利用函数的单调性求参数的取值范围(使用)

合集下载

核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围

核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围

核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围含参函数在区间上具有单调性、无单调性或存在单调区间,取决于函数的导数的正负情况。

在本篇文章中,我们将介绍含参函数单调性的概念以及如何判断参数范围。

一、含参函数的单调性含参函数的单调性指的是函数在一些区间上的值的增减趋势。

如果函数在整个区间上都递增或者递减,则称该函数在该区间上是单调的。

对于含参函数f(x),我们可以通过求导来判断其在区间上是否单调。

如果函数在整个区间上的导数恒大于0,则函数在该区间上递增;如果函数在整个区间上的导数恒小于0,则函数在该区间上递减。

换言之,我们可以通过求解方程f'(x)>0或者f'(x)<0来判断函数的单调性。

其中,f'(x)表示函数f(x)的导数。

二、参数范围的确定确定参数范围的方法主要包括以下步骤:1.根据问题的具体内容,确定需要讨论的函数范围,并确定参数的取值范围。

例如,如果需要讨论函数在区间[a,b]上的单调性,那么参数范围可以通过分析函数在区间的特性来确定。

2.找出函数的导数表达式。

通过计算函数f(x)的导数f'(x),可以得到函数在区间上的单调性。

如果求导的过程中出现了参数,则需要将参数的取值范围考虑进去。

3.解方程f'(x)>0或者f'(x)<0,得到函数在区间上的单调性,并得到参数的取值范围。

4.根据参数的取值范围进行验证。

将参数取值范围代入原函数带入计算,可以验证所得的结论是否正确。

举例说明:问题:求函数f(x)=ax^2+bx+c在区间[-2, 3]上的单调性。

解答:首先求出函数的导数:f'(x)=2ax+b。

接下来我们需要根据参数a的取值范围来判断函数的单调性。

当a>0时,函数f(x)的导数f'(x)=2ax+b恒大于0,说明函数f(x)在区间[-2, 3]上是递增的。

当a<0时,函数f(x)的导数f'(x)=2ax+b恒小于0,说明函数f(x)在区间[-2, 3]上是递减的。

已知函数的值域(或最值)求参数的取值范围

已知函数的值域(或最值)求参数的取值范围

已知函数的值域(或最值)求参数的取值范围顺德容山中学 马崇元已知函数的值域(或最值)求参数的取值范围,是高考的一个亮点,在近年的高考和各地的高三模拟试题中经常出现,下面谈谈此类问题的解法.一. 利用函数的单调性如果题中所给函数的单调性易判断出来,我们可利用单调性建立方程组或不等式,从而加以求解.例1.(2008年天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3}解:由log log 3a a x y +=可得xa y 3=,利用其在[,2]x a a ∈上是单调减函数可得23max 23min ,22a aa y a a a y ====,则由题目条件可得2max min ,a y a y ≤≥解得选B . 例2.(2008年深圳模拟试题)已知函数f(x)=x 11-. (1)是否存在实数a 、b(a <b),使得函数f(x)的定义域和值域都是[a 、b]?若存在,请求出a 、b 的值;若不存在,请说明理由.(2)若存在实数a 、b ()a b <,使得函数f(x)的定义域是[a 、b],值域是[ma 、mb](m ≠0),求实数m 的取值范围.解:(1)不存在实数a 、b ()a b < 满足条件.事实上,若存在实数a 、b ()a b < 满足条件,则有x ≥a >0.故f(x)=⎪⎪⎩⎪⎪⎨⎧<<-≥-10,111,11x xx x (i)当a 、b ∈(0,1)时,f(x)=11-x 在(0,,1)上为减函数,所以⎩⎨⎧==,)(,)(a b f b a f 即⎪⎪⎩⎪⎪⎨⎧=-=-.11,11a bb a由此推得a =b ,与已知矛盾,故此时不存在实数a 、b(a <b)满足条件. (ii)当a 、b ∈[1,+∞)时,f(x)=x 11-在[1,+∞)上为增函数,所以⎩⎨⎧==,)(,)(b b f a a f即⎪⎪⎩⎪⎪⎨⎧=-=-.11,11b ba a 于是a 、b 为方程x 2-x +1=0的实根.而此时方程无实根,故此时也不存在实数a 、b(a <b)满足条件(iii)当a ∈(0,1),b ∈[1,+∞)时,显然1∈[a ,b],而f(1)=0,所以0∈[a ,b],矛盾.综上可知,不存在实数a 、b(a <b)满足条件.(2)若存在实数a 、b(a <b)满足f(x)定义域是[a 、b],值域是[ma 、mb](m ≠0),易得m >0,a >0.仿(1)知,当a 、b ∈(0,1)或a ∈(0,1),b ∈[1,+∞)时,满足条件的实数a 、b 不存在.只有当a 、b ∈[1,+∞)时,f(x)=x 11-在[1,+∞)上为增函数,有⎩⎨⎧==,)(,)(mb b f ma a f 即⎪⎪⎩⎪⎪⎨⎧=-=-.11,11mb bma a 于是a 、b 为方程mx 2-x +1=0的两个大于1的实根. ∴⎪⎩⎪⎨⎧>-±=>-=∆,12411,041m m x m 只须⎪⎩⎪⎨⎧>-->->,2411,041,0m m m m 解得0<m <41,所以m 的取值范围为0<m <41.例3.(广东省2008届第一次六校(广州深圳中山珠海惠州)联考)设bx ax x f +=2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。

专题15 已知函数的单调区间求参数的范围(解析版)

专题15 已知函数的单调区间求参数的范围(解析版)

专题15已知函数的单调区间求参数的范一、单选题■1.若函数/(])=空山在区间(0,工)上单调递增,则实数。

的取值范围是()cosx 2A.a<-\B.a<2C.a>-\D.a<\【答案】C【分析】利用导函数研究原函数的单调性,利用单调性求解实数。

的取值范围.【详解】解:函数/(1)="*COSXnJ”、cosx>cos x+sinx(sin x+a)则/M=;-----cos^xTT•••X£(0,一)上,2/.cos2x>0.要使函数/(幻=吧*在区间(0,工)上单调递增,cosx 271、、二cos2x+sin2x+asinxN0在x G(0,—)上恒成立,2T[即:asinx+120在x£(0,一)上恒成立,2TT•/xe(0,—)±,2sin XG(0,1)故选:C.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.已知函数/a)=Lf+s—a)x+(a-l)lnx,(a>l),函数y=2用的图象过定点(0,1),对于任意玉,七£(0,+8),西>々,有/(%)一/(工2)>工2一不,则实数。

的范围为()B.2<a<5C.2<a<5D.3<a<5【答案】A【分析】 由图象过定点可得人=0,设/(x)=〃x)+x,结合已知条件可得F(x)在(0,+8)递增,求尸(X )的导数,令g(x)=%2一(〃-1)工+。

一1,由二次函数的性质可得g 【详解】解:因为>=2'+〃的图象过定点(0,1),所以2人=1,解得6=0,所以一方+(。

-1)1仪(。

>1),因为对于任意X],W^(0,-KO ),X]>x 2,有/(%)一/(无2)>W 一%,则/(%)+%>%+/(七),设/(%)=f(x)+x ,即F (x)=/(%)+%=—x 2-ar+(^-l)lri¥+x=—x 2-(6f-l)x+(^-l)lri¥,所以F(x)=x-(〃-1)+0「2—令且(1)=工2—(。

考点04 函数单调性的5种判断方法及3个应用方向(解析版)

考点04  函数单调性的5种判断方法及3个应用方向(解析版)

专题二函数考点4 函数单调性的5种判断方法及3个应用方向【方法点拨】一、函数单调性的判断及解决应用问题的方法1.判断函数单调性的常用方法(1)定义法;(2)图象法;(3)利用函数的性质“增+增=增,减+减=减”判断;(4)复合函数的单调性根据“同增异减”判断;(5)导数法2.求函数的单调区间先定定义域,在定义域内求单调区间.单调区间不连续时,要用“和”或“,“连接,不能用“U”连接.3.单调性的应用的三个方向(1)比较大小:将自变量转化到同一个单调区间内,利用函数的单调性比较大小;(2)解函数型不等式:利用函数单调性,由条件脱去“f”;(3)求参数值或取值范围:利用函数的单调性构建参数满足的方程(组)、不等式(组).【高考模拟】1.函数()||1f x x =-与()()2g x x x =-的单调递增区间分别为( ) A .[1,+∞),[1,+∞) B .(﹣∞,1],[1,+∞) C .(1,+∞),(﹣∞,1] D .(﹣∞,+∞),[1,+∞)【答案】A 【分析】先对()f x ,()g x 进行化简,再求单调区间即可. 【解析】 解:()1,111,1x x f x x x x -≥⎧=-=⎨-+<⎩,()f x ∴在[)1,+∞上单调递增,()()222()211g x x x x x x -=-==--, ()g x ∴在[)1,+∞上单调递增,故选:A.2.函数y =)A .3,2⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D 【分析】求出函数y =y =.【解析】由题意,230x x +≥,可得3x ≤-或0x ≥,函数y =(][),30,-∞-⋃+∞,令23t x x =+,则外层函数y =[)0,+∞上单调递增,内层函数23t x x =+在上(],3-∞-单调递减,在[)0,+∞上单调递增,所以,函数y =(],3-∞-.故选:D. 【点睛】方法点睛:求解函数的单调区间一般有以下几种方法:一是图象法,主要适用与基本初等函数及其在基本初等函数的基础上进行简单变化后的函数以及分段函数,可以借助图像来得到函数的单调区间;二是复合函数法,主要适用于函数结构较为复杂的函数,采用换元的思想将函数解析式分解为多层,利用同增异减的原理来求解;三是导数法,对于可导函数,可以解相应的导数不等式来求解函数的单调区间.3.函数()f x 在区间()4,7-上是增函数,则使得()3=-y f x 为增函数的区间为( ) A .()2,3- B .()1,7-C .()1,10-D .()10,4--【答案】C 【分析】先将函数()3=-y f x 看作函数()f x 向右平移3个单位所得到,再判断增区间即可. 【解析】函数()3=-y f x 可以看作函数()f x 向右平移3个单位所得到,故由函数()f x 在区间()4,7-上是增函数,得()3=-y f x 在区间()1,10-上是增函数. 故选:C.4.函数()2f x x x =-的单调减区间是( ) A .[]1,2 B .[]1,0-C .[]0,2D .[2,)+∞【答案】A 【分析】将函数写成分段函数的形式,即()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩再根据解析式得到函数的单调区间;【解析】()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩∴直接通过解析式,结合二次函数图象得:(,1),(2,)-∞+∞递增,在[]1,2递减,故选:A.5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( ) A .[3,)-+∞ B .(,3]-∞- C .(,5)-∞ D .[3,)+∞【答案】B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围. 【解析】函数f(x)的对称轴是1x a =-,开口向上,则14a -≥,解得3a ≤- 故选:B6.若函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,则实数a 的取值范围为( ). A .(1,)+∞ B .(,1)-∞ C .(0,)+∞ D .(,0)-∞【答案】D 【分析】直接由单调性的定义求解即可 【解析】解:任取12,(0,)x x ∈+∞,且12x x <,因为函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,所以12()()f x f x <,即22120ax ax ---<,所以221211()0a x x -<,21212212()()0x x x x a x x +-⋅<⋅, 因为120x x <<,所以210x x +>,210x x ->,22120x x ⋅>,所以0a <. 故选:D7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A .3a ≤- B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围. 【解析】 解:二次函数2()2(1)2f x x a x =+-+的对称轴为2(1)(1)12a x a a -=-=--=-,抛物线开口向上,∴函数在(-∞,1]a -上单调递减,要使()f x 在区间(-∞,4]上单调递减, 则对称轴14a -, 解得3a-.故选:A . 【点睛】本题主要考查二次函数的图象和性质,根据二次函数单调性与对称轴之间的关系是解决本题的关键. 8.“1m ”是“函数1()2ln f x x mx x=-+单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】求出()y f x =的导函数,利用()y f x =单调递减,则()0f x '≤恒成立,求出m 的范围,比较所求范围和条件中给定范围的关系,得出结论. 【解析】 由221()f x m x x '=--,若函数()y f x =单调递减,必有当(0,)x ∈+∞时,2210m x x--≤恒成立,可化为2111m x ⎛⎫≥--+ ⎪⎝⎭,可得m 1≥.故“1m ”是“函数1()2ln f x x mx x =-+单调递减”的充分不必要条件. 故选:A. 9.若函数2()1f x x =-的定义域是(﹣∞,1)∪[2,5),则其值域为( ) A .(﹣∞,0)B .(﹣∞,2]C .10,2⎛⎤ ⎥⎝⎦D .1(,0),22⎛⎤-∞⋃ ⎥⎝⎦【答案】D 【分析】分x<1和x ∈[2,5)两种情况,利用反比例函数的性质得出函数的值域. 【解析】由题意可得:当x<1时,则x ﹣1<0所以y ∈(﹣∞,0) 当x ∈[2,5)时,则x ﹣1∈[1,4),所以y ∈1,22⎛⎤⎥⎝⎦所以函数的值域为1(,0),22⎛⎤-∞⋃ ⎥⎝⎦.故选:D.10.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞【答案】D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【解析】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.11.若01m n <<<且1mn =,则2m n +的取值范围是( )A.)+∞ B .[3,)+∞C.)+∞D .(3,)+∞【答案】D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【解析】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论. 12.函数()()2404xf x x x x x =++>+的最小值为( ) A .2 B .103C .174D .265【答案】C 【分析】 令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值. 【解析】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥=,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥, 任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 124t t >≥,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.13.若函数1y ax =+在区间[]1,3上的最大值是4,则实数a 的值为( ) A .-1 B .1C .3D .1或3【答案】B 【分析】分0a >和0a <两种情况求解,0a >时,1y ax =+在区间[]1,3上为增函数,从而可求出其最大值,当0a <时,1y ax =+在区间[]1,3上为减函数,从而可求出其最大值,进而可得答案 【解析】解:当0a >时,1y ax =+在区间[]1,3上为增函数,则当3x =时,y 取得最大值,即314a +=,解得1a =;当0a <时,1y ax =+在区间[]1,3上为减函数,则当1x =时,y 取得最大值,即14a +=,解得3a =舍去, 所以1a =, 故选:B14.函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3 B .-3 C .0 D .3或-3【答案】D 【分析】讨论a 的取值,判断函数的单调性,求出函数的最值,作差即可求解. 【解析】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D .15.已知函数24()2tx t f x x --+=+在区间[1,2]-上的最大值为2,则实数t 的值为( )A .2或3B .1或3C .2D .3【答案】A 【分析】 函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进行分类讨论检验即可. 【解析】 由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+ ()24422tx t f x t x x --+==-+++的最大值为4t -或1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =;当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或3. 故选:A 【点睛】解决本题的关键是利用单调性求出42t x -++的范围,再结合绝对值的性质进行求解. 16.若函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R ,则实数a 的取值范围为( ) A .1[2,1)B .1(0,)7C .1[7,1)2D .1[2,1]【答案】C 【分析】根据分段函数的值域为R ,具有连续性,由12log y x =是减函数,可得(21)3y a x a =-+也是减函数,故得210a -<,(21)231a a -⨯+-,可得答案. 【解析】解:函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R , 由12log y x =是减函数,(21)3y a x a ∴=-+也是减函数,故得210a -<, 解得:12a <, 函数()f x 的值域为R ,12(21)23log 21a a -⨯+=-,解得:17a. ∴实数a 的取值范围是1[7,1)2.故选:C .17.若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()()f a f a < B .1()f a f a ⎛⎫<⎪⎝⎭C .()(2)f a f a <D .2()(1)f a f a <-【答案】D 【分析】根据函数单调性,以及题中条件,逐项判断,即可得出结果. 【解析】因为函数()f x 是R 上的减函数,0a >,A 选项,()21a a a a -=-,当1a >时,2a a >,所以2()()f a f a <;当01a <<时,2a a <,所以2()()f a f a >,即B 不一定成立; B 选项,当1a >时,1a a >,所以1()f a f a ⎛⎫< ⎪⎝⎭;当01a <<时,1a a <,所以1()f a f a ⎛⎫> ⎪⎝⎭,即B 不一定成立;C 选项,0a >时,2a a >,则()(2)f a f a >,所以C 不成立;D 选项,()2221311024a a a a a ⎛⎫--=-+=-+> ⎪⎝⎭,则21a a >-;所以2()(1)f a f a <-,即D一定成立. 故选:D.18.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-【答案】C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【解析】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.19.若定义在R 上的偶函数()f x 在[)0,+∞上是减函数,则下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【解析】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误; C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确; D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C20.设函数()f x 是(),-∞+∞上的减函数,又若a R ∈,则( ) A .()()2f a f a >B .()()2f a f a < C .()()2f a a f a +<D .()()211f a f +≤【答案】D 【分析】利用特殊值法可判断ABC 选项的正误,利用函数的单调性可判断D 选项的正误. 【解析】对于A 选项,取0a =,则2a a =,()()2f a f a ∴=,A 选项错误; 对于B 选项,取0a =,则2a a =,所以,()()2f af a =,B 选项错误;对于C 选项,取0a =,则2a a a +=,所以,()()2f a a f a +=,C 选项错误;对于D 选项,对任意的a R ∈,211a +≥,所以,()()211f a f +≤,D 选项正确.故选:D.21.函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞【答案】A 【分析】依题意可得()f x 再定义域上单调递增,又()10f =,即可得到1x <时,()0f x <;1 x >时,()0f x >;再分类讨论分别计算最后取并集即可;【解析】解:由题意可知()f x 在(),-∞+∞单调递增,又()10f =,1x <时,()0f x <;1 x >时,()0f x >; 对于()()2 0x f x ->,当2x >时,不等式成立, 当12x <<时,()20, 0x f x -<>,不等式不成立; 当1x <时,20x -<,且()0f x <, 不等式成立不等式的解集(,1)(2,)-∞⋃+∞ 故选:A .22.已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭)A .()6063,e +∞B .()20210,eC .()2021,e +∞D .()60630,e【答案】D 【分析】由题意构造新函数()()xf x F x e =,得到函数的单调性,对问题进行变形,由单调性转化为求解不等式问题,即可得到结果 【解析】 由题可设()()x f x F x e=,'()()0f x f x ->,则2'()()'()()'()0x x x xf x e f x e f x f x F x e e--==>, 所以函数()F x 在R 上单调递增,2021(2021)(2021)1f F e==,将不等式1ln 3f x ⎛⎫< ⎪⎝⎭1ln 311ln ln 3311ln ln 33x x x f x f x e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋅=, 可得1ln 13F x ⎛⎫< ⎪⎝⎭,即1ln (2021)3F x F ⎛⎫< ⎪⎝⎭,有1ln 20213x <,故得60630x e <<,所以不等式1ln 3f x ⎛⎫< ⎪⎝⎭()60630,e ,故选:D. 【点睛】关键点睛:本题的解题关键是构造新函数,然后运用函数单调性求解不等式,通常情况构造新函数的形式如:()()xf x F x e =、()()F x xf x =或者()()f x F x x =等,需要结合条件或者问题出发进行构造.23.已知函数2()121xf x =-+,且()41(3)xf f ->,则实数x 的取值范围是( ). A .(2,)+∞ B .(,2)-∞C .(1,)+∞D .(,1)-∞【答案】D 【分析】用导数判断函数()f x 的单调性,再解不等式即可. 【解析】 因为()()22ln 2021x xf x -=<+',所以函数2()121x f x =-+在R 上单调递减, 由于()41(3)xf f ->所以413x-<,得1x <故选:D 【点睛】关键点点晴:判断函数()f x 的单调性是解题的关键.24.已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( ) A .[)1,+∞ B .(],1-∞C .()1,+∞D .(),1-∞【答案】B 【分析】构造新函数()()21F x f x x =--,利用导数判断()F x 单减,又(1)0F =可解1x ≤. 【解析】令()()21F x f x x =--,则()()2F x f x ''=-, 又因为对x ∀∈R 恒有()2f x '< 所以()()20F x f x ''=-<恒成立, 所以()()21F x f x x =--在R 上单减. 又(1)(1)210F f =--=, 所以()0F x ≥的解集为(],1-∞ 故选:B 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式; (2)复合函数型不等式;(3)抽象函数型不等式; (4)解析式较复杂的不等式;25.已知函数f (x ) f (2a 2-5a +4)<f (a 2+a +4) ,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭∪(2,+∞)B .[2,6)C .10,2⎛⎤ ⎥⎝⎦∪[2,6)D .(0,6)【答案】C 【分析】由解析式知()f x 在定义域上递增,由已知函数不等式有2222544a a a a ≤-+<++,即可求解a 的取值范围. 【解析】由题意,()f x 在[2,)+∞上单调递增,∵22(254)(4)f a a f a a -+<++,即2222544a a a a ≤-+<++, ∴260a a -<或22520a a -+≥,可得26a ≤<或102a <≤. 故选:C 【点睛】关键点点睛:利用函数的单调性,列不等式求参数的范围.易错点是定义域容易被忽略.26.已知函数()f x 的图象关于y 轴对称,当0x ≥时,()f x 单调递增,则不等式(2)(1)f x f x >-的解集为__________. 【答案】1(,1)(,)3-∞-⋃+∞ 【分析】由题意可得()f x 为偶函数,再由偶函数的性质可将(2)(1)f x f x >-,转化为(2)(1)f x f x >-,再由当0x ≥时,()f x 单调递增,可得21x x >-,从而可求出x 的范围 【解析】解:依题意,()f x 为偶函数,当0x ≥时,()f x 单调递增,要满足(2)(1)f x f x >-,则要求21x x >-,两边平方得22412x x x >-+,即23210x x +->,即(1)(31)0x x +->,解得1(,1)(,)3x ∈-∞-⋃+∞. 故答案为:1(,1)(,)3-∞-⋃+∞.27.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.【答案】()1,+∞ 【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【解析】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+' ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;28.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________.【答案】[]3,1-- 【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可.【解析】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为:()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--.故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.29.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.【答案】4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R上恒成立,列不等式解得a 的范围. 【解析】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.30.设函数3,1()1+1,1x x f x x x x ≤⎧⎪=⎨->⎪⎩,则不等式()26()f x f x ->的解集为_________.【答案】()3,2- 【分析】先判断函数的单调性,再解抽象不等式. 【解析】当1x >时,31+1y x x=-是增函数,此时1y >; 当1x ≤时, y x =是增函数,此时1y ≤, 所以函数()f x 是单调递增函数,()()2266f x f x x x ->⇔->,解得:32x -<<,所以不等式的解集是()3,2-. 故答案为:()3,2-。

专题8 导数中已知单调性求参数的范围经典例题与练习(解析版)-2021年高考数学导数中必考知识专练

专题8 导数中已知单调性求参数的范围经典例题与练习(解析版)-2021年高考数学导数中必考知识专练

专题8:导数中已知单调性求参数的范围经典例题与练习(解析版)已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集例1:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.解:)14()1(41)(2++++='a x a x x f . (Ⅰ)∵()f x '是偶函数,∴ 1-=a . 此时x x x f 3121)(3-=,341)(2-='x x f , 令0)(='x f ,解得:32±=x .列表如下:可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f .(Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立判别式法 则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤, 解得:02a ≤≤.综上,a 的取值范围是}20{≤≤a a .例2、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。

子集思想(I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++-1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。

函数的基本性质-1.3.1单调性与最大(小)值-学生用

函数的基本性质-1.3.1单调性与最大(小)值-学生用

三人行学堂学科老师个性化教案教师 陈永福学生姓名上课日期 上课时段 年 月 日 到 学科数学年级高一(上) 必修一类型新课讲解□ 复习课讲解□教学目标教学内容 单调性与最大(小)值学习问题解决1、函数单调性的证明及判断方法2、由函数的单调性求参数的取值范围3、由函数的单调性解不等式4、求函数的最大(小)值知识清单1、增函数与减函数的定义 条件 一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的 两个自变量的值x 1,x 2,当x 1 <x 2时结论 那么就说函数f(x)在区间D 上是 函数 那么就说函数f(x)在区间D 上是函数图示2、如果函数)(x f y =在区间D 上是 函数或 函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的 。

3、函数的最大(小)值一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足 (1)对于任意的I x ∈,都有 (1)对于任意的I x ∈,都有 (2)存在I x ∈0,使得 (2)存在I x ∈0,使得 那么就称M 是函数)(x f y =的最大值 那么就称M 是函数)(x f y =的最小值方法探究一、函数单调性的证明及判断方法 方法点拨1、函数单调性的证明:现阶段只能用定义证明,其步骤为(1)取值:设x 1,x 2为该区间内任意两个自变量的值,且x 1 <x 2;(2)作差变形:作差f(x 1)-f(x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论; (4)作结论:根据定义作出结论;其中最关键的步骤为作差变形,在变形时一般尽量化成几个最简因式的乘积或几个完全平方式,直到符号判断水到渠成。

2、函数单调性的判断方法(1)图像法:先作出函数图象,利用图象直观判断函数单调性;(2)直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接判断它们单调性。

浙江省2020版高考数学第三章函数的概念与基本初等函数Ⅰ第3节函数的单调性与最值习题(含解析)

浙江省2020版高考数学第三章函数的概念与基本初等函数Ⅰ第3节函数的单调性与最值习题(含解析)

第3节 函数的单调性与最值考试要求 1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图象分析函数的性质.知 识 梳 理1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 [常用结论与易错提醒]1.对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞);减区间为[-a ,0)和(0,a ],且对勾函数为奇函数.2.设任意x 1,x 2∈D (x 1≠x 2),则①f (x 1)-f (x 2)x 1-x 2>0(或(x 1-x 2)[f (x 1)-f (x 2)]>0)⇔f (x )在D 上单调递增; ②f (x 1)-f (x 2)x 1-x 2<0(或(x 1-x 2)[f (x 1)-f (x 2)]<0)⇔f (x )在D 上单调递减.3.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,且x 1≠x 2有(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) 解析 (2)此单调区间不能用并集符号连接,取x 1=-1,x 2=1,则f (-1)<f (1),故应说成单调递减区间为(-∞,0)和(0,+∞). (3)应对任意的x 1<x 2,f (x 1)<f (x 2)成立才可以.(4)若f (x )=x ,f (x )在[1,+∞)上为增函数,但y =f (x )的单调递增区间可以是R . 答案 (1)√ (2)× (3)× (4)×2.下列函数中,在区间(0,+∞)内单调递减的是( ) A.y =1x-xB.y =x 2-x C.y =ln x -xD.y =e x-x解析 对于A ,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x-x在(0,+∞)内是减函数;B ,C 选项中的函数在(0,+∞)上均不单调;选项D 中,y ′=e x-1,而当x ∈(0,+∞)时,y ′>0,所以函数y =e x-x 在(0, +∞)上是增函数. 答案 A3.(2018·全国卷)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A.(-∞,-1] B.(0,+∞) C.(-1,0)D.(-∞,0)解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,所以x <0,故选D.答案 D4.函数f (x )=lg x 2的单调递减区间是 .解析 f (x )的定义域为(-∞,0)∪(0,+∞),y =lg u 在(0,+∞)上为增函数,u =x 2在(-∞,0)上递减,在(0,+∞)上递增,故f (x )在(-∞,0)上单调递减. 答案 (-∞,0)5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 .解析 易得f (x )=xx -1=1+1x -1, 当x ≥2时,x -1>0,易知f (x )在[2,+∞)上是减函数, ∴f (x )max =f (2)=1+12-1=2. 答案 26.(2019·绿色评价联盟适考)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,log 2(x +1),x >0,则f (f (-3))= ,f (x )的最小值为 .解析 f (-3)=(-3)2+2×(-3)=3,f (f (-3))=f (3)=2.由图象得f (x )min =f (-1)=-1.答案 2 -1考点一 确定函数的单调性(区间)【例1】 (1)(2019·嘉兴检测)已知函数f (x )=log 4(4-|x |),则f (x )的单调递增区间是 ;f (0)+4f (2)= .解析 由f (x )=log 4(4-|x |)得函数f (x )的定义域为(-4,4),且函数y =4-|x |的单调递增区间为(-4,0],则函数f (x )=log 4(4-|x |)的单调递增区间为(-4,0].f (0)+4f (2)=1+412=3. 答案 (-4,0] 3(2)(一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 法一 设-1<x 1<x 2<1, 因为f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,所以f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1= a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增. 法二 f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.规律方法 (1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1). (2)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法. (3)函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.【训练1】 (一题多解)判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性,并给出证明.解 f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数. 证明如下:法一 设x 1,x 2是任意两个正数,且x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+a x 1-⎝⎛⎭⎪⎫x 2+a x2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数. 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +a x(a >0)在(0,a ]上是减函数,在[a ,+∞)上为增函数. 法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-a x2>0, 解得x >a 或x <-a (舍).令f ′(x )<0,则1-a x2<0,解得-a <x <a . ∵x >0,∴0<x <a .∴f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数. 考点二 确定函数的最值【例2】 (1)已知函数f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2+2x ,x ≤1,则f (f (3))= ,函数f (x )的最大值是 .解析 ①由于f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2+2x ,x ≤1.所以f (3)=log 133=-1,则f (f (3))=f (-1)=-3, ②当x >1时,f (x )=log 13x 是减函数,得f (x )<0.当x ≤1时,f (x )=-x 2+2x =-(x -1)2+1在(-∞,1]上单调递增,则f (x )≤1,综上可知,f (x )的最大值为1.答案 -3 1(2)已知函数f (x )=x 2+2x +ax,x ∈[1,+∞)且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 ①当a =12时,f (x )=x +12x +2,设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)⎝ ⎛⎭⎪⎫1-12x 1x 2,∵1≤x 1<x 2,∴x 2-x 1>0,2x 1x 2>2, ∴0<12x 1x 2<12,1-12x 1x 2>0,∴f (x 2)-f (x 1)>0,f (x 1)<f (x 2). ∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72.②当x ∈[1,+∞)时,x 2+2x +ax>0恒成立,则x 2+2x +a >0对x ∈[1,+∞)恒成立. 即a >-(x 2+2x )在x ∈[1,+∞)上恒成立.令g (x )=-(x 2+2x )=-(x +1)2+1,x ∈[1,+∞), ∴g (x )在[1,+∞)上是减函数,g (x )max =g (1)=-3. 又a ≤1,∴当-3<a ≤1时,f (x )>0在x ∈[1,+∞)上恒成立. 故实数a 的取值范围是(-3,1].规律方法 (1)求函数最值的常用方法:①单调性法;②基本不等式法;③配方法;④图象法;⑤导数法.(2)利用单调性求最值,应先确定函数的单调性,然后根据性质求解.若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).若函数f (x )在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).【训练2】 (2017·浙江卷)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关B.与a 有关,但与b 无关C.与a 无关,但与b 无关D.与a 无关,但与b 有关解析 因为最值在f (0)=b ,f (1)=1+a +b ,f ⎝ ⎛⎭⎪⎫-a 2=b -a 24中取,所以最值之差一定与b 无关,但与a 有关,故选B. 答案 B考点三 函数单调性的应用变式迁移【例3】 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么实数a 的取值范围是 .(2)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则不等式f (log 19x )>0的解集为 .解析 (1)对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数. 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,2. (2)∵y =f (x )是定义在R 上的奇函数,且y =f (x )在(0,+∞)上递增, ∴y =f (x )在(-∞,0)上也是增函数,又f ⎝ ⎛⎭⎪⎫12=0,知f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=0. 故原不等式f (log 19x )>0可化为f (log 19x )>f ⎝ ⎛⎭⎪⎫12或f (log 19x )>f ⎝ ⎛⎭⎪⎫-12,∴log 19x >12或-12<log 19x <0,解得0<x <13或1<x <3.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <13或1<x <3.答案 (1)⎣⎢⎡⎭⎪⎫32,2 (2)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <13或1<x <3 【变式迁移1】 在例题第(1)题中,条件不变,若设m =f (-12),n =f (a ),t =f (2),试比较m ,n ,t 的大小.解 由例题知f (x )在(-∞,+∞)上是增函数, 且32≤a <2,又-12<a <2, ∴f ⎝ ⎛⎭⎪⎫-12<f (a )<f (2),即m <n <t . 【变式迁移2】 在例题第(2)题中,若条件改为:“定义在R 上的偶函数y =f (x )在[0,+∞)上单调递减”,且f ⎝ ⎛⎭⎪⎫12=0,则不等式f (log 19x )>0的解集是 W. 解析 因为f (x )在R 上为偶函数,且f ⎝ ⎛⎭⎪⎫12=0, 所以f(log 19x )>0等价于f (|log 19x|)>f ⎝ ⎛⎭⎪⎫12, 又f (x )在[0,+∞)上为减函数,所以|log 19x|<12,即-12<log 19x <12,解得13<x <3.答案 ⎝ ⎛⎭⎪⎫13,3 规律方法 (1)利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.(2)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.【训练3】 已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4]D.[1,3]解析 因为f (x )为奇函数,所以f (-1)=-f (1)=1,于是-1≤f (x -2)≤1等价于f (1)≤f (x -2)≤f (-1),又f (x )在(-∞,+∞)上单调递减,∴-1≤x -2≤1,∴1≤x ≤3. 答案 D基础巩固题组一、选择题1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A.-2 B.2 C.-6D.6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.答案 C2.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x解析 ∵y =11-x与y =ln(x +1)在(-1,1)上为增函数,且y =cos x 在(-1,1)上不具备单调性.∴A,B ,C 不满足题意.只有y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上是减函数. 答案 D3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <aD.a <b <c解析 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c . 答案 B4.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x )在区间[-2,2]上的最大值等于( )A.-1B.1C.6D.12解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数, ∴f (x )的最大值为f (2)=23-2=6. 答案 C5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,则当f (x )+f (x -8)≤2时,x 的取值范围是( ) A.(8,+∞) B.(8,9] C.[8,9]D.(0,8)解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案 B6.如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( ) A.2 B.3 C.4D.-1解析 根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,故f (x )在⎝ ⎛⎦⎥⎤-∞,12上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4. 答案 C 二、填空题7.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为 .解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 答案 38.已知t ∈R ,记函数f (x )=|x +4x +2+t |在[-1,2]的最大值为H (t ),若H (t )≥1,则t 的取值范围是 W. 解析 记u =x +4x +2,当x ∈[-1,2]时,u ∈[2,3], 所以H (t )=max{|2+t |,|3+t |}=⎪⎪⎪⎪⎪⎪2+t +3+t 2+⎪⎪⎪⎪⎪⎪2+t -(3+t )2=⎪⎪⎪⎪⎪⎪t +52+12≥1,解得t ≤-3或t ≥-2.答案 (-∞,-3]∪[-2,+∞)9.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是 W.解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪[4,+∞)10.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x +ax ,x >1,若f (f (1))=4a ,则实数a = ,函数f (x )的单调增区间为 W.解析 ∵f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x +ax ,x >1,∴f (1)=12+1=2,f (f (1))=f (2)=22+2a .由f (f (1))=4a ,∴22+2a =4a ,∴a =2.当x ≤1时,f (x )在(-∞,0]上递减,在[0,1]上递增,且f (1)=2;当x >1时,f (x )=2x+2x 在(1,+∞)上递增,令x =1时,2x+2x =2+2=4>f (1),故f (x )的单调增区间为[0,1]∪(1,+∞)=[0,+∞). 答案 2 [0,+∞)三、解答题11.已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. (1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数, ∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易知a =25.12.已知函数f (x )=2x -a x的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)⎝⎛⎭⎪⎫2+1x 1x 2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ; 当a <0时,f (x )=2x +-ax,当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a . 能力提升题组13.若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( ) A.4 B.2 C.12D.14解析 当a >1时,则y =a x 为增函数,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 在[0,+∞)上为减函数,不合题意. 当0<a <1时,则y =a x为减函数, 有a -1=4,a 2=m ,此时a =14,m =116.此时g (x )=34x 在[0,+∞)上是增函数.故a =14.答案 D14.已知函数f (x )=e x-1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( ) A.[0,3]B.(1,3)C.[2-2,2+2]D.(2-2,2+2)解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 D15.(2019·绍兴适应性考试)已知a ∈R ,函数f (x )满足:存在x 0>0,对任意的x >0,恒有|f (x )-a |≤|f (x 0)-a |,则f (x )可以为( ) A.f (x )=lg x B.f (x )=-x 2+2x C.f (x )=2xD.f (x )=sin x解析 由a ∈R ,不妨设a =0,g (x )=|f (x )|,则原问题可看成存在x 0>0,g (x )max =g (x 0)=|f (x 0)|.对于A 选项,g (x )=|lg x |,结合其函数图象知,g (x )存在最小值0,不存在最大值,排除A ;对于B 选项,g (x )=|-x 2+2x |=|x 2-2x |,g (x )存在最小值0,不存在最大值,排除B ;对于C 选项,g (x )=|2x|=2x ,显然g (x )不存在最小值,也不存在最大值,排除C ;对于D 选项,g (x )=|sin x |≤1,g (x )存在最大值,故选D.答案 D16.(一题多解)设函数f (x )=1+x +1-ax ,记M (a )为f (x )的最大值,则M (a )的最小值为 W.解析 法一 由题知当a ≤0时,f (x )无最大值,故a >0.由定义域知0≤x +1≤1+1a ,令aa +1(x +1)=cos 2α⎝⎛⎭⎪⎫α∈⎣⎢⎡⎭⎪⎫0,π2,代入f (x )=1+x +1-ax ,则有f (x )=1+aacos α+1+a sin α=2+1a +a ·sin(α+θ),其中tan θ=1a,且a >0,所以M (a )=2+1a+a ≥2(当且仅当a =1时取到等号).法二 由题知当a ≤0时,f (x )无最大值,故a >0,令导函数f ′(x )=12·11+x -12·a1-ax =0,得唯一极大值点x =1a-1,所以M (a )=f ⎝ ⎛⎭⎪⎫1a -1=1a+a ≥2(当且仅当a =1时取到等号). 答案 217.已知函数f (x )=lg(x +ax-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +ax>0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax2>0.因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=lg a2.(3)对任意x ∈[2,+∞),恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞). 18.a ∈R ,设函数f (x )=x |x -a |-x . (1)若a =3,求函数f (x )的单调区间;(2)若a ≤0,对于任意的x ∈[0,t ],不等式-1≤f (x )≤6恒成立,求实数t 的最大值及此时a 的值.解 (1)当a =3时,f (x )=⎩⎪⎨⎪⎧-x 2+2x =-(x -1)2+1,x <3,x 2-4x =(x -2)2-4,x ≥3, 函数f (x )的单调递增区间为(-∞,1),(3,+∞),单调递减区间为(1,3). (2)当a ≤0,x ∈[0,t ]时,x ≥a 恒成立,故f (x )=x 2-(a +1)x . ①当a ≤-1时,a +12≤0,f (x )在[0,t ]上单调递增,f (x )min =f (0)=0,f (x )max =f (t )=t 2-(a +1)t ,由题意得f (x )max ≤6,即 t 2-(a +1)t ≤6,解得0<t ≤(a +1)+(a +1)2+242.令m =-(a +1)≥0,h (m )=m 2+24-m2=12m 2+24+m在[0,+∞)上单调递减,所以h (x )max =h (0)=6,即当a =-1时,t max = 6. ②当-1<a ≤0时,a +12>0,f (x )在⎣⎢⎡⎦⎥⎤0,a +12上单调递减,在⎣⎢⎡⎭⎪⎫a +12,+∞上单调递增,f (x )min =f ⎝ ⎛⎭⎪⎫a +12=-(a +1)24∈⎣⎢⎡⎭⎪⎫-14,0,满足f (x )min ≥-1.当0<t ≤a +1≤1时,f (x )max =f (0)=0,满足题意,此时t max =1,a =0; 当t >a +1时,f (x )max =f (t )=t 2-(a +1)t ,由题意得f (x )max ≤6, 即t 2-(a +1)t ≤6,解得a +1<t ≤(a +1)+(a +1)2+242.令m =a +1,则0<m ≤1,h (m )=m +m 2+242在(0,1]上单调递增,所以h (m )max =h (1)=3, 即当a =0时,t max =3. 综上所述,t max =3,此时a =0.。

考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。

单调性的应用

单调性的应用

增函数

(2)如果对于定义域 I 内某个区间 D 上的任意两个自变量 的值 x 1 , x 2,当 x 1< x 2 时,都有 f (x 1)>f (x 2),那么就说函 数 f (x )在区间 D 上是
减函数

注意: 1.单调性是函数的局部性质,必须指明单调区间; 2.定义域内变量的任意性; 3.单调区间的非合并性;
1 x
2
题型四:利用函数单调性解题
例5:已知f(x)在其定义域R+ 解 : f ( xy) f ( x ) f ( y ) 上为增函数, f ( 4 ) f ( 2) f ( 2 ) 2 f(2)=1,f(xy)=f(x)+f(y).解不等 f ( 8 ) f ( 4) f ( 2 ) 3 式 f(x)+f(x-2) ≤3 又f ( x ) f ( x 2) f ( x 2 2 x)
单调性定义的理解
• 三个元素:1.定义域某个子区间中的两个变量x1,x2的大小关系;
2.对应的两个函数值f(x1),f(x2)的大小关系; 3.函数某个区间的单调性;
三种用法: x1<x2 f(x1)< f(ห้องสมุดไป่ตู้2)
作用1: 单调性的证明或判断
单调递增
x1<x2
单调递增
f(x1)< f(x2)
作用2: 求函数的最大(小)值
f ( x )是[0,1]上的增函数, g ( x )是[0,1]上的减函数 y f ( x ) g ( x )是[0,1] 上的增函数, 当x 0时,ymin= 2-1 当x 1时,ymax 2
题型四:利用函数单调性解题
例4:已知:f(x)是定义在[- 1,1]上的增函数,且 f(x-1)<f(x2-1), 求x的取值范围。

利用导数求参数的取值范围

利用导数求参数的取值范围
⇔f(x)min≥g(x)max;
(3)∃x1∈[a , b] , ∃ x2∈[c , d] , 有 f(x1)≥g(x2) 成 立
⇔f(x)max≥g(x)min;
(4)∃x1∈[a , b] , ∀ x2∈[c , d] , 有 f(x1)≥g(x2) 成 立
⇔f(x)max≥g(x)max.
热点聚焦 ·题型突破
热点聚焦 ·题型突破
归纳总结 ·思维升华
规律方法 极值点的个数,一般是使 f′(x)=0 方程根的个数, 一般情况下导函数若可以化成二次函数,我们可以利用判别式 研究,若不是,我们可以借助导函数的性质及图象研究.
热点聚焦 ·题型突破
归纳总结 ·思维升华
[微题型 2] 与逻辑联结词有关的求参数范围问题 【例 2-2】 (2014·湖北八市联考改编)定义在 R 上的函数 g(x) 及二次函数 h(x)满足: g(x)+2g(-x)=ex+e2x-9,h(-2)=h(0)=1 且 h(-3)=-2. (1)求 g(x)和 h(x)的解析式; (2)对于∀x1,x2∈[-1,1]均有 h(x1)+ax1+5≥g(x2)-x2g(x2)成 立,求 a 的取值范围.
热点聚焦 ·题型突破
归纳总结 ·思维升华
(2)设 φ(x)=h(x)+ax+5=-x2+(a-2)x+6,
F(x)=g(x)-xg(x)=ex-3-x(ex-3)=(1-x)ex+3x-3.
依题意知:当 x∈[-1,1]时,φ(x)min≥F(x)max. ∵F′(x)=-ex+(1-x)ex+3=-xex+3,易知 F′(x)在[-1,1]
热点聚焦 ·题型突破
归纳总结 ·思维升华
科目1考试网 / 科目1考试 科目1考试网 /shiti/a/ 科目一考试C1试题 科目1考试网 /shiti/d/ 科目一考试B2试题 科目一考试网 / 科目一模拟考试2016题库 科目一考试网 /c1/ 科目一模拟考试C1 科目一考试网 /c2/ 科目一模拟考试C2 科目一考试网 /a2/ 科目一模拟考试A2 科目一考试网 /b2/ 科目一模拟考试B2 科目一考试网 /a1/ 科目一模拟考试A1 科目一考试网 /a3/ 科目一模拟考试A3

利用函数的单调性求参数的取值范围使用

利用函数的单调性求参数的取值范围使用

利用函数的单调性求参数的取值范围使用在数学中,单调性指的是函数图像在定义域内的增减趋势是否保持一致。

具体而言,如果函数f(x)在一些区间上是递增的,则称它在该区间上是单调递增的;如果函数f(x)在一些区间上是递减的,则称它在该区间上是单调递减的。

假设我们面对的问题为求使函数f(x)大于等于一些给定值的参数x 的取值范围。

我们可以通过以下步骤来解决这个问题:1.首先,我们需要确定函数f(x)的单调性。

可以通过函数的导数来判断函数的增减性。

如果f'(x)大于零,那么函数f(x)在该区间上是单调递增的;如果f'(x)小于零,那么函数f(x)在该区间上是单调递减的。

2.其次,我们可以将函数f(x)大于等于给定值转化为不等式f(x)-C>=0的形式,其中C表示给定值。

例如,如果我们需要求函数f(x)大于等于0的参数x的取值范围,可以将不等式f(x)>=0转化为f(x)-0>=0。

3.接下来,我们可以利用不等式的性质来求解参数的取值范围。

对于单调递增的函数,我们可以将不等式f(x)-C>=0转化为x>=g(C)的形式,其中g(C)表示函数f(x)-C=0的解。

对于单调递减的函数,我们可以将不等式f(x)-C>=0转化为x<=g(C)的形式。

4.最后,我们可以利用函数f(x)的定义域来进一步限制参数x的取值范围。

函数f(x)的定义域表示函数f(x)的取值范围,此范围也是参数x的取值范围的一部分。

因此,我们需要将函数f(x)的定义域与参数x的取值范围进行交集运算,以得到最终的参数取值范围。

需要注意的是,在利用函数的单调性求参数的取值范围时,我们需要确保函数f(x)存在单调性。

如果函数f(x)在一些区间上既不是递增的也不是递减的,那么我们无法利用单调性来求解参数的取值范围。

举例说明:假设我们需要求函数f(x)=x^2+3x+2大于等于5的参数x的取值范围。

专题15 已知函数的单调区间求参数的范围(解析版)

专题15 已知函数的单调区间求参数的范围(解析版)

专题15 已知函数的单调区间求参数的范围一、单选题 1.若函数sin ()cos x a f x x +=在区间(0,)2π上单调递增,则实数a 的取值范围是( )A .1a ≤-B .2a ≤C .1a ≥-D .1a ≤【答案】C 【分析】利用导函数研究原函数的单调性,利用单调性求解实数a 的取值范围. 【详解】 解:函数sin ()cos x af x x+=则2cos cos sin (sin )()x x x x a f x cos x++'=(0,)2x π∈上,2cos 0x ∴>要使函数sin ()cos x a f x x +=在区间(0,)2π上单调递增,22cos sin sin 0x x a x ∴++≥在(0,)2x π∈上恒成立,即:sin 10a x +≥在(0,)2x π∈上恒成立, (0,)2x π∈上,sin (0,1)x ∈1a ∴-故选:C . 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( )A .15a <≤B .25a <≤C .25a ≤≤D .35a <≤【答案】A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤,故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.3.已知函数()()2xf x x a e =-在区间[]1,2上单调递增,则a 的取值范围是( )A .(]3,-∞B .(],8-∞C .[)3,+∞D .[)8,+∞【答案】A【分析】由函数的单调性与导数的关系得出220x x a +-≥在区间[]1,2上恒成立,将问题转化为求()2min2x x+,即可得出答案. 【详解】()()220x f x x x a e '=+-≥在区间[]1,2上恒成立,则220x x a +-≥在区间[]1,2上恒成立即()22min2123a x x≤+=+=故选:A 4.函数32123y x x mx =+++是R 上的单调函数,则m 的范围是( ) A .(,1)-∞ B .(,1]-∞C .(1,)+∞D .[1,)+∞【答案】D 【分析】函数在R 上时单调函数,等价于导函数大于等于0或小于等于0恒成立,列不等式求出m 的范围即可. 【详解】 函数32123y x x mx =+++是R 上的单调函数,即220y x x m '=++≥或220y x x m '=++≤(舍)在R 上恒成立440m ∴∆=-≤,解得m 1≥故选:D 【点睛】本题考查导数解决函数的单调性问题,考查二次函数的性质,属于基础题. 5.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) A .(,1]-∞- B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭【答案】B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解. 【详解】 已知函数321()13f x x ax x =+++, 则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.6.函数1()f x x ax=+在(,1)-∞-上单调递增,则实数a 的取值范围是( ) A .[1,)+∞ B .(,0)(0,1]-∞ C .(0,1] D .(,0)[1,)-∞⋃+∞【答案】D 【分析】 函数1()f x x ax=+在(,1)-∞-上单调递增,所以()'0f x ≥在(,1)-∞-上恒成立,求函数()f x 的导函数,参变分离求最值即可. 【详解】解:因为函数1()f x x ax=+在(,1)-∞-上单调递增,所以()'0f x ≥在(,1)-∞-上恒成立,即21'()10f x ax=-≥在(,1)-∞-上恒成立. 即2min 1()x a ≤,即11a≤,解得:1a ≥或0a <. 检验,当1a =时,()f x 不是常函数,所以1a =成立. 故选:D 【点睛】本题考查已知函数的单调性求参数的范围,属于中档题. 方法点睛:(1)已知在区间上单调递增,则导函数大于等于0恒成立; (2)分类讨论或参变分离,求出最值即可. 易错点睛:必须检验等号成立的条件,有可能取等号的时候是常函数,所以需要检验取等时是否是常函数. 7.对任意的0a b t <<<,都有ln ln b a a b <,则t 的最大值为( ) A .1 B .eC .2eD .1e【答案】B 【分析】 令ln xy x=,问题转化为函数在(0,)t 递增,求出函数的导数,求出函数的单调区间,从而求出t 的最大值即可. 【详解】0a b t <<<,ln ln b a a b <,∴ln ln a ba b <,()a b <, 令ln x y x=,则函数在(0,)t 递增,故21ln 0xy x -'=>, 解得:0x e <<,所以(0,)t 是(0,)e 的子集, 可得0t e <≤,故t 的最大值是e , 故选:B . 【点睛】利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间,a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ① 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 8.函数()()2122ln 2f x ax a x x =-++单调递增的必要不充分条件有( ) A .2a ≥ B .2a =C .1a ≥D .2a >【答案】A 【分析】求导,把问题转化为()2220ax a x -++≥在区间()0,∞+恒成立,a 分三种情况讨论即可得出结论。

导数与函数的单调性、极值、最值问题

导数与函数的单调性、极值、最值问题

导数与函数的单调性、极值、最值问题高考定位 高考对导数计算的考查贯穿于与之有关的每一道题目之中,函数的单调性,函数的极值与最值均是高考命题的重点内容,在选择题、填空题、解答题中都有涉及,试题难度不大.真 题 感 悟(2015·全国Ⅱ卷)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.(1)证明 f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎨⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎨⎧e m -m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1;当m <-1时,g (-m )>0,即e -m +m >e -1.综上,m的取值范围是[-1,1].考点整合1.导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f′(x)>0,则y=f(x)在该区间为增函数;如果f′(x)<0,则y=f(x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.2.极值的判别方法当函数f(x)在点x0处连续时,如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.也就是说x0是极值点的充分条件是点x0两侧导数异号,而不是f′(x)=0.此外,函数不可导的点也可能是函数的极值点,而且极值是一个局部概念,极值的大小关系是不确定的,即有可能极大值比极小值小.3.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小者.热点一导数与函数的单调性[微题型1]求含参函数的单调区间【例1-1】设函数f(x)=a ln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.解(1)由题意知a=0时,f(x)=x-1x+1,x∈(0,+∞).此时f′(x)=2(x+1)2.可得f′(1)=12,又f(1)=0,所以曲线y=f(x)在(1,f(1))处的切线方程为x-2y-1=0.(2)函数f(x)的定义域为(0,+∞).解f′(x)=3x2-2kx+1.(1)当k=1时,f′(x)=3x2-2x+1,Δ=4-12=-8<0,所以f′(x)>0恒成立,故f(x)在R上单调递增.故函数f(x)的单调增区间为(-∞,+∞),无单调减区间.(2)法一当k<0时,f′(x)=3x2-2kx+1,f′(x)的图象开口向上,对称轴为x=k3,且过点(0,1).当Δ=4k2-12=4(k+3)(k-3)≤0,即-3≤k<0时,f′(x)≥0,f(x)在[k,-k]上单调递增.从而当x=k时,f(x)取得最小值m=f(k)=k.当x=-k时,f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k. 当Δ=4k2-12=4(k+3)(k-3)>0,即k<-3时,令f′(x)=3x2-2kx+1=0,解得x1=k+k2-33,x2=k-k2-33,注意到k<x2<x1<0,(注:可用根与系数的关系判断,由x1·x2=13,x1+x2=2k3>k,从而k<x2<x1<0;或者由对称结合图象判断)所以m=min{f(k),f(x1)},M=max{f(-k),f(x2)}.因为f(x1)-f(k)=x31-kx21+x1-k=(x1-k)(x21+1)>0,所以f(x)的最小值m=f(k)=k.因为f(x2)-f(-k)=x32-kx22+x2-(-k3-k·k2-k)=(x2+k)[(x2-k)2+k2+1]<0,所以f(x)的最大值M=f(-k)=-2k3-k.综上所述,当k<0时,f(x)在[k,-k]上的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k. 法二当k<0时,对x∈[k,-k],都有f(x)-f(k)=x3-kx2+x-k3+k3-k=(x2+1)(x-k)≥0,故f(x)≥f(k);f(x)-f(-k)=x3-kx2+x+k3+k3+k=(x+k)(x2-2kx+2k2+1)=(x+k)[(x-k)2+k2+1]≤0,故f(x)≤f(-k).而f(k)=k<0,f(-k)=-2k3-k>0,所以f(x)max=f(-k)=-2k3-k,f(x)min=f(k)=k.1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“∪”连接,而只能用逗号或“和”字隔开.2.可导函数在闭区间[a,b]上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值.3.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f(x),“f(x)在x=x0处的导数f ′(x)=0”是“f(x)在x=x0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论.5.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维——直接求函数的极值或最值;也有逆向思维——已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.一、选择题1.函数f(x)=12x2-ln x的单调递减区间为()A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)解析由题意知,函数的定义域为(0,+∞),又由f ′(x)=x-1x≤0,解得0<x≤1,所以函数f(x)的单调递减区间为(0,1]. 答案 B2.(2015·武汉模拟)已知函数f(x)=12mx2+ln x-2x在定义域内是增函数,则实数m的取值范围是()A.[-1,1]B.[-1,+∞)C.[1,+∞)D.(-∞,1]解析f′(x)=mx+1x-2≥0对一切x>0恒成立,。

已知函数的单调性求参数的范围

已知函数的单调性求参数的范围

若x (0,2],ex ax 0 a ex =y[注意a的系数是x哦] x
y=
ex x
在区间(-,0)和(0,1]单调递增,在(1,2]单调递减,
ymax
e,a
e
若x [2,0),ex
ax
0
a
ex x
=y[注意a的系数是x哦] a
ymin
e2 2
综上,a的范围为[ e, e2 ] 2
2.函数的最值问题 (1)采用导数求单调性,进而求得最值 (2)常见函数(如二次函数、反比例函数、指对数函数、三角 函数)图象法,看高低
(1)已知f
(x)在(m,
n)上单调递增
思路一:f (x) 0在(m, n)上恒成立
思路二:(m, n) f (x)的增区间
(2)已知f
(x)在(m,
n)上单调递减
思路一:f (x) 0在(m, n)上恒成立
思路二:(m, n) f (x)的减区间
[恒成立法与子集法处理参数范围问题]
思路一:f (x) 0或f (x) 0在(m, n)上恒成立 (3)已知f (x)在(m, n)上单调 思路二:(m, n) f (x)的减区间或者减区间
A.充分不必要 B.必要不充分 C.充要条件 D.既不充分也不必要
B (2) f (x) 0( 0)是函数f (x)在区间(a,b)内单调递增(减)的( )条件
A.充分不必要 B.必要不充分 C.充要条件 D.既不充分也不必要
(1)的反例增函数f (x)=x3,其导函数f (x)=3x2 0,而非f (x) 0 (2) f (x) 0( 0),如常函数f (x)=3,满足f (x)=0 0,而非单调函数
A.[1, ) B.(1, ) C.(,1] D.(,1)

2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)

2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)

2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。

利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围方法归纳导数在数学中广泛应用,它可以表示函数的变化率。

在求取参数的取值范围时,可以利用导数的性质来推导出函数与参数之间的关系。

下面将介绍利用导数求参数取值范围的一些常见方法。

一、利用导数判断函数的单调性:考虑函数$f(x)$的单调性,可以使用导数来帮助我们判断。

如果函数$f(x)$在其中一区间上的导数恒大于零,那么函数在该区间上是递增的;如果导数恒小于零,那么函数递减。

1.对于一元函数$f(x)$,可以计算其导数$f'(x)$,然后解方程$f'(x)=0$,将问题转化为求解函数的极值点。

如果求解出的极值点满足题目给定的参数范围条件,则参数的取值范围就是极值点的区间。

2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函数$g(x)=f(x,y)$。

然后计算$g'(x)$,利用一元函数的方法来判断参数的取值范围。

3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量求导,将其它变量视为常数,从而转化为一元函数的问题。

二、利用导数判断函数的极值:考虑函数$f(x)$的极值情况,可以求取其导数$f'(x)$,然后判断导数的正负性。

1.对于一元函数$f(x)$,如果导数$f'(x)$在特定点$x_0$处为零,并且$x_0$处的导数的左右性质相异,那么函数在$x_0$处取得极值。

2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函数$g(x)=f(x,y)$。

然后计算$g'(x)$,判断导数的正负性来确定参数的取值范围。

3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量求导,将其它变量视为常数。

然后再对求得的一元函数进行求导判断极值。

三、利用导数判断函数的凸凹性:考虑函数$f(x)$的凸凹性质,可以使用导数$f''(x)$来判断。

函数单调性的应用

函数单调性的应用
解得 ≤a<2.
2
a≥(2-a)×1+1,
7. 已知函数 () = ቐ
( − 2), ≥ 2,
满足对任意的实数 1 ≠ 2 ,都有
− 1, < 2
13
(−∞, ]
8
(1 )−(2 )
< 0 成立,则实数 的取值范围为_______________.
1
( )
2
1 −2
2
1

,+∞.
2

a(x+2)+1-2a
1-2a
方法二:f(x)=
=a+
,∵f(x)在(-2,+∞)上单调递
x+2
x+2
1
增,∴1-2a<0,∴a>2.
(1,2)
4. 已知函数 y=loga(2-ax)在[0,
1]上是减函数,
则实数 a 的取值范围是________.
【解析】 设 u=2-ax,∵a>0,且 a≠1,
2 − > 0,
[解析] 由已知可得 ൞ + 3 > 0,
解得 −3 < < −1 或 > 3 ,所以实数 的
2 − > + 3,
取值范围为 (−3, −1) ∪ (3, +∞) .
1

2. 已知函数 () 为 上的减函数,则满足 (| |) < (1) 的实数 的取值范围
− 2 < 0,
1 2
[解析] 由题意知函数 () 是 上的减函数,于是有 ൝
( − 2) × 2 ≤ ( ) − 1,
2
由此解得 ≤
13
13
,即实数 的取值范围是 (−∞, ] .

辽宁省名校联盟2022-2023学年高三上学期10月月考数学试题(解析版)

辽宁省名校联盟2022-2023学年高三上学期10月月考数学试题(解析版)

2023届辽宁省名校联盟高三上学期10月月考数学试题一、单选题1.已知集合{}=12<3A x x -,集合{=B x y ,则A B ⋂=( )A .[)0,1B .[)0,2C .(]1,0-D .[]2,0-【答案】B【分析】由题知()1,2A =-,(][),20,B =-∞-+∞,再根据集合交集运算求解即可.【详解】解:解不等式2+20x x ≥得2x ≤-或0x ≥,解不等式12<3x -得12x -<<, 所以,()1,2A =-,(][),20,B =-∞-+∞,所以[)0,2A B =. 故选:B.2.已知复数20232i 1i z +=+,则z 的共轭复数z 在复平面中对应的点在第( )象限A .一B .二C .三D .四【答案】A【分析】根据复数的乘方和除法运算法则化简复数,进而得到其共轭复数,从而确定其在复平面内的点,确定所在象限.【详解】由题意得505432i 2i (2i)(1i)13i 1i 1i (1i)(1i)22z ⨯++---====-+++-, 所以13i 22z =+,z 在复平面中对应的点为13,22⎛⎫⎪⎝⎭,在第一象限. 故选:A.3.已知命题p :x R ∃∈,23210ax ax ++≤是假命题,则实数a 的取值范围是( ) A .(](),03,-∞+∞ B .()(),03,-∞+∞ C .()0,3 D .[)0,3【答案】D【分析】根据一元二次不等式恒成立求解实数a 的取值范围. 【详解】由题意得p ⌝是真命题,即x R ∀∈,23210ax ax ++>, 当=0a 时,10>符合题意;当0a ≠时,有0a >,且2(2)430a a ∆=-⋅<,解得0<<3a . 综上所述,实数a 的取值范围是[)0,3.4.已知奇函数()f x 在R 上可导,()()='g x f x ,若()g x 在()0,1是增函数,在()1,+∞是减函数,则( )A .()g x 在(),1-∞-是增函数,在()1,0-是减函数B .()g x 在(),1-∞-是减函数,在()1,0-是增函数C .()g x 在(),1-∞-,()1,0-都是增函数D .()g x 在(),1-∞-,()1,0-都是减函数 【答案】A【分析】由奇函数的的导函数是偶函数得出()g x 是偶函数,再根据对称性质得单调性. 【详解】因为()f x 是奇函数,所以()f x 在关于原点的对称区间上的单调性相同,即x ∀∈R ,()()f x f x ''-=,所以()()='g x f x 为偶函数,可得()g x 在关于原点对称区间上的单调性相反. 故选:A .5.在ABC 中,“cos cos 01sin sin A BA B <<”是“ABC 是锐角三角形”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要 【答案】C【分析】根据充分性和必要性分步证明,利用三角恒等变换公式. 【详解】(充分性)在ABC 中,显然sin 0A >,sin 0B >, 所以cos cos 01sin sin A BA B<<等价于cos cos 0A B >,且cos cos sin sin A B A B <,可得cos 0A >,cos 0B >,()cos 0A B +<,所以A ,0,2B π⎛⎫∈ ⎪⎝⎭,,2A B ππ⎛⎫+∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,充分性成立;(必要性)由A ,B ,C 都是锐角可得sin 0A >,sin 0B >,cos 0A >,cos 0B >,cos 0C >,所以cos cos 0sin sin A BA B>,()cos cos 0A B C +=-<,即cos cos sin sin 0A B A B -<,所以cos cos sin sin A B A B <, 可得cos cos 1sin sin A BA B<,必要性成立.6.如今我们在测量视力的时候,常用对数视力表(如图),视力值从4.0到5.3,每行相差0.1,这种计算视力的方法称为五分记录法,“对数视力表”和“五分记录法”是由我国著名眼科专家缪天荣(1914—2005)在1959年研制发明的,这种独创的视力表的核心在于:将视力和视角设定为对数关系,因此被认为是一种最符合视力生理的,而又便于统计和计算的视力检测系统,这使中国的眼科研究一下子站到了世界的巅峰,1986年,《对数视力表》在第25届国际眼科大会(罗马)宣读,引起轰动,1990年《标准对数视力表》被制定为国家标准(GB 11533—89),并在全国实施.已知在五分记录法中,规定视力值5lg L α=-,其中α为人眼的视角,单位为分(1度=60分),视角的大小,决定了人眼能看到的最小物体的长度,这个长度约等于以眼球为圆心(眼球大小忽略不计),视角为圆心角,眼球与物体之间的距离为半径的扇形的弧长.如果某人的一只眼睛的视力值为4.7,那么这只眼睛能看到距离5米外的最小物体的长度约为(参考数据:0.3102≈, 3.14π≈)( )A .1.5毫米B .2.9毫米C .4.4毫米D .5.8毫米【答案】B【分析】由视力值4.7求出视角α,再由α计算出弧长即得.【详解】由题意得4.75lg α=-,解得0.3102α=≈分,则圆心角为2分,半径为5米的扇形的弧长等于250.0029601801080ππ⋅⋅=≈米=2.9毫米. 故选:B .7.已知函数22+,1,()=+2+8,<1,m x m x f x x mx x ≥⎧⎨⎩若()f x 在(),-∞+∞单调递减,则实数m 的取值范围是( ) A .(0,1B .(,1-∞-C .)2,0-D .2,1--【答案】D【分析】利用分段函数的单调性求参数m 的取值范围.【详解】由()f x 在(),+-∞∞单调递减,可得2<011+1+2+8m m m m -≥≤⎧⎪⎨⎪⎩,解得21m -≤≤-.故选:D.8.已知过点(),a b 可以作函数()3f x x x =-的三条切线,如果0a >,则a 和b 应该满足的关系是( ) A .30b a << B.3b a a <<- C .3a b a -<< D .3a b a a -<<-【答案】D【分析】根据函数过某点的切线方程的求法可求解.【详解】设切点()3,t t t -,由()231f x x '=-可得 切线方程为()()3231()y t t t x t --=--, 将(),a b 代入得()()3231()b t t t a t --=--,整理得3223b t at a =-+-,设32()23g t t at a =-+-,2()66g t t at '=-+, 令()0g t '=,解得=0t 或t a =,因为0a >,所以()g t 在(),0-∞,(),a +∞单调递减,在()0,a 单调递增, 由题意得()b g t =有3个不相等的实数根, 则有()()0g b g a <<,即3a b a a -<<-. 故选:D.二、多选题9.在复数范围内,方程38x =的虚数根是( ) A. B.1-C.1D.1-【答案】BD【分析】利用一元二次方程在虚数范围内的根的求法.【详解】方程38x =可化为()2(2)240x x x -++=,解得=2x 或1x ==-. 故选:BD.10.已知221x y +=,则下列说法正确的是( ) A .0x <且0y < B .+x y 的最小值是2- C .22x y --+的最小值是4 D .44x y +的最小值是12【答案】ACD【分析】对于A ,利用2x y =的值域及单调性即可判断得0x <且0y <,故A 正确;对于B ,利用基本不等式可得22x y ≥+2x y +≤-,故B 错误;对于C ,利用基本不等式中“1”的妙用可得224x y --+≥,故C 正确; 对于D ,由()24422222x y x y x y +=+-⋅⋅结合基本不等式可判断得D 正确.【详解】对于A ,因为20x >,20y >,所以2120y x =->,即0212x <=, 由于2x y =在R 上单调递增,所以0x <,同理可得0y <,故A 正确;对于B ,因为20x >,20y >,所以22x y ≥+1≥12,即()11222x y +-≤,由于2x y =在R 上单调递增,所以()112x y +≤-,即2x y +≤-, 当且仅当22x y =且221x y +=,即1x y ==-时,等号成立, 故+x y 的最大值是2-,故B 错误;对于C ,因为221x y+=,()()222222x y x y x y----+=++221122422y xx y=+++≥+=, 当且仅当2222y xx y =且221x y +=,即1x y ==-时,等号成立,故C 正确;对于D ,()244222221222xyxy xyxy+=+-⋅⋅=-⋅⋅22122122x y ⎛⎫+= ⎪≥⎝⎭-,当且仅当22x y =且221x y +=,即1x y ==-时,等号成立,故D 正确. 故选:ACD.11.已知函数()4sin cos 1(0)6f x x x πωωω⎛⎫=++> ⎪⎝⎭在()0,x π∈上恰有3个零点,则( )A .()f x 在()0,π上恰有2个极大值点和2个极小值点B .()f x 在0,8π⎛⎫⎪⎝⎭上的最大值是2C .()f x 在0,12π⎛⎫⎪⎝⎭上是增函数D .ω的取值范围是1723,1212⎛⎤⎥⎝⎦【答案】BCD【分析】利用三角恒等变换化简函数()f x ,根据给定条件求出ω的范围并判断D ;再借助正弦函数的性质逐一判断A ,B ,C 作答. 【详解】依题意,1()=4sin sin +cos2=2sin(2+)26f x x x x x x x πωω-ωωωω, 由()0,x ∈π,得<2+<2+666x πππωπω,由正弦函数的图像知3<2+46ππωπ≤π,解得1723<1212ω≤,D 正确; 函数()f x 在()0,π上恰有2个极大值点,可能有1个或2个极小值点,A 不正确; 当(0,)8x π∈时,<2+<+6646x πππωπω,而1725+>+=>464126482πωπππππ⋅,则()f x 在(0,)8π上的最大值是2,B 正确; 当(0,)12x π∈时,<2+<+6666x πππωπω,而2335++=<666126722πωπππππ≤⋅,则()f x 在(0,)12π上是增函数,C 正确.故选:BCD12.下列不等关系中,正确的是(e 是自然对数的底数)( )A .e e ππ<B .10<C .20232022log 20222023< D .3eln 2<【答案】ABD【分析】构造函数ln ()xf x x=,利用该函数单调性可一一判断四个选项的正误. 【详解】设ln ()x f x x=,21ln ()xf x x -'=,()0,e x ∈,()0f x '>,()e,x ∈+∞,()0f x '<,所以()f x 在()0,e 单调递增,在()e,+∞单调递减.对于A 项,e e ln ln ee ln ln e eln ln e eππππππππ<⇔<⇔<⇔<, 由()f x 在()e,+∞单调递减,可得()()e f f π<,故A 项正确;10ln ln102ln10<⇔<⇔<121ln10ln 22ln 2ln10ln 4ln 2244⇔<⇔<⇔<⇔<,由()f x 在()e,+∞单调递减,可得()4f f <,故B 项正确;对于C 项,20232022ln 20222022log 20222023ln 20232023<⇔<ln 2022ln 202320222023⇔<, 由()f x 在()e,+∞单调递减,可得()()20222023f f >,故C 项错误; 对于D项,1ln e 3eln 2e e <<⇔<2ln e ln e e e ⇔<⇔<⇔ln ee <, 由()f x 在()e,+∞单调递减,可得(()e f f <,故D 项正确. 故选:ABD.三、填空题13.已知集合8{N |N}1A x x =∈∈+,如果∅B A ,那么满足条件的集合B 的个数是_________. 【答案】14【分析】由已知求出集合A 中元素,然后根据非空真子集的概念得结论. 【详解】因为8N 1x ∈+,所以x 可取0,1,3,7,即{}0,1,3,7A =,由∅BA 可得,B 为A 的非空真子集,所以满足条件的集合B 的个数为42214-=.故答案为:14.14.已知1x 和2x 是方程29330x x +-+=的两根,则121299x x x x +=+_________. 【答案】75【分析】由题知12339x x +=,12333x x ⋅=,进而得121x x =+,再结合()12121229933233x x x x x x +=+-⋅⋅求解即可.【详解】解:方程可化为()239330x x -⋅+=,由韦达定理得12339x x +=,12333x x ⋅=,又()1212122993323381675x x x x x x =-++⋅⋅==-,所以12129975x x x x +=+. 故答案为:7515.定义在()0,6上的函数()f x 满足()()6f x f x =-,当(]0,3x ∈时,()3log f x x =,已知方程()0f x m -=有4个不相等的实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()2221234x x x x -++的取值范围是_________.【答案】[)48,50【分析】根据题意得()f x 的图像关于直线=3x 对称,进而作出函数()y f x =在()0,6上的图像,数形结合可得121x x =,326x x =-,412661x x x ==--,()21,3x ∈,进而得()2222123422*********x x x x x x x x ⎛⎫⎛⎫-++=+-++ ⎪ ⎪⎝⎭⎝⎭,再根据换元法结合对勾函数与二次函数性质求解即可.【详解】由()()6f x f x =-,可得()f x 的图像关于直线=3x 对称, 作出()y f x =在()0,6上的图像,由题意得()y f x =在()0,6上的图像与直线=y m 有4个不同的交点, 如图,易得146x x +=,236x x +=, 又3132log log x x =且12x x ≠,所以3132log log 0x x +=,可得121=x x , 所以121x x =,326x x =-,412661x x x ==--,()21,3x ∈,所以()()222222123422221166x x x x x x x x ⎛⎫⎛⎫-++=-+-+- ⎪ ⎪⎝⎭⎝⎭22222222222212112127021266x x x x x x x x ⎛⎫⎛⎫=+--+=+-++ ⎪ ⎪⎝⎭⎝⎭,设221102,3x t x ⎛⎫+=∈ ⎪⎝⎭,所以,()g t 在()2,3单调递减,在103,3⎛⎫⎪⎝⎭单调递增,所以()()()32g g t g ≤<,可得()g t 的取值范围是[)48,50. 故答案为:[)48,50四、双空题16.在ABC 中,=2AB ,=8BC ,D 是BC 中点,E 在边AC 上,满足2CE EA =,线段AD 和BE 交于F ,则BF FE=_________,AF BF ⋅=_________.【答案】 3 3【分析】解法一:设BF BE λ=,AF AD μ=,进而根据F ,A ,D 三点共线和,,B F E 三点共线可得34λ=,12μ=,再根据向量运算求解即可;解法二:取CE 中点G ,AB 中点H ,连接DG ,FH ,进而根据中位线定理可得12EF GD =,12GD EB =,即14EF EB =,再根据向量数量积运算求解即可.【详解】解::方法一:因为D 是BC 中点,E 在边AC 上,满足2CE EA =,所以,设212122333333BF BE BA BC BA BC BA BD λλλλλλ⎛⎫==+=+=+ ⎪⎝⎭,因为F ,A ,D 三点共线,所以22133λλ+=,解得34λ=,所以3BF FE=,所以1124BF BA BC =+, 设11132222AF AD AB AC AB AE μμμμμ==+=+, 因为,,B F E 三点共线,所以13122μμ+=,解得12μ=,所以1111()2224AF AD AB BD BA BC ==+=-+,因为=2AB ,=8BC ,所以2211111132424164AF BF BA BC BA BC BC BA ⎛⎫⎛⎫⋅=-+⋅+=-= ⎪ ⎪⎝⎭⎝⎭.方法二:取CE 中点G ,AB 中点H ,连接DG ,FH , 因为D 是BC 中点,所以BE DG ∥, 因为E 是AG 中点,所以F 为AD 中点, 所以12EF GD =,12GD EB =,即14EF EB =,所以3BF FE=.因为F ,H 分别是AD ,AB 的中点,=2AB ,=8BC , 所以2FH =,所以221()()34AF BF AH HF BH HF HF AB ⋅=+⋅+=-=. 故答案为:3;3五、解答题17.已知函数333()log log (9)f x x x =⋅.(1)求函数()f x 的值域; (2)求不等式()4f x <-的解集.【答案】(1)9,4⎛⎤-∞ ⎥⎝⎦(2)()10,9,27⎛⎫+∞ ⎪⎝⎭【分析】(1)由对数运算法则化简函数式后,把3log x 作为一个整体,结合二次函数性质可得值域;(2)把3log x 作为一个整体,解一元二次不等式,然后再解对数不等式可得. 【详解】(1)()()()23333()1log 2log log log 2f x x x x x =-+=--+ 23199log 244x ⎛⎫=-++≤ ⎪⎝⎭,31log 2x =-,即x =所以()f x 的值域为9,4⎛⎤-∞ ⎥⎝⎦.(2)根据题意得()233log log 24x x --+<-, 整理得()233log log 60x x +->, 即()()33log 3log 20x x +->, 解得3log 3x <-或3log 2x >, 所以1027x <<或9x >, 故不等式的解集为()10,9,27⎛⎫+∞ ⎪⎝⎭.18.已知向量()3sin ,cos a x x =,()cos ,2cos b x x =.(1)如果cos 0x ≠,_________,求tan2x 的值;(在①a b ∥和②1a b ⋅=两个条件中选择一个条件填入横线,并对其求解,如果多选则按第一个解答计分)(2)设函数()22f x a b b =+-,求()f x 图像的对称中心坐标,并说明将()f x 的图像经过怎样的平移,可以得到一个奇函数的图像?(写出一种方法即可)【答案】(1)选①tan 2x tan 2x =(2)对称中心是,4()122k k Z ππ⎛⎫-+∈ ⎪⎝⎭;将()f x 的图像向右平移12π个单位长度,再向下平移4个单位长度,就可以得到一个奇函数的图像【分析】(1)利用同角三角函数关系求解;(2)将函数化简后可求解对称中心,并平移得到一个奇函数.【详解】(1)选择①:因为a b ∥22cos cos x x x ⋅=,又cos 0x ≠,所以cos x x =,得tan x =所以2222tan 6tan 21tan 1x x x ===--⎝⎭选择②:23sin cos 2cos 1x x a b x ⋅+⋅==,2cos 2x x =-,则tan 2x =. (2)()22222(3sin cos)(3cos )5cos xx x x f x a b b =++-=+-223sin cos 5cos 2cos 24x x x x x x =++++2sin 246x π⎛⎫=++ ⎪⎝⎭.令26x k ππ+=,解得122k x ππ=-+,所以函数图像的对称中心是,4()122k k Z ππ⎛⎫-+∈ ⎪⎝⎭. 取=0k ,()f x 的图像关于,412π⎛⎫- ⎪⎝⎭对称,而奇函数的图像关于()0,0对称,所以只需将()f x 的图像向右平移12π个单位长度,再向下平移4个单位长度,就可以得到一个奇函数的图像.(答案不唯一)19.已知函数π()cos()0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像如下图所示.(1)求()f x 的解析式;(2)在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若角C 满足()12f C =-,求ba的取值范围. 【答案】(1)3()cos 26f x x π⎛⎫=+ ⎪⎝⎭(2)1,22⎛⎫ ⎪⎝⎭【分析】(1)根据函数图像与y 轴的交点确定ϕ的值,根据函数图像与x 轴的交点和函数的周期确定ω的值,从而确定函数解析式;(2)根据题中的条件结合(1)中的结论求解角C 的大小,利用正弦定理结合两角差的正弦公式将两边的比转化为关于角A 的表达式,根据角A 的范围确定两边之比的取值范围.【详解】(1)由图像可得(0)cos f ϕ== 因为π2ϕ<且()f x 在=0x 附近单调递减,所以π6ϕ=.又44ππcos π0996f ω⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,所以4πππ2π962k ω-+=-+,k ∈Z .解得39(22k k ω=-∈Z ), 又4π0π92T ω⎛⎫--<= ⎪⎝⎭,得904ω<<,所以32ω=,(直接写4πππ962ω-+=-不扣分) 所以3π()cos 26f x x ⎛⎫=+ ⎪⎝⎭.(2)由3π1()cos 262f C C ⎛⎫=+=- ⎪⎝⎭且π0,2C ⎛⎫∈ ⎪⎝⎭,可得3π2π263C +=,解得3C π=.由正弦定理可得2π1sin sin sin 1322sin sin sin 2A A A b B a A A A ⎛⎫-+ ⎪⎝⎭====. 由锐角三角形可得π0<<22ππ0<<32A A -⎧⎪⎪⎨⎪⎪⎩,解得ππ,62A ⎛⎫∈ ⎪⎝⎭,所以tan A ⎫∈+∞⎪⎪⎝⎭,则b a 的取值范围是1,22⎛⎫⎪⎝⎭. 20.如图,在平面凹四边形ABCD 中,=2AB ,=3BC ,60B ∠=︒.(1)若sin sin AD A CD C =且=1AD ,求凹四边形ABCD 的面积; (2)若120ADC ∠=︒,求凹四边形ABCD 的面积的最小值. 【答案】【分析】(1)连接BD ,进而在ABD △和CBD 中,结合正弦定理与已知条件可得==30?ABD CBD ∠∠,进而在ABD △中,结合余弦定理BD =(2)连接AC ,在ABC △中结合余弦定理易得AC AD m =,CD n =,根据余弦定理与基本不等式得73mn ≤,进而得ADCS 面积的最大值,再根据=ABCD ABCADCS SS-求解即可.【详解】(1)解:如图,连接BD ,在ABD △中, 由正弦定理得=sin sin AD BDABD A∠,所以sin =sin AD A BD ABD ∠,同理可得,在CBD 中,有sin =sin CD C BD CBD ∠, 因为sin sin AD A CD C =, 所以sin =sin BD ABD BD CBD ∠∠, 即sin =sin ABD CBD ∠∠,又ABD ∠,CBD ∠都是锐角,=60?B ∠ 所以==30?ABD CBD ∠∠.(也可由点D 向BA ,BC 作垂线,证明BD 是角平分线)在ABD △中,由余弦定理得222=+2cos AD AB BD AB BD ABD -⋅⋅⋅∠,即21=4+BD -,解得BD = 所以凹四边形ABCD 的面积11=+=sin +sin 22ABD BCDS SSAB BD ABD CB BD CBD ⋅⋅⋅∠⋅⋅⋅∠(2)解:如图,连接AC ,在ABC △中,由余弦定理得222=+2cos =7AC AB BC AB BC ABC -⋅⋅⋅∠,故AC =在ADC △中,设AD m =,CD n =,因为=120?ADC ∠所以,由余弦定理得222=+2cos AC m n mn ADC -∠, 所以22+=72m n mn mn -≥,即73mn ≤,当且仅当m n =时等号成立, 此时显然点D 在ABC △的内部,所以117=sin ?223ADCS mn ADC ∠≤(不写取等条件扣1分)又1=sin 2ABCSAB BC ABC ⋅⋅⋅∠所以凹四边形ABCD 的面积的最小值min S21.已知函数()21()1x f x x e -=+,2()g x ax =,()()()h x f x g x =-.(1)当=2a 时,(i )证明:0x ∀>,()0h x ≥;(ii )是否存在点()00,A x y ,使得()f x 和()g x 在A 处的切线相同?如果存在,直接写出点A 坐标和切线方程;如果不存在,请说明理由. (2)讨论函数()h x 在()0,+∞的零点的个数.【答案】(1)(i )证明见解析;(ii )存在,()1,2A ;切线方程为42y x =- (2)答案见解析【分析】(1)(i)利用导函数讨论单调性并求出最小值即可;(ii)利用某点处切线方程求法即可;(2)根据a 的不同取值利用导数和极值讨论零点个数.【详解】(1)(i )证明:当=2a 时,()212()1e 2x h x x x -=+-,由0x >可知,要证()2121e 20x x x -+-≥,只需证1211e 20x x -⎛⎫+-≥ ⎪⎝⎭,设121()1e 2x p x x -⎛⎫=+- ⎪⎝⎭,()3112332e 12()1e x x x x p x xx x --+-⎛⎫'=+-= ⎪⎝⎭, 设()32q x x x =+-,因为()q x 在区间()0,+∞内单调递增且()10q =,所以()0,1x ∈,()0p x '<;()1,x ∈+∞,()0p x '>,所以()p x 在区间()0,1内单调递减,在区间()1,+∞内单调递增, 所以当=1x 时,()min 0p x =,可得0x ∀>,()0p x ≥, 所以0x ∀>,()0h x ≥.(其他方法酌情给分) (ii )解:存在()1,2A ;切线方程为42y x =-.(证明如下:由(i )中取等条件可知,当0x >时,存在唯一=1x ,使得()()112f g ==,又恰好()()114f g ''==,进而得出公切线方程42y x =-,而当0x <时,()0f x '≥,()0g x '<,又()()00f g ≠,故无其他结果.)(2)令()0h x =,即()2121e 0x x ax -+-=,等价于1211e 0x a x -⎛⎫+-= ⎪⎝⎭,设121()1e x r x a x -⎛⎫=+- ⎪⎝⎭,由(1)得,当=2a 时,()h x 在()0,+∞有1个零点; 当2a <时,min ()(1)20r x r a ==->,故没有零点; 当2a >时,min ()(1)20r x r a ==-<,221(ln 1)10(ln 1)(ln 1)ar a a a a a ⎡⎤+=+-=>⎢⎥++⎣⎦, 111(1(1e 0)e er a a a a --=+->+-=>,所以()r x 在⎫⎪⎭,()1,ln 1a +各有1个零点. 综上所述,当=2a 时,()h x 在区间()0,+∞内有1个零点;当2a <时,()h x 在区间()0,+∞内没有零点;当2a >时,()h x 在区间()0,+∞内有2个零点.22.已知函数()3()sin cos cos f x x x x =-.(1)当()0,x π∈时,求()f x 的单调区间; (2)求()f x 的最值;(3)证明:()44449sin sin 2sin 4...sin 216nnx x x x n N +⎛⎫⋅⋅⋅⋅≤∈ ⎪⎝⎭.【答案】(1)单调递增区间是0,3π⎛⎫ ⎪⎝⎭,2,3ππ⎛⎫⎪⎝⎭,单调递减区间2,33ππ⎛⎫⎪⎝⎭(2)max ()f x =min ()f x =(3)证明见解析【分析】(1)利用导函数讨论单调性;(2)结合(1)确定最值;(3)由(2) ()f x 明.【详解】(1)()221()sin cos 1cos sin 2sin 2f x x x x x x =-=,2()cos 2sin sin 2sin cos f x x x x x x '=+ sin (sin cos 2cos sin 2)sin sin3x x x x x x x =+=.()=0f x '在()0,π的根13x π=,223x π=, 当20,,33x πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x '>;当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()0f x '<,所以()f x 的单调递增区间是0,3π⎛⎫ ⎪⎝⎭,2,3ππ⎛⎫⎪⎝⎭,()f x 的单调递减区间2,33ππ⎛⎫⎪⎝⎭. (2)因为21()sin 2()sin ()2f x x x πππ+=++21sin 2sin ()2x x f x ==,所以()f x 是周期为π的函数,结合(1)的结论,得()0=0f ,()0f π=,3f π⎛⎫= ⎪⎝⎭23f π⎛⎫= ⎪⎝⎭所以max ()f x =min ()f x =(3)证明:由(2)得()f x ≤故()344444sin sin 2sin 4...sin 2n x x x x ⋅⋅⋅⋅ 3333sin sin 2sin 4...sin 2n x x x x =⋅⋅⋅⋅()()()22212sin sin sin 2sin 2sin 4...sin 2sin 2sin 2n n n x x x x x x x x -=⋅⋅⋅⋅⋅⋅⋅⋅()12sin 2()2(2)...22sin 2n n x f x f x f x x -=⋅⋅⋅⋅⋅()12()2(2)...222n nn n f x f x f x -≤⋅⋅⋅≤⋅=⎝⎭⎝⎭,所以4344449sin sin 2sin 4...sin 216n nnx x x x ⎫⎛⎫⋅⋅⋅⋅≤= ⎪⎝⎭⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:

如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。
a
2
a
f (x)在(1 ,2)上为减函数。
a
综上:
(1)当a 0时,f (x)在(0,2)上递增,在(2, )上递减。
(2)当a 1 时,f (x)在(0, )上为增函数。
2
(3)当0 a 1 时,f (x)在(0,2)和(1 ,)上为增函数;
2
a
f (x)在(2,1)上为减函数。 a
(4)当a 1 时,f (x)在(0,1)和(2,)上为增函数;
0时,令f
'
(x)
0,
得x1
1 a
0.x2
2
1)当1 2即a 1 时,f (x)在(0, )上为增函数。
a
2
2)当1 2即0 a 1 时,f (x)在(0,2)和(1 ,)上为增函数;
a
2
a
f (x)在(2,1)上为减函数。 a
3)当1 2即a 1 时,f (x)在(0,1)和(2,)上为增函数;
强化补清
(09)已知函数f (x) x 2 a(2 ln x), a 0.讨论f (x)的单调性 x
(07)设a≥0,f (x)=x-1-ln2 x+2a ln x(x>0). (Ⅰ)令F(x)=xf'(x),
讨论F(x)在(0.+∞)内的单调性
即2ax 3x2
a 3 x, x (0,2)
2
a
(
3 2
x)max
,
x
(0,2),
a3
分离参数 分离参数 法:
构造函数 g(x)
求g(x)的 最值
求得参数 范围
例2:已知函数f (x) x3 3ax2 2a2x 1在[0,2]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 6ax 2a2, x [0,2]
y
x
o
2
X=a
X=a X=a
练习设a为实数,函数f (x) x3 ax2 (a2 1)x在 1: [0, )上是增函数,求a的取值范围.
解 f '(x) 3x2 2ax (a2 1) 0, x[0,)
:
[3x2 2ax (a2 1)]min 0, x [0,)

a
0
3
y
f ' (0) 0
2
a
f (x)在(1 ,2)上为减函数。 a
练习1:
(2011辽宁理)已知函数f(x)=ln x ax2 (2 a)x,讨论函数f(x)的单调性
解:f (x)的定义域为(0, )
f (x) 1 2ax (2 a) (2x+1)(ax 1)
Байду номын сангаас
x
x
当a 0时, f (x) 0,故f (x)在(0, )单调递增;
a 3x2 3, 2x
3x2 3 a ( 2x )min
令g( x) 3x2 3 , x [2,4] 2x
练习1:已知函数f (x) x3 ax 3x 1在[0,)上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 a 3, x [0,) : 则f '(x) 0在[0,)上恒成立
B
4.已知函数 f(x)=1a-xx+ln x,若函数 f(x)在[1,+∞)上为增函数, 则正实数 a 的取值范围为___________.
∵f(x)=1-axx+ln x,∴f′(x)=axa-x21 (a>0),
∵函数 f(x)在[1,+∞)上为增函数, ∴f′(x)=axa-x21≥0 对 x∈[1,+∞)恒成立, ∴ax-1≥0 对 x∈[1,+∞)恒成立,即 a≥1x对 x∈[1,+∞) 恒成立,∴a≥1.
3.已知函数 f(x)=x2+mx+ln x 是单调递增函数,则 m 的取值范围是
A.m>-2 2 B.m≥-2 2
() C.m<2 2 D.m≤2 2
令 g(x)=2x2+mx+1,x∈(0,+∞), 当-m4≤0 时,g(0)=1>0 恒成立,∴m≥0 成立, 当-m4>0 时,则 Δ=m2-8≤0,∴-2 2≤m<0, 综上,m 的取值范围是 m≥-2 2.
: 则f '(x) 0在[0,2]上恒成立
即3x2 6ax 2a2 0恒成立,x [0,2]
即f '(x)min 0, x [0,2]
而f '(x)为二次函数,开口向上, 对称轴为x a
f '(x) 3x2 6ax 2a2 0, x [0,2]
即(3x2 6ax 2a2 )min 0, x [0,2]
a 1
o
x

a 3
f
0 '(a)
3
0
a 6 2
分类讨论 法:
在利用函数的单调性求参数的 取值范围时,当导函数可化为 二次函数形式时,应注意从对 称轴,区间端点函数值方面考

例3:设函数f (x) 1 ax2 (2a 1)x 2ln x.试讨论f (x)的单调区间 2
解:函数的定义域(0,)
[1,+∞)
5.已知函数 f(x)=x2(x-a).
(-∞,3]∪92,+∞
若 f(x)在(2,3)上单调,则实数 a 的取值范围是
3,92
______________________; 若 f(x)在(2,3)上不单调,则实数 a 的取值范围是_____________.
f′(x)=3x2-2ax,若 f′(x)在(2,3)上单调, 则 f′(x)≥0 或 f′(x)≤0 在(2,3)上恒成立, ∴a≤32x 或 a≥32x. ∵x∈(2,3),∴a≤3 或 a≥92.
当a 0时,令f (x) 0,解得x 1 a
则当x (0, 1)时,f (x) 0; x (1 ,)时,f (x) 0
a
a
故f (x)在(0, 1)单调递增,在(1 ,)单调递减。
a
a
综合练习:
(2011 江西高考)已知函数 f(x)=x2(x-a). 若 f(x)在(2,3)上单调递减,求实数 a 的取值范围
相关文档
最新文档