天津市河西区2020-2021学年高二上学期期末考试数学试题

合集下载

天津市河西区2020至2021学年高二上学期期中数学试题及答案解析

天津市河西区2020至2021学年高二上学期期中数学试题及答案解析
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
则 PF PO 2 r 1 r 1 FO 4,
根据双曲线得定义可得圆心 P 在双曲线的一支上,
故选:B.
10.
6 7
【分析】
根据经过两点的直线的斜率公式,代入 A、B 两点的坐标加以计算,可得直线 l 的斜率.
17.在长方体 ABCD A1 B1C1 D1 中,点 E,F 分别在 BB1 ,DD1 上,且 AE A1B ,AF A1D .
(1)求证: A1C 平面 AEF;
(2)当 AD 3 ,AB 4 ,AA1 5时,求平面 AEF 与平面 D1B1BD 所成二面角的余弦值.
18.已知椭圆 C :
()
A. x2 y2 1 4 12
C. x2 y2 1 48 16
B. x2 y2 1 12 4
D. x2 y2 1 16 48
6.已知直线 l1 : x 2ay 1 0 与直线 l2 : (3a 1)x ay 1 0 平行,则 a ( )
A. 0
B. 0 或 1 6
C. 1 6
x2 a2
y2 b2
1(a
b 0 )的焦距为 2 ,离心率为
2. 2
(1)求椭圆 C 的标准方程;
(2)经过椭圆的左焦点 F1 作倾斜角为 60 的直线 l ,直线 l 与椭圆相交于 A , B 两点,
求线段 AB 的长.
试卷第 3页,共 3页
………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________

天津市部分区2020-2021学年高二上学期期末语文试题含答案解析

天津市部分区2020-2021学年高二上学期期末语文试题含答案解析

天津市部分区2020-2021学年高二上学期期末语文试题一、选择题1.下列各句中,没有错别字且加点字的注音全都正确的一项是()A.女人的手指振动了一下,想是叫苇眉子划破了手。

她把一个手指放在嘴里吮(shǔn)了一下。

B.长方形的、红砖墙严密地封琐着的工房区域,被一条水门汀的弄(nòng)堂划成狭长的两块。

C.至少,也当浸渍(zì)了亲族,师友,爱人的心,纵使时光流驶,洗成绯红,也会在微漠的悲哀中永存微笑的和蔼的旧影。

D.她们嘈杂起来,有的在公共自来水龙头边舀水,有的用断了齿的木梳梳掉执拗地粘(nián)在头发里的绵絮。

2.依次填入下面语段横线处的词语,最恰当的一组是()八角坳离山有三十多里路,再加上要拐弯抹角地走小路,下半夜才赶到。

这庄子以前我来过,那时候在根据地里像这样大的庄子,每到夜间,田里的活儿干完了,老百姓开会啦,上夜校啦,_______,山歌不断,闹得可热火。

可是,现在呢,_______,连个火亮儿也没有,黑沉沉的,活像个乱葬岗子。

我_______地_______了庄子,按着政委告诉的记号,从东头数到第十七座窝棚,蹑手殴脚地走到窝棚门口。

A.锣鼓喧天鸦雀无声悄悄摸进B.沸反盈天风平浪静偷偷混进C.沸反盈天鸦雀无声悄悄混进D.锣鼓喧天风平浪静偷偷摸进3.下列各句中没有语病的一项是()A.高速公路上交通事故的主要原因是司机违反交通规则或操作不当造成的,交通部门要加强安全宣传,提高司机的安全意识。

B.那时我在上海,也有一个唯一的不但敢于随便谈笑,而且还敢于托他办点私事的人,那就是送书去给白莽的柔石。

C.中国的哲学蕴含于人伦日用之中,中国建筑处处体现着人伦秩序与和而不同的东方智慧,五千年前的中华文明正是良渚大量建筑遗址的见证者。

D.在以后的一个多世纪中,包括彭定康在内的许多港督曾对港督府进行过大规模的装修、改建和扩建。

4.下列有关文学常识和名著阅读的表述,有错误的一项是()A.孙犁,小说家、散文家,其作品文笔细腻婉约,浓郁的浪漫主义色彩和清新隽永的抒情诗风格,代表了“荷花淀派”的创作特色。

天津市河西区2024-2025学年高二上学期期中化学试卷

天津市河西区2024-2025学年高二上学期期中化学试卷

河西区2024~2025学年度第一学期高二年级期中质量调查化学试卷可能用到的相对原子质量:H 1 C 12 N 14 O 16 Mg 24本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第6页,第Ⅱ卷为第7页至第8页。

试卷满分100分。

考试时间60分钟。

第I卷(选择题共60分)第.1~10..1.个选项是最符合题目要求的............。

.........只有....4.分,..列出的四个选项中,....题,每题..在.每题1.下列变化过程中一定不存在化学能转化为热能的是A.干冰升华B.谷物酿酒C.木材燃烧D.鞭炮燃放2.下列日常生活情境与化学反应速率无关的是A.用较浓的白醋清洗水壶垢B.夏天将食物放在冰箱中冷藏C.糖果制作过程中添加着色剂D.面团加酵母粉放在温热处发酵3.下列事实,不能..用勒夏特列原理解释的是A.开启汽水瓶盖后,瓶中立刻泛起大量气泡B.对2HI(g)H2(g)+I2(g)平衡体系加压,气体颜色变深C.硫酸工业中,增大O2的浓度有利于提高SO2的转化率D.滴有酚酞的氨水溶液,适当加热溶液(忽略氨气挥发)后颜色变深4.下列有关反应2CO(g) = 2C(s)+O2(g) △H>0的推测正确的是A.低温下能自发进行B.高温下能自发进行C.任何温度下都不能自发进行D.任何温度下都能自发进行5.在10 L密闭容器内发生反应2A(g)+B(g)C(g),气体A在2 s内由8 mol/L变为6 mol/L,2 s内平均反应速率v(A)[单位均为mol/(L·s)]正确的是A.0.1 B.0.05 C.1 D.26.在密闭容器中,反应2X(g)+Y(g)3Z(g)达到平衡后,若将容器体积缩小一半,对反应产生的影响是A.v(正)减小,v(逆)增大B.v(正)增大,v(逆)减小C.v(正)和v(逆)都减小D.v(正)和v(逆)都增大7.已知:H 2(g)+F 2(g)=2HF(g) △H =-270 kJ/mol 。

天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)

天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)

天津市河西区2023-2024学年高二下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知全集,集合,,则( )A. B. C. D.2.对变量x ,y 有观测数据,得散点图1;对变量u ,v 有观测数据,得散点图2.由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关3.设,则“且”是“”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件4.的展开式中,系数最大的项是( )项B.第n 项C.第项D.第n 项与第项5.已知随机变量X 服从正态分布,且,则( )A.0.6B.0.3C.0.2D.0.16.设X 为随机变量,,若随机变量X 的数学期望,则等于( ){}1,2,3,4U ={}1,2A ={},32B =()U A B ð{}1,3,4{}3,4{}3{}4(),i i x y ()1,2,,10= i (),i i u v ()1,2,,10i = ,x y ∈R 2x ≥2y ≥224x y +≥()2*1()n x n +∈N 1+1n +1n +()22,N σ()40.8P X <=()02P X <<=1,3X B n ⎛⎫⎪⎝⎭()2E X =()2P X =7.某学习小组共有11名成员,其中有6名女生,为了解学生的学习状态,随机从这11名成员中抽选2名任小组组长,协助老师了解情况,A 表示“抽到的2名成员都是女生”,B表示“抽到的2名成员性别相同”,则( )8.的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40 B.-20 C.20 D.409.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252 C.261 D.279二、填空题10.的展开式中的系数为________.11.命题,的否定是________.12.已知,则________.13.含有3个实数的集合可表示为,又可表示为,则________.14.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有种________.15.某公司有甲、乙两家餐厅,小李第一天午餐时随机地选择一家餐厅用餐,如果第,则小李第二天去乙家餐厅的概率为________.三、解答题16.(1)证明:组合数性质;(2)计算:(用数字作答).17.已知集合,若()|P A B =512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭822x y :p x ∀∈R 210x +>7270127(12)x a a x a x a x -=++++ 1357a a a a +++=,,1b a a ⎧⎫⎨⎬⎩⎭{}20,,a a b +20242024a b +=()1*1C C C ,m m n n n m n π-+=+∈N 2222234100C C C C ++++ {}23100A x x x =--≤(1),,求实数m 的范围;(2),,求实数m 的范围;(3),,求实数m 的范围.18.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(x 吨)与相应的生产能耗y (吨)标准煤的几组对照数据:(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考:用最小二乘法求线性回归方程系数公式(参考数值:)19.某班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有9人认为作业多,3人认为作业不多;在不喜欢玩电脑游戏的10人中,有4人认为作业多,6人认为作业不多.(1)根据以上数据填写列联表;关系?参考公式:B A ⊆{}121B x m x m =+≤≤-A B ⊆{}621B x m x m =-≤≤-B A ={}621B x m x m =-≤≤-ˆybx a =+ˆb=ˆy =-3 2.543546 4.566.53242526286⨯+⨯+⨯+⨯=+++=22⨯2K =参考数据:,,,.20.已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.(Ⅰ)求X 的分布列;(Ⅱ)求X 的数学期望E(X).2( 2.072)0.15P K ≥=2( 2.706)0.10P K ≥=2( 3.841)0.05P K ≥=()2 5.0240.025P K ≥=参考答案1.答案:D解析:易知,则,故选:D.2.答案:C解析:变量x 与中y 随x 增大而减小,为负相关;u 与v 中,u 随v 的增大而增大,为正相关.3.答案:A解析:试题分析:若且,则,,所以,即;若,则如满足条件,但不满足且.所以“且”是“”的充分而不必要条件.故选A.4.答案:C解析:在的展开式中,第项的系数与第项的二项式系数相同,再根据中间项的二项式系数最大,展开式共有项,可得第项的系数最大,故选C.5.答案:B解析:由题意,随机变量X 服从正态分布,则正态分布曲线关于对称,又由,根据正态分布曲线的对称性,可得,所以,故选B.6.答案:A解析:因为,得,即.所以故选A 7.答案:A解析:由题意可知{}1,2,3A B = {}()4U A B = ð2x ≥2y ≥24x ≥24y ≥228x y +≥224x y +≥224x y +≥()2,2--2x ≥2y ≥2x ≥2y ≥224x y +≥()()2*1x n n +∈N 1r +1r +21n +1n +22,N σ()2x =(4)0.8P X <=(0)(4)1(4)0.2P X P X P X ≤=≥=-<=1(02)(0)0.50.20.32P X P X <<=-≤=-=()123E X n ==6n =16,3X B ⎛⎫ ⎪⎝⎭()2426112C 133P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()2265211C C C P B +==()26211C C AB ==所以故选:A.8.答案:D解析:令得.故原式=.的通项,由得,对应的常数项,由得,对应的常数项,故所求的常数项为40,故选D 9.答案:B解析:由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有,组成无重复数字的三位数共有,因此组成有重复数字的三位数共有.10.答案:70解析:设的展开式中含的项为第项,则由通项知.令,解得,的展开式中的系数为.11.答案:,或,解析:全称量词命题的否定是存在量词命题,要注意否定结论,所以命题,的否定是:,故答案为:,12.答案:-1094解析:令,则,,()()()|P AB P A B P B ==1x =1a =5112x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭512x x ⎛⎫- ⎪⎝⎭521552155C (2)()C (1)2r r r r rr r r T x x x ----+=-=-521r -=2r =80=521r -=-3r =80=-91010900⨯⨯=998648⨯⨯=900648252-=822x y 1r +()811882222188C 1C rrr rr r r r r r T xy x y x y -----+--++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭822r r -+-=4r =∴822x y ()4481C 70-=0x ∃∈R 2010x +≤x ∃∈R 210x +≤:p x ∀∈R 210x +>0x ∃∈R 2010x +≤0x ∃∈R 2010x +≤()7270127()12f x x a a x a x a x =-++++= 0127(1)1a a a a f ++++==- 701273(1)32187a a a a f a -++--==-=所以.故答案为:-109413.答案:1解析:因为有3个实数的集合可表示为,又可表示为,所以,即,则,即或,当时,集合为,与集合元素的互异性矛盾,故,,.故答案为:1.14.答案:60解析:若每个村去一个人,则有种分配方法;若有一个村去两人,另一个村去一人,则有种分配方法,所以共有60种不同的分配方法.解析:设“第1天去甲餐厅用餐“,“第1天去乙餐厅用餐”,“第2天去甲餐厅用餐”,“第2天去乙餐厅用餐”,根据题意得,则则由全概率公式得:,即1357(1)(1)10942f f a a a a --==-+++,,1b a a ⎧⎫⎨⎬⎩⎭{}2,0,a a b +a ≠0=0b =21a =1a =1a =-1a ={1,0,1}{1,1,0}1a =-0b =202420241a b +=34A 24=1234C A 36⨯=1A =1B =2A =2B =1122()()()()P A P B P A P B ====()21|A A =()21|P A B =21(|)P B A =()()()21211|P A B A B P B ==()214152P A B =⨯=()()()2112225|12P A B P B A P A ===()22|B A =21222121222()()()()(|)()(|)P B P A B P A B P A P B A P A P B A =+=+212113()252510P B =⨯+⨯=16.答案:(1)证明见解析;(2)166650解析:(1)证明:;(2)=.17.答案:(1);(2)(3)不存在满足题意的实数m解析:(1);当时,满足,则,解得:;当时,由得:,解得:;综上所述:实数m 的取值范围为.(2)由得:,解得:,即实数m 的取值范围为.(3),,方程组无解,不存在满足题意的实数m .18.答案:(1)见解析;(2);()()1!!!!(1)!C 1!C m m n n n n m n m m n m -+---++=()()()()()!1!1!!1!!1!!1!n n m n n m m n mm n m m n m m n m -+-++=+=-+-+-+()()11!!(1)C !(1)!!1!m n n n n m n m m n m +++===-+-+3223102222223223410044041300C C C C C C C C C C C =+++=+++++++ 22323310010010515100C C 10110099C C C 16665032C ⨯⨯==+++==+=⨯ (],3-∞[]3,4{}()(){}{}2310052025A x x x x x x x x =--≤=-+≤=-≤≤B =∅B A ⊆121m m +>-2m <B ≠∅B A ⊆12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩23m ≤≤(],3-∞A B ⊆62126521m m m m -≤-⎧⎪-≥-⎨⎪≤-⎩34m ≤≤[]3,4A B = 62215m m -=-⎧∴⎨-=⎩∴ˆ0.70.35yx =+(3)19.65吨解析:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如下;(2)由对照数据,计算得,,,,回归方程的系数为,,所求线性回归方程为;(3)由(2)的线性回归方程,估计生产100吨甲产品的生产能耗为(吨,吨,预测比技改前降低了19.65吨标准煤.19.答案:(1)答案见解析;(2)有关系解析:(1)根据题中所给数据,得到如下列联表:1(3456) 4.54x =⨯+++=1(2.534 4.5) 3.54y =⨯+++=4222221345686ii x==+++=∑413 2.543546 4.566.5iii x y==⨯+⨯+⨯+⨯=∑∴266.54 4.5 3.5ˆ0.7864 4.5b -⨯⨯==-⨯ 3.50.7 4.5ˆ0.35a =-⨯=∴ˆ0.70.35yx =+0.71000.3570.35⨯+=)9070.3519.65∴-=22⨯由(1)中的的列联表,可得,所以有充分的理由认为假设不成立,即认为喜欢玩电脑游戏与认为作业多少有关,这种判断出错误的概率不超过0.10.20.答案:(Ⅰ)见解析;解析:(Ⅰ)X 的可能取值有:3,4,5,6.故,所求X 的分布列为22⨯()220.10226943 2.7641 2.7061210139K K ⨯⨯-⨯=≈>=⨯⨯⨯3539C (3)C P X ===215439C C (4)C X ===125439C C (5)C P X ===3439C (6)C P X ===()51051345642211421E X ⨯+⨯+⨯+⨯==。

2020-2021学年天津市河西区九年级上学期数学期中试卷及答案

2020-2021学年天津市河西区九年级上学期数学期中试卷及答案

2020-2021学年天津市河西区九年级上学期数学期中试卷及答案一、选择题1. 在平面直角坐标系中,点关于原点对称的点的坐标为( )(2,0)A.B.(2,0)-(0,2)C.D. (0,2)-(2,2)-【答案】A【解析】【分析】根据点的坐标关于原点对称的方法可直接进行排除选项.【详解】解:点关于原点对称的点的坐标为.()2,0()2,0-故选:A .【点睛】本题主要考查点的坐标关于原点对称,熟练掌握点的坐标关于原点对称的方法是解题的关键.2. 下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.【答案】B【解析】【分析】直接根据轴对称图形与中心对称图形的定义进行判断即可【详解】解:A 、不是轴对称图形,是中心对称图形,故本选项不合题意;B 、既是轴对称图形,又是中心对称图形,故本选项符合题意;C 、是轴对称图形,不是中心对称图形,故本选项不合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B .【点睛】本题考查了轴对称图形与中心对称图形的定义,正确掌握知识点是解题的关键;3. 在抛物线y =x 2﹣4x﹣4上的一个点是( )A. (4,4)B. (3,﹣1)C. (﹣2,﹣8)D. (,12-) 74-【答案】D【解析】【分析】把各点的横坐标代入函数式,比较纵坐标是否相符,逐一检验.【详解】解:A 、x=4时,y=x 2-4x-4=-4≠4,点(4,4)不在抛物线上;B 、x=3时,y=x 2-4x-4=-7≠-1,点(3,-1)不在抛物线上;C 、x=-2时,y=x 2-4x-4=8≠-8,点(-2,-8)不在抛物线上;D 、x=时,y=x 2-4x-4=,点(,)在抛物线上. 12-74-12-74-故选D .【点睛】此题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4. 二次函数的图象如图所示,则( )2y ax bx =+A. ,B. ,C. ,D. ,0a >0b >0a >0b <0a <0b >0a < 0b <【答案】D【解析】【分析】由抛物线的开口向下,得a<0,抛物线的对称轴在y 轴的左边,于是<0,所2b a-以b<0.【详解】解:如图,抛物线的开口向下,则, 0a <抛物线的对称轴位于y 轴的左侧,则a 、b 同号,即.0b <综上所述,,.0a <0b <故选:D .【点睛】本题考查了二次函数的图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向,对称轴,抛物线与x 轴交点个数确定.5. 如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B 等于( )A. 30°B. 35°C. 40°D. 50°【答案】C【解析】 分析:欲求∠B 的度数,需求出同弧所对的圆周角∠C 的度数;△APC 中,已知了∠A 及外角∠APD 的度数,即可由三角形的外角性质求出∠C 的度数,由此得解.解答:解:∵∠APD 是△APC 的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C .6. 函数的图象与轴的交点坐标为( ). ()212y x =++y A.B. C. D.()0,2()1,2-()0,3()0,4【答案】C【解析】 【分析】代入x=0求出y 的值,即可得到答案.【详解】解:当x=0时,,()2123y x =++=∴函数的图象与y 轴的交点坐标为(0,3),()212y x =++故选:C .【点睛】本题考查二次函数图象上点的坐标特征,熟知图象上的点的坐标都满足函数关系式是解题的关键.7. 一个矩形的长比宽多2,面积是99,则矩形的两边长分别为( )A. 9和7B. 11和9C. D. , 1+1-1+1-+【答案】B【解析】【分析】设矩形的长为x ,则宽为,利用矩形的面积公式列方程即可解答(2)x -【详解】解:设矩形的长为x ,则宽为,则 (2)x -,(2)99x x -=解得,(舍去).111x =29x =-则,29x -=所以矩形的两边长分别为11和9,故选:B .【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目,根据题目给出的条件,找出合适的等量关系,列出方程,在求解.8. 如图,四边形ABCD 是的内接四边形,,则的度数是( )O 135B ∠=︒AOC ∠A.B. C. D.60︒70︒90︒180︒【答案】C【解析】【分析】 连接OA 、OC ,根据“圆内接四边形对角互补”可求得∠D 的度数,根据圆周角定理即可求得∠AOC.【详解】连接OA 、OC∵四边形ABCD 是的内接四边形,O 135B ∠=︒∴∠D=180°-∠B=45°∴∠AOC=2∠D=90°故选C【点睛】本题考查的是圆周角定理的相关推论,熟练的掌握“直径所对的圆周角是90度”及圆周角定理是关键.9. 抛物线与x 轴两交点间的距离是( )223y x x =--A. 4B. 3C. 2D. 1 【答案】A【解析】【分析】用十字相乘法将抛物线解析式进行因式分解,令,即可求出两个交点的横坐0y =标,从而求出交点间的距离.【详解】解:, 2(1)(3)23y x x x x +-=-=-当时0y =则,(1)(3)0x x +-=解得:,.11x =-23x =与x 轴的交点坐标为,.(1,0)-(3,0)则抛物线与x 轴两交点间的距离为.3(1)4--=故选:A .【点睛】本题考查抛物线与x 轴的交点坐标求法,令,解一元二次方程即可得到交点0y =的横坐标.10. 如图,将等边三角形放在平面直角坐标系中,A 点坐标,将绕点O 逆OAB ()1,0OAB 时针旋转60°,则旋转后点B 的对应点的坐标为( )B'A.B. C.D.12⎛- ⎝11,2⎛⎫- ⎪⎝⎭32⎛- ⎝12⎫⎪⎪⎭【答案】A【解析】【分析】过点B 作于H ,设交y 轴于J ,求出点B 的坐标,证明、关于BH OA ⊥BB 'B B 'y 轴对称,即可解决问题;【详解】解:如图,过点B 作于H ,设交y 轴于J .BH OA ⊥BB ',()10A ,Q ,1OA ∴=是等边三角形,,△AOB BH OA ⊥,, 1122OH AH OA ∴===BH ==,12B ⎛∴ ⎝,,60AOB BOB '∠=∠=︒ 90JOA ∠=︒,30BOJ JOB '∴∠=∠=︒,OB OB '= ,BB OJ '∴⊥,BJ JB '∴=,关于y 轴对称,B ∴B '∴, 12B ⎛'- ⎝故选:A .【点睛】本题考查了坐标与图形的性质,旋转变换,轴对称,等边三角形的性质等知识,解决问题的关键是理解题意,灵活运用所学知识;11. 如图,将△ABC 绕点B 顺时针旋转60°得△DBE,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A. ∠ABD=∠EB. ∠CBE=∠CC. AD∥BCD. AD =BC【答案】C【解析】 根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△AB D 为等边三角形,即 AD =AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.12. 已知一元二次方程,有下列叙述: ()200++=≠ax bx c a ①若,则方程有两个不等实根;a 0>②若,方程的两根为,. 2b 4ac 0->1x =2x =③若,则方程没有实数根;240b ac -<④若,则抛物线的顶点在x 轴上.2b 4ac 0-=2y ax bx c =++其中,正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据一元二次方程根的判别式和抛物线的性质逐一求解即可;【详解】解:①若,时,方程有两个不等实根,故①错误,不符合题意;0a >0∆>②若,方程的两根为,,故②正确,240b ac ->1x =2x =符合题意;③若,则方程没有实数根,故③正确,符合题意;240b ac -<④若,抛物线和x 轴只有一个交点,故抛物线的顶点在x 轴240b ac -=2y ax bx c =++上,故④正确,符合题意.故选:C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握根的判别式是解题的关键二.填空题(本大题共6小题,每小题3分,共18分)13. 方程的根是_________.22x =【答案】.x =【解析】【分析】【详解】,解得:x=.故答案为.22x =x =14. 若正方体的棱长为,表面积为,则与的关系式为________.x y y x 【答案】26y x =【解析】【分析】正方体有6个面,每一个面都是边长为x 的正方形,这6个正方形的面积和就是该正方体的表面积.【详解】解:∵正方体有6个面,每一个面都是边长为x 的正方形,∴表面积.26y x =故答案为:.26y x =【点睛】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键.15. 若平行四边形是圆内接四边形,则∠A 的度数为______.ABCD 【答案】90°【解析】【分析】由平行四边形的性质可得∠A=∠C,由圆的内接四边形的性质得到∠A+∠C=180°,由此可求得结果.【详解】解:∵四边形为平行四边形,ABCD ,A C ∴∠=∠∵四边形是圆内接四边形,ABCD ,180A C ∴∠+∠=︒,2180A ∴∠=︒,90A ∴∠=︒故答案为90°.【点睛】本题主要考查了平行四边形的性质,圆内接四边形的性质,熟记这两个性质是解决问题的关键.16. 如图,在半径为5的中,,则弦的长度为______.O 120AOB ∠=︒AB【答案】【解析】【分析】作OC⊥AB,根据垂径定理得到AC=BC=AB ,根据直角三角形的性质求出OC ,根据12勾股定理求出AC ,得到答案.【详解】解:作于C ,OC AB ⊥则, 12AC BC AB ==,,OA OB = 120AOB ∠=︒,30A ∴∠=︒, 1522OC OA ∴==由勾股定理得,, AC ==2AB AC ∴==故答案为:【点睛】本题考查的是垂径定理、圆心角、弧、弦的关系定理,正确作出辅助性、灵活运用定理是解题的关键.17. 如图,在中,,,将绕点C 顺时针旋转一Rt ABC 92ABC ∠=︒30ACB ∠=︒ABC 定的角度得到,点A 、B 的对应点分别是D 、E .当点E 恰好在上时,则DEC AC ADE ∠的度数为______.【答案】17° 【解析】【分析】由旋转的性质可得,,,92ABC DEC ∠=∠=︒CA CD =30ACB ACD ∠=∠=︒由等腰三角形的性质以及角的和差即可求解.【详解】∵将绕点C 顺时针旋转一定的角度得到,ABC DEC ,,,92ABC DEC ∴∠=∠=︒CA CD =30ACB ACD ∠=∠=︒为等腰三角形, ACD ∴CAD CDA ∴∠=∠ 180CAD CDA ACD ∠+∠+∠=︒ ,75CAD CDA ∴∠=∠=︒,927517ADE DEC DAC ∴∠=∠-∠=︒-︒=︒故答案为:17°.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键. 18. 如图,C 是线段上一动点,,都是等边三角形,M ,N 分别是,AB ACD △CBE △CD 的中点,若,则线段的最小值为______.BE 6AB =MN【解析】【分析】连接,根据等边三角形性质,得,再根据等腰三角形三线合一CN 60DCE ∠=︒性质,得,从而得;设,根据三角函数性质,计算得;再根据ECN ∠DCN ∠AC a =CN 勾股定理和二次函数的性质计算,即可得到答案 【详解】连接,CN∵和为等边三角形ACD △BCE ∴,, AC CD =BC CE =60ACD BCE B ∠=∠=∠=︒∴, 18060DCE ACD BCE ∠=︒-∠-∠=︒∵是的中点,N BE ∴,, CN BE ⊥302BCEECN BCN ∠∠=∠==∠︒∴, 90DCN DCE ECN ∠=∠+∠=∠︒设, AC a =∴ 12CM a =∵ 6AB =∴6BC a =-∴ cos )CN BCN BC a =∠⨯=-∴MN ===∴当时, 92a =MN【点睛】本题考查了等边三角形、等腰三角形、勾股定理、三角函数、二次函数的知识;解题的关键是熟练掌握等边三角形、等腰三角形、勾股定理、三角函数、二次函数的性质,从而完成求解.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤推理过程) 19. (1)先填表,并在同一直角坐标系中画出二次函数和的图象; 2y x =()21y x =+x-3 -2 -1 0 1 2 32y x =__________________________________________()21y x =+____________ ______ ______ ______ ______ ______(2)分别写出它们顶点坐标.【答案】(Ⅰ)见解析;(2)二次函数的顶点坐标为,的顶点坐2y x =(0,0)2(1)y x =+标为 (1,0)-【解析】【分析】(1)列表,描点,连线画出图象即可; (2))根据二次函数图象即可写出顶点坐标; 【详解】解:(1)列表: x-3 -2 -1 0 1 2 32y x =941149()21y x =+ 41 0 14 9 16在同一直角坐标系中画出二次函数和的图象如图:2y x =()21y x =+(2)二次函数的顶点坐标为, 2y x =(0)0,的顶点坐标为; 2(1)y x =+(10)-△【点睛】本题考查了二次函数图象,利用描点法得出函数的图象,熟练掌握二次函数的性质是解题的关键;20. 如图,中,.ABC 90C ∠=︒(1)将绕点B 逆时针旋转90°,画出旋转后的三角形; ABC (2)若,.点A 旋转后的对应点为,求的长. 3BC =4AC =A 'A A '【答案】(1)见解析;(2)【解析】【分析】(1)利用旋转的性质画出点A 和点C 的对应点、,即可得到 A 'C 'BA C ''△(2)先利用勾股定理计算出AB=5,再利用旋转的性质得到,,5BA BA '==90A BA '∠=︒则可判断为等腰直角三角形,然后根据等腰直角三角形的性质求解 A BA '△【详解】解:(1)如图,为所作;BA C ''△(2)中,,,,ABC 90C ∠=︒ BC 3=AC 4=,5AB ∴===绕点B 逆时针旋转90°得到, ABC BA C ''△,, 5BA BA '∴==90A BA '∠=︒为等腰直角三角形, A BA '∴△.A A '∴==【点睛】本题考查了作图:旋转变换,勾股定理以及等腰三角形的判定和性质,熟练掌握旋转的性质是解题关键.21. 如图,的半径为,弦的长.O OA 50mm AB 50mm(Ⅰ)求的度数; OAB ∠(Ⅱ)求点O 到的距离.AB【答案】(Ⅰ);(Ⅱ) 60OAB ∠=︒【解析】【分析】(Ⅰ)连接OB ,根据等边三角形的判定定理得到为等边三角形,根据等边AOB 三角形的性质解答即可;(Ⅱ)过点O 作于C ,根据垂径定理求出AC ,根据勾股定理计算,得到答案; OC AB ⊥【详解】解:(Ⅰ)连接,OB,,50OA OB == 50AB =,OA OB AB ∴==为等边三角形,AOB ∴ ;60OAB ∴∠=︒(Ⅱ)过点O 作于C ,则, OC AB ⊥1252AC BC AB ===由勾股定理得,OC ==答:点O 到的距离为.AB 【点睛】本题考查了垂径定理,等边三角形的性质与判定,掌握相关的性质是解题的关键; 22. 二次函数(a ,b ,c 是常数)的自变量x 与函数值y 的部分对应值如下2y ax bx c =++表: x … -2 -1 0 1 2 … y…m-3-4-3…(Ⅰ)求这个二次函数的解析式; (Ⅱ)求m 的值;(Ⅲ)当时,求y 的最值(最大值和最小值)及此时x 的值.15x -≤≤【答案】(Ⅰ);(Ⅱ)m=5;(Ⅲ)x=1时,y 有最小值为-4,x=5时,y 2(1)4y x =--有最大值为12 【解析】【分析】(Ⅰ)利用待定系数法求函数解析式即可 (Ⅱ)直接将代入函数解析式即可求解2x =-(Ⅲ)利用表格中的数,在结合二次函数的增减性即可解答 【详解】解:(Ⅰ)设,2(1)4y a x =--将代入得,()0,3-2(1)4y a x =--,43a -=-解得,1a =∴这个二次函数的解析式为. 2(1)4y x =--(Ⅱ)当时,.2x =-2(21)45m =---=(Ⅲ)根据表格可知:函数的对称轴为,在对称轴左侧随的增大而减小,在对称1x =y x 轴右侧随的增大而增大,y x 自变量,15x -≤≤当时,y 有最小值为-4,∴1x =当时,y 有最大值为.∴5x =2(51)416412--=-=【点睛】本题考查了二次函数图像与性质及待定系数法求函数解析式,熟练掌握二次函数图像和性质是解题关键.23. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支? 若设每个支干长出x 个小分支.(Ⅰ)分析:根据问题中的数量关系,填表: ①主干的数目为______;②从主干中长出的支干的数目为______;(用含x 的式子表示) ③又从上述支干中长出的小分支的数目为______;(用含x 的式子表示) (Ⅱ)完成问题的求解.【答案】(Ⅰ)①1;②x;③;(Ⅱ)过程见解析,9个小分支 2x 【解析】【分析】(Ⅰ)根据主干为1及每个小支干长出个小分支即可得出个小问的结论 x (Ⅱ)根据主干支干数目支干数目支干数目,即可得出关于的一元二次方程,++⨯91=x 解方程取其正值即可【详解】解:(Ⅰ)根据题意得:①主干的数目为1; ②从主干中长出的支干的数目为x ;③又从上述支干中长出的小分支的数目为;2x故答案为:①1;②x;③; 2x (Ⅱ)依题意,得:, 2191x x ++=整理,得:,2900x x +-=解得:,(不合题意,舍去). 19x =210x =-所以每个支干长出9个小分支.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题关键.24. 如图,已知平行四边形中,于点E ,以点B 为中心,取旋转角等于ABCD AE BC ⊥,把顺时针旋转,得到,连接.若,ABC ∠BAE △BA E ''V DA '60ADC ∠=︒50ADA '∠=︒.(Ⅰ)求的大小;DA E ''∠(Ⅱ)若延长和相交于点P ,求的大小? AE A E ''APA '∠(Ⅲ)连接,若,求的长度.PB AB a =PB【答案】(Ⅰ);(Ⅱ);(Ⅲ) 160︒60A PA '∠=︒PB =【解析】【分析】(Ⅰ)利用平行四边形的性质,得,180ADA DA B ''∠+∠=︒,再根据直角三角形两锐角互余,结合旋转的性质,可求出60ADC ABC ∠=∠=︒BA E ''∠的度数,进而可求出的度数DA E ''∠(Ⅱ)直接根据直角三角形中两锐角互余求解即可(Ⅲ)根据等腰三角形的性质,得,可证为直角三角形,30PA B PBA ''∠=∠=︒ABP △再利用三角函数解直角三角形即可求解【详解】解:(Ⅰ)∵四边形是平行四边形,ABCD ,,60ADC ABC ∴∠=∠=︒//AD BC, 180ADA DA B ''∴∠+∠=︒, 130DA B '∴∠=︒,AE BC ⊥ ,90AEB ∴∠=︒,30BAE =∴∠︒∵把顺时针旋转,得到,BAE △BA E ''V ,, 30BA E BAE ''∴∠=∠=︒AB A B '=;160DA E DA B BA E '''''∴∠=∠+∠=︒(Ⅱ),,90A EP '∠=︒ 30PA E '∠=︒;60A PA '∴∠=︒(Ⅲ)连接,PB,,30BAP ∠=︒ 90AEB =︒∠AB a =, 2AB BE ∴=, 2a BE ∴=AB A B '= , 22a aA E AB BE a BE ''∴=-=-== 30BA E BAP ''∠=∠=︒ 30PA B PBA ''∴∠=∠=︒ 60ADC ABC ∠=∠=︒90ABP ABC PBA '∴∠=∠+∠=︒,PB AB ∴⊥在中, ∴Rt ABP tan PBBAP AB∠=PBa=.PB ∴=【点睛】本题考查了平行四边形的性质,旋转的性质,直角三角形的性质,以及解直角三角形,灵活运用这些性质是解题关键.25. 如图,是等腰直角三角形,,,点P 是边上一动点,ABC 90A ∠=︒4BC =ABC 沿的路径移动,过点P 作于点D ,设,的面积为y .B AC →→PD BC ⊥BD x =BDP△(1)当时,求y 的值;1x =(2)在这一变化过程中,写出y 关于x 的函数解析式及x 的取值范围; (3)当x 取何范围时,(直接写出结果即可). 1322y <<【答案】(1);(2);(3)x 的取值范围为:12y =221x (0x 2)21x 2x(2x 4)2y ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩或1x <<32x <<+【解析】【分析】(Ⅰ)是等腰直角三角形,则,则为等腰直角三ABC 45B C ∠=∠=︒PBD △角形,故,则,即可求解 BD PD x ==21122y BD PD x =⨯⨯=(Ⅱ)当点在上运动时,由(1)知,,当点在上运动时,P AB 212y x =P AB ,即可求解;2111(4)2222y BD PD x x x x =⨯⨯=⨯-=-+(Ⅲ)①当时,则,②当时,则,进而求解即02x ≤≤212y x =24x <<21x 2x 2y =-+可;【详解】解:(Ⅰ)是等腰直角三角形,则,ABC 45B C ∠=∠=︒因为PD⊥BC ,则为等腰直角三角形,PBD △故,BD PD x ==则, 21122y BD PD x =⨯⨯=当时,; 1x =12y =(Ⅱ)当点在上运动时,P AB 由(1)知,, 212y x =当点在上运动时,P AC 同理可得为等腰直角三角形,则, PDC △4CD BC BD x PD =-=-=则, 2111(4)2222y BD PD x x x x =⨯⨯=⨯-=-+故; 221x (0x 2)21x 2x(2x 4)2y ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩(Ⅲ)①当时,02x ≤≤则, 212y x =当时,即,解得(舍去负值), 12y =21122y x ==1x =±当时,即,解得(舍去负值), 32y =21322y x ==x =故;1x <<②当时,24x <<则, 21x 2x 2y =-+当时,即=,解得: , 12y =21x 2x 2y=-+12)1222x x ==-舍去当时,即,解得: , 32y =213222x y x +=-=()1231x x ==,舍去故;32x <<+综上,x 的取值范围为:或.1x <<32x <<【点睛】本题是三角形的综合题,涉及到二次函数的基本性质、等腰三角形的性质、面积的计算等,要注意分类讨论,避免遗漏;。

天津市二十五中学2020-2021学年度高二第一学期期末测试数学试题

天津市二十五中学2020-2021学年度高二第一学期期末测试数学试题

数学试卷第1页(共9页)天津市第二十五中学2020—2021学年度第一学期期末考试模拟试卷高二年级数学学科2021.01本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间100分钟.第Ⅰ卷一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)数列{}n a 的通项公式是22n n a n-=,则5a =().(A )165(B )4(C )185(D )6(2)直线3210x y +-=的一个方向向量是().(A )23-(,)(B )2 3(,)(C )3 2-(,)(D )3 2(,)(3)若两直线1:220l mx y m ++-=,2:4(2)20l x m y +-+=互相平行,则m 等于().(A )2-(B )4(C )2-或4(D )0(4)已知双曲线222210 0y x a b a b -=>>(,)的一条渐近线方程为2y x =,则该双曲线的离心率为().(A(B)2(C)2(D(5)圆221:9C x y +=与圆222:68110C x y x y ++--=的位置关系是().(A )相交(B )外切(C )内切(D )外离(6)经点01P -(,)作直线l ,若直线l 与连接12 2 1A B -(,),(,)的线段总有公共点,则直线l 的倾斜角的取值范围为().数学试卷第2页(共9页)(A )[0 ][ 44π3ππ) ,(B )[0 ]4π,(C )[ 43ππ),(D )[0 ][ 44π3ππ] ,(7)已知数列{}n a满足*110 ()n a a n +==∈N ,,则2020a 等于().(A )3-(B )0(C)(D )3(8)若{ },,a b c 构成空间的一个基底,则下列向量不共面的是().(A ) +-,,b c b b c (B ) +-,,a a b a b (C ) +-,,a b a b c(D ) +++,,a b a b c c备1:有以下命题:①如果向量 a b ,与任何向量不能构成空间向量的一组基底,那么 a b ,的关系是不共线;② O A B C ,,,为空间的四个点,且向量 O A O B O C,,不构成空间的一个基底,则点 O A B C ,,,一定共面;③已知{ }a b c ,,是空间的一个基底,则向量 +-,,a b a b c也是空间的一个基底.其中正确的命题是().(A )①②(B )①③(C )②③(D )①②①②(9)已知抛物线21:20C y px p =>()的焦点F 恰好与双曲线22222:10 0x y C a b a b-=>>(,)的右焦点重合,且两曲线交点的连线过点F ,则双曲线的离心率为().(A1(B)12(C)2+(D(9)备1:已知双曲线2222:10 0x y C a b a b-=>>(,)与抛物线220y px p =>()的交点为 A B ,,A B 、连线经过抛物线的焦点F ,且线段AB 的长等于双曲线的虚轴长,则双曲线的离心率().(A1(B )3(C)(D )2数学试卷第3页(共9页)(9)备2:双曲线222210 0y x a b a b-=>>(,)与抛物线218y x =有一个公共焦点F ,双曲线上过点F且垂直于实轴的弦长为3,则双曲线的离心率().(A )2(B(C)2(D)3(10)与圆221x y +=及228120x y x +-+=都外切的圆的圆心在().(A )椭圆上(B )双曲线的一支上(C )抛物线上(D )圆上(10)备1:与圆22650x y x +++=外切,同时与圆226910x y x +--=内切的动圆的圆心在().(A )椭圆上(B )双曲线的一支上(C )抛物线上(D )圆上(10)备2:线段AB 的端点B 的坐标是01-(,),端点A 在抛物线212x y =上运动,则线段AB 的中点M 的轨迹方程为().(A )220x y -=(B )280x y -=(C )28210x y --=(D )28210x y -+=第Ⅱ卷二、填空题:本大题共5个小题,每小题5分,共25分.(11)已知 4 1 2 1 32 a b c a b b c x y z ==--=-⊥(,,),(,,),(,,),, 则c =.(12)如图,在平行六面体1111ABCD A B C D -中,AC 与BD 交点为M .设11111 a b c A B A D A A === ,,,若1a b c B M x y z =++,则x y z ++=.数学试卷第4页(共9页)(12)备1:如图,在四面体OABC 中, a b c OA OB OC ===,,,点M 在OA 上,且2 OM MA N =,为BC 中点,若a b c MN x y z =++,则x y z ++=.(13)在等差数列{}n a 中,135792354a a a a a ++++=()(),则此数列的前10项和10S =.(13)备1:设n S 是等差数列{}n a 的前n 项和,若65911a a =,则119SS =.(13)备2:在等差数列{}n a 中,1010010010S S ==,,则110S =.(14)设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于 A B ,两点.若||3||A F B F =,则l 的方程为.(14)备1:设抛物线2:20C y px p =>()的焦点为F 的直线交抛物线于点 A B ,,交其准线l 于点C ,若||2||B C B F =,且||3A F =,则此抛物线的方程为.(15)椭圆221ax by +=与直线1y x =-交于 A B ,两点,过原点与线段AB 中点的直线的斜率为2,则ab的值为.(15)备1:过椭圆2222:10 0x y C a b a b+=>>(,)右焦点的直线0x y +=交椭圆于A B ,两点,P 为AB 的中点,且OP 的斜率12,则椭圆C 的标准方程为.数学试卷第5页(共9页)三、解答题:本大题共5个小题,共75分.解答应写出文字说明,证明过程或演算步骤.得分评卷人(16)(本小题满分14分)(Ⅰ)已知点34A-(,)和点5 8B (,),求过线段AB 中点且与AB 所在直线垂直的直线l 的方程;(Ⅱ)求过直线3210x y -+=和340x y ++=的交点,且平行于230x y -+=的直线l 的方程.数学试卷第6页(共9页)得分评卷人(17)(本小题满分15分)设{}n a 是等差数列,其前n 项和为*n S n ∈()N ;{}n b 是等比数列,公比大于0,其前n 项和为*n T n ∈()N ,已知1324355461 2 2b b b b a a b a a ==+=+=+,,,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求n S 和n T ;(III )若124n n n n S T T T a b +++⋅⋅⋅+=+(),求正整数n 的值.备1:已知数列{}n a 的前n 项和为2*n n S S n n =∈,()N ,数列{}n b 为等比数列,且22341 1b a b a =+=+,,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -+的前n 项和n T ;(III )若11n n n n n c a b a a +=+,求数列{}n c 的前n 项和n R ;.数学试卷第7页(共9页)得分评卷人(18)(本小题满分15分)已知圆心为C 的圆经过(1 1) (22)A B -,,,两点,且圆心C 在直线:10l x y -+=上.(Ⅰ)求圆C 的标准方程,并判断点21M --(,)是否在这个圆上;(Ⅱ)求过点M 作直线l ,截圆产生的最长弦所在的直线方程;(III )求过点M 作直线l 截圆产生的最短弦的弦长.备1:已知圆C 经过点0 2 0 6 2 4-(,),(,),(,).(Ⅰ)求圆心坐标及半径长,并写出圆的标准方程;(Ⅱ)若圆C 关于直线:20l ax y a++=对称,求a 的值;(Ⅱ)若直线l 被圆C 截得的弦长为l 的方程.数学试卷第8页(共9页)得分评卷人(19)(本小题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(Ⅰ)求证:PA 平面EDB ;(Ⅱ)求证:PB ⊥平面EFD ;(III )求平面CPB 与平面PBD 的夹角的大小.数学试卷第9页(共9页)得分评卷人(20)(本小题满分16分)已知点F 为椭圆222210 0x y a b a b+=>>(,)的一个焦点,点A 为椭圆的右顶点,点B 为椭圆的下顶点,椭圆上任意一点到F 距离的最大值为3,最小值为1.(Ⅰ)求椭圆的方程;(Ⅱ)若 M N ,在椭圆上,且异于椭圆的顶点,直线AM直线BN ,直线 AN BM ,的斜率分别为1k 和2k ,求证:2121k k e ⋅=-(e 为椭圆的离心率).备1:如图,椭圆22221(>>0)x y C a b a b +=:经过点3(1 ) 2P ,,离心率1=2e ,直线l 的方程为=4x .(Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记 PA PB PM ,,的斜率分别为123 k k k ,,.问:是否存在常数λ,使得123+=k k k λ若存在求λ的值;若不存在,说明理由.备2:椭圆22221(>>0)x y C a b a b+=:的离心率3 32e a b =+=,.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N 直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.。

-天津市河西区2020-2021学年八年级上学期期末数学试卷(word解析版)

-天津市河西区2020-2021学年八年级上学期期末数学试卷(word解析版)

2020-2021学年天津市河西区八年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣82.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3 3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.107.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣310.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=.12.(3分)已知等腰三角形的一个内角为50°,则顶角为度.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于.15.(3分)已知﹣=3,则分式的值为.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).18.(6分)解方程﹣3=.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.2020-2021学年天津市河西区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣8【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3【分析】根据同底数幂的乘法、幂的乘方与积的乘方法则,分别进行各选项的判断即可.【解答】解:A、a3与a2不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、(a3)2=a6,计算正确,故本选项正确;D、(3a)3=27a3,原式计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘法、幂的乘方与积的乘方,解答本题的关键是掌握各部分的运算法则.3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.【解答】解:原式===a﹣3,当a=1时,原式=1﹣3=﹣2,故选:B.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.【点评】本题考查了同底数幂的除法,底数不变,指数相减.7.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变【分析】根据分式的基本性质,可得答案.【解答】解:把分式中的x和y的值都扩大为原来的3倍,得==3×,故选:A.【点评】本题考查了分式的基本性质,能够正确利用分式的基本性质变形是解题的关键.8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.【分析】要求的未知量是工作效率,有工作总量,一定是根据时间来列等量关系的.关键描述语是:“提前5天交货”;等量关系为:原来所用的时间﹣实际所用的时间=5.【解答】解:原来所用的时间为:,实际所用的时间为:,所列方程为:﹣=5.故选:D.【点评】本题考查了由实际问题抽象出分式方程,关键是时间做为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣3【分析】由已知得a=b+3,代入所求代数式,利用完全平方公式计算.【解答】解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故选:A.【点评】本题考查了完全平方公式的运用,关键是利用换元法消去所求代数式中的a.10.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab【分析】设小正方形边长为x,表示出大正方形的边长,由大正方形面积减去四个小正方形面积表示出阴影部分面积即可.【解答】解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,可得x=,大正方形边长为a﹣==,则阴影部分面积为()2﹣4()2=﹣==ab,故选:A.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=2a(x﹣3y)2.【分析】先提公因式2a,然后利用公式法分解因式.【解答】解:原式=2a(x2﹣6xy+9y2)=2a(x﹣3y)2.故答案为2a(x﹣3y)2.【点评】本题考查了提公因式法与公式法的综合运用,提取公因式后还能运用完全平方公式继续分解因式.12.(3分)已知等腰三角形的一个内角为50°,则顶角为50或80度.【分析】有两种情况(顶角是50°和底角是50°时),用三角形的内角和定理即可求出顶角的度数.【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故答案为50或80【点评】本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论是解答此题的关键.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是6.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于8.【分析】作PE⊥OA于E,根据角平分线的性质求出PE,根据直角三角形的性质和平行线的性质解答即可.【解答】解:作PE⊥OA于E,∵OP平分∠AOB,PD⊥OB,PE⊥OA,∴PE=PD=4,∵OP平分∠AOB,∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ECP=∠AOB=30°,∴PC=2PE=8,故答案为:8.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.(3分)已知﹣=3,则分式的值为.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.【点评】本题主要考查了分式的基本性质及求分式的值的方法,把﹣=3作为一个整体代入,可使运算简便.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点N、M,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).【分析】(Ⅰ)原式利用完全平方公式计算即可求出值;(Ⅱ)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(Ⅰ)原式=4a2﹣12ab+9b2;(Ⅱ)原式=•=•=2(a﹣2)=2a﹣4.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握公式及运算法则是解本题的关键.18.(6分)解方程﹣3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【解答】解:去分母得:x﹣1﹣3x+6=1,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.【分析】由于D是BC的中点,那么BD=CD,而BE=CF,DE⊥AB,DF⊥AC,利用HL易证Rt△BDE≌Rt△CDF,得DE=DF,利用角平分线的判定定理可知点D在∠BAC 的平分线上,即AD平分∠BAC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴点D在∠BAC的平分线上,∴AD平分∠BAC,∴∠BAD=∠CAD.【点评】本题考查了角平分线的判定定理、全等三角形的判定和性质.解题的关键是证明Rt△BDE≌Rt△CDF.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.【分析】作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则点P 即为所求.【解答】解:如图所示,作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则BP=B'P,∴AP+BP=AP+B'P=AB',∴P A+PB的值最小等于线段AB'的长,【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.【分析】(1)时间=路程÷速度;速度=路程÷时间.(2)等量关系为:骑自行车同学所用时间=坐汽车同学所用时间+.【解答】解:(Ⅰ)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车2x10(Ⅱ)∵骑自行车先走20分钟,即=小时,∴=+,解得:x=15,经检验,x=15是原方程的根.答:骑车同学的速度为每小时15千米.【点评】本题考查分式方程的应用,注意找好等量关系方可列出方程.求解后要注意检验,要满足两个方面:①要满足方程②要满足实际问题.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.【分析】根据等边三角形的性质,可得AB与BC的关系,BD、BE、DE的关系,根据三角形全等的判定,可得△ABE与△CBD的关系,根据全等三角形的性质,可得对应边相等,根据线段的和差,等量代换,可得证明结果.【解答】证明:△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD=DE(等边三角形的边相等),∠ABC=∠EBD=60°(等边三角形的角是60°).∴∠ABC﹣∠EBC=∠EBD﹣∠EBC∠ABE=CBD(等式的性质),在△ABE和△CBD中,,∴△ABE≌△CBD(SAS)∴AE=DC(全等三角形的对应边相等).∵AD﹣DE=AE(线段的和差)∴AD﹣BD=DC(等量代换).【点评】本题考查了全等三角形的判定与性质,先证明三角形全等,再证明全等三角形的对应边相等,最后等量代换.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【分析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PF A=∠FP A=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.【解答】(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PF A=∠FP A=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.【点评】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB≌△DPF是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.。

2020-2021学年天津市河西区九年级(上)期中数学试卷 (解析版)

2020-2021学年天津市河西区九年级(上)期中数学试卷 (解析版)

2020-2021学年天津市河西区九年级第一学期期中数学试卷一、选择题1.(3分)在平面直角坐标系中,点(2,0)关于原点对称的点的坐标为()A.(﹣2,0)B.(0,2)C.(0,﹣2)D.(2,﹣2)2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)在抛物线y=x2﹣4x﹣4上的一个点是()A.(4,4)B.(3,﹣1)C.(﹣2,﹣8)D.()4.(3分)二次函数y=ax2+bx的图象如图所示,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 5.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°6.(3分)函数y=(x+1)2+2的图象与y轴的交点坐标为()A.(0,2)B.(﹣1,2)C.(0,3)D.(0,4)7.(3分)一个矩形的长比宽多2,面积是99,则矩形的两边长分别为()A.9和7B.11和9C.1+,﹣1+D.1+3,﹣1+38.(3分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数()A.60°B.70°C.90°D.180°9.(3分)抛物线y=x2﹣2x﹣3与x轴两交点间的距离是()A.4B.3C.2D.110.(3分)如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),将△OAB绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(﹣,)B.(﹣1,)C.(﹣,)D.(﹣,)11.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC 12.(3分)已知一元二次方程ax2+bx+c=0(a≠0),有下列叙述:①若a>0,则方程有两个不等实根;②若b2﹣4ac>0,方程的两根为x1=,x2=.③若b2﹣4ac<0,则方程没有实数根;④若b2﹣4ac=0,则抛物线y=ax2+bx+c的顶点在x轴上.其中,正确结论的个数是()A.1B.2C.3D.4二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)方程x2=2的根是.14.(3分)若正方形的边长为x,面积为y,则y与x之间的关系式为(x>0).15.(3分)若平行四边形ABCD是圆内接四边形,则∠A的度数为.16.(3分)如图,在半径为5的⊙O中,∠AOB=120°,则弦AB的长度为.17.(3分)如图,在Rt△ABC中,∠ABC=92°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度得到△DEC,点A、B的对应点分别是D、E.当点E恰好在AC上时,则∠ADE的度数为.18.(3分)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=6,则线段MN的最小值为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤推理过程)19.(8分)(Ⅰ)先填表,并在同一直角坐标系中画出二次函数y=x2和y=(x+1)2的图象;x﹣3﹣2﹣10123y=x2y=(x+1)2(Ⅱ)分别写出它们顶点坐标.20.(8分)如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90°,画出旋转后的三角形;(2)若BC=3,AC=4.点A旋转后的对应点为A′,求A′A的长.21.(10分)如图,⊙O的半径OA为50mm,弦AB的长50mm.(Ⅰ)求∠OAB的度数;(Ⅱ)求点O到AB的距离.22.(10分)二次函数y=ax2+bx+c(a,b,c是常数)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3﹣4﹣3…(Ⅰ)求这个二次函数的解析式;(Ⅱ)求m的值;(Ⅲ)当﹣1≤x≤5时,求y的最值(最大值和最小值)及此时x的值.23.(10分)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?若设每个支干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为;②从主干中长出的支干的数目为;(用含x的式子表示)③又从上述支干中长出的小分支的数目为;(用含x的式子表示)(Ⅱ)完成问题的求解.24.(10分)如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°.(Ⅰ)求∠DA′E′的大小;(Ⅱ)若延长AE和A′E′相交于点P,求∠APA′的大小?(Ⅲ)连接PB,若AB=a,求PB的长度.25.(10分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y.(Ⅰ)当x=1时,求y的值;(Ⅱ)在这一变化过程中,写出y关于x的函数解析式及x的取值范围;(Ⅲ)当x取何范围时,<y<(直接写出结果即可).参考答案一、选择题:本大题共12小题,每小题3分,共30分.在每小题给出的四个选项中,只有-项是符合题目要求的.1.(3分)在平面直角坐标系中,点(2,0)关于原点对称的点的坐标为()A.(﹣2,0)B.(0,2)C.(0,﹣2)D.(2,﹣2)解:点(2,0)关于原点对称的点的坐标为(﹣2,0).故选:A.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.3.(3分)在抛物线y=x2﹣4x﹣4上的一个点是()A.(4,4)B.(3,﹣1)C.(﹣2,﹣8)D.()解:A、x=4时,y=x2﹣4x﹣4=﹣4≠4,点(4,4)不在抛物线上;B、x=3时,y=x2﹣4x﹣4=﹣7≠﹣1,点(3,﹣1)不在抛物线上;C、x=﹣2时,y=x2﹣4x﹣4=8≠﹣8,点(﹣2,﹣8)不在抛物线上;D、x=﹣时,y=x2﹣4x﹣4=﹣,点()在抛物线上.故选:D.4.(3分)二次函数y=ax2+bx的图象如图所示,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0解:如图,抛物线的开口向下,则a<0,.抛物线的对称轴位于y轴的左侧,则a、b同号,即b<0.综上所述,a<0,b<0.故选:D.5.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.6.(3分)函数y=(x+1)2+2的图象与y轴的交点坐标为()A.(0,2)B.(﹣1,2)C.(0,3)D.(0,4)解:当x=0时,y=(x+1)2+2=3,∴函数y=(x+1)2+2的图象与y轴的交点坐标为(0,3).故选:C.7.(3分)一个矩形的长比宽多2,面积是99,则矩形的两边长分别为()A.9和7B.11和9C.1+,﹣1+D.1+3,﹣1+3解:设矩形的长为x,则宽为(x﹣2),则x(x﹣2)=99,解得x=11,(舍去负值).则x﹣2=9,答:矩形的两边长分别为11和9,故选:B.8.(3分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数()A.60°B.70°C.90°D.180°解:连接OA,OC,∵四边形ABCD为圆内接四边形,∠B=135°,∴∠D=45°,∵∠AOC与∠D都对,∴∠AOC=2∠D=90°,故选:C.9.(3分)抛物线y=x2﹣2x﹣3与x轴两交点间的距离是()A.4B.3C.2D.1解:当y=0时,x2﹣2x﹣3=0,解得(x+1)(x﹣3)=0,x1=﹣1,x2=3.与x轴的交点坐标为(﹣1,0),(3,0).则抛物线与x轴两交点间的距离为3﹣(﹣1)=4.故选:A.10.(3分)如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),将△OAB绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(﹣,)B.(﹣1,)C.(﹣,)D.(﹣,)解:如图,故点B作BH⊥OA于H,设BB′交y轴于J.∵A(1,0),∴OA=1,∵△AOB是等边三角形,BH⊥OA,∴OH=AH=OA=,BH=OH=,∴B(,),∵∠AOB=∠BOB′=60°,∠JOA=90°,∴∠BOJ=∠JOB′=30°,∵OB=OB′,∴BB′⊥OJ,∴BJ=JB′,∴B,B′关于y轴对称,∴B′(﹣,),故选:A.11.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选:C.12.(3分)已知一元二次方程ax2+bx+c=0(a≠0),有下列叙述:①若a>0,则方程有两个不等实根;②若b2﹣4ac>0,方程的两根为x1=,x2=.③若b2﹣4ac<0,则方程没有实数根;④若b2﹣4ac=0,则抛物线y=ax2+bx+c的顶点在x轴上.其中,正确结论的个数是()A.1B.2C.3D.4解:①若a>0,△>0时,方程有两个不等实根,故①错误,不符合题意;②若b2﹣4ac>0,方程的两根为x1=,x2=,故②正确,符合题意;③若b2﹣4ac<0,则方程没有实数根,故③正确,符合题意;④若b2﹣4ac=0,抛物线和x轴只有一个交点,故抛物线y=ax2+bx+c的顶点在x轴上,故④正确,符合题意.故选:C.二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)方程x2=2的根是±.解:x2=2解得:x=±.故答案为:±.14.(3分)若正方形的边长为x,面积为y,则y与x之间的关系式为y=x2(x>0).解:∵正方形的面积等于边长乘以边长,∴y=x•x=x2,故答案为:y=x2;15.(3分)若平行四边形ABCD是圆内接四边形,则∠A的度数为90°.解:∵四边形ABCD为平行四边形,∴∠A=∠C,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴2∠A=180°,∴∠A=90°,故答案为90°.16.(3分)如图,在半径为5的⊙O中,∠AOB=120°,则弦AB的长度为5.解:作OC⊥AB于C,则AC=BC=AB,∵OA=OB,∠AOB=120°,∴∠A=30°,∴OC=OA=,由勾股定理得,AC==,∴AB=2AC=5,故答案为:5.17.(3分)如图,在Rt△ABC中,∠ABC=92°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度得到△DEC,点A、B的对应点分别是D、E.当点E恰好在AC上时,则∠ADE的度数为17°.解:∵将△ABC绕点C顺时针旋转一定的角度得到△DEC,∴∠ABC=∠DEC=92°,CA=CD,∠ACB=∠ACD=30°,∴∠CAD=∠CDA=75°,∴∠ADE=∠DEC﹣∠DAC=17°,故答案为:17°.18.(3分)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=6,则线段MN的最小值为.解:连接CN,∵△ACD和△BCE为等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=∠B=60°,∠DCE=60°,∵N是BE的中点,∴CN⊥BE,∠ECN=30°,∴∠DCN=90°,设AC=a,∵AB=6,∴CM=a,CN=(6﹣a),∴MN===,∴当a=时,MN的值最小为.故答案为:.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤推理过程)19.(8分)(Ⅰ)先填表,并在同一直角坐标系中画出二次函数y=x2和y=(x+1)2的图象;x﹣3﹣2﹣10123y=x29410149 y=(x+1)241014916(Ⅱ)分别写出它们顶点坐标.解:(Ⅰ)列表:x﹣3﹣2﹣10123y=x29410149 y=(x+1)241014916在同一直角坐标系中画出二次函数y=x2和y=(x+1)2的图象如图:(Ⅱ)二次函数y=x2的顶点坐标为(0,0),y=(x+1)2的顶点坐标为(﹣1,0)20.(8分)如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90°,画出旋转后的三角形;(2)若BC=3,AC=4.点A旋转后的对应点为A′,求A′A的长.解:(1)如图,△BA′C′为所作;(2)△ABC中,∵∠C=90°,BC=3,AC=4,∴AB===5,∵△ABC绕点B逆时针旋转90°得到△BA′C′,∴BA′=BA=5,∠A′BA=90°,∴△A′BA为等腰直角三角形,∴A′A=BA=5.21.(10分)如图,⊙O的半径OA为50mm,弦AB的长50mm.(Ⅰ)求∠OAB的度数;(Ⅱ)求点O到AB的距离.解:(Ⅰ)连接OB,∵OA=OB=50,AB=50,∴OA=OB=AB,∴△AOB为等边三角形,∴∠OAB=60°;(Ⅱ)过点O作OC⊥AB于C,则AC=BC=AB=25,由勾股定理得,OC==25,答:点O到AB的距离为25mm.22.(10分)二次函数y=ax2+bx+c(a,b,c是常数)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3﹣4﹣3…(Ⅰ)求这个二次函数的解析式;(Ⅱ)求m的值;(Ⅲ)当﹣1≤x≤5时,求y的最值(最大值和最小值)及此时x的值.解:(Ⅰ)设y=a(x﹣1)2﹣4,将(0,﹣3)代入y=a(x﹣1)2﹣4得,a﹣4=﹣3,解得a=1,∴这个二次函数的解析式为y=(x﹣1)2﹣4.(Ⅱ)当x=﹣2时,m=(﹣2﹣1)2﹣4=5.(Ⅲ)当x=1时,y有最小值为﹣4,当x=5时,y有最大值为(5﹣1)2﹣4=16﹣4=12.23.(10分)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?若设每个支干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为1;②从主干中长出的支干的数目为x;(用含x的式子表示)③又从上述支干中长出的小分支的数目为x2;(用含x的式子表示)(Ⅱ)完成问题的求解.解:(Ⅰ)根据题意得:①主干的数目为1;②从主干中长出的支干的数目为x;③又从上述支干中长出的小分支的数目为x2;故答案为:①1;②x;③x2;(Ⅱ)依题意,得:1+x+x2=91,整理,得:x2+x﹣90=0,解得:x1=9,x2=﹣10(不合题意,舍去).答:每个支干长出9个小分支.24.(10分)如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°.(Ⅰ)求∠DA′E′的大小;(Ⅱ)若延长AE和A′E′相交于点P,求∠APA′的大小?(Ⅲ)连接PB,若AB=a,求PB的长度.解:(Ⅰ)∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,AD∥BC,∴∠ADA'+∠DA'B=180°,∴∠DA'B=130°,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=30°,∵把△BAE顺时针旋转,得到△BA′E′,∴∠BA'E'=∠BAE=30°,AB=A'B,∴∠DA'E'=∠DA'B+∠BA'E'=160°;(Ⅱ)∵∠A'EP=90°,∠PA'E=30°,∴∠A'PA=60°;(Ⅲ)连接PB,∵∠BAP=30°,∠AEB=90°,∴AB=2BE,∴BE=,∴A'E==BE,∵AP⊥A'B,∴A'P=PB,∴∠PA'B=∠PBA'=30°,∴BE=PE=,BP=2PE,∴PB=a.25.(10分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y.(Ⅰ)当x=1时,求y的值;(Ⅱ)在这一变化过程中,写出y关于x的函数解析式及x的取值范围;(Ⅲ)当x取何范围时,<y<(直接写出结果即可).解:(Ⅰ)∵△ABC是等腰直角三角形,则∠B=∠C=45°,则△PBD为等腰直角三角形,故BD=PD=x,则y=×BD×PD=x2,当x=1时,y=;(Ⅱ)当点P在AB上运动时,由(1)知,y=x2,当点P在AB上运动时,同理可得△PDC为等腰直角三角形,则CD=BC﹣BD=4﹣x=PD,则y=×BD×PD=×x(4﹣x)=﹣x2+2x,故y=;(Ⅲ)①当0≤x≤2时,则y=x2,当y=时,即y=x2=,解得x=±1(舍去负值),当y=时,即y=x2=,解得x=±(舍去负值),故1<x<;②当2<x<4时,同理可得:3<x<2;综上,x的取值范围为:1<x<或3<x<2.。

天津市河西区2020-2021学年高二上学期期中数学试题

天津市河西区2020-2021学年高二上学期期中数学试题

河西区2020-2021学年度第一学期高二年级期中质量调查数学试卷一、选择题:本大题共9小题,每小题4分,共36分,在每小题给出的四个选项中,有一项是符合题目要求的.1.已知直线的倾斜角是2π3,则该直线的斜率是( )A.1B.C.D.-12.已知两条平行直线1l :3460x y −+=与2l :340x y C −+=间的距离为3,则C =( )A.9或21B.-9或21C.9或-9D.9或33.直线3210x y +−=的一个方向向量是( )A.(2,3)−B.(2,3)C.(3,2)−D.(3,2)4.若{,,}a b c 构成空间的一个基底,则下列向量不共面的是( )A.b c +,b ,b c −B.a ,a b +,a b −C.a b +,a b −,cD.a b +,a b c ++,c5.焦点在x 轴,一条渐近线的方程为y =,虚轴长为 ) A.221412x y −= B.221124x y −= C.2214816x y −= D.2211648x y −= 6.已知直线1l :210x ay +−=与直线2l :(31)10a x ay −−−=平行,则a =( )A.0B.0或16−C.16 D.0或167.在平行六面体1111ABCD A B C D −中,AC 与BD 的交点为M ,设11A B a =,11A D b =,1A A c =,则下列向量中与1B M 相等的向量是( ) A.1122a b c −++ B.1122a b c ++ C.1122a b c −+ D.1122a b c −−+ 8.已知点是点(3,4,5)A 在坐标平面Oxy 内的射影,则||OB =( )C.5D.9.与圆221x y +=及圆228120x y x +−+=都外切的圆的圆心在( )A.椭圆上B.双曲线的一支上C.线段上D.圆上二、填空题:本大题共6小题,每小题5分,共30分.请将答案填在题中横线上.10.经过(18,8)A ,(4,4)B −两点的直线的斜率k =________.11.双曲线224640x y −+=上一点P 与它的一个焦点的距离等于1,那么点P 与另一个焦点的距离等于________.12.已知直线/经过两条直线23100x y −+=和3420x y +−=的交点,且垂直于直线3240x y −+=,则直线l 方程为________.13.已知空间三点(0,2,3)A ,(2,1,6)B −,(1,1,5)C −,向量a 分别与AB ,AC 都垂直,且||3a =,且a 的横、纵、竖坐标均为正,则向量a 的坐标为________.14.设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,12F PF △为等腰直角三角形,则椭圆的离心率为________.15.动点(,)M x y 与定点(4,0)F 的距离和M 到定直线l :254x =的距离的比是常数45,则动点M 的轨迹方程是________.三、解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分10分)已知圆P :2240x y +−=,圆Q :2244120x y x y +−+−=.(Ⅰ)分别写出这两个圆的圆心坐标和半径的长,并求两个圆心的距离;(Ⅱ)求这两个圆的公共弦的长.17.(本小题满分12分)在长方体1111ABCD A B C D −中,点E ,F 分别在1BB ,1DD 上,且1AE A B ⊥,1AF A D ⊥.(Ⅰ)求证:1AC ⊥平面AEF ; (Ⅱ)当4AB =,3AD =,15AA =时,求平面AEF 与平面11D B BD 的夹角的余弦值.18.(本小题满分12分)已知椭圆C :22221x y a b +=(0a b >>)的焦距为2,离心率为2. (1)求椭圆C 的标准方程;(Ⅱ)经过椭圆的左焦点1F 作倾斜角为60°的直线l ,直线l 与椭圆相交于A ,B 两点,求线段AB 的长.参考答案一、选择题BBAC ADACB二、填空题10.6711.17 12.2320x y +−= 13.(1,1,1) 1 15.221259x y += 三、解答题16.(Ⅰ)根据题意,圆P :2240x y +−=,即224x y +=,圆心P 为(0,0),半径2R =,圆Q :2244120x y x y +−+−=,即22(2)(2)20x y −++=,其圆心Q 为(2,2)−,半径r =d ==,(Ⅱ)根据题意,22224044120x y x y x y ⎧+−=⎨+−+−=⎩,联立可得:444120x y −+−=,变形可得20x y −+=,即公共弦所在直线的方程为20x y −+=,圆心P 到直线20x y −+=的距离d '==则公共弦的弦长2l ==17.解析1.在长方体1111ABCD A B C D −中,BC ⊥平面11AA B B ,AE ⊂平面11AA B B ,所以:BC AE ⊥, 由于1AE A B ⊥,BC ,1A B ⊂平面1A BC ,所以:AE ⊥平面1A BC ,1AE AC ⊥①, 同理:DC ⊥平面11ADD A ,AF⊂平面11ADD A ,所以:DC AF ⊥,由于:1AF A D ⊥, 所以:AF ⊥平面1A CD ,1AF AC ⊥②,由①②知:1AC ⊥平面AEF .2.分别以AB ,AD ,1AA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,连接AC , 由于:4AB =,4AD =,15AA =,所以:(4,3,0)AC =,(4,3,0)BD =−,1(0,0,5)DD =,由于:10AC DD ⋅=,0AC BD ⋅=,所以:1AC DD ⊥,AC BD ⊥,AC ⊥平面11DBB D ,所以可以把AC 看做是平面11DBB D 的法向量,又由于:1AC ⊥平面AEF ,所以:1AC 看做是平面AEF 的法向量,1(4,3,5)AC =−,设平面AEF 和平面11D B BD 所成的角为θ,则:1112cos 25||AC AC AC AC θ⋅==⋅, 所以:平面AEF 和平面11D B BD所成的角的余弦值为25. 18.(Ⅰ)设椭圆的半焦距为c ,由题意可得1c =,2c e a ==,解得a =1b ==, 则椭圆的方程为2212x y+=; (Ⅰ)过椭圆的左焦点1(2,0)F −,倾斜角为60°的直线l 的方程为1)y x =+,与椭圆方程2222x y +=联立,可得271240x x ++=,设A ,B 的横坐标分别为1x ,2x ,可得12127x x +=−,1247x x =,则||27AB ===.。

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。

2020-2021学年高二数学上学期期末考试试题 理

2020-2021学年高二数学上学期期末考试试题 理

2020-2021学年高二数学上学期期末考试试题 理一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知命题p :13x <<,q :31x >,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.双曲线2228x y -=的实轴长是( ) A .2B .22C .4D .423.某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .16B .13C .23D .14.已知函数xxe x f =)(的导函数为)(x f ',则0)(>'x f 的解集为( ) A .)1,(--∞ B .),0(+∞ C .),1(+∞-D .)0,(-∞5.函数)(x f y =的导函数)('x f y =的图象如图所示,则函数)(x f y =的图象可能是( )6.直线01=-+y ax 平分圆0134222=-+-+y x y x 的面积,则a =( )A .1B .3C .3D .27.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( ) A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=8.若)2ln(21)(2++-=x b x x f 在)1(∞+-,上是减函数,则b 的取值范围是( ) A .[)+∞-,1 B .()+∞-,1C .(]1,-∞-D .()1,-∞-9.如图,已知直线与抛物线)0(22>=p px y 交于A ,B 两点,且OA ⊥OB,OD ⊥AB 交AB 于点D ,点D 的坐标(4,2),则p=( )。

A .3 B .45C .52D .410.函数的1222131)(23++-+=a ax ax ax x f 图像经过四个象限,则实数a 的取值范围是( ) A .163->a B .16356-≤≤-a C .56->aD .16356-<<-a 11.已知椭圆:)0(12222>>=+b a by a x 的左右焦点分别为21F F 、,P 为椭圆上的一点2PF 与椭圆交于Q 。

2020-2021学年天津市河西区高一上学期期中数学试卷(Word版 含解析)

2020-2021学年天津市河西区高一上学期期中数学试卷(Word版 含解析)

2020-2021学年天津市河西区高一(上)期中数学试卷一、选择题(共9小题).1.(4分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5}B.{2,4}C.{2,4,5,6}D.{1,2,3,4,5,7}2.(4分)设p:“两个三角形相似”,q:“两个三角形的三边成比例”,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(4分)命题p:“∃n∈N,则n2>2n”的否定是()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∀n∈N,n2<2n 4.(4分)下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<5.(4分)一元二次不等式﹣x2+2x﹣3>0的解集是()A.∅B.(﹣3,1)C.(﹣1,3)D.(﹣3,﹣1)6.(4分)下列函数中与函数y=x相等的函数是()A.B.C.D.7.(4分)函数f(x)=|x﹣3|﹣|x+1|的最大值和最小值分别是()A.4和0B.4和﹣4C.0和﹣4D.既无最大值,也无最小值8.(4分)已知奇函数y=f(x)在(﹣∞,0)为减函数,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集为()A.{x|﹣3<x<﹣1}B.{x|﹣3<x<1或x>2}C.{x|﹣3<x<0或x>3}D.{x|﹣1<x<1或1<x<3}9.(4分)已知函数f(x)是R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集是()A.(﹣1,2)B.(1,4)C.(﹣∞,﹣1)∪[4,+∞)D.(﹣∞,﹣1]∪[2,+∞)二、填空题(共6小题).10.已知集合A={x|3≤x<7},B={x|2<x<10},则∁A(A∪B)=.11.幂函数y=f(x)的图象过点(2,),则f(x)的解析式为.12.函数f(x)=的定义域是.13.已知实数x>0,则2﹣3x﹣的最大值是.14.若不等式ax2+2x+a<0对任意x∈R恒成立,则实数a的取值范围是.15.已知函数f(x)是定义在[﹣2b,b+1]上的偶函数,且在[﹣2b,0]上单调递增,则f(x ﹣1)≤f(2x)的解集为.三、解答题:本大题共3小题,共34.解答应写出文字说明,证明过程或演算步骤16.(10分)已知a,b>0,且ab=a+b+3.(Ⅰ)求ab的取值范围;(Ⅱ)求4a+b的最小值,并求取得最小值时a,b的值.17.(12分)已知函数f(x)=4x2﹣kx﹣8.(Ⅰ)若函数f(x)满足f(x﹣)=f(﹣x﹣),求k的值;(Ⅱ)若函数f(x)在[5,20]上具有单调性,求实数k的取值范围.18.(12分)某地区上年度电价为0.8元/kW•h,年用电量为akW•h,本年度计划将电价降到0.55元/kW•h至0.75元/kW•h之间,而用户期望电价为0.4元/kW•h经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为K).该地区电力的成本为0.3元/kW•h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?(注:收益=实际用电量×(实际电价﹣成本价))参考答案一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5}B.{2,4}C.{2,4,5,6}D.{1,2,3,4,5,7}【分析】由全集U及集合B,找出不属于B的元素,确定出B的补集,找出A和B补集的公共元素,即可确定出所求的集合.解:∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴∁U B={2,4,6},又A={2,4,5},则A∩(∁U B)={2,4}.故选:B.2.(4分)设p:“两个三角形相似”,q:“两个三角形的三边成比例”,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据所给命题,判断出能否得到p⇔q,从而得到p是否为q的充要条件,得到答案.解:两个三角形相似⇔两个三角形的三边对应成比例,故p是q的充要条件,故选:C.3.(4分)命题p:“∃n∈N,则n2>2n”的否定是()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∀n∈N,n2<2n 【分析】根据含有量词的命题的否定即可得到结论.解:命题为特称命题,则命题p:“∃n∈N,则n2>2n”的否定是:∀n∈N,n2≤2n,故选:C.4.(4分)下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<【分析】利用不等式的基本性质即可得出.解:A.c=0时不成立;B.成立.C.a<b<0,则a2>ab>b2.因此不成立.D.a<b<0,则>.因此不成立.故选:B.5.(4分)一元二次不等式﹣x2+2x﹣3>0的解集是()A.∅B.(﹣3,1)C.(﹣1,3)D.(﹣3,﹣1)【分析】配方,可得﹣x2+2x﹣3=﹣(x﹣1)2﹣2<0,从而得解.解:因为﹣x2+2x﹣3=﹣(x﹣1)2﹣2≤﹣2<0恒成立,所以不等式的解集为∅.故选:A.6.(4分)下列函数中与函数y=x相等的函数是()A.B.C.D.【分析】分别判断两个函数的定义域和对应法则是否相同即可.解:对于A,函数y==|x|的对应法则与y=x不相同,不是相等函数;对于B,函数y==x(x∈R),定义域和对应法则与y=x相同,是相等函数;对于C,函数y==x(x≥0),定义域与y=x不相同,不是相等函数;对于D,函数f(x)==x(x≠0),定义域与y=x不相同,不是相等函数.故选:B.7.(4分)函数f(x)=|x﹣3|﹣|x+1|的最大值和最小值分别是()A.4和0B.4和﹣4C.0和﹣4D.既无最大值,也无最小值【分析】通过对x<﹣1,当﹣1≤x≤3与x>3的讨论,将函数f(x)=|x﹣3|﹣|x+1|中的绝对值符号去掉,求得该函数的值域,从而可得答案.解:∵f(x)=|x﹣3|﹣|x+1|,∴当x<﹣1时,x﹣3<﹣4<0,x+1<0,f(x)=﹣(x﹣3)﹣[﹣(x+1)]=3﹣x+x+1=4;当﹣1≤x≤3时,x﹣3≤0,x+1≥0,f(x)=﹣(x﹣3)﹣(x+1)=﹣x+3﹣x﹣1=﹣2x+2;∴f(x)在x=﹣1时取最大值f(x)max=﹣2×(﹣1)+2=4;在x=3时取最小值f(x)min=﹣2×3+2=﹣4;当x>3时,x﹣3>0,x+1>0,f(x)=(x﹣3)﹣(x+1)=﹣4;终上所述:f(x)=.其值域是[﹣4,4],即最小值是﹣4,最大值是4.故选:B.8.(4分)已知奇函数y=f(x)在(﹣∞,0)为减函数,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集为()A.{x|﹣3<x<﹣1}B.{x|﹣3<x<1或x>2}C.{x|﹣3<x<0或x>3}D.{x|﹣1<x<1或1<x<3}【分析】首先由奇函数的图象关于原点对称及f(x)在(﹣∞,0)为减函数且f(2)=0画出f(x)的草图,然后由图形的直观性解决问题.解:由题意画出f(x)的草图如下,因为(x﹣1)f(x﹣1)>0,所以(x﹣1)与f(x﹣1)同号,由图象可得﹣2<x﹣1<0或0<x﹣1<2,解得﹣1<x<1或1<x<3,故选:D.9.(4分)已知函数f(x)是R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集是()A.(﹣1,2)B.(1,4)C.(﹣∞,﹣1)∪[4,+∞)D.(﹣∞,﹣1]∪[2,+∞)【分析】因为A(0,﹣1),B(3,1)是函数f(x)图象上的两点,可知f(0)=﹣1,f(3)=1,所以不等式|f(x+1)|<1可以变形为﹣1<f(x+1)<1,即f(0)<f(x+1)<f(3),再根据函数f(x)是R上的增函数,去函数符号,得0<x+1<3,解出x的范围就是不等式|f(x+1)|<1的解集M,最后求M在R中的补集即可.解:不等式|f(x+1)|<1可变形为﹣1<f(x+1)<1,∵A(0,﹣1),B(3,1)是函数f(x)图象上的两点,∴f(0)=﹣1,f(3)=1,∴﹣1<f(x+1)<1等价于不等式f(0)<f(x+1)<f(3),又∵函数f(x)是R上的增函数,∴f(0)<f(x+1)<f(3)等价于0<x+1<3,解得﹣1<x<2,∴不等式|f(x+1)|<1的解集M=(﹣1,2),∴其补集∁R M=(﹣∞,﹣1]∪[2,+∞).故选:D.二、填空题:本大题共6小题,每小题5分,共30分请将答案填在题中横线上.10.已知集合A={x|3≤x<7},B={x|2<x<10},则∁A(A∪B)=∅.【分析】根据条件先求出A∪B,然后再求出∁A(A∪B)即可.解:∵A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10},∴∁A(A∪B)=∅.故答案为:∅.11.幂函数y=f(x)的图象过点(2,),则f(x)的解析式为.【分析】由题意设幂函数y=f(x)=x a,从而解得a.解:设y=f(x)=x a,则2a=,故a=﹣,故答案为:.12.函数f(x)=的定义域是[4,5)∪(5,+∞).【分析】利用分式的分母不等于0.偶次根式的被开方数大于或等于0,解方程组求得自变量的取值范围.解:由,解可得x≥4 且,x≠±5,故函数的定义域为[4,5)∪(5,+∞),故答案为[4,5)∪(5,+∞).13.已知实数x>0,则2﹣3x﹣的最大值是2﹣2.【分析】由已知结合基本不等式即可直接求解.解:x>0,则2﹣3x﹣=2﹣(3x+)=2﹣2,当且仅当3x=即x=时取等号,此时取得最大值2﹣2.故答案为:2﹣2.14.若不等式ax2+2x+a<0对任意x∈R恒成立,则实数a的取值范围是(﹣∞,﹣1).【分析】依题意可得a<0且4﹣4a2<0,解之即可得到答案.解:∵不等式ax2+2x+a<0对任意x∈R恒成立,∴a<0且4﹣4a2<0,解得:a<﹣1.∴实数a的取值范围是(﹣∞,﹣1),故答案为:(﹣∞,﹣1).15.已知函数f(x)是定义在[﹣2b,b+1]上的偶函数,且在[﹣2b,0]上单调递增,则f(x ﹣1)≤f(2x)的解集为{x|﹣1≤x≤}.【分析】由偶函数定义域的对称性可求b=﹣1,从而可得f(x)在[﹣2,0]上为增函数,在[0,2]上为减函数,距离对称轴越远,函数值越小,将不等式转化为|x﹣1|≥|2x|,且﹣2≤x﹣1≤2,﹣2≤2x≤2,解之即可得结论.解:∵f(x)是定义在[﹣2b,b+1]上的偶函数,∴(﹣2b)+b+1=0,解得b=1,∴函数f(x)的定义域为[﹣2,2],∵f(x)在[﹣2,0]上单调递增,∴f(x)在[0,2]上单调递减,距离对称轴越远,函数值越小,由f(x﹣1)≤f(2x)可得|x﹣1|≥|2x|,且﹣2≤x﹣1≤2,﹣2≤2x≤2,解得﹣1≤x≤,故不等式的解集为{x|﹣1≤x≤}.故答案为:{x|﹣1≤x≤}.三、解答题:本大题共3小题,共34.解答应写出文字说明,证明过程或演算步骤16.(10分)已知a,b>0,且ab=a+b+3.(Ⅰ)求ab的取值范围;(Ⅱ)求4a+b的最小值,并求取得最小值时a,b的值.【分析】(I)由已知结合基本不等式a+b即可求解,(II)由已知可利用b表示a,代入所求式子后进行分离,然后结合基本不等式可求.解:(I)ab=a+b+3,当且仅当a=b时取等号,解得≥3或≤﹣2(舍),故ab≥9,(II)∵a,b>0,且ab=a+b+3,∴b=>0,∴a>1,∴4a+b=4a+=4a+=1+4a+=5+4(a﹣1)+=13,当且仅当4(a﹣1)=即a=2时取等号,此时4a+b取得最小值9.17.(12分)已知函数f(x)=4x2﹣kx﹣8.(Ⅰ)若函数f(x)满足f(x﹣)=f(﹣x﹣),求k的值;(Ⅱ)若函数f(x)在[5,20]上具有单调性,求实数k的取值范围.【分析】(Ⅰ)求出函数的对称轴,得到关于k的方程,解出即可;(Ⅱ)根据函数的单调性得到关于a的不等式,解出即可.解:(Ⅰ)若函数f(x)满足f(x﹣)=f(﹣x﹣),故对称轴是x==﹣=,解得:k=﹣4;(Ⅱ)由题意得:≤5,或≥20,解得:k≤40或k≥160,故实数k的取值范围是(﹣∞,40]∪[160,+∞).18.(12分)某地区上年度电价为0.8元/kW•h,年用电量为akW•h,本年度计划将电价降到0.55元/kW•h至0.75元/kW•h之间,而用户期望电价为0.4元/kW•h经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为K).该地区电力的成本为0.3元/kW•h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?(注:收益=实际用电量×(实际电价﹣成本价))【分析】(1)先根据题意设下调后的电价为x元/kw•h,依题意知用电量增至,电力部门的收益即可;(2)依题意:“电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%”得到关于x的不等关系,解此不等式即得出电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%.解:(1):设下调后的电价为x元/kw•h,依题意知用电量增至,电力部门的收益为(2)依题意有(9分)整理得解此不等式得0.60≤x≤0.75答:当电价最低定为0.6元/kw•h仍可保证电力部门的收益比上年至少增长20%.。

2020-2021学年天津市河西区九年级(上)期末数学试卷

2020-2021学年天津市河西区九年级(上)期末数学试卷

2020-2021学年天津市河西区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知⊙O的半径为10cm,点M到圆心O的距离为10cm,则该点M与⊙O的位置关系为()A.点M在圆内B.点M在圆上C.点M在圆外D.无法判断2.(3分)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°3.(3分)下列图案中,可以看作是中心对称图形的是()A.B.C.D.4.(3分)下列多边形一定相似的是()A.两个平行四边形B.两个菱形C.两个矩形D.两个正方形5.(3分)下列说法错误的是()A.已知圆心和半径可以作一个圆B.经过一个已知点A的圆能作无数个C.经过两个已知点A,B的圆能作两个D.经过不在同一直线上的三个点A,B,C只能作一个圆6.(3分)已知△ABC和△DEF的相似比是1:2,则△ABC和△DEF的面积比是()A.2:1B.1:2C.4:1D.1:47.(3分)当x≥2时,二次函数y=x2﹣2x﹣3有()A.最大值﹣3B.最小值﹣3C.最大值﹣4D.最小值﹣48.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC 延长线于点P,则P A的长为()A.2B.C.D.9.(3分)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F ,则EF:FC等于()A.3:2B.3:1C.1:1D.1:210.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π11.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.84°C.80°D.86°12.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)点(3,﹣2)关于原点的对称点的坐标为.14.(3分)抛物线y=x2+2x﹣3与y轴的交点为.15.(3分)一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷一次小正方体后,观察朝上一面的数字出现偶数的概率是.16.(3分)如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为.(杆的宽度忽略不计)17.(3分)如图,菱形ABCD的边长为10,面积为80,∠BAD<90°,⊙O与边AB,AD 都相切,菱形的顶点A到圆心O的距离为5,则⊙O的半径长等于.18.(3分)如图,在每个小正方形的边长为1的网格中,矩形ABCD的四个顶点均在格点上,连接对角线BD.(Ⅰ)对角线BD的长等于;(Ⅱ)将矩形ABCD绕点A顺时针旋转,使得点B的对应点B′恰好落在对角线BD上,得到矩形AB′C′D′.请用无刻度的直尺,画出矩形AB′C′D′,并简要说明这个矩形的各个顶点是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

2023-2024学年天津市河西区高二(上)期中数学试卷【答案版】

2023-2024学年天津市河西区高二(上)期中数学试卷【答案版】

2023-2024学年天津市河西区高二(上)期中数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在空间直角坐标系中,已知点P (x ,y ,z ),给出下列4条叙述: ①点P 关于x 轴的对称点的坐标是(x ,﹣y ,z ); ②点P 关于yOz 平面的对称点的坐标是(x ,﹣y ,﹣z ); ③点P 关于y 轴的对称点的坐标是(x ,﹣y ,z ); ④点P 关于原点的对称点的坐标是(﹣x ,﹣y ,﹣z ). 其中正确的个数是( ) A .3B .2C .1D .02.空间四边形ABCD 中,AB →=a →,BC →=b →,AD →=c →,则CD →等于( ) A .a →+b →−c →B .c →−a →−b →C .a →−b →−c →D .b →−a →+c →3.过点M (﹣1,m ),N (m +1,4)的直线的斜率等于1,则m 的值为( ) A .1B .12C .2D .134.方程x 2+y 2+ax +2ay +2a 2+a ﹣1=0表示圆,则a 的取值范围是( ) A .a <﹣2或a >23B .−23<a <0C .﹣2<a <0D .﹣2<a <235.已知过点P (2,2)的直线与圆(x ﹣1)2+y 2=5相切,且与直线ax ﹣y +1=0垂直,则a =( ) A .−12B .1C .2D .126.若椭圆经过原点,且焦点为F 1(1,0)F 2(3,0),则其离心率为( ) A .34B .23C .12D .147.已知F 1(﹣1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交椭圆于A 、B 两点,且|AB |=3,则C 的方程为( ) A .x 22+y 2=1 B .x 23+y 22=1C .x 24+y 23=1 D .x 25+y 24=18.如图所示,正方体ABCDA ′B ′C ′D ′的棱长为1,E ,F 分别是BC ,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是( )A.平行B.垂直C.相交D.与a值有关9.若A(a,b),B(c,d)是直线y=mx+n上的两点,那么A,B间的距离为()A.|a−c|√1+m2B.|a﹣c|(1+m2)C.√1+m2D.|a﹣c|m二、填空题:本大题共6个小题,每小题4分,共24分.10.已知椭圆x2m+y24=1的焦距是2,则该椭圆的长轴长为.11.如图,隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,假设货车的最大宽度为am,那么要正常驶入该隧道,货车的限高为多少.12.已知直线和平面相交,设直线的方向向量与平面的法向量的夹角为φ,则直线与平面的夹角θ=,(用含φ的代数式表示)sinθ=.(用含φ的三角函数式表示)13.点A(4,﹣1)、B(8,2)、直线l:x﹣y﹣1=0,动点P(x,y)在直线l上,则|P A|+|PB|的最小值为.14.正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,则点F到平面A1D1E的距离为.15.求相交的两圆C1:x2+y2+4x+y+1=0和C2:x2+y2+2x+2y+1=0的公共弦所在的直线方程为,公共弦为直径的圆的方程.三、解答题:本大题共5小题,共49分.解答应写出文字说明,证明过程或演算步骤.16.(8分)已知直线l的斜率为16,且和坐标轴围成面积为3的三角形,求直线l的方程.17.(10分)已知空间三点A (﹣2,0,2),B (﹣1,1,2),C (﹣3,0,4),设a →=AB →,b →=AC →. (1)若|c →|=3,c →∥BC →,求c →; (2)求a →与b →的夹角的余弦值;(3)若ka →+b →与ka →−2b →互相垂直,求k .18.(10分)已知A ,B 为两个定点,动点M 到A 与B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.19.(10分)直三棱柱ABC ﹣A 1B 1C 1中,AA 1=AB =AC =2,AC ⊥AB ,D 为A 1B 1中点,E 为AA 1中点,F 为CD 中点.(1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CC 1D 夹角的正弦值; (3)求平面A 1CD 与平面CC 1D 夹角的余弦值.20.(11分)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=√2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.2023-2024学年天津市河西区高二(上)期中数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在空间直角坐标系中,已知点P (x ,y ,z ),给出下列4条叙述: ①点P 关于x 轴的对称点的坐标是(x ,﹣y ,z ); ②点P 关于yOz 平面的对称点的坐标是(x ,﹣y ,﹣z ); ③点P 关于y 轴的对称点的坐标是(x ,﹣y ,z ); ④点P 关于原点的对称点的坐标是(﹣x ,﹣y ,﹣z ). 其中正确的个数是( ) A .3B .2C .1D .0解:①点P 关于x 轴的对称点的坐标是(x ,﹣y ,﹣z ),错误,故①错误; ②点P 关于yOz 平面的对称点的坐标是(﹣x ,y ,z );则②错误 ③点P 关于y 轴的对称点的坐标是(﹣x ,y ,﹣z );则③错误 ④点P 关于原点的对称点的坐标是(﹣x ,﹣y ,﹣z ).正确, 故正确函数的是④, 故选:C .2.空间四边形ABCD 中,AB →=a →,BC →=b →,AD →=c →,则CD →等于( ) A .a →+b →−c →B .c →−a →−b →C .a →−b →−c →D .b →−a →+c →解:因为AB →+BC →+CD →=AD →,所以CD →=AD →−AB →−BC →=c →−a →−b →. 故选:B .3.过点M (﹣1,m ),N (m +1,4)的直线的斜率等于1,则m 的值为( ) A .1B .12C .2D .13解:过点M (﹣1,m ),N (m +1,4)的直线的斜率等于1, 所以k =4−mm+1+1=1,解得m =1故选:A .4.方程x 2+y 2+ax +2ay +2a 2+a ﹣1=0表示圆,则a 的取值范围是( ) A .a <﹣2或a >23B .−23<a <0C.﹣2<a<0D.﹣2<a<23解:方程x2+y2+ax+2ay+2a2+a﹣1=0表示圆∴a2+4a2﹣4(2a2+a﹣1)>0∴3a2+4a﹣4<0,∴(a+2)(3a﹣2)<0,∴−2<a<2 3故选:D.5.已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.−12B.1C.2D.12解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a=2−02−1=2.故选:C.6.若椭圆经过原点,且焦点为F1(1,0)F2(3,0),则其离心率为()A.34B.23C.12D.14解:依题意可知2c=3﹣1=2,∴c=1原点到两焦点距离之和为2a=1+3=4,∴a=2∴椭圆的离心率为e=ca=12故选:C.7.已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.x22+y2=1B.x23+y22=1C.x24+y23=1D.x25+y24=1解:设椭圆的方程为x2a2+y2b2=1(a>b>0),可得c =√a 2−b 2=1,所以a 2﹣b 2=1…① ∵AB 经过右焦点F 2且垂直于x 轴,且|AB |=3∴可得A (1,32),B (1,−32),代入椭圆方程得12a 2+(32)2b2=1,…②联解①②,可得a 2=4,b 2=3 ∴椭圆C 的方程为 x 24+y 23=1故选:C .8.如图所示,正方体ABCDA ′B ′C ′D ′的棱长为1,E ,F 分别是BC ,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是( )A .平行B .垂直C .相交D .与a 值有关解:以点D 为坐标原点,DA 为x 轴,DC 为y 轴,DD ′为z 轴,建立空间直角坐标系 则E (a ,2,0),F (0,a ,0),B '(2,2,2),D '(0,0,2),C '(0,2,2)∴B ′F →=(﹣2,a ﹣2,﹣2),D ′E →=(a ,2,﹣2)∵B ′F →⋅D′E →=−2a +2a ﹣4+4=0,∴B ′F →⊥D′E →,∴B 'F ⊥D 'E . 故选:B .9.若A(a,b),B(c,d)是直线y=mx+n上的两点,那么A,B间的距离为()A.|a−c|√1+m2B.|a﹣c|(1+m2)C.√1+m2D.|a﹣c|m解:A(a,b),B(c,d)是直线y=mx+n上的两点,即有b=am+n,d=cm+n,可得b﹣d=m(a﹣c),而A,B间的距离AB=√(a−c)2+(b−d)2=√(a−c)2+[m(a−c)]2=√1+m2√(a−c)2=√1+m2|a﹣c|.故选:A.二、填空题:本大题共6个小题,每小题4分,共24分.10.已知椭圆x2m+y24=1的焦距是2,则该椭圆的长轴长为2√5或4.解:由题意可知,c2=1,当焦点在x轴上时,有m﹣4=1,得m=5,此时长轴长为2√5;当焦点在y轴上时,有a2=4,此时长轴长为4.故答案为:2√5或4.11.如图,隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,假设货车的最大宽度为am,那么要正常驶入该隧道,货车的限高为多少√16−a2m.解:由题意知,半圆所在的方程为x2+y2=16(y≥0),设货车要驶入该隧道,限高为hm,结合图形知,a2+h2=16,解得h=√16−a2(m).所以货车的限高为√16−a2m.故答案为:√16−a2m.12.已知直线和平面相交,设直线的方向向量与平面的法向量的夹角为φ,则直线与平面的夹角θ=π2−φ或φ−π2,(用含φ的代数式表示)sinθ=|cosφ|.(用含φ的三角函数式表示)解:由直线与平面所成角的向量表示可得:sin θ=|cos φ|, 所以sin θ=cos φ,或sin θ=﹣cos φ, 因为θ∈(0,π2],φ∈[0,π],所以θ=π2−φ或θ=φ−π2. 故答案为:π2−φ或φ−π2;|cos φ|.13.点A (4,﹣1)、B (8,2)、直线l :x ﹣y ﹣1=0,动点P (x ,y )在直线l 上,则|P A |+|PB |的最小值为 √65 .解:求A (4,﹣1)关于直线l :x ﹣y ﹣1=0的对称点A ′(m ,n ), 则 {n+1m−4×1=−1m+42−n−12−1=0,解得{m =0n =3,即A ′(0,3),连接BA ′交直线l 于点P ,则此时|P A |+|PB |取得最小值=|BA ′|=√82+12=√65, 故答案为:√65.14.正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E ,F 分别为BB 1,CD 的中点,则点F 到平面A 1D 1E 的距离为 3√510. 解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角系, A 1(1,0,1),D 1(0,0,1),E (1,1,12),F (0,12,0),D 1A 1→=(1,0,0),D 1E →=(1,1,−12),EF →=(﹣1,−12,−12),设平面A 1D 1E 的法向量n →=(x ,y ,z ),则{n →⋅D 1A 1→=x =0n →⋅D 1E →=x +y −12z =0,取y =1,得n →=(0,1,2), ∴点F 到平面A 1D 1E 的距离为d =|EF →⋅n →||n →|=32√5=3√510.故答案为:3√510.15.求相交的两圆C 1:x 2+y 2+4x +y +1=0和C 2:x 2+y 2+2x +2y +1=0的公共弦所在的直线方程为 y =2x ,公共弦为直径的圆的方程 (x +35)2+(y +65)2=45.解:∵圆C 1的方程为x 2+y 2+4x +y +1=0,① 圆C 2的方程为x 2+y 2+2x +2y +1=0,② ①﹣②得两圆交线的方程为:2x ﹣y =0;由{x 2+y 2+4x +y +1=02x −y =0,解得{x =−1y =−2或{x =−15y =−25, 设A (﹣1,﹣2),B (−15,−25),则AB 的中点为C (−35,−65),又|AC |=√(−35+1)2+(−65+2)2=2√55,则以公共弦AB 为直径的圆的方程为:(x +35)2+(y +65)2=45.故答案为:y =2x ;(x +35)2+(y +65)2=45.三、解答题:本大题共5小题,共49分.解答应写出文字说明,证明过程或演算步骤. 16.(8分)已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,求直线l 的方程.解:设直线l 的方程为y =16x +m ,取y =0,得x =﹣6m .所以l 和坐标轴围成面积为S =12|m||−6m|=3.解得m =±1.所以直线l 的方程为y =16x ±1,即x ﹣6y ±6=0.17.(10分)已知空间三点A (﹣2,0,2),B (﹣1,1,2),C (﹣3,0,4),设a →=AB →,b →=AC →. (1)若|c →|=3,c →∥BC →,求c →;(2)求a →与b →的夹角的余弦值;(3)若ka →+b →与ka →−2b →互相垂直,求k . 解:(1)因为BC →=(﹣2,﹣1,2),c →∥BC →, 可设c →=(﹣2λ,﹣λ,2λ),则|c →|=√(−2λ)2+(−λ)2+(2λ)2=3|λ|=3,解得λ=±1, 所以c →=(﹣2,﹣1,2)或c →=(2,1,﹣2).(2)因为a →=AB →=(1,1,0),b →=AC →=(﹣1,0,2), 所以cos <a →,b →>=a →⋅b→|a →||b →|=1×(−1)+1×0+0×2√1+1+0×√1+0+4=−√1010.(3)k a →+b →=(k ﹣1,k ,2),k a →−2b →=(k +2,k ,﹣4), 又因为(k a →+b →)⊥(k a →−2b →),所以(k a →+b →)•(k a →−2b →)=k 2a →2−k a →•b →−2b →2=2k 2+k ﹣10=0, 解得k =2或k =−52.18.(10分)已知A ,B 为两个定点,动点M 到A 与B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.解:建立坐标系如图所示,设|AB |=2a ,则A (﹣a ,0),B (a ,0).设M (x ,y )是轨迹上任意一点. 则由题设,得|MA||MB|=λ,坐标代入,得2222=λ,化简得(1﹣λ2)x 2+(1﹣λ2)y 2+2a (1+λ2)x +(1﹣λ2)a 2=0(1)当λ=1时,即|M |=|MB |时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+ y 2+2a(1+λ2)1−λ2 x +a 2=0,点M 的轨迹是以(−a(1+λ2)1−λ2,0)为圆心,2aλ|1−λ2|为半径的圆.19.(10分)直三棱柱ABC ﹣A 1B 1C 1中,AA 1=AB =AC =2,AC ⊥AB ,D 为A 1B 1中点,E 为AA 1中点,F 为CD 中点.(1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CC 1D 夹角的正弦值;(3)求平面A 1CD 与平面CC 1D 夹角的余弦值.解:(1)证明:在直三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,且AC ⊥AB ,则A 1C 1⊥A 1B 1, 以A 1A 、A 1B 1、A 1C 1所在直线分别为x 、y 、z 轴,建立如下图所示的空间直角坐标系,则A (2,0,0)、B (2,2,0)、C (2,0,2)、A 1(0,0,0)、B 1(0,0,2)、C 1(0,0,2)、D (0,1,0)、E (1,0,0)、F(1,12,1), ∴EF →=(0,12,1),易知平面ABC 的一个法向量为m →=(1,0,0), ∴EF →⋅m →=0,故EF →⊥m →,∵EF ⊄平面ABC ,故EF ∥平面ABC ;(2)由(1)知C 1C →=(2,0,0),C 1D →=(0,1,−2),EB →=(1,2,0), 设平面CC 1D 的法向量为u →=(x 1,y 1,z 1),则{μ→⋅C 1C →=2x 1=0μ→⋅C 1D →=y 1−2z 1=0,取u →=(0,2,1),∴cos <EB →,u →>=EB →⋅u →|EB →|⋅|u →|=45, ∴直线BE 与平面CC 1D 夹角的正弦值为45; (3)由(1)知A 1C →=(2,0,2),A 1D →=(0,1,0), 设平面A 1CD 的法向量为v →=(x 2,y 2,z 2),则{v →⋅A 1C →=2x 2+2z 2=0v →⋅A 1D →=y 2=0,取v →=(1,0,−1), ∴cos <u →,v →>=u →⋅v →|u →|⋅|v →|=15×2=−√1010, ∴平面A 1CD 与平面CC 1D 夹角的余弦值为√1010. 20.(11分)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=√2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.解:(1)∵C 的坐标为(43,13), ∴169a 2+19b 2=1,即16a 2+1b 2=9,∵BF 22=b 2+c 2=a 2,∴a 2=(√2)2=2,即b 2=1,则椭圆的方程为x 22+y 2=1.(2)设F 1(﹣c ,0),F 2(c ,0),∵B(0,b),∴直线BF2:y=−bcx+b,代入椭圆方程x2a2+y2b2=1(a>b>0)得(1a2+1c2)x2−2cx=0,解得x=0,或x=2a2ca2+c2,∵A(2a2ca2+c2,−b(c2−a2)a2+c2),且A,C关于x轴对称,∴C(2a2ca2+c2,−b(c2−a2)a2+c2),则k F1C =−b(c2−a2)a2+c22a2ca2+c2+c=a2b−bc23a2c+c3,∵F1C⊥AB,∴b(a2−c2)3a2c+c3⋅×(−bc)=﹣1,由b2=a2﹣c2得c2a2=15,即e=√55.。

2020-2021学年天津市河西区八年级(上)期末数学试卷

2020-2021学年天津市河西区八年级(上)期末数学试卷

2020-2021学年天津市河西区八年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分.)1.某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( ) A .7.8×10﹣7B .7.8×10﹣8C .0.78×10﹣7D .78×10﹣82.下列运算正确的( ) A .a 3﹣a 2=aB .a 2•a 3=a 6C .(a 3)2=a 6D .(3a )3=9a 33.下列交通标志图案是轴对称图形的是( )A .B .C .D .4.若a =1,则3932+-+a a a 的值为( ) A .2B .﹣2C .21 D .21-5.如图,下列条件中,不能证明△ABD ≌△ACD 的是( ) A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC6.若3x =15,3y =5,则3x﹣y等于( )A .5B .3C .15D .107.如果把分式yx xy343-中的x 和y 的值都扩大为原来的3倍,那么分式的值( )A .扩大为原来的3倍B .扩大为原来的6倍C .缩小为原来的3倍D .不变8.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .54896048960=-+xB .x +=+48960548960C .596048960=-xD .54896048960=+-x9.已知a ﹣b =3,则a 2﹣b 2﹣6b 的值为( ) A .9B .6C .3D .﹣310.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是( )(用含a ,b 的代数式表示). A .abB .2abC .a 2﹣abD .b 2+ab二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.) 11.分解因式:2ax 2﹣12axy +18ay 2= .12.已知等腰三角形的一个内角为50°,则顶角为 度. 13.一个多边形的内角和是它外角和的2倍,则它的边数是 .14.如图,OP 平分∠AOB ,∠AOP =15°,PC ∥OB ,PD ⊥OB 于点D ,PD =4,则PC 等于 .第14题 第16题 15.已知y x 11-=3,则分式yxy x yxy x ---+2232的值为 . 16.如图,在四边形ABCD 中,∠DAB =130°,∠D =∠B =90°,点M ,N 分别是CD ,BC 上两个动点,当△AMN 的周长最小时,∠AMN +∠ANM 的度数为 .三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.) 17.(6分)计算:(Ⅰ)(2a ﹣3b )2;化简:(Ⅱ)222)131(-+÷--+a a a a .18.(6分)解方程21321-=---x x x .19.(8分)如图,在△ABC 中,点D 是BC 上的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,BE =CF . 求证:∠BAD =∠CAD .20.(8分)如图,点A 、B 在直线l 同侧,请你在直线l 上画出一点P ,使得P A +PB 的值最小,画出图形并证明.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车 x 10 乘汽车10(Ⅱ)列出方程(组),并求出问题的解.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q 是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB 于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴双曲线的渐近线方程为y=± x,抛物线x2=2py的焦点是(0, ),
它到直线y=± x的距离d=2= = ,
∴p=8.
∴抛物线方程为x2=16y.
故选D.
7.A
【分析】
设平面ABC的法向量为 ,根据数量积等于0,列出方程组,即可求
则 ,即 ,令 ,则 ,
即平面ABC的一个法向量为 ,故选A.
【详解】
解:设椭圆的两个焦点为 ,点 为椭圆上的点,
由椭圆的定义有: ,
故选:B.
【点睛】
本题考查了椭圆的定义,属基础题.
3.D
【分析】
先将抛物线方程化为标准方程,再求抛物线的准线方程即可.
【详解】
解:由抛物线的方程为 ,
化为标准式可得 ,
即抛物线 的准线方程是: ,
故选:D.
【点睛】
本题考查了抛物线的标准方程,重点考查了抛物线的准线方程,属基础题.
11.08
【分析】
先利用空间向量数量积运算可得 ,再利用椭圆的参数方程求最值即可得解.
【详解】
解:因为 , ,且 ,
所以 ,
即 ,
设 ,
则 ,
又 ,
则 ,
故答案为:0,8.
【点睛】
本题考查了空间向量数量积运算,重点考查了椭圆的参数方程,属中档题.
12.10
【解析】
试题分析:由双曲线方程可知 ,由定义 得
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
参考答案
1.C
【解析】
【分析】
由 , ,则 ,代入运算即可得解.
【详解】
解:因为向量 ,向量 ,
则 ,
则 ,
故选:C.
【点睛】
本题考查了向量减法的坐标运算,属基础题.
2.B
【分析】
由椭圆的定义 即可得解.
联立 ,解得 或 ,
即 ,
又 ,
则 , ,
则 ,
解得 ,
即 ,
即 ,
即 ,
故选:B.
【点睛】
本题考查了双曲线渐近线方程的求法,重点考查了双曲线的离心率,属中档题.
10.1-2
【分析】
由题意可得 ,再求解即可.
【详解】
解:由向量 ,向量 ,且 ,
则 ,
解得: ,
故答案为:1,-2.
【点睛】
本题考查了空间向量共线的坐标运算,属基础题.
【点睛】
本题主要考查了平面的法向量的求解,其中解答中根据法向量与平面内的两个不共线的向量垂直,列出关于 的方程组求解是解答的关键,着重考查了推理与计算能力,属于基础题.
8.B
【分析】
求出 点坐标,作 关于准线的对称点 ,利用连点之间相对最短得出 为 的最小值.
【详解】
解:抛物线的准线方程为 ,
∵ ,∴ 到准线的距离为4,故 点纵坐标为2,
4.A
【分析】
根据条件,求得a、b、c的值,进而可得椭圆的标准方程.
【详解】
由题可得 , ,故 , ,
又焦点在 轴上,所以所求椭圆的标准方程为 ,
故选A.
【点睛】
本题考查了椭圆标准方程的求法,注意焦点的位置,属于基础题.
5.A
【解析】
,故本题正确答案为
6.D
【解析】
由e= =2得4= =1+ ,
∴ =3.
(2)求双曲线 的实轴长,离心率,焦点到渐近线的距离.
17.如图,四棱锥 的底面 是正方形,侧棱 底面 , , 是 的中点.
(1)证明: 平面 ;
(2)求二面角 的余弦值;
(3)若点 在线段 (不包含端点)上,且直线 平面 ,求线段 的长.
18.已知点A(0,-2),椭圆E: (a>b>0)的离心率为 ,F是椭圆E的右焦点,直线AF的斜率为 ,O为坐标原点.
考点:双曲线定义
点评:双曲线上的点到两焦点距离之差的绝对值等于
13.
【分析】
由椭圆的几何性质可得 ,再解不等式组即可得解.
【详解】
解:由方程 表示焦点在 轴的椭圆,
则 ,解得: ,即 ,
故答案为: .
【点睛】
本题考查了椭圆的几何性质,属基础题.
14.
【分析】
先求出向量 与 所成角的余弦值,再求异面直线 与 所成角的余弦值即可.
A. B. C. D.
7.若两个向量 ,则平面 的一个法向量为( )
A. B. C. D.
8.已知抛物线 的焦点为 ,为原点,点 是抛物线 的准线上的一动点,点 在抛物线 上,且 ,则 的最小值为( )
A. B. C. D.
9.设 分别为双曲线 的左、右焦点, 为双曲线的左顶点, 为直径的圆交双曲线某条渐近线于 两点,且满足 ,则双曲线的离心率为()
14.在空间直角坐标系 中, , , ,则异面直线 与 所成角的余弦值为______.
15.已知过点M(1,0)的直线AB与抛物线y2=2x交于A,B两点,O为坐标原点,若OA,OB的斜率之和为1,则直线AB方程为______.
四、解答题
16.已知双曲线 与双曲线 有相同的渐近线,且经过点 .
(1)求双曲线 的方程;
A. B. C. D.
二、双空题
10.若向量 ,向量 ,且 ,则 _____, _____.
11.在空间直角坐标系 中, , ,且 ,则 的最小值是________,最大值是__________.
三、填空题
12.若双曲线 上一点 到左焦点的距离为4,则点 到右焦点的距离是.
13.若方程 表示焦点在 轴的椭圆,则实数 的取值范围是_____.
A. B. C. D.
3.抛物线 的准线方程是()
A. B. C. D.
4.中心在坐标原心、焦点在x轴,且长轴长为18、焦距为12的椭圆的标准方程为
A. B. C. D.
5.如图,在三棱柱 中, 为 的中点,若 ,则 可表示为( )
A. B.
C. D.
6.已知双曲线 : 的离心率为2.若抛物线 的焦点到双曲线 的渐近线的距离为2,则抛物线 的方程为
把 代入抛物线方程可得 .
不妨设 在第一象限,则 ,
点 关于准线 的对称点为 ,连接 ,
则 ,于是
故 的最小值为 .
故选:B.
【点睛】
本题考查了抛物线的简单性质,属于基础题.
9.B
【分析】
先求出双曲线的渐近线方程,然后求出 ,再利用向量数量积运算即可得解.
【详解】
解:由双曲线方程为 ,
则其渐近线方程为 ,
天津市河西区2020-2021学年高二上学期期末考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若向量 ,向量 ,则 ()
A. B. C. D.
2.设 是椭圆 上的一动点,则 到该椭圆的两个焦点的距离之和为()
【详解】
解:由 , , ,
则 , ,
则向量 与 所成角的余弦值为 ,
则异面直线 与 所成角的余弦值为 ,
相关文档
最新文档