奥数精讲与测试 三年级 奥数 逆推问题

合集下载

奥数精讲与测试 三年级 逆推问题

奥数精讲与测试 三年级 逆推问题

奥数精讲与测试三年级逆推问题例题:1、某数如果先加上3,再乘以2,然后除以3,最后减去2,结果是10,问原数是多少?2、小明从家到学校去,先走了全长的一半后,又走了剩下路程的一半,这时离学校还有1千米,问小明家到学校共多少千米?3、做一道整数加法题时,一个学生把个位上的6看作9,把十位上的8看作3,结果得出和为123,问正确的和是多少?4、学生做纸花,第一天做了总数的一半多10朵,第二天又做了余下的一半多10朵,还有25朵没有做,问这批纸花一共有多少朵?5、某水果店运进一批苹果,运进苹果是原有苹果的一半,原有的西瓜卖掉一半以后,恰好与现有的苹果一样多。

已知原有苹果有800千克,问原有西瓜多少千克?6、小丽用4元钱买了一本《好儿童》,又用剩下钱的一半买了一本《儿童画报》,买钢笔又用去剩下钱的一半多一元,最后还剩4元钱,问小丽原来有多少钱?【练习】1、某数加上3,乘以5,再加上7,除以8 ,减去9,再用4乘,恰好等于100,这个数是__。

2、1997年是香港回归祖国的一年,张老师说:“把我的年龄乘以4后减去17,再乘以10后加上7,正好等于1997.请同学们算一算,我今年几岁?”张老师今年__岁。

3、百货商店出售彩色电视机,上午售出总数的一半又3台,下午售出余下的一半又7台,还剩4台,商店里原来有电视机__台。

4、芳芳在做一道加法题时,把一个加数个位上的5错写成了6,又把另一个加数十位上的8错写成1,最后得到的和是472,这题正确的答案是多少?5、一桶油,第一次用去全部的一半,第二次用去余下的一半,还剩12千克。

这桶油原来重__千克。

6、三只金鱼缸里共有15条金鱼,如果从第一只缸中取出2条金鱼放入第二缸,再从从第二缸中取出3条金鱼放入第三缸中,那么三只金鱼缸里的金鱼条数一样多。

原来第一只缸有金鱼__条,第二只缸有金鱼__条,第三只缸有金鱼__条。

7、甲、乙、丙三人共有图书120本,乙向甲借3本后,又送给丙5本,结果三人图书数量相等,甲、乙、丙三人原来各有___本图书。

小学三年级数学-《逆推》练习题

小学三年级数学-《逆推》练习题

《解决问题的策略——逆推》测试题
姓名:
1.一个数除以12,小明把12看成18,结果商是20,正确的商是()。

2.小明有一些邮票,送给小红12张,他又收集了18张,现在他身边正好50张。

他原来有多少张?
3.明把邮票的一半多2张送给小红,他还剩下50张。

原来有多少张?
4.小明和小红共有邮票50张,如果小明给小红8张,那么两人的邮票张相等,小明原来有多少张?
5.一根电线,电工第一次用去了全长的一半,第二次用去了剩下的一半,还剩16米,求这根电线原来长多少米?
6.修一条公路,第一天修了全长的一半少40米,第二天修了余下的一半多40米,还剩下60米,这条公路全长()米。

小学奥数各年级经典题解题技巧大全——逆推法

小学奥数各年级经典题解题技巧大全——逆推法

小学奥数各年级经典题解题技巧大全——逆推法小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。

有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。

由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。

解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了。

这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。

用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。

(一)从结果出发逐步逆推例1:一个数除以4,再乘以2,得16,求这个数。

(适于四年级程度)解:由最后再乘以2得16,可看出,在没乘以2之前的数是:16÷2=8在没除以4之前的数是:8×4=32答:这个数是32。

*例2:粮库存有一批大米,第一天运走450千克,第二天运进720千克,第三天又运走610千克,粮库现有大米1500千克。

问粮库原来有大米多少千克?(适于四年级程度)解:由现有大米1500千克,第三天运走610千克,可以看出,在没运走610千克之前,粮库中有大米:1500+610=2110(千克)在没运进720千克之前,粮库里有大米:2110-720=1390(千克)在没运走450千克之前,粮库里有大米:1390+450=1840(千克)答:粮库里原来有大米1840千克。

*例3:某数加上9后,再乘以9,然后减去9,最后再除以9,得9。

问这个数原来是多少?(适于四年级程度)解:由最后除以9,得9,看得出在除以9之前的数是:9×9=81在减去9之前的数是:81+9=90在乘以9之前的数是:90÷9=10在加上9之前,原来的数是:10-9=1答:这个数原来是1。

*例4:解放军某部进行军事训练,计划行军498千米,头4天每天行30千米,以后每天多行12千米。

小学奥数逆推法练习题及答案

小学奥数逆推法练习题及答案

小学奥数逆推法解题及答案(上)一、填空题1.某数加7,乘以5,再减去9,得51.这个数是 .2.篮中有许多李子,如果将其中的一半又1个给第一个人,将余下的一半又2个给第二个人,然后将剩下的一半又3个给第三个人,篮中刚好一个也不剩,篮中原来有个李.3.一个箱子里放着一些茶杯,几个小朋友从箱里往外拿茶杯,规则是每次总要拿出箱里的一半,然后又放回一个.按这样规则他拿了597次后,箱里剩2个杯,他原有个杯.4.蜗牛沿着10米高的柱子往上爬,每天从清晨到傍晚向上共爬5米,夜间下滑4米,像这样,从某天清晨开始,它天才能爬上柱的顶端.5.小明在一次数学考试时,把一个数除以3.75计算成乘以3.75,结果得337.5.则,这题的正确结果是 .6.一个数扩大3倍,再增加70,然后减少50,得80.这个数是 .7.学生问陈老师今年几岁,他笑着说:“把我的年龄减去4后,被7除,加上6后乘以5,刚好是半百,”则陈老师今年岁.8.冰柜里的鸡蛋,第一天拿走了一半多两个,第二天拿走了余下的一半多4个,这时刚好拿完,求原来有个.9.在做一道加法题时,小马虎把个位上的5看作3,把十位上的6看成了9,得出结果是210,正确的结果是 .10.一捆电线,第一次用去全长一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原来总长米.二、解答题11.池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池1塘的412.一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米13.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多10元,最后剩下125元,求他原来有多少元14.王大爷把他所有西瓜的一半又半个卖给第一个顾客,把余下的一半又半个卖给第二个顾客,……这样一直到他卖给第六个人以后,他一个西瓜也没有,求他原来有西瓜多少个———————————————答案——————————————————————一、填空题1. (51+9)÷5-7=52. 最后剩下的一半:0+3=3(个);第二次余下的:3×2=6(个);第一次余下的一半:6+2=8(个);第一次余下的:8×2=16(个);篮中数的一半:16+1=17(个);篮中原有:17×2=34(个).3. 2个.(不管怎样拿多少次)4. 6天.只要前5米爬到即可,最后一天爬上5米.(10-5)÷(5-4)=5(天)5+1=6(天)5. 24.337.5÷3.73÷3.75=24.6. 20.[(80+50)-70]÷3=207. (50÷5-6)×7+4=32(岁)8. (2+4×2)×2=20(个)9. 182.210-30+2=18210. 54米.15+8-10=12(米)12×2=24(米)全半:24+3=27(米)全长:27×2=54(米)二、解答题11. 第14天占21;第13天占41. 12. 39天长:40÷2=20(厘米);38天长:20÷2=10(厘米);37天长:10÷2=5(厘米);36天长:5÷2=2.5(厘米).13. [(125+10)×2+5]×2=550(元)14. 第七个人:0个;第六个人:(0.5+0)×2=1(个);第五个人:(1+0.5)×2=3(个);第四个人:(3+0.5)×2=7(个);第三个人:(7+0.5)×2=15(个);第二个人:(15+0.5)×2=31(个);第一个人:(31+0.5)×2=63(个);一共有:(63+0.5)×2=127(个).递推法解题(下)一、填空题1.将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.则这个数是 .2.李白提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原有斗酒.3.甲、乙两个车站共停135辆汽车,如果从甲站开36辆到乙站,从乙站开45辆到甲站,这时乙站车是甲站的1.5倍.乙原来停辆车.4.农业站有一批化肥,第一天卖出一半又多15吨,第二次卖出余下的一半多8吨,第三次卖出180吨,正好卖完,这批化肥原来有吨.5.四个袋子共有168粒棋子,小红过来一看,把棋子作如下的调整,把丁袋调3粒到丙袋,丙调6粒到乙袋,乙又调6粒到甲袋,甲袋调2粒到丁袋,这时,四个袋子的棋子一样多,乙袋原来有粒棋子.6.一筐桔子,把它四等分后多一个,取走3份又一个,剩下的四等分后又剩一个,再取走3份又一个,剩下的四等分又剩一个,则原来至少有个桔子.7.袋子里有若干个球,小华每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球,则,袋中原来共有个球.8.3÷7的小数点后面第1999位上的数是 .9.已知A,B,C,D四数之和为45,且A+2=B-2=C×2=D÷2,则,这四个数依次是 .10.两个小于1000的质数之积是一个偶数,这个偶数最大可能是 .二、解答题11.有26块砖,兄弟俩拿去挑,弟弟抢在前,刚摆好姿势,哥哥赶到了.哥哥看到弟弟挑得太多,从弟弟那里抢过了一半,弟弟不服,又从哥哥那里抢回一半,哥哥不肯,弟弟只好给哥哥5块,此时哥哥比弟弟多挑2块,问最初弟弟准备挑多少块12.批发站有若干筐苹果,第一天卖出一半,第二天运进450筐,第三天又卖出现有苹果的一半又50筐,还剩600筐,这个批发站原有多少筐.13.三人共有糖72粒,若甲给乙、丙各一些,使他们增加1倍.接着乙又给甲、丙各一些,使它们翻倍.最后丙也给甲、乙各一些,使他们翻倍.这时三人糖数相等,求三人原来各几粒14.袋子里有若干个球,小明每次拿出其中的一半,再放回一个,一共做了5次,袋中还有3个球,问原来袋中有几个球———————————————答 案——————————————————————一、填空题1. (100×4+20-112)÷4=772. 87斗第三次见花前应有一斗; 第三次遇店前应有2121=÷(斗); 第二次见花前应有211121=+(斗); 第二次遇店前应有432211=÷(斗); 第一次见花前应有431141=+(斗); 第一次遇店前应有872431=÷(斗). 3. 甲:45辆;乙:90辆.把后来甲站所停汽车的辆数看为“1”的倍数,则乙站所停的是1.5倍,则“135”辆就是2.5倍,这样甲站后来有:135÷2.5=54(辆)乙站后来有:54×1.5=81(辆)甲原有:54+36-45=45(辆)乙原有:81+45-36=90(辆)4. 782吨.[(180+8)×2+15]×2=782(吨)5. 甲38粒;乙42粒,丙45粒,丁43粒.现各有168÷4=42(粒).甲:42-6+2=38乙:42-6+6=42丙:42-3+6=45丁:42-2+3=436. 85个.1×4+1=5(个)5×4+1=21(个)21×4+1=85(个)7. 34个.(3-1)×2=4(个)(4-1)×2=6(个)(6-1)×2=10(个)(10-1)×2=18(个)(18-1)×2=34(个)8. 43÷7=0.42857142……6位1999÷6=333 (1)所以是4.9. 设C数为M,则A=2M-2B=2M+2C=MD=4M9M=45,M=5∴A=8;B=12;C=5;D=20.10. 1994由于质数除2以外便都是奇数,奇数×奇数=奇数.所以其中一个质数定是2,1000以最大的质数是:997. 997×2=1994二、解答题11. 16块12+5=17(块)(26-17)×2=18(块)(26-18)×2=16(块)12. 1700筐[(600+50)×2-450]×2=1700(筐)13. 甲:39;乙:21;丙:12.14. 34个.。

小学奥数各年级经典题解题技巧大全——逆推法(3)

小学奥数各年级经典题解题技巧大全——逆推法(3)

小学奥数各年级经典题解题技巧大全——逆推法(3)(四)借助公式逆推例1:一个三角形的面积是780平方厘米,底是52厘米。

问高是多少?(适于五年级程度)解:计算三角形面积的公式是:面积=底×高÷2,逆推这个公式得:高=面积×2÷底所以,这个三角形的高是:780×2÷52=30(厘米)答略。

例2:求图17-5平行四边形中CD边的长。

(单位:厘米)(适于五年级程度)解:因为平行四边形的面积是:BC×AE=6×3=18平行四边形的面积也是:CD×AF=5CD所以,5CD=18CD=18÷5=3.6(厘米)答略。

例3:一个圆锥体的体积是84.78立方厘米,底面的直径是6厘米。

求它的高是多少。

(适于六年级程度)解:底面圆的直径是6厘米,则半径就是3厘米。

由V=1/3πR2h逆推得:h=V×3÷π÷R2因此,它的高是:84.78×3÷3.14÷32=254.34÷3.14÷32=9(厘米)答略。

(五)借助假设法逆推解:假设取出存款后没有买书橱,则150元是取出的钱的:取出的钱是:150×3=450(元)老张原有的存款是:450×4=1800(元)答略。

例2:供销社分配给甲、乙、丙三个乡若干吨化肥。

甲乡分得总数的一半少2吨,乙乡分得剩下的一半又多半吨,最后剩下的8吨分给丙乡。

问原来共有化肥多少吨?(适于六年级程度)解:假设乙乡分得剩下一半,而不是又多半吨,则乙乡分走后剩下的化肥是:乙乡分走前的化肥是:假设甲乡分得总数的一半,而不是少2吨,则甲乡分走化肥:17-2=15(吨)这15吨正好是原有化肥吨数的一半,所以原来共有化肥:15×2=30(吨)综合算式:答略。

(六)借助对应法逆推答略。

来源:小学奥数网。

三年级:逆推问题

三年级:逆推问题

专题三:逆推问题姓名逆推问题又称还原问题,即已知一个数量经过若干次变化之后的结果,寻求原始的数量。

解决这类问题,我们常常先找到结果,再沿着与原始数量变化相反的顺序,倒过来思考,用倒推法一步一步还原,最终推导出原始数据。

解题过程中,一般很少用综合算式(在现阶段,使用综合算式将使问题复杂化)。

对于简单的、变化不太复杂的逆推问题,可以直接列式一步步倒着推算,如果变化比较复杂,可借助列表和画图来帮助解决问题。

逆推问题逻辑性很强、逆向思考,有利于培养孩子的推理能力和发散思维。

1、一个数减去8,乘以4,除以5,再加上3,结果是27。

这个数是多少?2、有一根绳子,第一次用去全长的一半,第二次用去余下的一半多4米,还剩9米。

这根绳子全长多少米?3、小虎在做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最好所得的差是577,这题的正确答案应该是多少?4、食堂买进一批大米,第一天吃了全部的一半少28千克,第二天吃了余下的一半少8千克,最后剩下122千克。

这批大米共有多少千克?5、三颗树上停着24只鸟,如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树上飞5只鸟到第三棵树上去,那么三棵树上的小鸟的只数都相等。

第二棵树上原来停留了多少只鸟?6、有一堆乒乓球,把它分成四等份后剩下一个,取走三份又一个,剩下的再四等份后又剩下一个,再取走三份又一个,最后剩下的再四等份后还是剩下一个,问这堆乒乓球原来有多少个?7、甲、乙、丙、3人共有图书120本,乙向甲借3本后,又送给丙5本,结果3人图书数相等,问甲、乙、丙3人原来各有多少本图书?8、杰尼斯进了一家商店,花了所带钱的一半,然后又花了10元钱,又进了另一家商店,花了余下钱的一半之后,又花了10元钱,这时他没钱了.问杰尼斯进第一家商店之前带了多少钱?9、甲、乙、丙、丁4人共有玻璃弹子100颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗后,4人的弹子数相等,他们原来各有弹子多少颗?。

小学数学三年级奥数教案《奥数解析用倒推法解应用题》

小学数学三年级奥数教案《奥数解析用倒推法解应用题》

三年级奥数解析:用倒推法解应用题综述:有些应用题解法的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着分析推理。

追根究底,逐步靠拢所求,直到解决问题。

这种思考问题的方法,通常我们把它叫做倒推法。

故事为铺垫例题:张二痞平时好吃懒做,还一心想发财,一天,他依在一棵大槐树上正幻想着如何发财,突然来了一位白发苍的老人,看透了他的心事,笑了笑对他说:“小伙子,我知道你在想什么,想发财,我可以帮助。

”张二痞高兴得跳起来:“真的!你帮我发了才,一定感谢你。

”老人说:“我知道你身上有钱,但不多,这样吧,把你身上的钱往身后树洞里一放,我吹一口气,你的钱就会增加一倍,然后你给我32元作为报酬。

”小伙子照样办了,钱果然增长了一倍,他恳求老人再来一次,钱一放,吹口气,又增加一倍,付给老人32元………经过四次之后,张二痞从树洞里取出32元,付给了老人,他变得两手空空的了。

十分沮丧。

老人把钱还给张二痞说:“小伙子,要发财,还得靠自己勤劳。

”说完老人不见。

这是怎么一回事?张二痞原来有多少钱?我们用“○”表示小伙子原来的钱数,按照上面说的,就会得到下面的图示:从上图就会发现,如果顺着算是很是很难算出原来的钱数,如果我们从最后的结果,倒推回去,就很容易算出原来的钱数,如果给老人32元,最后一次从树洞里取出的钱就是32元,第4次放进去的钱就是32÷2=16元了,照这样倒推回去,就得到下面的图示:2-32 ×2-32(4) (3)(2) (1)这样倒着推算的结果是张二痞原来只有30元。

有些问题,从已知条件出发,向所求的问题顺着推算得到答案是很困难的,如果从应用题所叙述的叙述的最后结果出发,倒着向前一步一步分析推算,直到解决问题,解起来就容易得多,这种利用已知条件,按照题目叙述的过程向相反的方向倒着推理思考、解答问题的方法,通常叫做“倒推法”。

例1 小聪问小明:“你今年几岁?”小明回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4。

三年级数奥逆推问题

三年级数奥逆推问题

逆推问题(一)有一位老师,他的年龄乘以2,减去16后,再除以2加上8,结果恰好是38,这位教师今年多少岁?分析:这道题如果顺着思考,难以得出答案,如果从最后结果出发,利用已知条件一步一步倒着分析,就可以逐步靠拢答案。

这种思考方法称为逆推法。

解:(1)什么数加上8等于38?这个数是:38-8=30(2)什么数除以2等于30?这个数是:30×2=60(3)什么数减去16等于60?这个数是:60+16=76(4)什么数乘以2是76?这个数是:76÷2=38综合算式:[(38-3)×2+16]÷2=38答:老师今年38岁。

逆推问题(二)小虎做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577,这题的正确答案应该是多少?分析:被减数十位上的6变成9,使被减数增加90-60=30,差也增加了30;减数个位上的9错写成6,使减数减少了9-6=3,这样又使差增加了3。

这题可说成:正确的差加上30后又加上3得577,求正确的差。

解:577-(9-6)-(90-60)=544答:这题的正确答案应该是544。

逆推问题(三)某人去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还少10元,这时还剩125元,他原有存款有多少元?分析:这是一道典型的逆推问题,应先求出第一次取款后余下的钱,然后再求出全部存款。

解:(1)第一次取款后余下(125-10)×2=230(元)(2)全部存款是(230+5)×2=470(元)综合算式:[(125-10)×2+5]×2=470(元)答:他原有存款470元。

逆推问题(四)王叔叔第一次去买东西时,用去袋中钱的一半;然后去银行取款150元,取款后再去买衣服,又用去袋中钱的一半,剩下130元。

王叔叔第一次买东西时,袋中原有钱多少元?分析:采用逆推法可以先求出第一次余下的钱,然后再求出袋中原有的钱。

(完整版)奥数精讲与测试三年级奥数逆推问题

(完整版)奥数精讲与测试三年级奥数逆推问题

EET国际教育三年级数学第十讲逆推问题知识点,重点,难点逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,有后向前逆推计算。

逆推问题还被称为逆推法,主要包含一下两层意思。

1.要根据题意的叙述顺序,从最后一组数量关系逆推至第一组的数量关系,这就是逆推法中运算顺序的逆推含义。

2.原题相加,逆推用减;原题用减,逆推用加;原题相乘,逆推用除;原题用除,逆推用乘,这就是逆推法中计算方法的逆运算含义。

例1:某数如果先加上3,再乘以2,然后除以3,最后减去2,结果是10,问原数是多少?分析:我们用代替原数,则□经过一系列运算后是10,这一系列过程,我们可以用下图来表示:图1观察图1可以发现,从最后结果10往回推,第个横线上的数应该是10+2=12,第个横线上的数是12×3=36,第个横线上的数应该是36÷2=18,则就是18-3=15.例2:小明从家到学校去,先走了全场的一半后,又走了剩下路程的一半。

这时离学校还有1千米,问小明家到学校共多少千米?分析:如图2,采用倒退的方法,可以发现1千米是第一次剩下路程的一半,所以第一次剩下的路程就是1×2=2(千米),而第一次剩下路程2千米又是全程长的一半,所以全程长为2×2=4(千米)。

图2例3:做一道整数加法题时,一个同学把个位上的数6看是9,把十位上的数8看作3,结果得出和为123,问正确的和是多少?分析:学生把个位上的数6看是9,使和增加了9-6=3,把十位上的数8看作3,使和减少了80-30=50,将多增加的部分去掉,加上少加的部分,就能得出原来的和。

另外,根据题意可知原来的加数应为86,而这个学生误认为是39,所以只要将错误的和123减去错误的加数,得出原来的另一个加数,再重新加上正确的加数86,也能得出正确之和。

例4:小朋友做一批纸花,第一天做个总数的一半多10朵,第二天又做了余下的一半多10个,还有25朵没有做,问这批纸花一共有多少朵?图3分析:按照题目中的条件与图3,可推出如下算式25+10=35(朵),35×2=70(朵),70+10=80(朵),80×2=160(朵).例5:某水果店运进一批苹果,运进的苹果是原有苹果的一半,原有的西瓜卖掉一半以后,恰好和现在的苹果一样多。

三年级奥数系列4——逆推问题

三年级奥数系列4——逆推问题

三年级奥数系列4——逆推问题
例1、有一个数把它加上13以后,得到的和再乘以8,所得积减去28,再将差除以4,最后得43.问这个数是多少?
练习1、一个数加上29以后,得到的和再乘以6,所得积减去44,再将差除以4,最后得82,问这个数是多少?
练习2、一段花布,第一次用去3米,第二次用去剩下的一般后还剩6米。

问:这段花布原来长多少米?
练习3、小乌龟看小山羊胡子一大把,问小山羊:“你今年多大岁数了?”小山羊摸摸胡子,笑着说:“把我的年龄加上100,再乘以100,再减去100,再除以100,结果比100多1.”小乌龟吃惊地说:“原来你比我还小3岁”问:小乌龟今年多少岁?
练习4、小芳去超市购物,她先用去所带钱的一半多8元,又用去剩下钱的一半少8元,这时还剩20元。

问:小芳去超市到了多少钱?
练习5、登登看一本卡通连环画故事书,第一天看了全书的一半还多8页,第二天看了剩下的一半,还有13页没看,问:这本书共有多少页?
练习6、美美、登登、悠悠三人共有画片156张,美美给了登登8张,登登给了悠悠12张,悠悠给了美美9张,这时三人的画片一样多。

问:三人原来各有画片多少张?
练习7、王婆婆卖西瓜,第一次卖出西瓜的一半又半个,第二天又卖去了剩下西瓜的一半又半个,此时还有3个西瓜,问王婆婆原有多少个西瓜?。

三年级 第三讲 逆推问题

三年级 第三讲      逆推问题

三年级第三讲逆推问题姓名:
1、一个数加上3,减去5,除以6得16,这个数是多少?
2、一个数减去2487,小明在计算时错把被减数百位和十位上的数交换了,结果得8439,正确的结果是多少?
3、有一位老人,把他今年的年龄加上16,用5去除,再减去10,最后用10乘,恰好100岁,这位老人今年多少岁?
4、王老师把月收入的一半又20元留做生活费、,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费,他这个月的收入多少元?
5、三只金鱼缸里共有15条金鱼,如果从第一缸里取出2条金鱼放入第二缸,再从第二缸取出3条金鱼放入第三缸,那么三只金鱼缸里的金鱼就一样多。

求原来每只金鱼缸里各有多少条金鱼?
6、学校乒乓球队有三盒乒乓球。

王教练从第一盒中取出12只放入第二盒,又从第二盒中取出18只放入第三盒,再从第三盒中取出27只放入第一盒,这时三盒乒乓球都是80只,求原来三个盒子里各有多少只乒乓球?
7、甲、乙、丙三个组共有图书90本。

如果乙向甲组借3本后,又送给丙组5本,结果三个组所有图书刚好相等,问甲、乙、丙三个组原来有图书多少本?8、甲乙两个两仓共存粮95吨,从甲仓调8吨粮食到乙仓,又从乙仓调35吨粮食支援灾区,这时甲仓存粮吨数是乙仓的2倍。

求原来甲、乙两仓各存粮多少吨?。

奥数知识二十——逆推问题

奥数知识二十——逆推问题

奥数知识⼆⼗——逆推问题逆推问题逆推问题⼜称还原问题,即已知⼀个数量经过若⼲次变化之后的结果,寻求原始的数量。

这类问题就好⽐⼀团乱⿇,不管当初是怎样纠成⼀团的,要解开它,我们只能先找到线头,从最后⼀个疙瘩出发⼀步⼀步地,由外到内解开所有的疙瘩。

解决这类问题,我们常常先找到结果,再沿着与原始数量变化相反的顺序,倒过来思考,⽤倒推法⼀步⼀步还原,最终推导出原始数据。

解题过程中,⼀般很少⽤综合算式(在现阶段,使⽤综合算式将使问题复杂化)。

对于简单的、变化不太复杂的逆推问题,可以直接列式⼀步步倒着推算,如果变化⽐较复杂,可借助列表和画图来帮助解决问题。

逆推问题逻辑性很强、逆向思考,有利于培养孩⼦的推理能⼒和发散思维。

【题⽬】:有⼀根绳⼦,第⼀次⽤去全长的⼀半,第⼆次⽤去余下的⼀半多4⽶,还剩9⽶。

这根绳⼦全长多少⽶?【解析】:根据题意画出线段图:第⼀步倒推:从最后⼀步变化出发:“第⼆次⽤去余下的⼀半多4⽶,还剩9⽶”,所以剩下的9⽶不到余下的⼀半,⽐余下的⼀半少4⽶。

如上图所⽰,第⼀次⽤去后余下的另⼀半就是:9+4=13(⽶)。

这⼀步是解题的关键。

第⼆步倒推:已求出第⼀次⽤去后余下的⼀半是13⽶,因此第⼀次⽤去后余下:13×2=26(⽶)。

第三步倒推:第⼀次⽤去全长的⼀半,则第⼀次⽤去后余下的也是全长的⼀半,所以绳⼦全长为:26×2 =52(⽶)。

逆推问题逻辑性很强、逆向思考,有利于培养孩⼦的推理能⼒和发散思维。

【题⽬】:⼩虎在做⼀道减法题时,把被减数⼗位上的6错写成9,减数个位上的9错写成6,最好所得的差是577,这题的正确答案应该是多少?【解析】:推理过程:根据题意,假设被减数是四位数(也可以假设成三位数)列出竖式,未知数字⽤⽅框代替:从上式分析:先把减数个位上6还原成9,减数增加了:9-6=3,差应该减少3。

所以,当被减数不变,减数个位上6还原成9时,差为:577-3=574。

三年级数学逆推法讲解

三年级数学逆推法讲解

三年级数学逆推法讲解逆推法是数学中常用的一种解题方法,它是根据已知条件所得到的结果,通过逆向思维,逆向推导出问题的解答方法。

简单来说,逆推法就是从终点开始逆向推导,找到问题的起点和解决的途径。

逆推法在三年级数学中常常被用于解决某些数列问题。

数列是数学中一组按照一定规律排列的数字。

通过观察数列的规律,我们可以利用逆推法确定数列的公式或找出特定位置的数字。

以一个简单的示例来说明逆推法的应用。

假设有一个数列:2,4,6,8,10...,要求找出第10个数字是多少。

首先我们观察数列的规律,发现每个数字都是前一个数字加2得到的。

因此,我们可以逆向推导出数列的公式:第n个数字=第n-1个数字+2。

根据这个公式,我们可以计算出第10个数字=第9个数字+2。

继续使用公式,我们可以进一步计算出第9个数字=第8个数字+2,第8个数字=第7个数字+2,依次类推,直到第1个数字。

最后,代入已知条件第1个数字是2,依次计算,我们可以得到第10个数字的值。

逆推法的基本思路是先确定问题的末尾,然后逐步向前逆推直至找到问题的起点和解决的途径。

在实际解题中,我们还可以通过列出一个数表或借助辅助线条等方法,帮助我们更好地观察数列的规律和运用逆推法。

除了数列问题,逆推法还可以用于解决其他类型的问题。

比如,在一些关于时间的问题中,我们可以通过逆推法,从某个已知的时间点开始,逆推到起始时间或者求解时间间隔。

总结起来,逆推法是数学中一种常用的解题方法,尤其适用于解决数列问题。

通过观察数列的规律,从末尾开始逆向推导,可以找到数列的公式或求解特定位置的数值。

在数学学习中掌握逆推法,不仅能提高解题能力,还能培养逻辑思维和推理能力。

因此,逆推法是三年级数学中重要的学习内容之一。

希望以上对逆推法在三年级数学中的讲解能帮助到大家!。

(完整版)奥数精讲与测试三年级奥数逆推问题

(完整版)奥数精讲与测试三年级奥数逆推问题

EET国际教育三年级数学第十讲逆推问题知识点,重点,难点逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,有后向前逆推计算。

逆推问题还被称为逆推法,主要包含一下两层意思。

1.要根据题意的叙述顺序,从最后一组数量关系逆推至第一组的数量关系,这就是逆推法中运算顺序的逆推含义。

2.原题相加,逆推用减;原题用减,逆推用加;原题相乘,逆推用除;原题用除,逆推用乘,这就是逆推法中计算方法的逆运算含义。

例1:某数如果先加上3,再乘以2,然后除以3,最后减去2,结果是10,问原数是多少?分析:我们用代替原数,则□经过一系列运算后是10,这一系列过程,我们可以用下图来表示:图1观察图1可以发现,从最后结果10往回推,第个横线上的数应该是10+2=12,第个横线上的数是12×3=36,第个横线上的数应该是36÷2=18,则就是18-3=15.例2:小明从家到学校去,先走了全场的一半后,又走了剩下路程的一半。

这时离学校还有1千米,问小明家到学校共多少千米?分析:如图2,采用倒退的方法,可以发现1千米是第一次剩下路程的一半,所以第一次剩下的路程就是1×2=2(千米),而第一次剩下路程2千米又是全程长的一半,所以全程长为2×2=4(千米)。

图2例3:做一道整数加法题时,一个同学把个位上的数6看是9,把十位上的数8看作3,结果得出和为123,问正确的和是多少?分析:学生把个位上的数6看是9,使和增加了9-6=3,把十位上的数8看作3,使和减少了80-30=50,将多增加的部分去掉,加上少加的部分,就能得出原来的和。

另外,根据题意可知原来的加数应为86,而这个学生误认为是39,所以只要将错误的和123减去错误的加数,得出原来的另一个加数,再重新加上正确的加数86,也能得出正确之和。

例4:小朋友做一批纸花,第一天做个总数的一半多10朵,第二天又做了余下的一半多10个,还有25朵没有做,问这批纸花一共有多少朵?图3分析:按照题目中的条件与图3,可推出如下算式25+10=35(朵),35×2=70(朵),70+10=80(朵),80×2=160(朵).例5:某水果店运进一批苹果,运进的苹果是原有苹果的一半,原有的西瓜卖掉一半以后,恰好和现在的苹果一样多。

【参考文档】关于逆推问题奥数题及答案-范文word版 (1页)

【参考文档】关于逆推问题奥数题及答案-范文word版 (1页)

【参考文档】关于逆推问题奥数题及答案-范文word版
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
关于逆推问题奥数题及答案
欧欧、小美、奥斑马、龙博士四人每人有一筐苹果,如果欧欧拿出12个给小美,小美拿出14个给奥斑马,奥斑马拿出22个给龙博士,龙博士拿出16个给欧欧后,四人筐子里的苹果一样多,此时4筐苹果共有112个,求原来每人各有多少个苹果?
考点:逆推问题.
分析:根据“四人筐子里的苹果一样多,此时4筐苹果共有112个,”可得出此时每个筐子里有112÷4=28个苹果,据此可得欧欧原来有28+12-16=24个,小美原有28-12+14=30个,奥斑马原有28+22-14=36个,龙博士原有
28+16-22=22个,据此即可解答.
解答:解:112÷4=28(个)
所以欧欧原来有28+12-16=24(个)
小美原有28-12+14=30(个)
奥斑马原有28+22-14=36(个)
龙博士原有28+16-22=22(个)
答:原来欧欧有24个,小美有30个,奥斑马有36个,龙博士有22个.
点评:解决此类问题的关键是抓住最后得到的数量,从后先前进行推理,根据加减乘除的逆运算思维进行解答。

三年级奥数之典型问题倒推法

三年级奥数之典型问题倒推法

三年级奥数之典型问题倒推法Prepared on 22 November 2020三年级奥数之典型问题:倒推法【铺垫】猪八戒看到唐僧的篮子里有孙悟空化斋得来的果子,它偷偷的吃了其中的一半,还是觉得饿,又吃了剩下的一半,过了一会又吃了一半,最后偷偷的再吃了2个,他发现最后篮子里还剩下4个果子,他决定不吃了,那么猪八戒到底吃了多少果子呢【分析】这种题型的奥数题目或者应用题,在以后的4、5年级乃至初中都非常常见,我们常用线段法分析此类为题,线段分法是行程等问题的杀手锏!但是此道题目因为出现在小学三年级中,难度上不会太大,所以如果采用倒推法比较简单!解法一、线段直观的展示出当中的数量数量关系,所以:第三次之后剩下:4+2=6第二次之后剩下:6×2=12第一次之后剩下:12×2=24最初的果子数目:24×2=48所以猪八戒吃了:48-4=44解法二、利用倒推法或者我们常说的还原法:所以很快就可以得到最初的果子数目:(4+2)×2×2×2=48(个)所以猪八戒吃了:48-4=44(个)【拓展】一群蚂蚁搬家,原存一堆食物,第一天运出总数的一半少12克,第二天运出剩下的一半少12克,结果窝里还剩下43克,问蚂蚁原有食物_____克【分析】利用倒推法很快就有眉目了,但是请注意分析题意,关键是“运出总数的一半少12克”这句话怎么理解,有同学在这个问题上也许理解了,但是在进行倒推的时候又犯错了,该句话的意思是“还差12克到一半”,所以我们可以先运出一半然后再加上12克,理解了吗那么我们可以看到以下关系图:按照逆运算法则,原来乘法倒推过去就是除法,原来是加法倒推过去就是减法。

【提高】小亮拿着一包糖果,遇见好朋友A,把糖果分给了A一半少3块,过了一会又遇见好朋友B,把剩下的糖果的一半分给了他,后来遇到好朋友C,把这时手中所剩的糖果的一半多5块分给了C,这时小亮手中只有一块了,问在没有分给A之前,小亮那包糖总共多少块【分析】倒推法你会了吗关键是“糖果的一半多5块分给了C”这句话怎么理解,该句话的意思是“糖果的一半不够又拿出5块给C”,所以小亮的糖果剩下为原来一半然后再减去5。

三年级奥数还原法逆推法解

三年级奥数还原法逆推法解

解析
根据题意,小红先吃了2颗糖果,又吃了3颗糖果,最后 剩下5颗糖果。所以小红原来有的糖果数量是2颗+3颗+5 颗=10颗。
复杂加减法还原问题
例题1
甲、乙两人同时从A地出 发去B地,甲每分钟走60 米,乙每分钟走70米。经 过10分钟后,两人相距多 少米?
解析
根据题意,甲每分钟走60 米,乙每分钟走70米。经 过10分钟后,甲走了 60×10=600米,乙走了 70×10=700米。所以两 人相距的距离是700米600米=100米。
无法确定初始状态
在某些问题中,难以确定 问题的初始状态,增加了 解题的难度。
拓展延伸:更高年级奥数解题方法介绍
01
02
03
04
归纳法
通过观察和比较一类问题的特 殊情况,从而推断出这类问题
的一般性结论。
构造法
通过构造一个满足问题条件的 数学模型或实例,从而证明某
个结论或解决某个问题。
极端化思想
通过考虑问题的极端情况或特 殊情况,从而找到问题的解决
04
注意事项与误区提示
避免陷入思维定势
打破常规思维
在解决奥数问题时,避免被常规思维束缚,要敢于尝试新的 解题思路和方法。
多样化解题方法
鼓励孩子探索多种解题方法,培养他们的发散思维和创新能 力。
注意审题和细节处理
仔细阅读题目
在解题前,要确保充分理解题意,明确题目要求和限制条件。
关注细节信息
注意题目中的细节信息,如单位、范围等,这些细节可能会影响解题过程和结果 。
逆推法
从问题或结பைடு நூலகம்出发,逆向追溯, 寻找能使问题成立的充分条件, 最终归结到已知条件或已成立的 事实上。

小学三年级数学反推练习题

小学三年级数学反推练习题

小学三年级数学反推练习题小学三年级学习数学时,反推是一个重要的技巧,它帮助学生在问题中不断地思考、推理和解决。

在这篇文章中,我们将提供一些小学三年级数学的反推练习题,帮助学生在实际问题中灵活运用反推技巧。

一、数字推理1. 小明有一些糖果,他把其中的一半分给了小红,还剩下6个。

小明开始有多少个糖果?答案:小明开始有12个糖果。

2. 小明参加了一个比赛,全场共有8个参赛队伍。

最后他的名次比他的编号小1位,他获得了第几名?答案:小明获得了第7名。

3. 一个数的十分之一等于20,这个数是多少?答案:这个数是200。

二、图形推理4. 以下是一些图形,根据规律推理出缺失的图形。

答案:根据规律推理出缺失的图形。

三、物品推理5. 小明有一些水果,其中三分之一是苹果,剩下的是橙子。

如果小明有9个橙子,他有多少个苹果?答案:小明有3个苹果。

6. 在一个盒子中,有红、黄、蓝三种颜色的球。

红球的1/4和黄球的1/3加起来等于9个球,蓝球的数量是多少?答案:蓝球的数量是18个。

四、运算推理7. 小明的年龄是小红的2倍,小红的年龄是小刚的3倍。

小明、小红和小刚的年龄之和是36岁,他们各自的年龄分别是多少?答案:小明的年龄是12岁,小红的年龄是6岁,小刚的年龄是2岁。

8. 两个数的和是20,其中一个数是另一个数的3倍。

这两个数分别是多少?答案:这两个数分别是15和5。

五、时间推理9. 小明上学的时间比小红早15分钟,小红上学的时间是小华的2倍。

小华上学的时间是几点?答案:小华上学的时间是7点。

10. 上午10点离下午5点还有多少小时?答案:上午10点离下午5点还有7个小时。

六、逻辑推理11. 有5个人排成一排,A在B的左侧,C在E的右侧,B在D的左侧,E在D的右侧。

请推断A、B、C、D、E的相对位置。

答案:A在B的左侧,B在D的左侧,D在E的右侧,E在C的左侧。

12. 以下是一些文字描述,根据逻辑关系推断出缺失的信息。

答案:根据逻辑关系推断出缺失的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EET国际教育三年级数学第十讲逆推问题
知识点,重点,难点
逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,有后向前逆推计算。

逆推问题还被称为逆推法,主要包含一下两层意思。

1.要根据题意的叙述顺序,从最后一组数量关系逆推至第一组的数量关系,这就是逆推法中运算顺序的逆推含义。

2.原题相加,逆推用减;原题用减,逆推用加;原题相乘,逆推用除;原题用除,逆推用乘,这就是逆推法中计算方法的逆运算含义。

例1:某数如果先加上3,再乘以2,然后除以3,最后减去2,结果是10,问原数是多少?
分析:我们用代替原数,则□经过一系列运算后是10,这一系列过程,我们可以用下图来表示:
图1
观察图1可以发现,从最后结果10往回推,第个横线上的数应该是10+2=12,
第个横线上的数是12×3=36,第个横线上的数应该是36÷2=18,则就是18-3=15.
例2:小明从家到学校去,先走了全场的一半后,又走了剩下路程的一半。

这时离学校还有1千米,问小明家到学校共多少千米?
分析:如图2,采用倒退的方法,可以发现1千米是第一次剩下路程的一半,所以第一次剩下的路程就是1×2=2(千米),而第一次剩下路程2千米又是全程长的一半,所以全程长为2×2=4(千米)。

图2
例3:做一道整数加法题时,一个同学把个位上的数6看是9,把十位上的数8看作3,结果得出和为123,问正确的和是多少?
分析:学生把个位上的数6看是9,使和增加了9-6=3,把十位上的数8看作3,使和减少了80-30=50,将多增加的部分去掉,加上少加的部分,就能得出原来的和。

另外,根据题意可知原来的加数应为86,而这个学生误认为是39,所以只要将错误的和123减去错误的加数,得出原来的另一个加数,再重新加上正确的加数
86,也能得出正确之和。

例4:小朋友做一批纸花,第一天做个总数的一半多10朵,第二天又做了余下的一半多10个,还有25朵没有做,问这批纸花一共有多少朵?
图3
分析:按照题目中的条件与图3,可推出如下算式
25+10=35(朵),35×2=70(朵),70+10=80(朵),80×2=160(朵).
例5:某水果店运进一批苹果,运进的苹果是原有苹果的一半,原有的西瓜卖掉一半以后,恰好和现在的苹果一样多。

已知原有苹果800千克,问原有西瓜多少千克?
分析:如图4可一步步推算出运进苹果是800÷2=400(千克),现有苹果800+400=1200(千克),原有西瓜1200×2=2400(千克)。

图4
例6:小丽用4元钱买了一本《好儿童》,有用剩下的钱的一半买了一本《儿童画报》,买钢笔有用了剩下钱的一半多1元,最后还剩下4元钱,问小丽原来有多少钱?
图5
分析:如图5,用倒推法,第二次剩下的一半时4+1=5(元),第二次剩下5×2=10(元),第一次剩下10×2=20(元),原来有20+4=24(元)。

A 卷
1.某数加上3,乘以5,再加上7,除以8,减去9,再用4乘,恰好等于100,这个数是?
2.1997是香港回归祖国的一年,张老师说:“把我的年龄乘以4减去17,再乘以10后加上7,正好等于1997.请同学们算一算,我今年几岁?
3.仓库里有一批大米,第一天运出150袋,第二天又运出了180袋,第三天又运进了220袋后仓库里还剩下310袋大米,仓库里原有大米多少袋?
4.百货商店出售彩色电视机,上午售出总数的一半又3台,下午售出余下又7台,还剩4台。

商店里原来有电视机多少台?
5.有一袋苹果,甲取出其中的一半少1个,乙取出余下的一半多1个,丙又取出了余下的一半,这时还剩下1个。

如果这袋苹果共5元,那么每个苹果多少钱?
6.一辆公共汽车出发时,车上有一些乘客。

到了第一站,下去了2个乘客,上来了6个乘客;到了第二站,下去了3个乘客,上来了4个乘客。

这时车上共有28个乘客,这辆公共汽车出发时车上有车上有几个乘客?
7.小亮在做一道两部计算题时,把乘以3误以为除以3,接着又把加上4错计算为减去4,这样得到的结果是1,正确的结果应是多少?
8.一袋糖用去一半多50克,还剩下200克,问原来这袋糖中多少克?
9.三个金鱼缸共有15条金鱼,如果从第一只缸里取出3只放到第二只缸,在从第二只缸中取出3条金鱼放入第三只缸中,那么三只金鱼缸里的金鱼条数一样多,原来第一只缸有金鱼几条?第二只缸有金鱼几条?第三只缸有金鱼几条?
10.商店里原来有煤若干吨,第一天上午运出总数的一半,下午运出5吨;第二天上运出余下煤的一半,下午也运出5吨;第三天又运出剩下煤的一半,下午运出5吨。

这时仓库里的煤正好运完,这个仓库原有煤多少吨?
11.从第一堆梨中拿一半放入第二堆,拿35个放入第三堆,再拿出剩下的一半放入第四堆里,最后又吃掉第一堆中的2个梨,这时第一堆中还有48个,问原来第一堆中有梨多少个?
12.亮亮,宁宁,晶晶三人共带了30元钱,宁宁给亮亮2元,亮亮用去3元,晶晶给宁宁2元后三人的钱数正好相等,问原来亮亮有多少钱?宁宁有多少钱?晶晶有多少钱?
B 卷
1.某数加上8,除以8,除以8,结果还是8,这个数是几?
2.徒弟问师傅的年龄,师傅说:”把我的年龄加上5,除以3,再减去7就是你今年岁数的一半。

“已知徒弟今年20岁,师傅今年多少岁?
3.芳芳在做一道加法题时,把一个加数个位上的5错写成6,又把另一个加数十位上的8错写成1,最后得到的和是472,这时正确的答案应是多少?
4.一桶油,第一次用去全部的一半,第二次用去余下的一半,还剩下12千克,这桶油原来重多少千克?
5.某人去银行取款,第一次取了存款数的一半还多30元,第二次取了余下数的一半还少10元。

这时还剩115元,他原来存了多少钱?
6.有一捆绳子,第一次用去全部的一半少3米,第二次用去余下的一半多5米后绳子正好用完,原来这捆绳子长多少米?
7.妈妈买来一些橘子,小刚第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多一个,第三天吃掉第二天剩下的一半多1个,还剩一个橘子,妈妈买得橘子一共有多少个?
8.甲,乙两个仓库共存粮95吨,从甲仓库调8吨粮食到乙仓库,又从乙仓库调35吨粮食支援灾区,这时甲仓存粮多少吨?义仓库存粮多少吨?
9.甲,乙两篮水果,个数不等,从甲篮里拿出一些苹果放到乙蓝里,使乙篮的苹果个数增加一倍;再从乙蓝拿出一些苹果放回甲蓝,使甲篮里的苹果个数都是20只,原来甲蓝里有苹果多少只,乙蓝里有苹果多少只?
10.从第一堆梨中拿一半放入第二堆,拿35个放入第三堆,再拿出剩下的一半放入第四堆里,最后又吃掉第一堆中的2个梨,这是第一堆中还有48个,原来第一堆中有梨多少个?
11.小朋友分一堆苹果,先分它的一半多3个给年龄较小的,然后把其余的一半多2个给年龄较大的。

这时还剩4个苹果,问原来有苹果多少个?
12.甲,乙,丙三个同学共有铅笔30支,甲给乙6支,乙给丙5支,丙给甲2只。

这时三人的苹果数相等,问他们各有铅笔多少只?
C 卷
1.老爷爷说:“把我的年龄加上12,再用4除,然后减去15,再乘以10,恰好是100岁。

”这位老爷爷现在又多少岁?
2.甲,乙,丙三个共有图书120本,乙向甲借3本后,又送给丙5本,结果三个人图书数相等,甲,乙,丙三人各有图书多少本?
3.植树节学校要栽102棵树苗,小强和小明两人挣着去栽。

小强先拿了若干树苗,小明见小强拿的太多,就抢了10棵,小强不肯,用从小明那里抢回来6棵,这是小强拿的棵树是小明的2倍,最初小强拿了多少棵树苗?
4.百货商店出售彩色电视机,上午售出总数的一半多20台,下午售出余下的一半多15台,还剩75台。

店里原有彩色电视机多少台?
5.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?
6.今有苹果不知其数,如果把苹果数减去50,加上3,得数123,有多少个苹果?
7.有一个数除以4,再乘以5,减去35,加上10等于100,这个数是?
8.小文在计算两个数相加时,把一个加数个位上的1错误的当做7,把另一个加数十位上8错误的当做3,所得的和是1995.原来两数相加的正确答案是多少?
9.有砖26块,甲乙两人争着搬,甲看乙搬得太多,就抢过来一半,乙不服,又从甲哪儿抢走一半,甲不肯,乙只好再给甲5块,这时甲比乙多搬2块,问最初乙准备搬多少块?
10.有甲,乙两堆小球各若干个,按下面的规律挪动小球:第一次从甲堆拿出与乙堆同样多的小球放到乙堆,第二次从乙堆拿出与甲堆剩下的同样多的小球放到甲堆,。

如此挪动4次后,甲,乙两堆的小球恰好都是16个,问甲,乙两堆小球最初各是多少个?
11.有三堆棋子共48颗,第一次从第一堆中拿出与第二堆颗数相同的棋子放入第二堆,第二次又从第二堆中拿出和第三堆相同的颗数放入第三队,第三次从第三堆中拿出和这时第一堆颗数相同的棋子放入第一堆。

这时三堆棋子颗数相同,问原来每堆棋子各有多少颗?
12.有一堆糖果,慢慢将它三等分后还多一块糖,妈妈留下其中的一份和多出的那块糖,其余的分给了哥哥;哥哥把所得的糖三等分,也多出一块。

哥哥留下其中的一份和多出的那块糖,其余的分给了我;我也学他们将糖三等分,还是多出一块。

你知道妈妈开始至少有几颗糖吗?。

相关文档
最新文档