簧被压缩到最短时速度为:A.v0/12 B.v0/8C.v0/4 D.2v0/36、在匀速前进的船上,分别向前、向后抛出质量相等的两物体,物体对地的速度大小相等,则抛出后,船的速度将:A.不变B.减小C.增大D.不能确定7、车静止在光滑的平面上,ab两人分别站在两端,当两人相向走动时:A.要车不动,ab速度必相等B.要车向左,必有速度v a>v bC.要车向左,必有动量P a>P b D.要车向左,必有动量P a<P b8、如图所示,原来静止在光滑水平面上的物体A、B,质量分别为m1、m2(m1≠m2),分别受到方向相反的水平力F1、F2的作用而发生相向运动。

若F1的作用时间为t1,F2的作用时间为t2,两物体相撞之前都已经撤去力两物体碰后共同向右运动,则:A.F1>F2B.t1>t2C.F1t1>F2t2D.F1t1/m1>F2t2/m29、如图所示,用轻质弹簧连着的A、B两物体放在光滑的水平面上,先将A向左推使弹簧处于压缩状态,而B 紧贴在竖直墙壁上,从某时刻起对A撤去推力,下列说法正确的是A.在弹簧恢复自然长时B物体开始离开竖直墙壁B.从撤去力到弹簧恢复自然长过程中两物体的动量之和保持不变C.在B物体离开竖直墙壁后,A、B两物体的动量之和守恒D.当弹簧伸长到最长时,A、B速度相等10、质量为M的玩具车拉着质量为m的小拖车在水平地面上以速度v匀速前进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律习题课教学目标:掌握应用动量守恒定律解题的方法和步骤能综合运用动量定理和动量守恒定律求解有关问题教学重点:熟练掌握应用动量守恒定律解决有关力学问题的正确步骤教学难点:守恒条件的判断,系统和过程的选择,力和运动的分析教学方法:讨论,总结;讲练结合【讲授新课】1、“合二为一”问题:两个速度不同的物体,经过相互作用,最后达到共同速度。

例1、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。

现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。

假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时:(1)两车的速度各为多少?(2)甲总共抛出了多少个小球?分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。

(1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。

设共同速度为V,则:M1V1-M2V1=(M1+M2)V(2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(-1.5)=225(kg·m/s)每一个小球被乙接收后,到最终的动量弯化为△P1=16.5×1-1.5×1=15(kg·m/s)故小球个数为2、“一分为二”问题:两个物体以共同的初速度运动,由于相互作用而分开后以不同的速度运动。

例2、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再接到木箱?(已知)解析:人每次推木箱都可看作“一分为二”的过程,人每次接箱都可以看作是“合二为一”的过程,所以本题为多个“一分为二”和“合二为一”过程的组合过程。

设人第一次推出后自身速度为V1,则:MV1=mV,人接后第二次推出,自身速度为V2,则mV+2mV=MV2(因为人每完成接后推一次循环动作,自身动量可看成增加2mV)设人接后第n次推出,自身速度为V n,则mV+2mV(n-1)=MV n ∴V n=(2n-1)V ,若V n≥V ,则人第n次推出后,不能再接回,将有关数据代入上式得n≥8.25,∴n=9。

练习:如图所示,甲乙两小孩各坐一辆冰撬,在水平冰面上游戏,甲和他乘的冰撬质量共为,乙和他乘的冰撬质量也是30kg。

游戏时,甲推着一个质量的箱子,共同以速度滑行,乙以同样大的速度迎面而来,为了避免相撞甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住。

若不计冰面的摩擦。

求甲至少以多大的速度(相对地面)将箱子推出才能避免相撞。

解析:由于摩擦,甲乙两人及冰撬,木箱系统动量守恒。

甲乙两人不相撞的临界条件是有相等的速度,设甲推木箱后,乙抓住木箱后速度为,取甲初速为正。

甲推出木箱速度为3、“三体二次作用过程”问题所谓“三体二次作用”问题是指系统由三个物体组成,但这三个物体间存在二次不同的相互作用过程。

解答这类问题必须弄清这二次相互作用过程的特点,有哪几个物体参加?是短暂作用过程还是持续作用过程?各个过程遵守什么规律?弄清上述问题,就可以对不同的物理过程选择恰当的规律进行列式求解。

例3、光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图所示。

B与C碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为 J时,物块A的速度是m/s。

ABC分析与解:本题是一个“三体二次作用”问题:“三体”为A、B、C三物块。

“二次作用”过程为第一次是B、C二物块发生短时作用,而A不参加,这过程动量守恒而机械能不守恒;第二次是B、C二物块作为一整体与A物块发生持续作用,这过程动量守恒机械能也守恒。

对于第一次B、C二物块发生短时作用过程,设B、C二物块发生短时作用后的共同速度为V BC,则据动量守恒定律得:(1)对于第二次B、C二物块作为一整体与A物块发生持续作用,设发生持续作用后的共同速度为V,则据动量守恒定律和机械能守恒定律得:m A V0+ (2)(3)由式(1)、(2)、(3)可得:当弹簧的弹性势能达到最大为E P=12J时,物块A的速度V=3 m/s。

4、“二体三次作用过程”问题所谓“二体三次作用”问题是指系统由两个物体组成,但这两个物体存在三次不同的相互作用过程。

求解这类问题的关键是正确划分三个不同的物理过程,并能弄清这些过程的特点,针对相应的过程应用相应的规律列方程解题。

例4、如图所示,打桩机锤头质量为M,从距桩顶h高处自由下落,打在质量为m的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为S,那么在木桩下陷过程中泥土对木桩的平均阻力是多少?分析与解:这是一道联系实际的试题。

许多同学对打木桩问题的过程没有弄清楚,加上又不理解“作用时间极短”的含意而酿成错误。

其实打木桩问题可分为三个过程:其一:锤头自由下落运动过程,设锤刚与木桩接Mm触的速度为V0,则据机械能守恒定律得:Mgh=,所以V0=。

其二:锤与木桩的碰撞过程,由于作用时间极短,内力远大于外力,动量守恒,设碰后的共同速度为V,据动量守恒定律可得:MV0=(M+m)V, 所以V=其三:锤与桩一起向下做减速运动过程,设在木桩下陷过程中泥土对木桩的平均阻力为f,由动能定理可得:(M+m)gS-fS=0-,所以f=(M+m)g+.练习:1、如图所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。

最初木板静止,A、B两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长, A、B始终未滑离木板。

求:CABV02V0(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B 所发生的位移;(2)木块A在整个过程中的最小速度。

解:(1)木块A先做匀减速直线运动,后做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等为止,设为V1。

对A、B、C三者组成的系统,由动量守恒定律得:解得:V1=0.6V0对木块B运用动能定理,有:解得(2)设木块A在整个过程中的最小速度为V′,所用时间为t,由牛顿第二定律:对木块A:,对木板C:,当木块A与木板C的速度相等时,木块A的速度最小,因此有:解得木块A在整个过程中的最小速度为:2、如图所示为三块质量均为m,长度均为L的木块。

木块1和木块2重叠放置在光滑的水平桌面上,木块3沿光滑水平桌面运动并与叠放在下面的木块2发生碰撞后粘合在一起,如果要求碰后原来叠放在上面的木块1完全移到木块3上,并且不会从木块3上掉下,木块3碰撞前的动能应满足什么条件?设木块之间的动摩擦因数为。

123V0解:设第3块木块的初速度为V0,对于3、2两木块的系统,设碰撞后的速度为V1,据动量守恒定律得:mV0=2mV1对于3、2整体与1组成的系统,设共同速度为V2,则据动量守恒定律得:2mV1=3mV2(1)第1块木块恰好运动到第3块上,首尾相齐,则据能量守恒有:由联立方程得:E k3=6μmgL(2)第1块运动到第3块木块上,恰好不掉下,据能量守恒定律得:由联立方程得:E k3=9μmgL故:二、课后检测1、小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,开始时AB与C都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C离开弹簧向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的是(BCD)A.如果AB车内表面光滑,整个系统任何时刻机械能都守恒B.整个系统任何时刻动量都守恒C.当木块对地运动速度为v时,小车对地运动速度为vD.AB车向左运动最大位移小于L2、质量为M的小车静止在光滑的水平面上,质量为m的小球用细绳吊在小车上O点,将小球拉至水平位置A点静止开始释放(如图所示),求小球落至最低点时速度多大?(相对地的速度)答案:3、如图所示,在光滑水平面上有两个并排放置的木块A和B,已知m A=0.5 kg,m B=0.3 kg,有一质量为m C=0.1 kg的小物块C以20 m/s的水平速度滑上A表面,由于C和A、B间有摩擦,C滑到B表面上时最终与B以2.5 m/s的共同速度运动,求:(1)木块A的最后速度;(2)C离开A时C的速度。

答案:(1)v A=2 m/s (2)v C=4 m/s4、如图所示甲、乙两人做抛球游戏,甲站在一辆平板车上,车与水平地面间摩擦不计.甲与车的总质量M=100 kg,另有一质量m=2 kg的球.乙站在车的对面的地上,身旁有若干质量不等的球.开始车静止,甲将球以速度v(相对地面)水平抛给乙,乙接到抛来的球后,马上将另一质量为m′=2m的球以相同速率v水平抛回给甲,甲接住后,再以相同速率v将此球水平抛给乙,这样往复进行.乙每次抛回给甲的球的质量都等于他接到的球的质量为2倍,求:(1)甲第二次抛出球后,车的速度大小.(2)从第一次算起,甲抛出多少个球后,再不能接到乙抛回来的球.答案:(1)v,向左(2)5个5 两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,。

另有一质量的滑块C,与AB间有摩擦,以的初速度滑到A的上表面,由于摩擦作用,C最后与B以相同的速度运动,求:(1)木块A的最大速度(2)滑块C离开A时的速度解析:当滑块C滑到A上时,AB一起加速,C减速,水平方向ABC系统动量守恒,当C滑到B上时A达最大速度,C在B上继续减速,B继续加速直到BC等速。

由动量守恒定律得得C刚滑到B上时速度为,B与A等速∴点评:系统动量守恒是系统内物体作用过程中任意时刻动量都与初动量相等。

6 一长为,质量为M的木板静止在光滑的水平面上,一质量为的滑块的初速度滑到木板上,木板长度至少为多少才能使滑块不滑出木板。

(设滑块与木板间动摩擦因数为)解析:滑块与木板相互作用系统动量守恒,滑块不从木板上滑出则滑块与木板有相等的末速度。

设末速度为,滑块滑动中位移为S,则木板滑动位移为,由动量守恒定律得①由动能定理得②③由①得④由②③得把④代入得点评:系统内物体间相互作用力对物体的冲量总是大小相等方向相反,相互作用力对两物体做功数值一般不等。

相关文档
最新文档