第四节 基本不等式: ab≤a+b2(a,b∈R+)
第四节基本不等式课件高三数学一轮复习
基本不等式再理解:变形公式
ab a b (a 0,b 0) 2
和定积最大
积定和最小
2.利用基本不等式求最值问题
已知 x>0,y>0,则
(1)如果积 xy 是定值 p,那么当且仅当_x__=__y__时,x+y 有
_最___小___值是__2__p___.(简记:积定和最小)
(2)如果和 x +y 是定值 p,那么当且仅当_x_=___y__时,xy 有
答案 (1)C (2)5+2 6
某厂家拟定在 2018 年举行促销活动,经调查测算,该产 品的年销量(即该厂的年产量)x 万件与年促销费用 m(m≥0)万 元满足 x=3-m+k 1(k 为常数).如果不搞促销活动,那么该产 品的年销量只能是 1 万件.已知 2018 年生产该产品的固定投 入为 8 万元,每生产 1 万件该产品需要再投入 16 万元,厂家 将每件产品的销售价格定为每件产品平均成本的 1.5 倍. (1)将 2018 年该产品的利润 y 万元表示为年促销费用 m 万元 的函数;(产品成本包括固定投入和再投入两部分资金) (2)厂家 2018 年的促销费用投入多少万元时,厂家利润最大?
制 50≤x≤100(单位:千米/时).假设汽油的价格是每升 2 元,而汽车每小
时耗油
2+ x2 360
升,司机的工资是每小时
14
元.
(1)求这次行车总费用 y 关于 x 的表达式;
(2)当 x 为何值时,这次行车的总费用最低,并求出最低费用的值.
(1)y=m(kx2+9)=m x
x+9x
,x∈[1,10].
值,则 a=________. (2)不等式 x2+x<a+b对任意 a,b∈(0,+∞)恒成立,
基本不等式:ab≤a+b2
3.4 基本不等式:ab ≤a +b2学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点).[自 主 预 习·探 新 知]1.重要不等式如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).思考:如果a >0,b >0,用a ,b 分别代替不等式a 2+b 2≥2ab 中的a ,b ,可得到怎样的不等式?[提示] a +b ≥2ab . 2.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ,b 均为正实数; (2)等号成立的条件:当且仅当a =b 时取等号. 思考:不等式a 2+b 2≥2ab 与ab ≤a +b2成立的条件相同吗?如果不同各是什么?[提示] 不同,a 2+b 2≥2ab 成立的条件是a ,b ∈R ;ab ≤a +b2成立的条件是a ,b 均为正实数.3.算术平均数与几何平均数(1)设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为(2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.思考:a +b2≥ab 与⎝⎛⎭⎪⎫a +b 22≥ab 是等价的吗?[提示] 不等价,前者条件是a >0,b >0,后者是a ,b ∈R . 4.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y =s2时,积xy 有最小值为2xy .(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为x +y24.5.基本不等式求最值的条件 (1)x ,y 必须是正数.(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值?[提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值.[基础自测]1.思考辨析(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2+2x 2+1的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________.【导学号:91432346】400 [因为x ,y 都是正数,且x +y =40,所以xy ≤⎝⎛⎭⎪⎫x +y 22=400,当且仅当x =y =20时取等号.]3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤⎝⎛⎭⎪⎫x +8-x 22=16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]4.给出下列说法: ①若x ∈(0,π),则sin x +1sin x≥2; ②若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b ;③若x ∈R 且x ≠0,则⎪⎪⎪⎪⎪⎪x +4x ≥4.其中正确说法的序号是________.【导学号:91432347】①③ [①因为x ∈(0,π),所以sin x ∈(0,1], 所以①成立;②只有在lg a >0,lg b >0, 即a >1,b >1时才成立;③⎪⎪⎪⎪⎪⎪x +4x =|x |+⎪⎪⎪⎪⎪⎪4x ≥2|x |·⎪⎪⎪⎪⎪⎪4x=4成立.][合 作 探 究·攻 重 难]利用基本不等式比较大小已知0<a <1,0<b <1,则a +b,2ab ,a 2+b 2,2ab 中哪一个最大? [解] 法一:因为a >0,b >0,所以a +b ≥2ab ,a 2+b 2≥2ab , 所以四个数中最大的数应为a +b 或a 2+b 2. 又因为0<a <1,0<b <1,所以a 2+b 2-(a +b )=a 2-a +b 2-b =a (a -1)+b (b -1)<0, 所以a 2+b 2<a +b , 所以a +b 最大. 法二:令a =b =12,则a +b =1,2ab =1,a 2+b 2=12,2ab =2×12×12=12,再令a =12,b =18,a +b =12+18=58,2ab =212×18=12, 所以a +b 最大.a ≥0,时,要注意不等式的双向性≤⎝ ⎛a +2;1.(1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是________. 【导学号:91432348】(2)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b2,则P ,Q ,R 的大小关系是________.(1)m >n (2)P <Q <R [(1)因为a >2,所以a -2>0,又因为m =a +1a -2=(a -2)+1a -2+2,所以m ≥2a -1a -2+2=4,由b ≠0,得b 2≠0, 所以2-b 2<2,n =22-b 2<4,综上可知m >n . (2)因为a >b >1,所以lg a >lg b >0, 所以Q =12(lg a +lg b )>lg a ·lg b =P ;Q =12(lg a +lg b )=lg a +lg b =lg ab <lg a +b 2=R . 所以P <Q <R .]利用基本不等式证明不等式已知a ,b ,c 为不全相等的正实数. 求证:a +b +c >ab +bc +ca .[解] ∵a >0,b >0,c >0, ∴a +b ≥2ab >0,b +c ≥2bc >0, c +a ≥2ca >0,∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .2.已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.【导学号:91432349】[证明] 因为a ,b ,c 为正实数, 且a +b +c =1,所以1a -1=1-a a =b +c a ≥2bca.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.基本不等式的实际应用如图341,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图341(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)要使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?思路探究:①已知a +b 为定值,如何求ab 的最大值?②已知ab 为定值,如何求a +b 的最小值?[解] 设每间虎笼长x m ,宽y m ,则由条件知:4x +6y =36,即2x +3y =18. 设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy , ∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3.故每间虎笼长4.5 m ,宽3 m 时,可使面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴9-32y >0,∴0<y <6,S =xy =⎝⎛⎭⎪⎫9-32y y =32(6-y )·y .∵0<y <6, ∴6-y >0,∴S ≤32·⎣⎢⎡⎦⎥⎤6-y +y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长4.5 m ,宽3 m 时,可使面积最大.(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .法一:∵2x +3y ≥22x ·3y =26xy =24, ∴l =4x +6y =2(2x +3y )≥48. 当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3yxy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 法二:由xy =24,得x =24y.∴l =4x +6y =96y+6y =6⎝ ⎛⎭⎪⎫16y +y ≥6×216y·y =48.当且仅当16y=y ,即y =4时,等号成立,此时x =6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.母题探究:某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图342所示.池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).试设计污水池的长和宽,使总造价最低,并求出最低造价.[解] 设污水池的长为x 米,则宽为400x米,总造价y =(2x +2·400x)·200+2×250·400x +80×400=400⎝⎛⎭⎪⎫x +900x +32 000≥400×2x ·900x+32 000=56 000(元),当且仅当x =900x,即x =30时取等号. 故污水池的长为30米、宽为403米时,最低造价为56 000元.利用基本不等式求最值[探究问题]1.由x 2+y 2≥2xy 知xy ≤x 2+y 22,当且仅当x =y 时“=”成立,能说xy 的最大值是x 2+y 22吗?能说x 2+y 2的最小值为2xy 吗?提示:最值是一个定值(常数),而x 2+y 2或2xy 都随x ,y 的变化而变化,不是定值,故上述说法均错误.要利用基本不等式a +b2≥ab (a ,b ∈R +)求最值,必须保证一端是定值,方可使用.2.小明同学初学利用基本不等式求最值时,是这样进行的: “因为y =x +1x≥2x ·1x =2,当且仅当x =1x ,即x 2=1时“=”号成立,所以y =x +1x的最小值为2.”你认为他的求解正确吗?为什么?提示:不正确.因为利用基本不等式求最值,必须满足x 与1x都是正数,而本题x 可能为正,也可能为负.所以不能盲目“套用”基本不等式求解.正确解法应为:当x >0时,y =x +1x≥2x ×1x =2,当且仅当x =1x ,即x =1时取“=”,y =x +1x的最小值是2;当x <0时,y =-⎝ ⎛⎭⎪⎫-x -1x ≤-2-x⎝ ⎛⎭⎪⎫-1x =-2,当且仅当x =1x ,即x =-1时,取“=”,y =x +1x 的最大值是-2.3.已知x ≥3,求y =x 2+4x 的最小值,下列求解可以吗?为什么?“解:∵y =x 2+4x =x +4x≥2x ·4x=4,∴当x ≥3时,y =x 2+4x的最小值为4.”提示:不可以,因为在利用基本不等求解最值时,虽然将所求代数式进行变形,使其符合基本不等式的结构特征,但是必须符合“正”、“定”、“等”的条件,缺一不可.本解法忽略了等号成立的条件,即“=”号不成立.本问题可采用y =x +4x的单调性求解.(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12x (1-2x )的最大值;(3)已知x >0,求f (x )=2xx 2+1的最大值; (4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.【导学号:91432350】思路探究:变形所求代数式的结构形式,使用符合基本不等式的结构特征. (1)4x -2+14x -5=4x -5+14x -5+3. (2)12x (1-2x )=14·2x ·(1-2x ). (3)2x x 2+1=2x +1x. (4)x +y =(x +y )·1=(x +y )⎝ ⎛⎭⎪⎫1x +9y .[解] (1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1, 当且仅当5-4x =15-4x ,即x =1时,上式等号成立,故当x =1时,y max =1. (2)∵0<x <12,∴1-2x >0,∴y =14×2x (1-2x )≤14×⎝ ⎛⎭⎪⎫2x +1-2x 22=14×14=116, ∴当且仅当2x =1-2x ⎝ ⎛⎭⎪⎫0<x <12,即x =14时,y max =116.(3)f (x )=2x x 2+1=2x +1x.∵x >0,∴x +1x≥2x ·1x=2, ∴f (x )≤22=1,当且仅当x =1x ,即x =1时等号成立.(4)∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y(x +y )=y x +9x y+10≥6+10=16,当且仅当y x=9x y,又1x +9y=1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.母题探究:1.(变条件)在例题(1)中条件改为x >54,求函数f (x )=4x -2+14x -5的值域.[解] ∵x >54,∴4x -5>0,∴f (x )=4x -5+14x -5+3≥2+3=5.当且仅当4x -5=14x -5.即x =32时,等号成立.f (x )的值域为[5,+∞).2.(变条件)在例题(1)中去掉条件x <54,求f (x )=4x -2+14x -5的最值如何求解?[解] 由f (x )=4x -2+14x -5=4x -5+14x -5+3 ①当x >54时,4x -5>0∴f (x )=4x -5+14x -5+3≥2+3=5当且仅当4x -5=14x -5时等号成立即x =32时f (x )min =5.②当x <54时,4x -5<0.f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1当且仅当5-4x =15-4x ,即x =1时等号成立.故当x =1时,f (x )max =1.1.若0<a <1,0<b <1,则log a b +log b a ≥________. 2 [因为0<a <1,0<b <1,所以log a b >0,log b a >0, 所以log a b +log b a =log a b +1log a b≥2log a b ·1log a b=2. 当且仅当log a b =log b a 即a =b 时取“=”.]2.已知a ,b ∈R ,若a 2+b 2=1,则ab 有最________值为________;若ab =1,则a 2+b 2有最________值为________.【导学号:91432351】大 12 小 2 [由a 2+b 2≥2ab 可知,当a 2+b 2=1时,ab ≤12,故ab 有最大值为12;当ab=1时,a 2+b 2≥2,a 2+b 2有最小值2.]3.若0<x <1,则x-2x的取值范围是________.⎝⎛⎦⎥⎤0,324 [由0<x <1知3-2x >0,故x-2x =12·2x-2x ≤12·2x +-2x2=324,当且仅当x =34时,上式等号成立.所以0<x-2x≤324.] 4.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为120元/m 2,80元/m 2,那么水池的最低总造价为________元.【导学号:91432352】1 760 [设池底一边长为x m ,总造价为y 元.则y =4×120+2⎝ ⎛⎭⎪⎫2x +2×4x ×80=320⎝ ⎛⎭⎪⎫x +4x +480(x >0). 因为x +4x ≥2x ·4x =4, 当且仅当x =4x即x =2时取等号, 所以y min =480+320×4=1 760(元).]5.已知函数f (x )=x +1x. (1)已知x >0,求函数f (x )的最小值.(2)已知x <0,求函数f (x )的最大值.(3)已知x ∈[2,4],求f (x )的最值.[解] (1)∵x >0,∴f (x )=x +1x≥2.当且仅当x =1时等号成立. ∴f (x )的最小值为2.(2)∵x <0,∴f (x )=x +1x =-⎝⎛⎭⎪⎫-x +1-x ≤-2.当且仅当x =-1时等号成立.∴f (x )的最大值为-2.(3)设2≤x 1<x 2≤4,则f (x 1)-f (x 2)=x 1+1x 1-⎝⎛⎭⎪⎫x 2+1x 2 =x 1-x 2x 1x 2-x 1x 2. 因为2≤x 1<x 2≤4,所以x 1-x 2<0,x 1x 2-1>0,x 1x 2>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在[2,4]上是单调增函数.在x =2时,f (x )有最小值52;当x =4时,f (x )有最大值174.。
高考数学总复习 第六章 第四节基本不等式≤ (a,b∈R+ )课件 文
第十三页,共43页。
解析:由于(yóuyú)(a+b+c)2=a2+b2+c2+2ab+2bc+
2ca≤a2+b2+c2+(a2+b2)+(b2+c2)+(c2+a2)=3(a2+b2+
c2),
1
所以a2+b2+c2≥ 3 ;
解析:①(a+b)2=a2+b2+2ab≥2ab+2ab=4ab, ∴①正确;
②|a|+|a1|≥2 |a|·|a1|=2,∴②错误;③当 sin x =sin4 x时,sin x=±2,显然等号取不到,事实上,设 t =sin x,则 t∈(0,1],y=t+4t 在(0,1]上为减函数,故当 t=1 时,y 取最小值 5,∴③错误.故选 B.
第二十三页,共43页。
点评(diǎn pínɡ):在使用基本不等式求最值时,一定要注意 其中的等号能不能成立,是否符合使用基本不等式的条件.如果 根据限制条件等号不能成立,则应该通过其他方法解决(如函数、 导数等).使用基本不等式求最值,其基本的技巧是变换,通过变 换出现两式之和为常数或者两式之积为常数,达到使用基本不等 式的目的.使用基本不等式求最值时,要注意三个条件,即“一 正、二定、三相等”.
1a-11b-11c-1≥2
bc 2 a·
ac 2 b·
cab=8.当且仅当
a=b=c=13时取等号.
第三十页,共43页。
考点(kǎo 基本不等式的实际(shíjì)应用 diǎn)五【例5】 为了在夏季降温和冬季供暖(ɡònɡ nuǎn)时减少能源损耗,
房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔
第二十页,共43页。
思路点拨:对于(1),根据等比数列所给的等式,找出 m,n 的关系 m+n=3,将所找的关系与m4 +n1结合,再用 基本不等式求最值,关键的一步是m4 +n1=13m4 +n1(m+n).
基本不等式:ab≤a+b2 课件
(2)年平均利润为ny=-2(n+4n9-20) ≤-2(2 n·4n9-20)=12. 当且仅当 n=4n9,即 n=7 时上式取等号. 所以,当捕捞 7 年后年平均利润最大,最大是 12 万元.
利用基本不等式证明不等式 [典例] (本题满分 12 分)(1)已知 a,b,c∈(0,+∞),且 a+b+c=1, 求证:1a+1b+1c≥9; (2)已知 a,b>0,a+b=1,求证: a+12+ b+12≤2.
[证明] (1)∵a,b,c∈(0,+∞),且 a+b+c=1, ∴1a+1b+1c =a+ab+c+a+bb+c+a+cb+c① =3+ba+ab+ac+ac+bc+bc≥3+2+2+2=9.…………………4 分 当且仅当 a=b=c=13时,等号成立.②…………………………6 分
(2)
a+12=
解得 x=1- 22,y= 2-1,
∴当 x=1- 22,y= 2-1 时,1x+1y有最小值 3+2 2.
法二:1x+1y=1x+1y·1=1x+1y(2x+y)
=3+2yx+xy≥3+2 以下同法一.
xy·2yx=3+2 2,
利用基本不等式求条件最值的常用方法 (1)“1”的代换:利用已知的条件或将已知条件变形得到含“1”的式子, 将“1”代入后再利用基本不等式求最值. (2)构造法: ①构造不等式:利用 ab≤(a+2 b)2,将式子转化为含 ab 或 a+b 的一 元二次不等式,将 ab,(a+b)作为整体解出范围.
[解析] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤m+2 n2=1262=64. 当且仅当 m=n=8 时,mn 取到最大值 64. ∴12mn 的最大值为 32. (2)∵x>3,∴x-3>0,x-4 3>0, 于是 f(x)=x+x-4 3=x-3+x-4 3+3≥
3.4 基本不等式ab≤a+b2 (一)
1
鸡西市第十九中学高一数学组
探究 下面是基本不等式 ab≤
a+b 的一种几何解释,请你补充完整. 2
如图所示,AB 为⊙O 的直径,AC=a,CB=b,过点 C 作 CD⊥AB 交⊙O 上 半圆于点 D,连接 AD,BD.由射影定理可知,CD= ,而 OD= , a+b 因为 OD CD,所以 ab,当且仅当 C 与 O ,即 时,等号成立. 2 【探究点二】基本不等式的拓展 a+b 2 问题 当 a>0,b>0 时, ≤ ab≤ ≤ 1 1 2 + a b 请你给出证明.
1 1 n 例 3 a>b>c,n∈M 且 + ≥ ,求 n 的最大值. a-b b-c a-c
小结 一般地,若函数 y=f(x),x∈D 既存在最大值,也存在最小值,则 a>f(x),x∈D 恒成立⇔a>f(x)max; a<f(x),x∈D 恒成立⇔a<f(x)min.
3
鸡西市第十九中学高一数学组
鸡西市第十九中学高一数学组
鸡西市第十九中学学案
2018 年( )月( )日 班级 姓名
3.4 学习 目标 重点 难点
基本不等式 ab≤ 2
a+b
(一)
1.理解基本不等式的内容及证明. 2.能熟练运用基本不等式来比较两个实数的大小. 3.能初步运用基本不等式证明简单的不等式. 1.应用基本不等式解决有关问题必须紧扣它的适用条件,公式 a2+b2≥2ab 只 a+b 要求 a、b 是实数,而公式 ab≤ 强调 a、b 必须是非负数. 2
2
鸡西市第十九中学高一数学组
例 1 已知正数 0<a<1,0<b<1,且 a≠b,则 a+b,2 ab,2ab,a2+b2,其中最大的一个 是( ) 2 A.a +b2 B.2 ab C.2ab D.a+b
高三数学复习(理):第4讲 基本不等式
第4讲 基本不等式[学生用书P132]1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎛⎪⎫a +b 22(a ,b ∈R ). (4)a 2+b 22≥⎛⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.常用结论已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( ) (2)ab ≤⎝⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× 二、易错纠偏 常见误区|K(1)忽视不等式成立的条件a >0且b >0;(2)忽视等号成立的条件. 1.若x <0,则x +1x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2 解析:选D.因为x <0,所以-x >0, -x +1-x≥21=2,当且仅当x =-1时,等号成立, 所以x +1x ≤-2.2.若x ≥2,则x +4x +2的最小值为________.解析:设x+2=t,则x+4x+2=t+4t-2.又由x≥2,得t≥4,而函数y=t+4t-2在[2,+∞)上是增函数,因此当t=4时,t+4t -2取得最小值4+44-2=3.答案:3[学生用书P133]利用基本不等式求最值(多维探究)角度一通过拼凑法利用基本不等式求最值(1)已知0<x<1,则x(4-3x)取得最大值时x的值为________.(2)已知x<54,则f(x)=4x-2+14x-5的最大值为________.【解析】(1)x(4-3x)=13·(3x)(4-3x)≤13·⎣⎢⎡⎦⎥⎤3x+(4-3x)22=43,当且仅当3x=4-3x,即x=23时,取等号.(2)因为x<54,所以5-4x>0,则f(x)=4x-2+14x-5=-⎝⎛⎭⎪⎫5-4x+15-4x+3≤-2 (5-4x)15-4x+3≤-2+3=1.当且仅当5-4x=15-4x,即x=1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)23 (2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b 的最小值为________.【解析】 ⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b = ⎝ ⎛⎭⎪⎫2+b a ·⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为已知a >0,b >0,4a +b =4,则⎝ ⎛⎭⎪⎫1+1a⎝ ⎛⎭⎪⎫1+1b 的最小值为________. 解析:由4a +b =4得a +b4=1,⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎪⎫1+a +b 4b =⎝ ⎛⎭⎪⎫2+b 4a ⎝ ⎛⎭⎪⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A.223B .23 C.33D.233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎨⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.角度四 多次利用基本不等式求最值若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.【解析】 因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.【答案】 4当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.1.(2021·湖北八校第一次联考)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为( )A .12B .16C .20D .24解析:选B.方法一:由题意x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=1+y x +9x y +9≥1+2y x ×9xy+9=16,当且仅当⎩⎪⎨⎪⎧x >0,y >0,1x +9y =1,y x =9x y ,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B.方法二:由1x +9y =1得9x +y -xy =0,即(x -1)(y -9)=9,可知x >1,y >9,所以x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当⎩⎪⎨⎪⎧x >1,y >9,1x +9y=1,x -1=y -9=3,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B. 2.(2021·贵阳市四校联考)已知a +b =2,且a >-1,b >0,则1a +1+1b的最小值为( )A.23 B .1 C.43D.32解析:选C.由a +b =2,得a +1+b =3.因为a >-1,所以a +1>0,所以1a +1+1b =13(a +1+b )⎝ ⎛⎭⎪⎫1a +1+1b =13⎝ ⎛⎭⎪⎪⎫2+b a +1+a +1b ≥13·⎝⎛⎭⎪⎪⎫2+2ba +1·a +1b =43,当且仅当b a +1=a +1b ,即a =12,b =32时等号成立,所以1a +1+1b 的最小值为43,故选C.3.已知x ,y 为正实数,则4x x +3y+3y x 的最小值为( )A.53 B .103 C.32 D .3解析:选 D.由题意得x >0,y >0,4x x +3y +3y x =4x x +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立).基本不等式的实际应用(师生共研)某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,则每批应生产产品() A.60件B.80件C.100件D.120件【解析】若每批生产x件产品,则每件产品的生产准备费用是800x元,仓储费用是x8元,总的费用是800x+x8≥2800x·x8=20,当且仅当800x=x8,即x=80时取等号,故选B.【答案】 B利用基本不等式求解实际问题的注意事项(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.(2)设变量时一般要把求最大值或最小值的变量定义为函数.(3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2021·安徽安庆大观模拟)如图所示,矩形ABCD的边AB靠在墙PQ上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的()A .最小长度为8B .最小长度为4 2C .最大长度为8D .最大长度为4 2解析:选B.设BC =a ,a >0,CD =b ,b >0,则ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +4a ≥22a ·4a =42,当且仅当2a =4a ,即a =2时取等号,此时长度取得最小值4 2.故选B.基本不等式的综合应用(多维探究) 角度一 与其他知识的交汇问题(2021·吉林通钢一中等三校第五次联考)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A.76 B .712C.712+33D.76+33【解析】 因为CA =3,CB =4,即|CA →|=3,|CB →|=4, 所以CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,因为P 为线段AB 上的一点,即P ,A ,B 三点共线, 所以x 3+y4=1(x >0,y >0),所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·⎝ ⎛⎭⎪⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33, 当且仅当x 3y =y 4x 时等号成立,所以1x +1y 的最小值为712+33,故选C. 【答案】 C角度二 求参数的值或取值范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,所以(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解. (3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.1.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( ) A .2 B .2 2 C .4D .2 3解析:选C.因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )⎝ ⎛⎭⎪⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x 3y =4,当且仅当x =3y =12时取等号,所以1x +13y 的最小值为4.故选C.2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.解析:a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n =n (1+n )2+8n =12(n +16n +1) ≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.所以S n +8a n 的最小值是92.答案:923.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:对任意x ∈N *,f (x )≥3恒成立, 即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,当x =8x ,即x =22时,g (x )取得最小值,又x ∈N *,则g (2)=6,g (3)=173.因为g (2)>g (3),所以g (x )min =173,所以-⎝ ⎛⎭⎪⎫x +8x +3≤-83,所以a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.答案:⎣⎢⎡⎭⎪⎫-83,+∞[学生用书P135]核心素养系列12 逻辑推理——利用基本不等式连续放缩求最值已知a >b >0,那么a 2+1b (a -b )的最小值为________.【解析】 因为a >b >0,所以a -b >0,所以b (a -b )≤⎝⎛⎭⎪⎫b +a -b 22=a 24,所以a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a 2=4,当且仅当b =a -b 且a 2=4a 2,即a =2且b =22时取等号,所以a 2+1b (a -b )的最小值为4.【答案】 4设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.【解析】 因为a >b >0,所以a -b >0,所以a 2+1ab +1a (a -b )=(a 2-ab )+1(a 2-ab )+1ab+ab ≥2(a 2-ab )·1(a 2-ab )+21ab ×ab =4(当且仅当a 2-ab =1a 2-ab且1ab =ab ,即a =2,b =22时取等号).【答案】 4利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.已知正实数a ,b ,c ,d 满足a +b =1,c +d =1,则1abc +1d 的最小值是( )A .10B .9C .42D.3 3解析:选B.因为a +b =1,a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=14,所以1ab ≥4,当且仅当a =b =12时取等号.又因为c +d =1,c >0,d >0,所以1abc +1d ≥4·1c +1d =(c +d )·⎝ ⎛⎭⎪⎫4c +1d =5+4d c +c d ≥5+24d c ·c d =9,当且仅当a =b =12,且c =23,d =13时取等号,即1abc +1d 的最小值为9,故选B.[学生用书P393(单独成册)][A 级 基础练]1.若正实数x ,y 满足x +y =2,则1xy 的最小值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若a >0,b >0,a +b =ab ,则a +b 的最小值为( ) A .2 B .4 C .6D .8解析:选B.方法一:由于a +b =ab ≤(a +b )24,因此a +b ≥4或a +b ≤0(舍去),当且仅当a =b =2时取等号,故选B.方法二:由题意,得1a +1b =1,所以a +b =(a +b )(1a +1b )=2+a b +ba ≥2+2=4,当且仅当a =b =2时取等号,故选B.方法三:由题意知a =b b -1(b >1),所以a +b =b b -1+b =2+b -1+1b -1≥2+2=4,当且仅当a =b =2时取等号,故选B.3.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B .43 C .-1D .0解析:选D.f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.4.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .4解析:选C.因为1a +2b =ab ,所以a >0,b >0, 由ab =1a +2b ≥21a ×2b =22ab ,所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2. 5.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1D.32解析:选A.y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A.6.(2021·四省八校第二次质量检测)已知a =(1,x ),b =(y ,1),x >0,y >0.若a ∥b ,则xyx +y的最大值为( ) A.12 B .1 C. 2D .2解析:选 A.方法一:a ∥b ⇒xy =1,所以y =1x ,所以xy x +y =1x +y =1x +1x≤12x ×1x =12(当且仅当x =1x ,即x =1时取等号),所以xy x +y的最大值为12,故选A.方法二:a ∥b ⇒xy =1,又x >0,y >0,所以xy x +y =1x +y ≤12xy=12(当且仅当x =y =1时取等号),所以xy x +y的最大值为12,故选A.7.(2020·高考天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.解析:依题意得12a +12b +8a +b =a +b 2ab +8a +b =a +b 2+8a +b≥2a +b 2×8a +b =4,当且仅当⎩⎪⎨⎪⎧a >0,b >0,ab =1,a +b 2=8a +b ,即⎩⎪⎨⎪⎧ab =1,a +b =4时取等号.因此,12a +12b +8a +b 的最小值为4.答案:48.(2020·高考江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是__________.解析:方法一:由5x 2y 2+y 4=1得x 2=15y 2-y 25,则x 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即y 2=12时取等号,则x 2+y 2的最小值是45.方法二:4=(5x 2+y 2)·4y 2≤⎣⎢⎡⎦⎥⎤(5x 2+y 2)+4y 222=254·(x 2+y 2)2,则x 2+y 2≥45,当且仅当5x 2+y 2 =4y 2=2,即x 2=310,y 2=12时取等号,则x 2+y 2的最小值是45.答案:459.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0, 所以3-2x 2+83-2x ≥23-2x 2·83-2x=4,当且仅当3-2x 2=83-2x ,即x =-12(x =72舍去)时取等号. 于是y ≤-4+32=-52, 故函数的最大值为-52. (2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )取最大值,为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0, 则1=8x +2y ≥2 8x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8yx =18. 当且仅当x =12,y =6时等号成立, 所以x +y 的最小值为18.[B 级 综合练]11.已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24解析:选B.由3a +1b ≥ma +3b,得m ≤(a +3b )⎝ ⎛⎭⎪⎫3a +1b =9b a +ab +6.又9b a +ab +6≥29+6=12,当且仅当9b a =ab ,即a =3b 时等号成立, 所以m ≤12,所以m 的最大值为12. 12.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A .3B .5C.7 D.9解析:选C.因为x>0,y>0.且1x+1+1y=12,所以x+1+y=2⎝⎛⎭⎪⎫1x+1+1y(x+1+y)=2(1+1+yx+1+x+1y)≥2⎝⎛⎭⎪⎪⎫2+2yx+1·x+1y=8,当且仅当yx+1=x+1y,即x=3,y=4时取等号,所以x+y≥7,故x+y的最小值为7,故选C.13.若a+b≠0,则a2+b2+1(a+b)2的最小值为________.解析:a2+b2+1(a+b)2≥(a+b)22+1(a+b)2≥212=2,当且仅当a=b=2-34时,a2+b2+1(a+b)2取得最小值 2.答案: 214.某厂家拟定在2021年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3-km+1(k为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2021年的促销费用投入多少万元时,厂家利润最大?解:(1)由题意知,当m=0时,x=1(万件),所以1=3-k⇒k=2,所以x=3-2m+1(m≥0),每件产品的销售价格为1.5×8+16xx(元),所以2021年的利润y=1.5x×8+16xx-8-16x-m=-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3时,y max =21.故该厂家2021年的促销费用投入3万元时,厂家的利润最大,为21万元.[C 级 提升练]15.已知角α,β的顶点都为坐标原点,始边都与x 轴的非负半轴重合,且都为第一象限的角,α,β终边上分别有点A (1,a ),B (2,b ),且α=2β,则1a +b 的最小值为( )A .1B . 2 C. 3D .2解析:选C.由已知得,a >0,b >0,tan α=a ,tan β=b2,因为α=2β,所以tan α=tan 2β,所以a =2·b 21-⎝ ⎛⎭⎪⎫b 22=4b 4-b 2,所以1a +b =4-b 24b +b =1b +3b 4≥21b ·3b4=3,当且仅当1b =3b 4,即b =233时,取等号.故1a +b 的最小值为 3.16.(2021·江西吉安期末)已知函数f (x )=sin 2xsin x +2,则f (x ) 的最大值为________.解析:设t =sin x +2,则t ∈[1,3],则sin 2x =(t -2)2,则g (t )=(t -2)2t =t +4t -4(1≤t ≤3),由“对勾函数”的性质可得g (t )在[1,2)上为减函数,在(2,3]上为增函数,又g (1)=1,g (3)=13,所以g (t )max =g (1)=1.即f (x )的最大值为1.答案:1。
2020届三维设计一轮复习第七章 不等式第四节 基本不等式
()A.4BFra bibliotek5C.6
D.7
解析:因为 a>0,所以 9a+1a≥2
9a×1a =6,当且仅
当 9a=1a,即 a=13时,9a+1a取得最小值 6.故选 C.
答案:C
返回
2.若 x>0,y>0,且 2(x+y)=36,则 xy的最大值为 ( )
A.9
B.18
C.36
D.81
解析:由 2(x+y)=36,得 x+y=18,所以 xy≤x+2 y=9,
[解析] 拼凑法
因为 x>0,y>0,
所以 8=x+2y+x·2y≤(x+2y)+x+22y2, 令 x+2y=t,则 8≤t+t42,即 t2+4t-32≥0, 解得 t≥4 或 t≤-8,
即 x+2y≥4 或 x+2y≤-8(舍去), 当且仅当 x=2y,即 x=2,y=1 时等号成立.
当 2x=3-2x,即 x=34时,等号成立.
∵34∈0,32,
∴函数 y=4x(3-2x)0<x<32的最大值为92.
[答案]
9 2
返回
(3)已知 x>0,y>0,且 x+2y=1,则1x+1y 的最小值为
________. [解析] 常数代换法
∵x>0,y>0,且 x+2y=1,
返回
课 堂讲 练区
返回
考点一 利用基本不等式求最值
利用基本不等式求最值的基本方法有拼凑法、常数代换法等.
[典例] (1)已知 a>2,则 a+a-3 2的最小值是
A.6
B.2
C.2 3+2
D.4
返回
()
[解析] 拼凑法 因为 a>2,所以 a-2>0,所以 a+a-3 2=(a-2)+a-3 2+
数学基本不等式
1 知识梳理 • 双基自测 2 考点突破 • 互动探究 3 名师讲坛 • 素养提升
知识梳理 • 双基自测
知识点一 重要不等式 a2+b2≥____2_a_b____(a,b∈R)(当且仅当___a_=__b____时等号成立). 知识点二 基本不等式 ab≤a+2 b(均值定理) (1)基本不等式成立的条件:__a_>_0_,__b_>_0_; (2)等号成立的条件:当且仅当___a_=__b____时等号成立; (3)其中a+2 b叫做正数 a,b 的_算__术__平__均__数__, ab叫做正数 a,b 的__几__何__平__均__数__.
方法总结:对于不等式中的成立问题,通常采取通过参数分离后,转化为求最值问题,
变式 1、已知 a 0,b 0 ,若不等式 3 1 ≥ m 恒成立,则 m 的最大值为________. a b a 3b
变式 2、(1)已知函数 f x x2 ax 11(a R) ,若对于任意 x N* , f x≥ 3 恒成立,则 a 的取值范围
mn mn
mn
mn
当且仅当
n m
2m n
,即
n
2m 时等号成立,
所以
1 m
1 n
的最小值为
3
2
2 ,故选 A。
3、(2020·湖南雅礼中学期中)(多选题)给出下面四个推断,其中正确的为( ). A.若 a,b (0, ) ,则 b a 2 ;
ab
B.若 x, y (0, ) 则 lg x lg y 2 lg x lg y ;
(5)1a+2 1b≤ ab≤a+2 b≤
a2+2 b2(a,b>0 当且仅当 a=b 时取等号).
第四节 基本不等式
又因为m>0,n>0,所以
m1 +n2
(m+n)=3+
n m
+
2m n
≥3+2
2 2,
当且仅当n= 2m时,取等号.
mn ·2nm =3+
(2)因为3a+b=2ab,所以
3 2b
+
1 2a
(2)依题意得21a+21b+a+8 b=a2+abb+a+8 b=a+2 b+a+8 b≥2
a+2 b×a+8 b=4,
当且仅当a+2 b=a+8 b,即a+b=4时取等号.因此,21a+21b+a+8 b的最小值为4. [答案] (1)D (2)4
[方法技巧] 1.拼凑法求最值 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和 为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实 质在于代数式的灵活变形,拼系数、凑常数是关键. 2.拼凑法求解最值应注意的问题 (1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调 整,做到等价变形; (2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项时应注意检验利用基本不等式的条件.
(2)由(1)知y=-m1+6 1+m+1+29(m≥0). ∵当m≥0时,m1+6 1+(m+1)≥2 m1+6 1·m+1=8, 当且仅当m1+6 1=m+1,即m=3时取等号. ∴y≤-8+29=21, 即当m=3时,y取得最大值21. ∴当该厂家2021年的促销费用投入3万元时,厂家获得的利润最大,为21万 元.
(m≥0)满足x=3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售
量只能是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件
第七章 第四节 基本不等式
第七章 第四节 基本不等式知识点一 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:__a>0,b>0___. (2)等号成立的条件:当且仅当__a =b___时取等号. 2.常用的几个重要不等式: (1)a 2+b 2≥2ab(a ,b ∈R ); (2)ab ≤(a +b 2)2(a ,b ∈R );(3)a 2+b 22≥(a +b 2)2(a ,b ∈R );(4)b a +ab ≥2(a ,b 同号且不为零). 知识点二 基本不等式的应用1.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为_a +b2_,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2.利用基本不等式求最值问题 已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当__x =y __时,x +y 有_最小_值是_p24_.(简记:积定和最小).(2)如果和x+y 是定值p ,那么当且仅当_x =y _时,xy 有_最大____值是_p24__.(简记:积定和最小).3.解不等式的实际应用题的一般步骤现实生活中的不等关系→建立不等式模型→解不等式模型【名师助学】1.本部分知识可以归纳为:(1)一个口诀:利用基本不等式的口诀:“一正,二定,三相等”. (2)两种最值问题:①积定和最小;②和定积最大. (3)四种变形:基本不等式的四种变形及其关系:2ab a +b ≤ab ≤a +b2≤a 2+b22.2.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.3.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.4.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 方法1 利用基本不等式求最值 利用基本不等式求最值的方法(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路: ①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【例1】 (1)设0<x<32,求函数y =4x(3-2x)的最大值;(2)设x ,y ∈R +,且2x +8y -xy =0,求x +y 的最小值. [解题指导]消元转化→构造和或积的定值→利用基本不等式求最值→确定取得最值的条件 解 (1)∵0<x<32,∴3-2x>0,∴y =4x ·(3-2x)=2[2x(3-2x)] ≤2[2x +(3-2x )2]2=92.当且仅当2x =3-2x , 即x =34时,等号成立.∵34∈(0,32), ∴函数y =4x(3-2x)(0<x<32)的最大值为92.(2)法一:由2x +8y -xy =0, 得y(x -8)=2x. ∵x>0,y>0, ∴x -8>0,y =2xx -8, ∴x +y =x +2x x -8=x +(2x -16)+16x -8=(x -8)+16x -8+10 ≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.法二:由2x +8y -xy =0及x ,y ∈R +得 8x +2y=1. ∴x +y =(x +y)(8x +2y )=8y x +2xy +10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立. ∴x +y 的最小值是18.[点评] 解决本题的关键是熟悉基本不等式的形式特点,在应用时若不满足条件,则需要进行相应的变形得到基本不等式所要的“和”或“积”为定值的形式. 方法2 忽视基本不等式的应用条件致误利用基本不等式ab ≤a +b 2及其变式ab ≤(a +b 2)2求函数的最值时,务必注意三个条件:一正、二定、三相等.一“正”即基本不等式成立的条件是任意的正实数a ,b ;二“定”即在应用基本不等式时,必须满足“两数和”或“两数积”为定值;三“相等”即基本不等式中等号成立的条件是a =b ,且一定要加以验证,判断等号能否取到. 【例2】 当x<54时,则f(x)=4x +14x -5( )A.有最小值3B.有最小值7C.有最大值3D.有最大值7[解题指导]本题易出现以下两方面的错误:一是不会“凑”,即不能根据函数解析式的特征进行适当变形凑出两式的积为定值;二是利用基本不等式求最值时,忽视各式的符号,直接套用基本不等式.解析 f(x)=4x +14x -5=(4x -5)+14x -5+5.因为x<54,所以5-4x>0.所以(4x -5)+14x -5=-[(5-4x)+15-4x]≤-2(5-4x )·15-4x =-2,当且仅当5-4x =15-4x,即x =1时取等号.当x 趋于负无穷大时,f(x)也趋于负无穷大,即无最小值. 故当x =1时,f(x)max =-2+5=3,故选C. 答案 C[温馨提醒] 在利用基本不等式求最值时,一定要尽量避免多次使用基本不等式,若必须多次使用,则一定要保证它们等号成立的条件一致,否则得到的结果很可能不是要求的最值.。
基本不等式 ab≤a b
工具
第三章 不等式
已知正数 x,y 满足8x+1y=1,求 x+2y 的最小值.
由题目可获取以下主要信息: ①x>0,y>0;②8x+1y=1; ③求和的最小值. 解答本题可构建某个积为定值,这需要对条件进行变 形,然后利用基本不等式求解.
工具
第三章 不等式
简单的做法是,把两次称得物体的质量“平均”一下, 以 A=a+2 b表示物体的质量.这样的做法合理吗?
工具
第三章 不等式
1.基本不等式 (1)重要不等式:对于任意实数a、b,都有a2+b2 ≥ 2ab,
当且仅当 a=b 时,等号成立.
(2)基本不等式 ①形式: ab≤a+2 b; ②成立的前提条件:a>0,b>0;
3.4 基本不等式: ab≤a+2 b
工具
第三章 不等式
工具
第三章 不等式
1.探索并了解基本不等式的证明过程. 2.能利用基本不等式证明简单不等式. 3.熟练掌握基本不等式及变形应用. 4.会用基本不等式解决简单的最大(小)值问题.
工具
第三章 不等式
1.本课难点是利用基本不等式证明不等式. 2.利用基本不等式求最值是本课热点. 3.多以选择题、填空题形式考查,偶以解答题形式考查.
工具
第三章 不等式
(1)将2012年的利润y(万元)表示为促销费t(万元)的函数. (2)该企业2012年的促销费投入多少万元时,企业的年利润 最大?(注:利润=销售收入-生产成本-促销费,生产成本= 固定费用+生产费用)
6、4第四节 基本不等式
【解析】 将已知条件进行转化,利用基本不等式求解. 11 3 ∵x>0,y>0,由 x+3y=5xy 得5y +x=1.
1 3 1 ∴3x+4y=5(3x+4y)y +x
12y 13x +4+9+ =5 y x 13 13x 12y = 5 +5 y + x 13 1 ≥ 5 +5×2 3x 12y y ·x =5(当且仅当 x=2y 时取等号),
解析:每台机器运转 x 年的年平均利润为x=18-x+ x ,而 x>0,
y 故x≤18-2 25=8,当且仅当 x=5 时等号成立,此时年平均利润最大, 最大值为 8 万元.
答案:5 8
【易错警示】 忽视等号成立条件而致误 【典例】 (2012年高考浙江卷)若正数x,y满足x+3y= 5xy,则3x+4y的最小值是( )
∵a>1,∴b>0. ∵ab=4a+b-1, ∴(a+1)(b+2)=ab+2a+b+2 4a-1 =6a+2b+1=6a+ ·+ +1=6a+8+ +1 a-1 a-1 6 =6(a-1)+ +15. a-1 ∵a-1>0, 6 ∴原式=6(a-1)+ +15≥2 6×6+15=27,当且仅当(a-1)2 a-1 =1(a>1),即 a=2 时成立. ∴最小值为 27.
24 A. 5 C.5 28 B. 5 D.6
【错解】 由 x+3y≥2 3xy, ∴5xy≥2 3xy, 12 ∴xy≥25.又 3x+4y≥2 12xy≥2 故选 A. 12 24 12×25= 5 .
【错因】 上述解法其错误的主要在于两次使用基本不 等式都忽视了等号成立的条件,且同一题目中两次等号 成立的条件不同,所以取不到最小值.
2
值为(
)
2013高考总复习数学(理)专题06 第4节 基本不等式及其应用
2. 利用基本不等式求最值需注意的问题 (1)各数(或式)均为正; (2)和或积为定值; (3)等号能否成立,即“一正、二定、三相等”这三个条件缺一不可.
当之处,请联系本人或网站删除。
考点二 求最值 【例2】 (1)设0<x<2,求函数y= 3x8-3x的最大值; (2)求a-3 4+a的取值范围; (3)已知x>0,y>0,且x+y=1,求8x+2y的最小值.
解 (1)∵0<x<2,∴0<3x<6,2<8-3x<8, ∴y= 3x8-3x≤3x+28-3x=82=4, 当且仅当3x=8-3x,即x=34时取等号, ∴当x=34时,y= 3x8-3x的最大值是4. (2)显然a≠4,当a>4时,a-4>0,
=-4-3 a+4-a+4
≤-2 4-3 a×4-a+4=-2 3+4,
当且仅当4-3 a=4-a,即a=4- 3时取等号.
∴a-3 4+a的取值范围是(-∞,-2 3+4]∪[2 3+4,+∞).
(3)∵x>0,y>0,且x+y=1,
∴8x+2y=8x+2y(x+y)=10+8xy+2yx≥10+2 当且仅当8xy=2yx,即x=2y时等号成立,
8xy·2yx=18.
∴当x=32,y=13时,8x+2y取得最小值18.
创本文新档课所堂提供的信息仅供参考之用,不能作为科学依据,请勿模仿。第文六档如单有元不
当之处,请联系本人或网站删除。
第四节 基本不等式及其应用
栏目索引
解析
1 a y ax 2 (1)(x+y) x y =1+a+ + ≥ 1+ a +2 a =( a +1) (x,y,a>0),当且仅 x y
1 a 2 2 a a a 当y= x时取等号,所以(x+y)· 的最小值为 ( +1) , 于是 ( +1) ≥9 x y
1 1 x 1 x ( x 5)( x 2) 设x>-1,则函数y= 的最小值为 x 1
1 2
答案 解析
9 因为x>-1,所以x+1>0,
所以y= ( x 5)( x 2) = x 2 7 x 10 = ( x 1)2 5( x 1) 4
x 1
1 x y
1 yz
n xz
1
1 1 ≥2 ≥2 1 1 ,所以(x-z)· ( x y )( y z ) ×2 x y yz x y yz yz
x y 1 =4(当且仅当x-y=y-z时等号成立), yz
1
1 1 恒成立,只需使n≤4(n∈N),故n的最大值为4. 则要使n≤(x-z) x y yz
3
4.已知f(x)=x+ -2(x<0),则f(x)有 ( A.最大值0 C.最大值-4
1 x
)
B.最小值0 D.最小值-4
1 1 ( x ) ∵x<0,∴f(x)=- ,即x=-1 -2≤-2-2=-4,当且仅当-x= ( x ) x c
答案 C
时取等号.∴f(x)有最大值-4.
2
3.利用基本不等式求最值 已知x>0,y>0,则 (1)如果积xy是定值p,那么当且仅当⑤
第四节 基本不等式
第四节基本不等式一、基础知识批注——理解深一点12.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为为:两个正数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).和定积最大,积定和最小:两个正数的和为定值时,则可求其积的最大值;积为定值时,可求其和的最小值.二、常用结论汇总——规律多一点(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab≥2(a ,b ∈R ,且a ,b 同号),当且仅当a =b 时取等号. 三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”) (1)当a ≥0,b ≥0时,a +b2≥ab .( ) (2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( ) (3)x >0且y >0是x y +yx ≥2的充要条件.( )答案:(1)√ (2)× (3)×(二)选一选1.设a >0,则9a +1a 的最小值为( ) A .4 B .5 C .6D .7解析:选C 因为a >0,所以9a +1a ≥2 9a ×1a =6,当且仅当9a =1a ,即a =13时,9a +1a 取得最小值6.故选C.2.若x >0,y >0,且2(x +y )=36,则xy 的最大值为( ) A .9 B .18 C .36D .81解析:选A 由2(x +y )=36,得x +y =18,所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立.3.“x >0”是“x +1x ≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 当x >0时,x +1x ≥2x ·1x =2( 当且仅当⎭⎫x =1x 时,等号成立.因为x ,1x同号,所以若x +1x ≥2,则x >0,1x >0,所以“x >0”是“x +1x≥2”成立的充要条件,故选C.(三)填一填4.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 解析:x 2+2y 2=x 2+(2y )2≥2x (2y )=22, 当且仅当x =2y 且xy =1时等号成立. 所以x 2+2y 2的最小值为2 2. 答案:2 25.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2. 解析:设一边长为x m ,则另一边长可表示为(10-x )m ,由题知0<x <10,则面积S =x (10-x )≤⎝⎛⎭⎫x +10-x 22=25,当且仅当x =10-x ,即x =5时等号成立,故当矩形的长与宽相等,且都为5 m 时面积取到最大值25 m 2.答案:25考点一 利用基本不等式求最值利用基本不等式求最值的基本方法有拼凑法、常数代换法等.[典例] (1)已知a >2,则a +3a -2的最小值是( ) A .6 B .2 C .23+2D .4(2)设0<x <32,则函数y =4x (3-2x )的最大值为________.(3)已知x >0,y >0,且x +2y =1,则1x +1y 的最小值为________.(4)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为________. [解析] (1)拼凑法因为a >2,所以a -2>0,所以a +3a -2=(a -2)+3a -2+2≥2 (a -2)·3a -2+2=23+2,当且仅当a -2=3a -2,即a =2+3时取等号.故选C. (2)拼凑法y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92,当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32, ∴函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. (3)常数代换法∵x >0,y >0,且x +2y =1,∴1x +1y =x +2y x +x +2yy =1+2+2y x +x y≥3+2 2y x ·xy=3+2 2. 当且仅当2y x =x y 且x +2y =1,即x =2-1,y =1-22时,取得等号.∴1x +1y 的最小值为3+2 2. (4)拼凑法 因为x >0,y >0,所以8=x +2y +x ·2y ≤(x +2y )+⎝⎛⎭⎫x +2y 22, 令x +2y =t ,则8≤t +t 24,即t 2+4t -32≥0,解得t ≥4或t ≤-8,即x +2y ≥4或x +2y ≤-8(舍去),当且仅当x =2y ,即x =2,y =1时等号成立. [答案] (1)C (2)92(3)3+22 (4)4[解题技法] 基本不等式求最值的2种常用方法[题组训练]1.(常数代换法)若a >0,b >0且2a +b =4,则1ab 的最小值为( ) A .2 B.12 C .4D.14解析:选B 因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号). 又因为2a +b =4,∴22ab ≤4⇒0<ab ≤2, ∴1ab ≥12,故1ab 的最小值为12.故选B.2.(两次基本不等式)设x >0,y >0,且x +4y =40,则lg x +lg y 的最大值是( ) A .40 B .10 C .4D .2解析:选D 因为x +4y =40,且x >0,y >0,所以x +4y ≥2x ·4y =4xy .(当且仅当x =4y 时取“=”) 所以4xy ≤40.所以xy ≤100. 所以lg x +lg y =lg xy ≤lg 100=2. 所以lg x +lg y 的最大值为2. 3.(拼凑法)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4解析:选D a 2+1ab +1a (a -b )=(a 2-ab )+1(a 2-ab )+1ab+ab ≥2(a 2-ab )·1(a 2-ab )+21ab ×ab =4,当且仅当a 2-ab =1a 2-ab 且1ab =ab ,即a =2,b =22时取等号,故选D. 4.(常数代换法)已知x >0,y >0,且x +2y =xy ,则x +y 的最小值为________. 解析:由x >0,y >0,x +2y =xy ,得2x +1y =1,所以x +y =(x +y )⎝⎛⎭⎫2x +1y =3+2y x +xy ≥3+2 2. 当且仅当x =2y 时取等号. 答案:3+2 2考点二 基本不等式的实际应用[典例] 某工厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式. (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?[解] (1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=(0.05×1 000x )-⎝⎛⎭⎫13x 2+10x -250=-13x 2+40x -250. 当x ≥80时,L (x )=(0.05×1 000x )-⎝⎛⎭⎫51x +10 000x -1 450-250=1 200-⎝⎛⎭⎫x +10 000x . 所以L (x )=⎩⎨⎧-13x 2+40x -250,0<x <80,1 200-⎝⎛⎭⎫x +10 000x ,x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950万元. 当x ≥80时,L (x )=1 200-⎝⎛⎭⎫x +10 000x ≤1 200-2 x ·10 000x=1 200-200=1 000.此时x =10 000x ,即x =100时,L (x )取得最大值1 000万元. 由于950<1 000,所以当年产量为100千件时,该厂在这一商品生产中所获利润最大,最大利润为1 000万元.[解题技法] 有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解. [题组训练]1.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:302.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计).则泳池的长设计为______米时,可使总造价最低.解析:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x +60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.答案:15 [课时跟踪检测]1.(2019·长春调研)“a >0,b >0”是“ab <⎝⎛⎭⎫a +b 22”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选D 当a >0,b >0时,a +b 2≥ab ,即ab ≤⎝⎛⎭⎫a +b 22,当a =b 时,ab <⎝⎛⎭⎫a +b 22不成立,故“a >0,b >0”不是“ab <⎝⎛⎭⎫a +b 22”的充分条件.当ab <⎝⎛⎭⎫a +b 22时,a ,b 可以异号,故a >0,b >0不一定成立,故“a >0,b >0”不是“ab <⎝⎛⎭⎫a +b 22”的必要条件.故“a >0,b >0”是“ab <⎝⎛⎭⎫a +b 22”的既不充分也不必要条件,故选D.2.已知x >0,y >0,且x +2y =2,则xy ( ) A .有最大值为1 B .有最小值为1 C .有最大值为12D .有最小值为12解析:选C 因为x >0,y >0,x +2y =2, 所以x +2y ≥2x ·2y ,即2≥22xy ,xy ≤12,当且仅当x =2y ,即x =1,y =12时,等号成立.所以xy 有最大值,且最大值为12.3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2 B .2 C .2 2D .4解析:选C 因为1a +2b =ab ,所以a >0,b >0, 由ab =1a +2b≥21a ·2b=2 2ab, 所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2.4.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( )A .3B .4C .5D .6解析:选B 由题意知ab =1,∴m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b )≥4ab =4,当且仅当a =b =1时取等号,故m +n 的最小值为4.5.(2019·长春质量监测)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B 由4x +y =xy 得4y +1x =1,则x +y =(x +y )·⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B. 6.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值为( ) A.43 B.53 C.54D .2解析:选D 30=4x 2+9y 2+3xy ≥236x 2y 2+3xy , 即30≥15xy ,所以xy ≤2, 当且仅当4x 2=9y 2,即x =3,y =233时等号成立. 故xy 的最大值为2.7.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12C .1D.32解析:选A y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A.8.已知x >1,y >1,且log 2x ,14,log 2y 成等比数列,则xy 有( )A .最小值 2B .最小值2C .最大值 2D .最大值2解析:选A ∵x >1,y >1,∴log 2x >0,log 2y >0.又∵log 2x ,14,log 2y 成等比数列,∴116=log 2x ·log 2y ,∴由基本不等式,得log 2x +log 2y ≥2log 2x ·log 2y =12,当且仅当log 2x =log 2y时取等号,故log 2(xy )≥12,即xy ≥ 2.选A.9.当3<x <12时,函数y =(x -3)(12-x )x的最大值为________.解析:y =(x -3)(12-x )x =-x 2+15x -36x =-⎝⎛⎭⎫x +36x +15≤-2 x ·36x+15=3, 当且仅当x =36x ,即x =6时,y max =3.答案:310.(2018·南昌摸底调研)已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.解析:∵x >2,m >0,∴y =x -2+mx -2+2≥2 (x -2)·mx -2+2=2m +2,当x =2+m 时取等号,又函数y =x +mx -2(x >2)的最小值为6,∴2m +2=6,解得m =4. 答案:411.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.解析:∵a -3b +6=0,∴a -3b =-6. ∴2a +18b =2a +2-3b ≥22a ·2-3b=22a-3b=22-6=2×2-3=14.当且仅当⎩⎪⎨⎪⎧ a =-3b ,a -3b +6=0,即⎩⎪⎨⎪⎧a =-3,b =1时等号成立.答案:1412.(2018·聊城一模)已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________. 解析:由a >0,b >0,3a +b =2ab ,得32b +12a=1, 所以a +b =(a +b )⎝⎛⎭⎫32b +12a =2+3a 2b +b2a ≥2+3,当且仅当b =3a 时等号成立,则a +b 的最小值为2+ 3.答案:2+ 313.(2019·孝感模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?解:(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675], 所以当x =65时,y 取得最小值,最小值为175×675=9.当x ∈[80,120]时,函数y =12-x60单调递减,故当x =120时,y 取得最小值,最小值为12-12060=10.因为9<10,所以当x =65,即该型号汽车的速度为65 km/h 时,可使得每小时耗油量最少.(2)设总耗油量为l L ,由题意可知l =y ·120x , ①当x ∈[50,80)时,l =y ·120x =85⎝⎛⎭⎫x +4 900x -130≥85⎝⎛⎭⎫2 x ×4 900x -130=16,当且仅当x =4 900x ,即x =70时,l 取得最小值,最小值为16;②当x ∈[80,120]时,l =y ·120x =1 440x-2为减函数, 所以当x =120时,l 取得最小值,最小值为10.因为10<16,所以当速度为120 km/h 时,总耗油量最少.。
2014高考数学一轮汇总训练《基本不等式》理新人教A版2
第四节 基本不等式[备考方向要明了][归纳·知识整合]1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a =b 时,a +b2≥ab 取等号,即a =b ⇒a +b2=ab②仅当a =b 时,a +b2≥ab 取等号,即a +b2=ab ⇒a =b .2.几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab≥2(a ,b 同号).ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R );⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ) 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值P ,那么当且仅当x =y 时,x +y 有最小值是2P (简记:积定和最小).(2)如果和x +y 是定值P ,那么当且仅当x =y 时,xy 有最大值是P 42(简记:和定积最大).[探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理?提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,y =x +1x在x ≥2时的最小值,利用单调性,易知x =2时y min =52.[自测·牛刀小试]1.已知m >0,n >0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18. 2.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ) A .1+ 2 B .1+ 3 C . 3D .4解析:选C f (x )=x +1x -2=x -2+1x -2+2, ∵x >2 ∴x -2>0 ∴f (x )≥2 x -1x -2+2=4 当且仅当x -2=1x -2,即x =3时,“=”成立,又f (x )在x =a 处取最小值,所以a =3.3.已知x >0,y >0,z >0,x -y +2z =0则xz y2的( ) A .最小值为8 B .最大值为8 C .最小值为18D .最大值为18解析:选Dxz y 2=xz x +2z 2=xzx 2+4xz +4z 2=1x z +4z x+4≤18.当且仅x z =4zx ,即x =2z 时取等号.4.函数y =x +1x的值域为________.解析:当x >0时,x +1x≥2x ·1x=2; 当x <0时,-x >0, -x +1-x≥2-x1-x =2,所以x +1x≤-2. 综上,所求函数的值域为(-∞,-2]∪[2,+∞). 答案:(-∞,-2]∪[2,+∞)5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x的图象交于P ,Q 两点,则线段PQ 长的最小值是________.解析:由题意知:P ,Q 两点关于原点O 对称,不妨设P (m ,n )为第一象限中的点,则m >0,n >0,n =2m ,所以|PQ |2=4|OP |2=4(m 2+n 2)=4⎝⎛⎭⎪⎫m 2+4m 2≥16(当且仅当m 2=4m 2,即m =2时,取等号).故线段PQ 长的最小值为4.答案:4[例1] 已知a >0,b >0,a +b =1,求证:⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9.[自主解答] 法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+b a .同理,1+1b =2+ab.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,当且仅当b a =a b,即a =b 时取“=”.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9,当且仅当a =b =12时等号成立.法二:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab=1+a +b ab +1ab =1+2ab, ∵a ,b 为正数,a +b =1, ∴ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b =12时取“=”.于是1ab ≥4,2ab ≥8,当且仅当a =b =12时取“=”.∴⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥1+8=9, 当且仅当a =b =12时等号成立.保持例题条件不变,证明:a +12+b +12≤2.证明:∵a >0,b >0,且a +b =1, ∴a +12+b +12=⎝ ⎛⎭⎪⎫a +12×1+⎝ ⎛⎭⎪⎫b +12×1≤a +12+12+b +12+12=a +b +32=42=2.当且仅当a +12=1,b +12=1,即a =b =12时“=”成立.——————————————————— 利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.1.已知a >0,b >0,c >0,求证:bc a +ca b +abc≥a +b +c .证明:∵a >0,b >0,c >0, ∴bc a +ca b ≥2 bc a ·cab=2c ,bc a +ab c ≥2 bc a ·abc =2b , ca b +ab c≥2 ca b ·abc=2a . 以上三式相加得:2⎝ ⎛⎭⎪⎫bc a+ca b+ab c ≥2(a +b +c ), 即bc a +ca b +abc≥a +b +c .[例2] (1)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245B.285C .5D .6(2)已知a >0,b >0,a 2+b 22=1,则a 1+b 2的最大值为________.[自主解答] (1)由x +3y =5xy ,得3x +1y=5(x >0,y >0),则3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫3x +1y =15⎝⎛⎭⎪⎫13+12y x +3x y ≥15⎝ ⎛⎭⎪⎫13+212y x·3x y=15(13+12)=5. 当且仅当12y x =3xy,即x =2y 时,“=”成立,此时由⎩⎪⎨⎪⎧x =2y ,x +3y =5xy ,解得⎩⎪⎨⎪⎧x =1,y =12.(2)∵a >0, ∴a 1+b 2=a2+b2= 2a 2⎝ ⎛⎭⎪⎫12+b 22 ≤2·a 2+12+b 222=324,当且仅当⎩⎪⎨⎪⎧ a 2=12+b 22,a 2+b22=1,即⎩⎪⎨⎪⎧a =32,b =22时取等号.∴a 1+b 2的最大值为324.[答案] (1)C (2)324———————————————————应用基本不等式求最值的条件利用基本不等式求最值时,要注意其必须满足的三个条件: (1)一正二定三相等.“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.(1)函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(m ,n >0)上,求1m +1n的最小值;(2)若正数a ,b 满足ab =a +b +3,求ab 的取值范围. 解:(1)∵y =a1-x(a >0,a ≠1)的图象恒过定点A ,∴A (1,1).又点A 在直线mx +ny -1=0(m >0,n >0)上,∴m +n =1(m >0,n >0).∴1m +1n=(m +n )·⎝ ⎛⎭⎪⎫1m +1n =2+n m +m n ≥2+2=4,当且仅当m =n =12时,等号成立,∴1m +1n 的最小值为4. (2)∵ab =a +b +3,又a ,b ∈(0,+∞), ∴ab ≥2ab +3.设ab =t >0,∴t 2-2t -3≥0.∴t ≥3或t ≤-1(舍去). ∴ab 的取值范围是[9,+∞).[例3] 为响应国家扩大内需的政策,某厂家拟在2014年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用t (t ≥0)万元满足x =4-k2t +1(k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2014年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).(1)将该厂家2014年该产品的利润y 万元表示为年促销费用t 万元的函数; (2)该厂家2014年的年促销费用投入多少万元时,厂家利润最大? [自主解答] (1)由题意有1=4-k1,得k =3,故x =4-32t +1.故y =1.5×6+12xx×x -(6+12x )-t=3+6x -t =3+6⎝ ⎛⎭⎪⎫4-32t +1-t =27-182t +1-t (t ≥0). (2)由(1)知:y =27-182t +1-t=27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+⎝ ⎛⎭⎪⎫t +12.基本不等式9t +12+⎝ ⎛⎭⎪⎫t +12≥29t +12·⎝⎛⎭⎪⎫t +12=6,当且仅当9t +12=t +12,即t =2.5时等号成立. 故y =27-182t +1-t =27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+⎝ ⎛⎭⎪⎫t +12 ≤27.5-6=21.5. 当且仅当9t +12=t +12时,等号成立,即t =2.5时,y 有最大值21.5. 所以2014年的年促销费用投入2.5万元时,该厂家利润最大,最大利润为21.5万元. ———————————————————解实际应用题时应注意的问题(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需再利用基本不等式求得函数的最值;在求函数的最值时,一定要在定义域使实际问题有意义的自变量的取值范围内求.有些实际问题中,要求最值的量需要用几个变量表示,同时这几个变量满足某个关系式,这时问题就变成了一个条件最值,可用求条件最值的方法求最值.3.某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解:(1)设每件定价为x 元,依题意,有⎝⎛⎭⎪⎫8-x -251×0.2x ≥25×8,整理得x 2-65x +1000≤0,解得25≤x ≤40.∴要使销售的总收入不低于原收入,每件定价最高为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解,∵150x +16x ≥2 150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. ∴当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.1个技巧——公式的逆用运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b >0)等,还要注意“添、拆项”技巧和公式等号成立的条件等.2个变形——基本不等式的变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2)a 2+b 22≥a +b2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号). 3个关注——利用基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.创新交汇——基本不等式在其他数学知识中的应用1.考题多以函数、方程、立体几何、解析几何、数列等知识为载体考查基本不等式求最值问题.2.解决此类问题的关键是正确利用条件转换成能利用基本不等式求解的形式,同时要注意基本不等式的使用条件.[典例] (2012·湖南高考)已知两条直线l 1:y =m 和l 2:y =82m +1(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为( )A .16 2B .8 2C .834D .434[解析] 数形结合可知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -x D 同号,所以b a =x B -x Dx C -x A,根据已知|log 2x A |=m ,即-log 2x A =m ,所以x A =2-m .同理可得x C =2821m -+,x B =2m,x D =2821m +,所以b a=8218212222mm mm +-+--=821821221122mm m m ++--=82182182122222?2mm mm m m +++--=2821mm ++,由于82m +1+m =82m +1+2m +12-12≥4-12=72,当且仅当82m +1=2m +12,即2m +1=4,即m =32时等号成立,故ba的最小值为272=8 2.[答案] B [名师点评]1.本题具有以下创新点(1)本题是对数函数的图象问题,通过分析、转化为基本不等式求最值问题.(2)本题将指数、对数函数的性质与基本不等式相结合,考查了考生分析问题、解决问题的能力.2.解决本题的关键有以下几点 (1)正确求出A 、B 、C 、D 四点的坐标;(2)正确理解a ,b 的几何意义,并能正确用A 、C 、B 、D 的坐标表示; (3)能用拼凑法将m +82m +1(m >0)化成利用基本不等式求最值的形式.[变式训练]1.已知x >0,y >0,x ,a ,b ,y 成等差数列x ,c ,d ,y 成等比数列,则a +b2cd的最小值是( )A .0B .1C .2D .4解析:选D 由题知a +b =x +y ,cd =xy ,x >0,y >0,则a +b2cd=x +y 2xy≥xy 2xy=4,当且仅当x =y 时取等号.2.若直线ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b的最小值为( )A.14B. 2C.32+ 2 D.32+2 2 解析:选C 圆的直径是4,说明直线过圆心(-1,2),故12a +b =1,1a +1b =⎝ ⎛⎭⎪⎫12a +b ⎝ ⎛⎭⎪⎫1a +1b=32+b a +a 2b ≥32+2,当且仅当b a =a2b,即a =2(2-1),b =2-2时取等号. 3.若x >0,y >0,且x +y ≤a x +y 恒成立,则a 的最小值是________. 解析:由x +y ≤a x +y ,得a ≥x +yx +y, 令f (x ,y )=x +yx +y, 则f (x ,y )=x +yx +y=x +y 2x +y=1+2xy x +y≤1+2xy 2xy=2,当且仅当x =y 时等号成立.故a ≥ 2.答案: 2一、选择题(本大题共6小题,每小题5分,共30分) 1.(2012·福建高考)下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 解析:选C 取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,故排除D. 2.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2解析:选A 设甲、乙两地的距离为S ,则从甲地到乙地所需时间为S a,从乙地到甲地所需时间为S b,又因为a <b ,所以全程的平均速度为v =2SS a +S b=2ab a +b <2ab2ab =ab ,2ab a +b >2ab2b=a ,即a <v <ab . 3.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( )A.14 B .1 C .4D .8解析:选C 由a >0,b >0,ln(a +b )=0得⎩⎪⎨⎪⎧a +b =1,a >0,b >0.故1a +1b =a +b ab =1ab≥1⎝ ⎛⎭⎪⎫a +b 22=1⎝ ⎛⎭⎪⎫122=4.当且仅当a =b =12时上式取“=”.4.(2013·淮北模拟)函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1,∴x -1>0,∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+x -+3x -1=x -2+x -+3x -1=x -1+3x -1+2≥2· x -3x -1+2=23+2, 当且仅当x -1=3x -1,即x =1+3时,取等号. 5.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2解析:选C 由1a +1b +k a +b ≥0得k ≥-a +b2ab ,而a +b2ab=b a +a b+2≥4(a =b 时取等号),所以-a +b2ab≤-4,因此要使k ≥-a +b2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4.6.(2013·温州模拟)已知M 是△ABC 内的一点,且AB ·AC =23,∠BAC =30°,若△MBC ,△MCA 和△MAB 的面积分别为12,x ,y ,则1x +4y的最小值是( )A .20B .18C .16D .19解析:选B 由AB ·AC =|AB |·|AC |cos 30°=23得|AB |·|AC |=4,S △ABC=12|AB |·|AC |sin 30°=1, 由12+x +y =1得x +y =12. 所以1x +4y=2⎝ ⎛⎭⎪⎫1x +4y ·(x +y )=2⎝⎛⎭⎪⎫5+y x+4x y ≥2×(5+2×2)=18.二、填空题(本大题共3小题,每小题5分,共15分)7.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.解析:设x 为仓库与车站距离,由已知y 1=20x ;y 2=0.8x 费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x =8,当且仅当0.8x =20x,即x =5时“=”成立.答案:58.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的编号).①ab ≤1 ②a +b ≤ 2 ③a 2+b 2≥2 ④a 3+b 3≥3 ⑤1a +1b≥2.解析:两个正数,和为定值,积有最大值,即ab ≤a +b24=1,当且仅当a =b 时取等号,故①正确;(a +b )2=a +b +2ab =2+2ab ≤4,当且仅当a =b 时取等号,得a +b ≤2,故②错误;由于a 2+b 22≥a +b24=1,故a 2+b 2≥2成立,故③正确;a 3+b 3=(a +b )(a2+b 2-ab )=2(a 2+b 2-ab ),∵ab ≤1,∴-ab ≥-1,又a 2+b 2≥2,∴a 2+b 2-ab ≥1,∴a 3+b 3≥2,故④错误;1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·a +b 2=1+a 2b +b 2a ≥1+1=2,当且仅当a =b 时取等号,故⑤正确.答案:①③⑤9.(2013·泰州模拟)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________. 解析:依题意得(x +1)(2y +1)=9,(x +1)+(2y +1)≥2x +y +1=6,x +2y ≥4,当且仅当x +1=2y +1,即x =2,y =1时取等号,故x +2y 的最小值是4.答案:4三、解答题(本大题共3小题,每小题12分,共36分) 10.已知a >0,b >0,c >0,d >0.求证:ad +bc bd +bc +adac≥4. 证明:ad +bc bd +bc +ad ac =a b +c d +b a +d c =⎝ ⎛⎭⎪⎫a b +b a +⎝ ⎛⎭⎪⎫c d +d c ≥2+2=4(当且仅当a =b ,c =d 时,取“=”),故ad +bc bd +bc +adac≥4. 11.已知x >0,y >0,且2x +8y -xy =0, 求(1)xy 的最小值;(2)x +y 的最小值. 解:(1)∵x >0,y >0, ∴xy =2x +8y ≥216xy ,即xy ≥8xy ,∴xy ≥8,即xy ≥64. 当且仅当2x =8y ,即x =16,y =4时,“=”成立. ∴xy 的最小值为64.(2)∵x >0,y >0,且2x +8y -xy =0, ∴2x +8y =xy ,即2y +8x=1.∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x≥10+22x y ·8yx=18,当且仅当2x y =8yx,即x =2y =12时“=”成立.∴x +y 的最小值为18.12.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)解:(1)由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,则由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x <20,13-x ,20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x <20,13x -x ,20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,f (x )取得最大值为60×20=1 200; 当20≤x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +-x 22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时.1.已知log 2a +log 2b ≥1,则3a +9b的最小值为________.解析:log 2a +log 2b =log 2ab .∵log 2a +log 2b ≥1,∴ab ≥2且a >0,b >0.3a +9b =3a+32b≥23a ·32b =23a +2b≥2322ab ≥232×2=18,当且仅当a =2b ,∴3a +9b的最小值为18.答案:182.设a ,b 均为正实数,求证:1a 2+1b2+ab ≥2 2.证明:由于a 、b 均为正实数, 所以1a 2+1b 2≥21a2·1b 2=2ab,当且仅当1a 2=1b2,即a =b 时等号成立,又因为2ab +ab ≥22ab·ab =22,当且仅当2ab=ab 时等号成立,所以1a 2+1b 2+ab ≥2ab+ab ≥22,当且仅当⎩⎪⎨⎪⎧1a 2=1b 2,2ab =ab ,即a =b =42时取等号.3.已知x <54,求f (x )=4x -2+14x -5的最大值.解:因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.4.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=x (x >1),求公园ABCD 所占面积S 关于x 的函数S (x )的解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计? 解:(1)设休闲区的宽为a 米,则长为ax 米, 由a 2x =4 000,得a =2010x.则S (x )=(a +8)(ax +20)=a 2x +(8x +20)a +160=4 000+(8x +20)·2010x+160=8010(2x +5x)+4 160(x >1).(2)8010⎝⎛⎭⎪⎫2x +5x +4 160≥8010×22x ×5x+4 160=1 600+4 160=5 760.当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100.所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100米,宽40米.第五节合情推理与演绎推理[备考方向要明了][归纳·知识整合]1.合情推理(1)归纳推理:①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②特点:是由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②特点:类比推理是由特殊到特殊的推理.[探究] 1.归纳推理的结论一定正确吗?提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验.2.演绎推理(1)模式:三段论①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)特点:演绎推理是由一般到特殊的推理.[探究] 2.演绎推理所获得的结论一定可靠吗?提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.[自测·牛刀小试]1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④解析:选C ①是类比推理,②④是归纳推理,③是非合情推理.2.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 013的末四位数字为( ) A.3 125 B.5 625C.0 625 D.8 125解析:选A 55=3 125,56=15 625,57=78 125,,58=390 625,59=1 953 125,可得59与55的后四位数字相同,…,由此可归纳出5m+4k与5m(k∈N*,m=5,6,7,8)的后四位数字相同,又2 013=4×502+5,所以52 013与55后四位数字相同为3 125.3.给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( )A.0 B.1C.2 D.3解析:选B ①②不正确,③正确.4.(教材习题改编)有一段演绎推理是这样的:“直线平行于平面,则直线平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直线b∥平面α,则直线b∥直线a”,结论显然是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:选A 大前提是错误的,直线平行于平面,则不一定平行于平面内所有直线,还有异面直线的情况.5.(教材习题改编)在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想,在n 边形A 1A 2…A n 中,成立的不等式为________.解析:∵9=32,16=42,25=52,且1=3-2,2=4-2,3=5-2,…,故在n 边形A 1A 2…A n中,有不等式1A 1+1A 2+…+1A n≥n 2n -π成立.答案:1A 1+1A 2+…+1A n≥n 2n -π(n ≥3)[例1] (1)(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199(2)设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.[自主解答] (1)记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123. (2)f (0)+f (1)=33,f (-1)+f (2)=33,f (-2)+f (3)=33, 猜想f (x )+f (1-x )=33, 证明:∵f (x )=13x+3,∴f (1-x )=131-x +3=3x3+3·3x =3x33+3x.∴f(x)+f(1-x)=13x +3+3x33+3x=3+3x 33+3x=13=33.[答案] (1)C利用本例(2)的结论计算f(-2 014)+f(-2 013)+…+f(-1)+f(0)+f(1)+…+f(2 015)的值.解:∵f(x)+f(1-x)=33,∴f(-2 014)+f(-2 013)+…+f(-1)+f(0)+f(1)+…+f(2 015)=[f(-2 014)+f(2 015)]+[f(-2 013)+f(2 014)]+…+[f(0)+f(1)]=2 015×33=2 015 33.———————————————————归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.1.观察下列等式:1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…13=113+23=913+23+33=3613+23+33+43=10013+23+33+43+53=225…可以推测:13+23+33+…+n3=________(n∈N*,用含n的代数式表示).解析:第二列等式右边分别是1×1,3×3,6×6,10×10,15×15,与第一列等式右边比较即可得,13+23+33+…+n3=(1+2+3+…+n)2=14n2(n+1)2.答案:14n2(n+1)2[例2] (2013·广州模拟)已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -ma n -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m=c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.[自主解答] 法一:设数列{a n }的公差为d 1,则d 1=a n -a m n -m =b -an -m. 所以a m +n =a m +nd 1=a +n ·b -a n -m =bn -amn -m. 类比推导方法可知:设数列{b n }的公比为q ,由b n =b m qn -m可知d =cq n -m,所以q =n -m dc,所以b m +n =b m q n=c ·n -m⎝ ⎛⎭⎪⎫d c n =n -m d nc m . 法二:(直接类比)设数列{a n }的公差为d 1,数列{b n }的公比为q , 因为等差数列中a n =a 1+(n -1)d 1,等比数列中b n =b 1qn -1,因为a m +n =nb -man -m,所以b m +n=n -m d n c m.[答案] n -m d nc m———————————————————类比推理的分类类比推理的应用一般为类比定义、类比性质和类比方法(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.————————————————————————————————————————2.在△ABC 中,AB ⊥AC ,AD ⊥BC 于点D . 求证:1AD2=1AB2+1AC 2.那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由. 证明:如图所示,∵AB ⊥AC ,AD ⊥BC ,∴△ABD ∽△CAD ,△ABC ∽△DBA , ∴AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC =BC 2BD ·BC ·DC ·BC =BC2AB 2·AC 2. 又∵BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. ∴1AD2=1AB2+1AC 2.猜想:类比AB ⊥AC ,AD ⊥BC ,猜想四面体ABCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD2.下面证明上述猜想成立.如右图所示,连接BE 并延长交CD 于点F ,连接AF . ∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt△ABF 中,AE ⊥BF , ∴1AE2=1AB2+1AF 2.同理可得在Rt△ACD 中,AF ⊥CD , ∴1AF2=1AC 2+1AD 2. ∴1AE2=1AB2+1AC2+1AD 2.故猜想正确.[例3] 已知函数f (x )=-aa x +a(a >0且a ≠1).(1)证明:函数y =f (x )的图象关于点⎝ ⎛⎭⎪⎫12,-12对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3) 的值.[自主解答] (1)证明:函数f (x )的定义域为R ,任取一点(x ,y ),它关于点⎝ ⎛⎭⎪⎫12,-12对称的点的坐标为(1-x ,-1-y ).由已知得y =-a a x +a,则-1-y =-1+aa x +a =-a xa x +a ,f (1-x )=-aa 1-x +a =-aa a x+a =-a ·a x a +a ·a x =-a xa x+a , ∴-1-y =f (1-x ),即函数y =f (x )的图象关于点⎝ ⎛⎭⎪⎫12,-12对称.(2)由(1)可知-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.则f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1,则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3. ———————————————————演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.3.已知函数f (x )=ax+bx ,其中a >0,b >0,x ∈(0,+∞),试确定f (x )的单调区间,并证明在每个单调区间上的增减性.解:法一:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a x 1+bx 1-⎝ ⎛⎭⎪⎫a x 2+bx 2=(x 2-x 1)·⎝ ⎛⎭⎪⎫a x 1x 2-b .当0<x 1<x 2≤ab 时,∵a >0,b >0, ∴x 2-x 1>0,0<x 1x 2<a b,ax 1x 2>b , ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在⎝ ⎛⎦⎥⎤0, a b 上是减函数; 当x 2>x 1≥a b >0时,x 2-x 1>0,x 1x 2>a b ,ax 1x 2<b , ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增函数. 法二:∵a >0,b >0,x ∈(0,+∞), ∴令f ′(x )=-a x 2+b =0,得x = a b, 当0<x ≤a b 时,-ax2≤-b , ∴-ax2+b ≤0,即f ′(x )≤0, ∴f (x )在⎝ ⎛⎦⎥⎤0, a b 上是减函数; 当x ≥ a b 时,-ax2+b ≥0,即f ′(x )≥0, ∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增函数.2个步骤——归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想);③检验猜想.实验、观察→概括、推广→猜测一般性结论(2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);③检验猜想.观察、比较→联想、类推→猜想新结论1个区别——合情推理与演绎推理的区别(1)归纳是由特殊到一般的推理;(2)类比是由特殊到特殊的推理;(3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.创新交汇——合情推理与证明的交汇创新1.归纳推理主要有数与式的归纳推理、图形中的归纳推理、数列中的归纳推理;类比推理主要有运算的类比、性质的类比、平面与空间的类比.题型多为客观题,而2012年福建高考三角恒等式的推理与证明相结合出现在解答题中,是高考命题的一个创新.2.解决此类问题首先要通过观察特例发现某些相似性(特例的共性或一般规律);然后把这种相似性推广到一个明确表述的一般命题(猜想);最后对所得的一般性命题进行检验.[典例] (2012·福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin213°+cos217°-sin 13°cos 17°;(2)sin215°+cos215°-sin 15°cos 15°;(3)sin218°+cos212°-sin 18°cos 12°;(4)sin2(-18°)+cos248°-sin(-18°)cos 48°;(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解] 法一:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 法二:(1)同法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos 60°-2α2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34. [名师点评] 1.本题的创新点(1)本题给出一个等于同一个常数的5个代数式,但没有给出具体的值,需要学生求出这个常数,这打破以往给出具体关系式的模式.(2)本题没有给出具体的三角恒等式,需要考生归纳并给出证明,打破了以往只归纳不证明的方式.2.解决本题的关键(1)正确应用三角恒等变换,用一个式子把常数求出来.(2)通过观察各个等式的特点,找出共性,利用归纳推理正确得出一个三角恒等式,并给出正确的证明.[变式训练] 阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sin αcos β+cos αsin β,① sin(α-β)=sin αcos β-cos αsin β,②由①+②得sin(α+β)+sin(α-β)=2sin αcos β.③ 令α+β=A ,α-β=B ,有α=A +B2,β=A -B2,代入③得sin A +sin B =2sinA +B2cosA -B2.(1)类比上述推理方法,根据两角和与差的余弦公式,证明: cos A -cos B =-2sinA +B2sinA -B2;(2)若△ABC 的三个内角A ,B ,C 满足cos 2A -cos 2B =1-cos 2C ,试判断△ABC 的形状. (提示:如果需要,也可以直接利用阅读材料及(1)中的结论) 解:(1)因为cos(α+β)=cos αcos β-sin αsin β,① cos(α-β)=cos αcos β+sin αsin β,②①-②得cos(α+β)-cos(α-β)=-2sin αsin β.③ 令α+β=A ,α-β=B ,有α=A +B2,β=A -B2,代入③得cos A -cos B =-2sinA +B2sinA -B2.(2)由二倍角公式,cos 2A -cos 2B =1-cos 2C 可化为1-2sin 2A -1+2sin 2B =1-1+2sin 2C ,所以sin 2A +sin 2C =sin 2B .设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , 由正弦定理可得a 2+c 2=b 2.根据勾股定理的逆定理知△ABC 为直角三角形.一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·合肥模拟)正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 由于f (x )=sin(x 2+1)不是正弦函数,故小前提不正确.2.(2013·银川模拟)当x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,由此可以推广为x +pxn ≥n +1,取值p 等于( )A .n nB .n 2C .nD .n +1解析:选 A ∵x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,∴在p位置出现的数恰好是不等式左边分母x n的指数n 的指数次方,即p =n n.3.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b|=|a|·|b|”; ⑥“ac bc =ab ”类比得到“a·c b·c =ab”. 以上的式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B ①②正确,③④⑤⑥错误.4.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.5.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为R ,四面体S -ABC 的体积为V ,则R =( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 基本不等式: ab ≤a +b 2(a ,b ∈R +)基础回顾K一、算术平均数与几何平均数的概念若a>0,b>0,则a ,b 的算术平均数是a +b2,几何平均数是ab.二、常用的重要不等式和基本不等式1.若a ∈R ,则a 2≥0,||a ≥0(当且仅当a =0时,取等号). 2.若a ,b ∈R ,则a 2+b 2≥2ab(当且仅当a =b 时取等号). 3.若a ,b ∈R +,则a +b ≥2ab(当且仅当a =b 时取等号). 4.若a ,b ∈R +,则a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(当且仅当a =b 时取等号).三、均值不等式(基本不等式)两个正数的均值不等式:若a ,b ∈R +,则a +b2≥ab(当且仅当a =b 时取等号).变式: ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R +). 四、最值定理设x>0,y>0,由x +y ≥2xy ,有:(1)若积xy =P(定值),则和x +y 最小值为2P ;(2)若和x +y =S(定值),则积xy 最大值为⎝ ⎛⎭⎪⎫S 22.即积定和最小,和定积最大.运用最值定理求最值应满足的三个条件:“一正、二定、三相等”. 五、比较法的两种形式 一是作差,二是作商.基础自测1.若x +2y =4,则2x +4y 的最小值是(B ) A .4 B .8 C .22 D .42解析:因为2x +4y ≥22x ·22y =22x +2y =224=8,当且仅当2x=22y ,即x =2y =2时取等号,所以2x +4y 的最小值为8.2.下列结论中正确的是(B )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x ≥2C .当x ≥2时,x +1x 的最小值为2D .当0<x ≤2时,x -1x无最大值3.若直线2ax -by +2=0(a>0,b>0)始终平分圆x 2+y 2+2x -4y +1=0的周长,则1a +1b的最小值是4.4.当x>2时,不等式x +1x -2≥a 恒成立,则实数a 的取值范围是(-∞,4].解析:因为x+1x-2≥a恒成立,所以a必须小于或等于x+1x-2的最小值.因为x>2,所以x-2>0.所以x+1x-2=(x-2)+1x-2+2≥4,当且仅当x-2=1x-2,即x=3时等号成立.所以a≤4.高考方向1.以命题真假判断为载体,考查基本不等式成立的条件以及等号成立的条件,有时与不等式的性质结合在一起考查,一般以选择题的形式出现,难度不大.2.考查利用基本不等式求函数或代数式的最值,有时与不等式的恒成立问题相结合,多以选择题、填空题的形式出现,难度中等及以下.3.考查利用基本不等式解决实际应用中的最值问题,各种题型均有可能出现,难度中等.品味高考1.(2013·山东卷)设正实数x,y,z满足x2-3xy+4y2-z=0,则当xy z 取得最大值时,2x +1y -2z的最大值为(B ) A .0 B .1 C.94D .3解析:由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4yx -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y 2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.故选B.2.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(B )A .60件B .80件C .100件D .120件解析:记平均到每件产品的生产准备费用与仓储费用之和为f(x),则f(x)=800+x8×x ×1x =800x +x8≥2800x ×x 8=20,当且仅当800x =x8(x >0),即x =80时,取最小值.故选B.高考测验1.已知向量a =(x ,2),b =(1,y),其中x >0,y >0.若a·b =4,则1x +2y的最小值为(C )A.32 B .2 C.94D .2 2 解析:∵a·b =4,∴x +2y =4,x >0,y >0,∴1x +2y =14(x +2y)⎝ ⎛⎭⎪⎫1x +2y =14⎝ ⎛⎭⎪⎫5+2y x +2x y ≥14⎝⎛⎭⎪⎫5+22y x ·2x y =94. 当且仅当⎩⎨⎧x +2y =4,2y x =2x y,即x =y =43时,等号成立.2.已知x >0,y >0,且1x +9y=1,则2x +3y 的最小值为29+66.解析:由题意可得,2x +3y =(2x +3y)·⎝ ⎛⎭⎪⎫1x +9y =3y x +18x y +29≥23y x ·18xy+29=29+66, 当且仅当3y x =18x y ,结合1x +9y =1,解得x =2+362,y =6+9时取等号,故2x +3y 的最小值为29+6 6.课时作业1.已知a>0,b>0,“a +b =2” 是“ab ≤1”的 (A ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:由基本不等式可知,a +b =2⇒ab ≤1,但ab ≤1不能推出a +b =2.故选A.2.(2013·常州质检)已知f(x)=x +1x-2(x<0),则f(x)有(C )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4 解析:因为x<0,所以-x>0,所以x +1x -2=-⎝ ⎛⎭⎪⎫-x +1-x -2≤-2(-x )·1-x-2=-4,当且仅当-x =1-x,即x =-1时,等号成立.3.(2013·长沙质检)若0<x<1,则当f(x)=x(4-3x)取得最大值时,x 的值为(D )A.13B.12C.34D.23解析:因为0<x<1,所以f(x)=x(4-3x)=13·3x(4-3x)≤13×⎝ ⎛⎭⎪⎫3x +4-3x 22=43,当且仅当3x =4-3x ,即x =23时等号成立,故选D.4.设a ,b ,c ,d ∈R ,若a ,1,b 成等比数列,且c ,1,d 成等差数列,则下列不等式恒成立的是(D )A .a +b ≤2cdB .a +b ≥2cdC .|a +b|≤2cdD .|a +b|≥2cd 解析:∵ab =1>0, ∴a ,b 同号.∴|a +b|=|a|+|b|≥2|a||b|=2. 又c +d =2,∴(c +d)2=4,即c 2+d 2+2cd =4.∴4-2cd =c 2+d 2≥2cd ,得2cd ≤2, ∴|a +b|≥2cd.故选D.5.已知函数f(x)=2x 满足f(m)·f(n)=2,则mn 的最大值为(B ) A.12 B.14 C.16 D.18解析:由已知得2m ·2n =2m +n =2,所以m +n =1,于是mn ≤⎝⎛⎭⎪⎫m +n 22=14.故选B. 6.某工厂第一年年底的产量为p ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则有(C )A .x ≥a +b 2B .x =a +b2C .x ≤a +b 2D .x>a +b2解析:依题意得,该工厂第二年的产量为p(1+a),第三年的产量为p(1+a)(1+b).又由于这两年的平均增长率为x ,则p(1+x)2=p(1+a)·(1+b).于是(1+x)2=(1+a)(1+b)≤⎝⎛⎭⎪⎫1+a +1+b 22,所以1+x ≤2+a +b 2,即x ≤a +b2.故选C.7.已知x>0,y>0,2x +y =13,则1x +1y 的最小值是解析:1x +1y =6x +3y x +6x +3y y =9+3y x +6xy ≥9+218=9+6 2.8.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞. 解析:∵x >0,∴x +1x≥2(当且仅当x =1时取等号),∴x x 2+3x +1=1x +1x +3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15. 9.已知a <b ∈R ,且ab =50,则|a +2b|的最小值为20. 解析:∵a <b ∈R ,且ab =50, ∴b =50a,∴|a +2b|=⎪⎪⎪⎪⎪⎪a +100a =|a|+⎪⎪⎪⎪⎪⎪100a ≥2|a|·⎪⎪⎪⎪⎪⎪100a =20.当且仅当|a|=⎪⎪⎪⎪⎪⎪100a 时取等号,故|a +2b|的最小值为20.10.已知a >b >0,且ab =1,求a 2+b 2a -b 的最小值.解析:∵a =1,∴a 2+b 2a -b =(a -b )2+2ab a -b =(a -b )2+2a -b =a -b +2a -b , ∵a >b >0, ∴a -b >0,∴a 2+b 2a -b =a -b +2a -b≥2(a -b )·2a -b=22,当且仅当⎩⎨⎧ab =1,a -b =2a -b ,即a =6+22,b =6-22,取等号,∴当a =6+22,b =6-22时,a 2+b 2a -b 取得最小值2 2.11.围建一个面积为368 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口(如图所示),已知旧墙的维修费用为180元/m ,新墙的造价为460元/m ,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.解析:(1)因为利用的旧墙的长度为x 米,则以被利用的那部分旧墙为一边的矩形的另一边长的为368xm ,于是y =180x +460(x -2)+460×2×368x =640x +232×82×10x-920=640x+338 560x-920(x>0).(2)∵x>0,∴640x+338 560x≥2640x·338 560x=29 440.∴y=640x+338 560x-920≥29 440-920=28 520,当且仅当640x=338 560x,即x=23时等号成立.∴当x=23 m时,修建围墙的总费用最小,最小总费用是28 520元.。