北京航空航天大学:飞机总体设计-雷达散射截面控制

合集下载

直升机雷达散射截面计算与试验验证

直升机雷达散射截面计算与试验验证

总第170期2012年第1期直升机技术H E L I C O PT E R T E C H N I Q U ET ot a l N o.170N O.12012文章编号:1673—1220(2012)01-025-06直升机雷达散射截面计算与试验验证武庆中1,招启军2(1.中国直升机设计研究所,江西景德镇333001;2.南京航空航天大学直升机旋翼动力学国家级重点实验室,江苏南京210016)摘要采用高频预估法,建立了一套基于“面元边缘”的直升机R C S计算方法,然后对某型直升机进行了R C S计算分析以及R C S测试。

最后,对比分析直升机机身雷达散射试验和理论计算结果,得出了一些减缩直升机R C S的外形设计特征。

结果表明:在设计要求许可的情况下,改变武器挂架长度比改变后掠角缩减R C S效果要明显;直升机头部鼻锥部位使用锥形结构,可以减小头向方位R C S;直升机主桨毅采用圆台形代替圆柱形,可以减缩头向和侧向方位的RC S。

关键词高频;直升机;R C S;减缩中图分类号:V218文献标识码:AT he C a l c ul at i on and t he E xper i m ent al V al i dat i on of t heR adar C r os s Se ct i on f or H el i copt erW U Q i ngzhon91,ZH A O Q i j un2(1.C hi na H el i c opt er R es ear ch and D evel opm ent I ns t i t ut e,Ji ngde zhen333001,C hi na;2.N at i ona l K ey Labor a t ory of R ot or cr af t A er om echani cs,N锄j i ng U ni ver s i t y of A er onaut i cs a nd A st ronaut i cs,N柚j i ng210016,C hina)A bs t r act T hi spa pe r s et upt he R C S cal cul at i on m et hod of hel i copt er bas ed o n sur f ace c el l ande dge adopt i ng t he hi gh—f r eque nc y pr edi ct i on m et hod.A nd t hen,t he R C S char act er i s t i cs of a cer—t ai n ar m ed hel i copt er w e r e cal cu l at ed and exper i m ent al r esea r ch o n ar m ed hel i copt er f us el age w asconduct ed.Fi na l l y,t he exper i m e nt a l r es ul t s w er e com par ed w i t h t he cal cul at i on r es ul ts,and s om es ha pe desi gn f eat u r es r e duc i ng t he R C S of hel i copt er ha ve been obt ai ne d.The concl usi on di spl a yedt hat cha ngi ng l engt h of t he w eapon gi rder com pared w i t h s w eepback angl e had bet t er ef f ect i n r educ—i ng R C S and us i ng t he t aper s ha pe coul d r e duce R C S i n t he head di r ect i on and t he hub adopt i ng t her ound de s k s ha pe com par ed w i t h t he col um n s ha pe coul d r e duc e R C S i n t he he a d di r ect i on and t hel at eral di re ct i on.K ey w or ds hi gh—f r e que ncy;hel i copt er;R C S;r e duci ng收稿日期:2012-01-06作者简介:武庆中(1976一),男,山西太谷人,硕士,高级工程师,主要研究向:直升机总体设计。

飞机雷达散射截面(rcs)公式

飞机雷达散射截面(rcs)公式

飞机雷达散射截面(rcs)公式
飞机雷达散射截面(Radar Cross Section,RCS)是描述目标对雷达波的散射能力的重要参数。

在雷达系统中,RCS公式是用来计算目标散射的电磁波能量的数学表达式。

RCS公式通常是基于目标的几何形状、材料特性和入射波的频率等因素进行建模的。

RCS公式可以用来预测目标在雷达系统中的探测性能,以及设计隐身技术和电磁干扰技术。

它对于军事和民用航空领域都具有重要意义。

RCS公式的一般形式如下:
RCS = σ A.
其中,σ表示目标的散射截面,A表示目标的有效面积。

散射截面σ是描述目标对入射电磁波的反射能力的参数,通常是一个与频率有关的函数。

目标的有效面积A则是描述目标在雷达波束中所占的实际面积。

RCS公式的具体形式会根据目标的几何形状和材料特性而有所
不同。

对于复杂的目标,RCS公式可能需要进行数值模拟或实验测
量来获得准确的数值。

在现代雷达技术中,研究人员不断努力寻求降低目标的RCS,
以实现隐身和减少雷达探测距离。

因此,RCS公式的研究和应用对
于提高雷达系统的性能具有重要意义。

总之,飞机雷达散射截面(RCS)公式是描述目标对雷达波的散
射能力的重要数学表达式,对于雷达技术和隐身技术具有重要意义。

北京航空航天大学:飞机总体设计-雷达散射截面控制

北京航空航天大学:飞机总体设计-雷达散射截面控制

2019/12/6
隐身技术
15
电子干扰机:ALQ99E
2019/12/6
隐身技术
16
隐身飞机
隐身飞机的产生和 发展是国际政治格局 的变化、飞机作战环 境的变化(尤其是雷 达和电子战技术的爆 炸性发展)及隐身技 术的进步等多种因素 综合的结果。
2019/12/6
隐身技术
17
隐身飞机的发展
从二十世纪六十年代开始,由于隐身概念的引入和 逐渐发展对传统的航空器的设计、制造和使用均带来 了巨大的变革。由于传统的隐身飞机如F-117和B-2过 分强调低可见性而忽略了可负担性,从而造成飞机的 使用和维护费用过高,降低了飞机的使用效率。从以 F-22为代表的第四代和X-45为代表的第五代隐身航空 器,通过提高隐身设计技术水平,在隐身与飞机性能 、可负担性等其它重要性能之间取得了最佳的折衷。
2019/12/6
隐身技术
武器装载性能
30
F-35飞机——洛克希德马丁
发展背景: ● 与F-22飞机进行“高低搭配”,更加 突出“低成本”的概念; ● 不寻求隐身性能的突破,而是把重点 放在减少生产和维护费用; ● 主要技术要求放在进一步降低隐身维 修需求上,使每次出动所需要的维修量 不到0.5工时。
光隐身 热隐身 声隐身 电隐身
2019/12/6
隐身技术
3
可见光控制--迷彩伪装
降低目标和背景的可见光反差
上下表面的迷彩不一致
向下看不见
向上看不清
2019/12/6
隐身技术
4
红外抑制--吸热冷却装置
降低目标和背景的热辐射反差 分形技术
I like this
3—5微米的喷流热辐射抑制 8--12微米的分形技术

飞机激光雷达散射截面测量技术研究

飞机激光雷达散射截面测量技术研究

飞机激光雷达散射截面测量技术研究作者:辛欣张晓娜周娜来源:《数字技术与应用》2013年第04期摘要:激光雷达散射截面(LRCS)对目标探测、识别和伪装等具有重要的意义。

本文依据激光雷达散射截面(LRCS)测量原理,结合飞机外形特征和测试需求,设计了一套新的测试系统,提出了一种新的测量方法及数据处理方法。

通过对某型飞机的实际测量,结果表明本文提出的新的测量方法和数据补偿方法对飞机的激光雷达散射界面具有很好的测量效果,为后续的外场目标LRCS测量提供了新的方法和思路。

关键词:激光雷达散射界面伪装测量精度补偿中图分类号:TN953 文献标识码:A 文章编号:1007-9416(2013)04-0102-02激光雷达散射截面(LRCS)是目标激光散射特性的一个重要参数,它能够全面反映激光波长、目标材料及粗糙度、目标几何结构形状等各种因素对目标激光散射特性的影响。

研究LRCS测量对目标特征提取、目标识别、激光雷达作用距离估算,以及建立目标激光雷达散射特性数据库等具有重要意义[1]。

对外场目标的LRCS测量通常采用比对测量法,而目前还较难客观准确的检测这种方法的LRCS测量精度。

本文在LRCS测量原理及方法、影响LRCS测量精度的主要因素、后续数据处理分析的基础上,针对飞机的外形特征,提出了一种对发射激光束整形的方法,并提出对不规则目标的LRCS参数测量数据进行补偿。

1 LRCS测量原理与方法2 测试系统及测试流程2.1 测试系统激光测量系统一般由激光发射系统、散射光探测系统以及测量控制与信息采集处理系统组成。

通过探测来自目标散射的激光功率,获得目标的有关特征信息。

测试系统的结构框图如图1所示。

本实验采用比对法测试飞机的LRCS,首先在目标位置处放置一块标准板,标准板的中心高度与飞机机头的高度一致,测量“标准板”的回波光功率,接着再测量目标的回波光功率,然后计算出目标的实际LRCS。

使用的“标准板”是一块2.4m×1.8m的漫反射屏,没有标定它的LRCS值,因此测量所得结果是相对于这块“标准板”的相对LRCS。

FEKO在雷达散射截面计算中的应用

FEKO在雷达散射截面计算中的应用

数字时代■贾云峰现代战争首先是电子高科技的对抗,而雷达探测与隐身技术又是其主要的对抗领域之一。

目标的雷达散射截面(RCS)是评判目标电磁隐身特性的一个重要指标,快速精确的目标RCS分析对于隐身设计人员具有重要的指导意义,尤其是飞机、导弹、舰船等的雷达目标特性分析引起了世界各国的高度重视。

根据问题的类型,RCS有以下不同工况:1、单站 VS 双站:RCS分为单站和双站两种类型,所谓单站RCS即为发射机与接收机为同一部雷达,双站RCS则为一发一收,分别用不同的雷达。

2、极化:其含义为入射电磁波的电场方向与扫描面的夹角。

根据扫描面的不同,通常分为水平极化和垂直极化,此处垂直和水平的含义都是相对于扫描面而言。

3、电小和电大:以入射电磁波波长计算的模型尺度称为电尺寸。

当模型的电尺寸较小时,通常属于电小问题,反之属于电大问题。

飞机、导弹、舰船等军用目标,它们的电尺寸往往非常巨大,因此分析其电磁散射特性对一般软件是一个巨大的挑战。

为了计算RCS,发展了一系列的计算方法,通常可分为:解析方法:典型的如MIE级数方法;积分方程方法:矩量法(MoM)及其快速算法(FMM,MLFMM等);微分方程方法:有限元(FEM)、时域有限差分(FDTD);高频方法:物理光学(PO)、几何光学(GO)、几何绕射理论(UTD)等。

解析方法只能处理极少数规则问题;传统的积分方程方法和微分方程方法可处理电小和中等电尺寸的问题,其中对于RCS问题,MOM及其快速算法精度高、未知量少,成为这一类方法的首选;高频方法适用于电尺寸巨大的问题,以有限的计算资源换取对工程设计有指导意义的结果。

各类方法各有利弊,适用对象不同,需要加以灵活运用、组合运用。

FEKO简介FEKO是针对天线与布局、RCS分析而开发的专业电磁场分析软件,从严格的电磁场积分方程出发,以经典的矩量法(MOM:Method Of Moment)为基础,采用了多层快速多级子(MLFMM:Multi-Level Fast Multipole Method)算法在保持精度的前提下大大提高了计算效率,并将矩量法与经典的高频分析方法(物理光学PO:Physical Optics,一致性绕射理论UTD:Uniform Theory of Diffraction)完美结合,从而非常适合于分析开域辐射、雷达散射截面(RCS)领域的各类电磁场问题。

北航飞行器设计与工程培养计划

北航飞行器设计与工程培养计划

北航飞行器设计与工程培养计划
一、课程简介
北京航空航天大学飞行器设计与工程专业培养的是以实际运用工程技
术为依据,采用理论加实践的方法,从事研发建设、管理和运行飞行器机
动性、结构和系统的高级人才,学生毕业后可从事飞行器设计、制造、性
能及军用、民用飞行器服务保障等工作。

二、专业方向
1.飞行器设计:研究、分析和解决飞行器机动性、结构和系统的设计
问题,包括飞行器总体设计及详细设计,飞行控制系统设计,飞行器系统
分析,飞行器材料及结构分析等。

2.飞行器制造:研究和实验飞行器加工、装配、检验、调试和运行等
技术,确保飞行器制造质量。

3.飞行器性能研究:研究飞行器的气动、动力和结构性能,优化飞行
器设计,并运用新技术和设备改善性能。

4.飞行器服务保障:研究飞行器的技术管理和维护,保证飞行器能够
安全可靠的使用,提高安全操作率。

三、课程设置
北京航空航天大学设计与工程专业培养计划的课程主要有:复变函数
与积分变换,动力学与控制,飞行力学,测控原理,结构工程,动力原理,自动控制,液压系统。

天线雷达散射截面分析与控制方法研究

天线雷达散射截面分析与控制方法研究

天线雷达散射截面分析与控制方法研究天线雷达散射截面分析与控制方法研究引言:天线雷达作为一种重要的电磁波传感器,广泛运用于信号探测、目标跟踪、导航引导等领域。

在雷达工作中,天线与目标的相互作用起着至关重要的作用。

天线雷达散射截面(RCS)是描述目标对雷达波束的散射因数,是评估目标探测性能的重要指标。

本文旨在探究天线雷达散射截面的分析与控制方法,为提高雷达探测性能提供参考。

一、天线雷达散射截面分析方法1. 电磁理论基础:在天线雷达散射截面分析中,电磁理论为基础。

电磁波在目标上的散射可通过多种理论模型进行描述,如几何理论、物理光学理论、细胞混合理论等。

这些理论模型可以根据目标的不同特征和尺寸进行选择和应用。

2. 基于数值方法的分析:数值方法在天线雷达散射截面分析中得到广泛应用。

常见的数值方法有时域积分方程法(TIE)、时域有限差分法(FDTD)等。

这些方法通过将散射问题转化为求解电磁场分布的数值计算问题,得到目标的散射截面分布。

3. 基于实验的分析:实验方法对于天线雷达散射截面分析同样具有重要地位。

通过构建适当的实验场景,使用天线雷达对目标进行实际测量,可以获得目标的散射截面数据。

实验方法能够提供较为真实的散射截面信息,但受限于实验条件和设备的精确度。

二、天线雷达散射截面控制方法1. 目标形态控制:目标的几何形状对于散射截面有着显著影响。

通过控制目标的几何形状,可以实现对散射截面的控制。

例如,采用平滑曲线或吸波材料等方法能够减小目标的散射截面。

2. 靶向控制:通过调整雷达波束的方向、天线的波束宽度等参数,可以实现对目标的靶向控制。

合理调整雷达系统的参数能够使目标的散射截面最小化并且最大化返回信号。

3. 吸波材料应用:吸波材料可以有效减小目标对雷达波的反射。

通过在目标表面涂覆吸波材料,能够降低目标的散射截面,提高其隐身性能。

4. 信号处理技术:通过利用信号处理技术,可以对雷达返回信号进行滤波、抑制杂波等操作,提高雷达探测的精确性和鉴别性。

隐身技术中的雷达截面预估与控制

隐身技术中的雷达截面预估与控制

隐身技术中的雷达截面预估与控制隐身技术中的雷达截面预估与控制概述:隐身技术是现代军事科技领域的一项重要研究方向,旨在降低飞机、舰船和导弹等作战平台在雷达频段的探测概率,提高其生存能力。

而雷达截面(Radar Cross Section,简称RCS)预估与控制是隐身技术中的一个关键环节,它涉及到了物理学、电磁学和工程学等多个领域的知识。

本文将从基本原理、影响因素以及控制方法等方面对雷达截面预估与控制进行探讨。

一、雷达截面预估的基本原理雷达截面是指目标在被雷达波照射时所反射、散射和透射出的电磁波功率与入射波功率之比。

预估雷达截面的基本原理是通过对目标的几何形状、材料特性和电磁波的相互作用进行建模与分析,计算得出目标的RCS值。

在预估过程中,常用的方法包括物理模型法、几何光学法、物理光学法和数值计算法等。

二、影响雷达截面的因素1. 几何形状:目标的几何形状是影响雷达截面的最主要因素之一。

边缘形状的曲率、棱角和倾斜角等都会对目标的RCS值产生影响。

为了降低雷达截面,通常采用翼身一体设计、斜侧面设计和光滑曲面等几何形状。

2. 材料特性:目标所采用的材料特性对雷达截面同样具有重要影响。

例如,金属表面可以反射电磁波,因此多采用金属涂层和复合材料来降低目标的反射能力。

此外,材料的导电性和磁导率等参数也会对RCS值产生一定影响。

3. 阵列辐射和散射特性:目标表面的细微结构和散射体分布会影响辐射和散射特性,进而影响雷达截面。

研究人员通过设计天线阵列和散射体,可以改变目标的反射能量分布,降低雷达的探测概率。

4. 多路径效应:多路径效应是指雷达波在目标周围反射、折射和散射产生的传播效应。

多路径效应会改变目标的电磁波传播路径,使得目标的RCS值产生多方位变化,增加了雷达的探测难度。

三、雷达截面控制方法1. 细节修型和平滑设计:通过细节修型和平滑设计,可以降低目标表面的角、棱和孔洞等对电磁波的散射。

采用弧度设计和双曲面修型,使目标表面尽可能光滑,减少电磁波散射的机会。

雷达散射截面对飞机生存力的影响

雷达散射截面对飞机生存力的影响

北京航空航天大学学报科技期刊JOURNAL OF BEIJING UNIVERSITYOF AERONAUTICS AND ASTRONAUTICS1998年5期雷达散射截面对飞机生存力的影响马东立 张 考(北京航空航天大学 飞行器设计与应用力学系) 摘 要 飞机的雷达散射截面(RCS)是影响飞机生存力的重要因素之一.建立了飞机对由预警雷达、截击机和地空导弹组成的现代化空防系统的生存概率的计算方法.其中包括发现概率、击中概率和击毁概率的计算.在计算发现概率时,考虑了天线方向图传播因子和大气损耗的影响;在计算击中概率时,考虑了信噪比对脱靶距离的影响.通过计算,分析飞机的RCS对生存力的影响.研究结果表明,减缩飞机的RCS不仅可以显著降低飞机被探测的概率,而且还可以缩短截击机和地空导弹对飞机的最远拦截距离.为提高飞机的生存力必须降低飞机的RCS.关键词 飞机;预警雷达;地空导弹;生存力;雷达散射截面 分类号 V 271.41Effect of Radar Cross Section on Aircraft SurvivabilityMa Dongli Zhang Kao(Beijing University of Aeronautics and Astronautics,Dept. of Flight Vehicle Design and AppliedMechanics) Abstract Radar cross section (RCS) of an aircraft is one of the important influences on aircraft survivability. A computational method for the probability that an aircraft survives hostile air-defensesystem consisting of early warning radar, interceptor and surface-to-air missile has been developed inthis paper. The method includes calculation of the probability of detection, the probability of hit and the probability of kill. The influence of the pattern propagation factor and atmospheric loss and theinfluence of signal-to-noise radio on miss distance are considered in calculating the probability ofdetection and the probability of hit, respectively. The effect of RCS on aircraft's survivability isanalyzed by the calculation. The results show that reduction of aircraft's RCS can remarkably reduce the probability of detection, and decrease the maximum intercept distance when interceptor and surface-to-air missile intercept penetrating aircraft. In order to enhance the aircraft survivability, its RCS must be reduced.Key words airplanes; early warning radar; surface-to-air missile; survivability; radar cross section 现代战争中军用飞机将面临着由预警雷达、截击机、地空导弹和防空火炮组成的现代化空防系统.一架军用飞机能否在这样的现代化空防系统中生存,是决定战争胜负的重要方面.特别是,随着遥感和探测技术的飞速发展,空防系统的探测距离、射击精度和抗干扰能力等迅速提高,作战飞机的生存力受到越来越严重的威胁.因此,提高军用飞机的生存力愈来愈受到重视.目前,生存力已成为军用飞机最优先考虑的技术指标之一,并已成为一种设计准则. 飞机生存力是指飞机躲避和(或)经受住人为敌对环境的能力[1],可以用生存概率P S度量.影响飞机生存力的因素有很多.其中,最重要的因素之一是飞机自身的特征信号.飞机的特征信号包括声学、光学、红外以及雷达特征信号.特别是因为雷达探测距离远并且很多空防武器是雷达制导,所以飞机的雷达特征信号减缩对提高飞机的生存力尤为重要. RCS是反映飞机雷达特征信号的重要指标.本文就RCS对飞机生存力的影响展开深入的讨论. 1 飞机生存概率计算方法1.1 雷达探测飞机的发现概率 由雷达作用距离方程出发,引入一特征常数C s,可以得到[2]S/N=(F/R)4(Csσ/Lα)(S/N)min(d)(1)式中 S/N是雷达天线输入端的信噪比;σ是飞机的RCS;(S/N)min(d)是发现概率为d时雷达系统的最低可检测信噪比;Lα是大气损耗因子;F是天线方向图传播因子;R为飞机到雷达的距离;C s是雷达特征常数[3],它与天线射线仰角及射线传播路径无关. 在一定的虚警概率P fa下,雷达一次扫描对目标的发现概率为(2)式中 为一次扫描脉冲积累数;y0为虚警时的检测门限. 1.2 威胁体击中飞机的概率 威胁系统将威胁体战斗部导引至接近飞机位置的能力,可以用威胁体相对飞机的脱靶距离来衡量.当使用雷达跟踪目标时,脱靶距离不仅依赖于系统火控/制导精度,而且也依赖于跟踪雷达系统的跟踪精度.经推导,脱靶距离的标准差为(3)式中 A、B、C为与雷达有关的3个常数,其计算方法见文献[2]. 对于非高能炸药战斗部(或触发式引信高能炸药战斗部),击中飞机的概率P H为[2](4)式中 A P为飞机迎击面积. 对于装有近炸引信的高能炸药战斗部,击中飞机的概率P H为[2]P H=A P/(2πσ2r+AP)(5)1.3 飞机的生存概率 单发击毁概率P KSS是衡量飞机生存力的最基本指标. 对于触发式引信战斗部(或非爆炸性弹头)这种类型的威胁,有(6)式中 A V为飞机易损面积. 对于近炸式引信战斗部这种类型的威胁,有 (7)式中为战斗部的杀伤半径;P f为引信的引爆概率;r c为引信的引爆截止半径. 飞机在单次射击中的生存概率为P S=1-P d*P KSS(8) 在确定了P KSS后,可进一步计算飞机飞经整个空防阵地的生存概率,详见文献[2].2 算例与分析 以飞机对某一战略要地突防为例,计算飞机的生存概率.2.1 空防系统配置图1 要地空防系统假定战略要地位于O点,建立如图1所示的坐标系.若已知突防飞机的袭击方向来自以战略要地为圆心、圆心角为•d的扇形范围,则主要讨论这一区域内空防系统的作用.假定空防系统由远程警戒雷达、截击机和地空导弹系统组成.远程警戒雷达等间距布置在以要地为圆心、半径为r ewr的弧形防线上;机场位于距要地半径为r a、方位角为•a的位置;地空导弹等间距布置在以要地为圆心、半径为r sam的弧形防线上.在编制计算突防飞机生存概率程序时,上述空防系统配置参数可以任意指定.对于具体的算例,假定扇形空防区域的圆心角为•d=180°.在r ewr=100km的弧形防线上等间距布置4部远程警戒雷达,两两之间的距离为100km,它们分别位于方位角为0°、60°、120°和180°的位置;机场位于在r a=40km、方位角为90°的位置;在r sam=30km的弧形防线上布置5个地空导弹阵地,它们分别位于方位角0°、45°、90°、135°和180°,并假设每个地空导弹阵地只有一部发射架.2.2 突防模式 假设飞机以飞行速度V t=300m/s和飞行高度H t=12km沿方位角为•t=90°的直线从远方向战略要地突防.2.3 空防作战过程 当飞机突防到某一距离时,远程警戒雷达发现目标,发现目标后立即向机场告警.考虑截击机在机场待命的情况.当机场接到敌情通报后,经短暂的地面反应时间截击机起飞并以最大爬升率快升到有利高度,然后被引导飞向目标.飞至某一距离时,截击机机载雷达发现目标.经敌我识别、目标截获后,雷达被锁定并转为自动跟踪状态.当突防飞机进入截击机导弹最大发射距离之内的有效攻击区时,截击机发射中程空空导弹.若未击毁目标,则继续发射第2枚空空导弹.在飞机拦截过程中不考虑红外弹格斗问题,因为本文的研究范围限制为飞机对雷达制导武器的对抗. 若目标飞机突破截击机的拦截,则继续飞向战略要地.当飞至某一距离时,地空导弹搜索雷达发现目标.然后,由地空导弹跟踪雷达跟踪并截获目标.若理论反应时间T t大于系统反应时间T r,则目标还没有飞临发射区远界,发射导弹的一系列工作已准备就绪,这种情况导弹系统需等至目标飞到发射区远界处,再发射导弹;若T t≤T r,则地面设备还没有做好发射准备或刚好做完发射准备,目标已飞临发射远界,该情况应在设备准备好后,立即发射导弹.若第1枚地空导弹未击毁目标,则继续发射第2枚、第3枚和第4枚.但每次发射地空导弹都必须满足发射条件.3个地空导弹阵地均可独立发射导弹拦截.2.4 计算结果与分析 对不同RCS的飞机向战略要地突防进行了计算,结果见图2~图5. 由图2可以看出:当飞机的RCS由30dBm2降到10dBm2时远程警戒雷达发现飞机的预警距离(即,发现概率为50%对应的飞机到要地的水平距离)变化不大,而飞机的RCS在10~-20dBm2之间时,远程警戒雷达发现飞机的预警距离随RCS的降低而显著缩短.图2 预警雷达对突防飞机的P d随R的变化曲线图3表示飞机被拦截的最远距离R max(第1次被拦截的距离)与飞机RCS的关系.从图中看出,RCS 从30dBm2降到10dBm2,最远拦截距离变化不大.这是由于:①预警雷达对RCS为30~10dBm2的目标预警距离变化不大,导致截击机起飞拦截的时间相差不多;②虽然截击机的机载雷达对30~10dBm2的目标探测距离相差较大,但是截击机发射中距空空导弹总是必须在目标进入射程之后.还可以看出,当RCS从10dBm2进一步降低时,则飞机被拦截的最远距离显著下降. 由图4看到,飞机的生存概率随突防距离的变化曲线呈阶梯状.这是因为在突防飞机被拦截之前生存概率为1,而拦截后,将下降到某一数值并保持到第2次拦截之前. 图5是不同RCS的飞机对地空导弹系统突防的计算结果,它表明:飞机的RCS从30dBm2降到10dBm2,飞机生存概率曲线基本一致.这是因为虽然地空导弹搜索雷达对10dBm2以上的目标发现距离相差甚远,但是仍然需在目标飞至发射区远界处才能发射导弹,所以地空导弹最远拦截位置不变.而对于RCS为0dBm2的飞机,由于雷达发现距离变短,经系统反应时间后飞机已处于导弹发射区内部,因此,最远拦截距离变小.对于RCS小于或等于-10dBm2的飞机可以安全通过地空导弹的防御,即RCS小于或等于-10dBm2的飞机,从远方突防到R=0km的生存概率一直保持为P S=1.其原因是地空导弹搜索雷达对飞机的发现距离已变得足够短,致使地空导弹尚未做好发射准备,飞机已通过.图3 最远拦截距离R max与突防飞机RCS的关系图4 截击机拦截时突防飞机的P S随R的变化曲线图5 地空导弹拦截时突防飞机的P S随R的变化曲线3 结 论 由上述计算和分析得出如下结论:飞机RCS的减缩作为飞机敏感性减缩的一项内容对提高飞机的生存力具有突出的效果.它表现为:①飞机RCS的减缩降低了突防飞机被预警雷达和地空导弹搜索雷达发现的距离;②飞机RCS的减缩缩短了截击机和地空导弹对突防飞机的最远拦截距离;③飞机RCS的减缩提高了飞机的生存概率. 第一作者 男 31岁 副教授 100083 北京 1) 航空科学基金(93B51016)资助项目参 考 文 献1 Ball R E. The fundamentals of aircraft combat survivability analysis and design. New York : American Institute of Aeronautics and Astronautics,Inc, 1985. 311~3232 马东立.飞机生存力评估与敏感性减缩设计:[学位论文].北京:北京航空航天大学飞行器设计与应用力学系,19963 张 考.飞行器对雷达隐身性能计算与分析.北京:国防工业出版社,1997.34~37 收稿日期: 1997-03-19。

低RCS目标雷达散射特性增强方法研究

低RCS目标雷达散射特性增强方法研究

航空科学技术Aeronautical Science &TechnologyMay 252021Vol.32No.0539-43低RCS 目标雷达散射特性增强方法研究徐顶国1,*,魏子豪2,骆盛1,刘钧圣1,王军1,赵军民11.西安现代控制技术研究所,陕西西安7100652.北京航空航天大学,北京100191摘要:隐身飞机的出现对导弹的作战能力提出了更高的要求,增大敌方目标自身雷达散射特性是未来导弹反隐身技术发展的一个重要方向。

为了实现低RCS 目标电磁增强,本文拟针对典型隐身飞机,基于电磁理论和导弹反隐身技术,设计了几种不同的目标RCS 增强方案;利用基于多层快速多极子算法(MLFMM )的FEKO 软件,计算、分析不同增强方案在低RCS 目标载体上的RCS 特性和增强效果,其结论为未来导弹反隐身技术和智能化导弹的发展提供参考。

关键词:隐身飞机;反隐身;雷达截面积;多层快速多极子算法中图分类号:TN02文献标识码:ADOI :10.19452/j.issn1007-5453.2021.05.006目前,美、日等国家已开始批量装备第五代(美、俄称谓)隐身战斗机F -22、F -35,俄罗斯的第五代战斗机苏-57也已经服役,该类作战飞机的最大优势就是具有先进的隐身性能,不仅可以减小被发现的距离,还使全机的雷达散射特性大幅度减小,导致来袭导弹的脱靶率大大增大。

以F -22为例,如图1所示,取F -22的前向RCS 为0.01m 2,与前向0.1m 2的作战目标比较,在其他条件相同的情况下,前者的超视距空战效能比后者高出5倍左右。

因此,迫切需要破解以F -22为代表的第五代战斗机的隐身性能,快速提升对F -22等隐身飞机的防御、打击和威慑能力。

对于极低RCS 的隐身飞机而言,导弹如何能准确地实现搜索、跟踪、攻击低可探测性目标,增大敌方低RCS 目标的散射特性是未来导弹反隐身技术和智能化导弹的一个重要发展方向。

北航飞行器设计与工程教学大纲

北航飞行器设计与工程教学大纲

北航飞行器设计与工程教学大纲摘要:一、引言二、课程概述1.课程目标2.课程内容三、课程设置1.理论课程2.实践课程四、课程教学方法五、课程考核方式六、课程教材与参考书正文:一、引言北京航空航天大学飞行器设计与工程专业是全国高校中最具影响力的重要专业之一。

本教学大纲旨在对该专业的课程设置、教学方法、考核方式等进行详细阐述,以便学生更好地了解课程要求,提高学习效果。

二、课程概述1.课程目标飞行器设计与工程专业旨在培养具备飞行器设计、制造、运行维护等方面知识和能力的高级工程技术人才。

学生通过本专业的学习,将掌握飞行器设计的基本原理、工程应用等专业知识,具备飞行器总体设计、气动外形设计、性能计算与分析、系统设计、结构设计、结构受力分析等能力。

2.课程内容课程内容涵盖数学、力学、飞行器设计、航空电子、航空材料、航空发动机等方面的知识。

具体包括:高等数学、线性代数、概率论与数理统计、理论力学、材料力学、流体力学、飞行器设计原理、飞行器结构设计、飞行器动力学与控制、航空电子技术、航空材料学、航空发动机原理等。

三、课程设置1.理论课程理论课程包括上述课程内容,共计约60门课程。

这些课程为学生提供了扎实的航空航天专业知识和专业能力。

2.实践课程实践课程包括实验、实习、课程设计、毕业设计等环节。

实验课程有工程材料实验、流体力学实验、飞行器设计实验等;实习课程包括认识实习、生产实习等;课程设计包括飞行器总体设计、气动外形设计、性能计算与分析等;毕业设计为飞行器设计的一个综合性实践环节。

四、课程教学方法采用讲授、讨论、实验、实习、课程设计等多种教学方法,注重培养学生的理论分析能力、实践操作能力和创新能力。

五、课程考核方式课程考核方式包括期中考试、期末考试、实验报告、课程设计、实习报告等。

具体比例根据课程性质和特点确定。

雷达散射截面积(RCS)的 FD TD 研究-

雷达散射截面积(RCS)的 FD TD 研究-

雷达散射截面积(RCS)的 FD TD 研究-一、绪论1.1 研究背景1.2 研究意义和目的1.3 国内外研究现状1.4 研究内容和组织结构二、雷达散射截面积的基本概念2.1 雷达散射截面积的定义2.2 雷达散射截面积的度量单位2.3 雷达散射特征的分类三、雷达散射截面积的理论分析3.1 经典散射理论3.2 广义散射矩理论3.3 整体散射理论四、雷达散射截面积的数值计算方法4.1 基于频域的数值计算方法4.2 基于时域的数值计算方法4.3 雷达散射截面积的模拟仿真五、雷达散射截面积研究的应用与发展5.1 RCS在隐身技术中的应用5.2 RCS在目标识别中的应用5.3 RCS在雷达信号处理中的应用5.4 RCS研究的未来发展方向六、结论与展望6.1 研究结论6.2 存在问题与展望6.3 研究工作总结一、绪论1.1 研究背景雷达散射截面积(RCS)是描述目标特性的重要参数之一,它直接影响到目标被雷达探测和识别的能力。

因此,在雷达技术及其应用领域,研究雷达散射截面积是非常重要的课题。

随着科学技术的不断发展,雷达技术已经得到了广泛应用,如军事防卫、天气预报、航空航天、交通运输等多个领域。

因此,研究雷达散射截面积的理论和数值计算方法,对于促进雷达技术的进一步发展和应用具有重要意义。

1.2 研究意义和目的研究雷达散射截面积的理论和数值计算方法,对于理解和掌握目标散射特性、设计隐身装置和提高雷达识别能力具有重要意义。

本文旨在深入研究雷达散射截面积的基本概念、理论分析方法、数值计算方法及其应用与发展。

通过本文的研究,提高雷达散射截面积研究领域的学术水平和技术水平,为隐身技术、目标识别、雷达信号处理等领域的发展提供新的思路和方法。

1.3 国内外研究现状在国际上,雷达散射截面积的研究已有一定的基础。

例如,美国空军科研实验室(AFRL)和美国航空航天局(NASA)等机构,对雷达散射截面积的研究和应用进行了很多探索。

在国内,雷达散射截面积的研究也已有一定的发展,但与国际上相比还有差距。

一种超宽带雷达散射截面减缩的超表面设计

一种超宽带雷达散射截面减缩的超表面设计

关键词:超表面设计;雷达散射截面;超宽带 RCS 减缩;零反相位;带宽拓展;人工磁导体;布阵方式
中图分类号:TN95⁃34
文章编号:1004⁃373X(2019)13⁃0005⁃04
文献标识码:A
Design of a metasurface with ultra⁃wideband radar cross section reduction
(1. 空军工程大学 信息与导航学院,陕西 西安
710077;
2. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安

710064)
要:提出一种具有超宽带雷达散射截面(RCS)减缩特性的超表面(MS)。该 MS 结构由聚四氟乙烯(Polytef)介质层、
空气层和金属地板组成,同时在 Polytef 介质层的两侧刻蚀金属图案。为了拓展 RCS,减缩带宽,设计两种几何结构相似但是
similar geometry but working in different bands are designed,which can expand the effective phase difference area of two units.
The classical chessboard mode is used for configuration to realize the ultra ⁃ wideband RCS reduction. The simulation and
2. Key Laboratory of Road Construction Technology and Equipment of Ministry of Education,Chang’an University,Xi’an 710064,China)

传统飞机雷达隐身改装技术措施研究

传统飞机雷达隐身改装技术措施研究

传统飞机雷达隐身改装技术措施研究摘要:传统飞机与隐身飞机相比,在生存和突击能力上都有很大差距,生存突击能力决定了飞机能否到达攻击区域、执行攻击并安全返回基地,对传统飞机进行雷达隐身改进是提高其生存能力的有效途径。

本文从隐身改装角度出发,对雷达散射面积较大的常规布局飞机进行了隐身改装技术研究,提出了一些降低雷达散射截面的措施,在飞机隐身改装过程中具有一定的借鉴作用。

关键词:飞机、雷达隐身、改装1引言现代雷达探测系统的迅速发展极大提高了战争中的搜索、跟踪目标的能力,传统飞机雷达散射截面很大,极易被陆基雷达、海基雷达以及空中预警雷达探测到,在战时的生存能力受到严峻考验。

在未来战争中,雷达仍将是探测目标的最可靠手段,对传统飞机进行雷达隐身改进可以提高飞机的突击能力和生存能力,是保证飞机作战效能的有效途径。

2飞机隐身技术概述隐身技术是一项跨学科的综合技术,涉及到电磁学、声学、光学、材料学、电子学和信息科学等多种学科。

按探测手段的不同,飞机隐身包括雷达隐身、红外隐身、声隐身和可见光隐身。

在现代技术条件下,影响飞机生存能力和突防能力的主要是雷达隐身和红外隐身。

在未来战争中,雷达仍是探测飞机的最可靠方法。

雷达利用无线电波发现目标,当雷达波碰到飞机时,一部分无线电波便会反射回来,根据反射无线电波的时间和方位便可以计算出飞机的位置。

飞机为了躲避雷达发现,除了超低空飞行避开雷达波的探测范围外,必须想办法降低对雷达波的反射。

雷达散射截面积(英文名称Radar Cross-Section,缩写为RCS),是指飞机对雷达波的有效反射面积,雷达隐身的方法便是想尽千方百计、采用各种可能的手段来减小飞机的RCS。

雷达反射主要包括镜面反射、边缘绕射、行波、爬行波与尖顶绕射。

飞机各部件在特定入射方向下会有不同性质的散射源,如垂尾在侧向会产生镜面反射,在前向有镜面反射、边缘绕射和爬行波,垂尾翼尖则会产生尖顶绕射,驾驶舱有明显的前向镜面反射和边缘绕射,机翼前向有镜面反射、边缘绕射和爬行波,机身会产生侧向镜面反射、爬行波和纵向行波,进气道会产生前向镜面反射和进气口边缘绕射,雷达舱会有镜面反射和边缘绕射等等。

基于矩量法的机身截面电磁散射特性分析

基于矩量法的机身截面电磁散射特性分析

基于矩量法的机身截面电磁散射特性分析姬金祖;王岩;黄沛霖;王英;鲁振毅【摘要】机身截面隐身设计是飞行器外形隐身设计的一个重要的方面.设计“凹曲面”、“凸曲面”和“平板曲面”三种典型的隐身飞机机身截面轮廓,采用矩量法(MoM)计算三种轮廓的雷达散射截面(RCS),并对表面电流密度分布进行研究.分析RCS随方位角的变化特性,比较各截面的隐身性能.分析结果表明:凹曲面和凸曲面机身可以有效降低侧向RCS,其中凸曲面的隐身效能更佳;平板曲面机身除正下方一个很窄的波峰外,侧向和下方RCS都很小,在对抗仰视雷达时具有很好的隐身性能.【期刊名称】《航空工程进展》【年(卷),期】2013(004)001【总页数】6页(P37-42)【关键词】矩量法;电磁散射;雷达散射截面;隐身技术【作者】姬金祖;王岩;黄沛霖;王英;鲁振毅【作者单位】北京航空航天大学航空科学与工程学院,北京 100191【正文语种】中文【中图分类】V2180 引言隐身技术在现代战争中发挥着越来越重要的作用,成为一项不可或缺的军事技术。

以减小雷达散射截面(Radar Cross Section,简称RCS)为目的的飞行器雷达隐身技术主要包括外形隐身设计、涂敷吸波材料、生成等离子体等。

外形隐身设计具有效果好、适应波段宽、无需进行维护等优点,是隐身设计中普遍采用的重要手段[1-3]。

飞机的表面包含多个散射源。

机身通常有雷达舱、座舱、进气口、喷口等附加部件,这些附加部件都是飞机的头向、尾向强散射源[4-5]。

雷达波从飞机侧向照射时,机身本身也成为强散射源,传统圆柱形状的机身能够形成非常强烈的镜面反射。

隐身飞机的机身侧面一般设计为带有棱边的形式,以消除镜面反射。

国外飞行器隐身技术已经相当成熟。

洛克希德·马丁公司的F-22战斗机已经服役,该飞机在设计之初就已经充分考虑了把隐身性能作为重要指标。

洛克希德·马丁公司的联合打击战斗机F-35正在研制之中,将分为A、B、C三种型别,分别供美国空军、海军陆战队和海军使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隐身技术
22
SR-71飞机
2020年8月17日星期一
隐身技术
23
F117 ——洛克希德
2020年8月17日星期一
隐身技术
24
F117 ——洛克希德
发展背景:
● 冷战后期;
● 美国的国家战略需要一种可以不依靠其它飞机支援就可以遂 行作战任务的隐身飞机,以达到对敌方战略战术目标进行突然 精确打击的目标;
2020年8月17日星期一
隐身技术
17
隐身飞机的发展
从二十世纪六十年代开始,由于隐身概念的引入和 逐渐发展对传统的航空器的设计、制造和使用均带来 了巨大的变革。由于传统的隐身飞机如F-117和B-2过 分强调低可见性而忽略了可负担性,从而造成飞机的 使用和维护费用过高,降低了飞机的使用效率。从以 F-22为代表的第四代和X-45为代表的第五代隐身航空 器,通过提高隐身设计技术水平,在隐身与飞机性能 、可负担性等其它重要性能之间取得了最佳的折衷。
2020年8月17日星期一
隐身技术
7
雷达截面控制
低可探测技术
2020年8月17日
2020年8月17日星期一
隐身技术
9
雷达监视屏
2020年8月17日星期一
隐身技术
10
预警机:E-3C
2020年8月17日星期一
隐身技术
11
预警机:E-3C
2020年8月17日星期一
隐身技术
12
E-2C鹰眼
2020年8月17日星期一
隐身技术
13
鹰眼的雷达图
2020年8月17日星期一
隐身技术
14
电子干扰--也是广义上的一种隐身
2020年8月17日星期一
隐身技术
15
电子干扰机:ALQ99E
2020年8月17日星期一
隐身技术
16
隐身飞机
隐身飞机的产生和 发展是国际政治格局 的变化、飞机作战环 境的变化(尤其是雷 达和电子战技术的爆 炸性发展)及隐身技 术的进步等多种因素 综合的结果。
2020年8月17日星期一
隐身技术
18
国外隐身航空器的发展与现状
隐身性能的重要意义:
降低飞机的RCS可以在两个方面降低飞机的敏感性 1) 可以降低飞机被发现概率、被跟踪概率以及被导 弹等成功发射、制导并击中的概率; 2) 可降低有源干扰装置所需要的干扰机功率及无源 干扰机所需要箔条重量、红外干扰弹的重量,从而 大大提高飞机的生存力。
2020年8月17日星期一
隐身技术
31
捕食鸟"Bird of Prey"—波音公司
发展背景:
● 冷战结束,美国一强独大,为 了适应其干涉世界事务的需求, 并且要满足“非接触、零伤亡” 局部战争的需求,需要一种飞行 速度更快、更加隐身、制造工艺 更加便利、研制和维护成本更低 、储存和部署更加容易的第五代 飞机(无人作战飞机UCAV);
飞行器隐身技术
--雷达散射截面控制
航空科学与工程学院
飞行器隐身技术
❖关于隐身概念 ❖关于雷达探测的几个基本概念 ❖关于雷达散射截面的定义和基本概念 ❖隐身飞机和隐身技术综述 ❖飞机的散射源和散射机理 ❖雷达散射截面的减缩策略 ❖隐身关键技术 ❖反隐身关键技术概述
2020年8月17日星期一
隐身技术
2
2020年8月17日星期一
隐身技术
19
从SR71为代表的第二代飞机开始,隐身就
作为关键技术被引入到飞机设计当中。随着
飞机发展到第五代,对隐身技术的认识也走
过了一个不断深化发展的过程,隐身技术在
飞机设计上的应用也有了四次大的飞越。
这四次技术飞越的代表性飞机为:
SR71黑鸟(第二代飞机)→F117、B2(第
隐身技术的广义范畴
❖光隐身 ❖热隐身 ❖声隐身 ❖电隐身
2020年8月17日星期一
隐身技术
3
可见光控制--迷彩伪装
❖降低目标和背景的可见光反差
上下表面的迷彩不一致
向下看不见
向上看不清
2020年8月17日星期一
隐身技术
4
红外抑制--吸热冷却装置
❖降低目标和背景的热辐射反差 ❖分形技术
I like this
● 该战略造成过分突出和迷信隐身性能,使用特殊的飞机外形 和全面使用吸波材料,牺牲了飞机的机动性等其它综合性能。
● 隐身技术进一步发展,有工程化的隐身气动设计工具和吸波 材料供使用;
● 主要针对雷达波隐身,对红外和可见光隐身的考虑只占很小 的比例。
2020年8月17日星期一
隐身技术
25
B2
2020年8月17日星期一
隐身技术
26
B2全尺寸模型外场RCS测试
2020年8月17日星期一
隐身技术
27
B-2飞机专用恒温机库
2020年8月17日星期一
隐身技术
28
F-22飞机——洛克希德马丁
2020年8月17日星期一
隐身技术
29
F-22飞机——洛克希德马丁
发展背景:
● 冷战后期,美国成为世界 唯一超级大国,对国际事物 进行“积极干涉”;
3—5微米的喷流热辐射抑制 8--12微米的分形技术
2020年8月17日星期一
隐身技术
5
夜间拍摄的红外图象
2020年8月17日星期一
隐身技术
6
噪声控制
❖直升机的噪声控制问题 ❖低空低速无人机的噪声控制问题 ❖潜艇的的噪声控制问题
▪ 螺旋桨—泵喷 ▪ 浮筏技术 ▪ 管道消声 ▪ 消声瓦技术 ▪ 外形
三代飞机)→F-22、F-35(第四代飞机)→X-36
、X-45、X-47(第五代飞机),另外还包括捕
食鸟这样的隐身技术验证机。
2020年8月17日星期一
隐身技术
20
第二代 第三代
SR-71
四次技术飞越
初具隐身性能
F-117 B-2
强调隐身万能,牺牲其它性能
第四代 第五代
X-36
2020年8月17日星期一
F-22
F-35
隐身与飞机性能、可 负担性等取得折衷
捕食鸟 X-45A ……
隐身技术
X-47A Dark star
21
SR-71飞机
2020年8月17日星期一
发展背景: ● 冷战时期; ● 美国的国家战略需 要一种侦察机对“华约” 国家进行战略战役侦察; ● 对隐身技术的认识 还属于初级阶段,飞机 的隐身还处于次要地位, 主要依靠高空高速来获 得高的生存力; ● 前向角域±60°RCS 1m2以上
●美国的国家战略需要一种 可以在21世纪前三十年具有 绝对制空优势的先进隐身战 斗机,可以不依靠其它飞机 支援遂行作战任务,以达到 对敌方战略战术目标进行突 然精确打击的目标和取得空 中优势;
2020年8月17日星期一
隐身技术
武器装载性能
30
F-35飞机——洛克希德马丁
发展背景: ● 与F-22飞机进行“高低搭配”,更加 突出“低成本”的概念; ● 不寻求隐身性能的突破,而是把重点 放在减少生产和维护费用; ● 主要技术要求放在进一步降低隐身维 修需求上,使每次出动所需要的维修量 不到0.5工时。
相关文档
最新文档