【选修2-3】《排列组合综合》练习(含答案) 3
(完整版)高二数学选修2-3排列组合测试题.docx
高二数学选修2-3 排列组合测试题姓名班别学号成绩一、选择题(本大题共10 个小题,每小题 5 分,共 50 分.)1、A n!(n3) ,则A是()3!A 、 C33B、C n n 3C、A n3D、 A n n 32、C33C43C53C153等于:()A 、C154B、 C164 C 、C173D、C1743、 a, b是异面直线; a 上有 6 个点, b 上有 7 个点,这 13 个点可确定平面的个数是:()A 、C61C71B、 C61C71C、 C63C73D、 C1334、将 5 个不同的小球放入二个不同的抽屉里,不同的放法种数()A 、A52B 、C52C、25D、525.假设 200 件产品中有 3 件次品,现在从中任取 5 件,其中至少有 2 件次品的抽法有()A.C32C1983种B.( C32C1973 C 33C1972)种C.(C5200- C1974)种D.(C2005C13C1974 ) 种6.从黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出 3 种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共()A.24 种 B. 18 种C. 12 种D. 6 种7、某食堂每天中午准备 4 种不同的荤菜, 7 种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭。
则每天不同午餐的搭配方法总数是()A.22B.56C.210D. 4208.下面是高考第一批录取的一份志愿表:志愿学校专业第一志愿1第 1 专业第 2 专业第二志愿2第 1 专业第 2 专业第三志愿3第 1 专业第 2 专业现有 4 所重点院校,每所院校有 3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是()A. 43 ( A32 ) 3B . 43 (C32 ) 3 C . A43 (C32 ) 3 D . A43 (A32 ) 39、体育彩票规定:从 01 至 36 共 36 个号中抽出 7 个号为一注,每注 2 元. 某人想从01 至 10 中选 3 个连续的号,从 11 至 20 中选 2 个连续的号,从 21 至 30 中选1 个号,从 31 至 36 中选 1 个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360 元B. 6720 元C. 4320 元D. 8640 元10、设有编号为 1,2,3,4,5 的五个茶杯和编号为1,2, 3,4, 5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( ) A.30 种B.31种C.32种D.36种二、填空题(本大题满分 20 分,每小题 5 分 . )11.由数字 1、 2、 3、 4、5 组成没有重复数字,且数字1 与 2 不相邻的五位数有_____ 个.12.一电路图如图所示,从 A 到 B共有条不同的线路可通电 .13、已知 C18k C182k 3,则k=。
高二数学选修2-3-排列组合综合试题
排列、组合知 识 点 1 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法, 在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 那么完成这件事共有 12n N m m m =+++L 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二 步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有 12n N m m m =⨯⨯⨯L 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一. 定的顺序....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素 中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m nA n n n n m =---+L (,,m n N m n *∈≤) 6.阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8.组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素 中取出m 个元素的一个组合9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L )!(!!m n m n -=,,(n m N m n ≤∈*且11组合数的性质(1)m n n m n C C -=.(规定:10=n C ;)(2)m n C 1+=m n C +1-m n C练 习 题1若346n n A C =,则n 的值为( )A 6 B 7 C 8 D 91.将3个不同的小球放入4个盒子中,则不同放法种数有( )A.81B.64C.12D.143.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( ) A 33A B 334A C 523533A A A - D 2311323233A A A A A + 4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( ) A 20 B 16 C 10 D 67用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x9.用0、1、2、3、4、5组成没有重复数字的四位数,其中能被6整除的有CA .72个B .60个C .52个D .48个5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人1.从7人中选派5人到10个不同的交通岗的5个中参加交通协管工作,则不同的选派方法有( )A .5557105C A A B .5557105A C A C .55107C C D .55710C A 2.某班元旦联欢会原定的5个学生节目已排成节目单,开演前又增加了两个教师节目教师节目插入原节目单中,那么不同插法的种数为A .42B .30C .20D .123.某班分成8个小组,每小组5人,现要从中选出4人进行4个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( )A .4484C AB .441845C A C C .444845C AD .44404C A 5 从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为( ) A 120 B 240 C 280 D 604.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是()A.64B.20C.18D.105.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有()A.90B.180C.270D.5406.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有()A.70B.80C.82D.8410.设集合{123456}I=,,,,,,集合,A B I⊆,若A中含有3个元素,B中至少含有2个元素,且B中所有数均不小于A中最大的数,则满足条件的集合,A B有:BA.33组B.29组C.16组D.7组7.不共面的四个定点到平面α的距离都相等,这样的平面α共有()A3个B4个C6个D7个8.由0,1,2,3,...,9十个数码和一个虚数单位i可以组成虚数的个数为()A100B10C9D901.从甲、乙,……,等6人中选出4名代表,那么,甲、乙二人至少有一人当选,共有种选法2.4名男生,4名女生排成一排,女生不排两端,则有种不同排法7.公共汽车上有4位乘客,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有种;如果其中任何两人都不在同一站下车,那么这4位乘客不同的下车方式共有种11.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有种不同的调换方法1.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有种?AB3.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2y ax bx c =++的系数,,a b c 则可组成不同的函数__个,其中以y 轴作为该函数的图像的对称轴的函数有____个8.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉, 但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方 法?209.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以 当作9使用,问可以组成多少个三位数?6022.以1239L ,,,这几个数中任取4个数,使它们的和为奇数,则共有 种不同取法 10.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有 种选法11.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有 个12.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?57613.在一次象棋比赛中,进行单循环比赛,其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,问:比赛开始时参赛者有多少人?1514.在某次数学考试中,学号为(1,2,3,4)i i =的同学的考试成绩(){85,87,88,90,93}f i ∈,且满足 (1)(2)(3)(4)f f f f ≤<<,则这四位同学的考试成绩的所有可能情况有 种15.身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?840(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?24016.如图是由12个小正方形组成的43⨯矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有 条3537=. 15.如图,一个图形分为5个区域,现给图形着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种。
数学选修2-3排列与组合练习题含答案
3. ( )
A. B. C. D.
4. 件产品中,有 件一等品, 件二等品, 件三等品,现在要从中抽出 件产品来检查,至少有两件一等品的抽取方法是()
A. • B.
C. D. • • •
5.设 为正偶数, ,则 的值为()
A. B. C. D.
6.已知 , , ,下面哪一个等式是恒成立的( )
【考点】
排列、组合及简单计数问题
【解析】
此题暂无解析
【解答】
若取出的数字中含 ,则可以组成 个没有重复数字的四位数;若取出的数字中不含 ,则可以组成 个没有重复数字的四位数.综上所述,一共可以组成 个没有重复数字的四位数.
针对特殊元素合理分类是解题的关键.
本题考查排列组合.
20.
【答案】
【考点】
组合及组合数公式
求这 名学生选修课所有选法的总数;
求恰有 门选修课没有被这 名学生选择的概率;
求 选修课被这 名学生选择的人数 的分布列及数学期望.
28. 年 月以来,湖北省武汉市部分医院陆续发现了多例有华南海鲜市场暴露史的不明原因肺炎病例,现已证实为 新型冠状病毒感染引起的急性呼吸道传染病. 年 月 日,某研究机构首次分析了女性在新型冠状病毒传播中可能存在的特殊性.现将密切接触者 名男士和 名女士进行筛查,得到的无症状者与轻症者情况如下表:
故答案为: .
14.
【答案】
【考点】
组合及组合数公式
【解析】
利用组合数的计算公式可得 , , ,利用 ,化简整理即可得出.
【解答】
解:∵ , , ,
又 ,
∴ ,
化为 ,
解得 , .
∴ .
故答案为: .
高中数学选修2-3排列组合问题题目精选(附答案)
高中数学选修2-3排列组合问题题目精选(附答案)1. 某班有20名学生,其中有5名男生和15名女生。
从中选出3名学生组成一个小组,求以下概率:- 小组中至少有1名男生的概率是多少?答案:小组中至少有1名男生的概率为1减去小组全为女生的概率。
全为女生的概率可以用排列组合来计算,即从15名女生中选出3名女生组成小组的概率。
因此,小组中至少有1名男生的概率为1减去(C(15, 3) / C(20, 3))。
2. 有6本不同的数学书和4本不同的物理书。
现从这些书中任选2本,求以下概率:- 所选的两本书中至少有1本是数学书的概率是多少?答案:所选的两本书中至少有1本是数学书的概率等于1减去两本书都是物理书的概率。
两本书都是物理书的概率可以用排列组合来计算,即从4本物理书中选出2本物理书的概率。
因此,所选的两本书中至少有1本是数学书的概率为1减去(C(4, 2) / C(10, 2))。
3. 某公司有8名员工,其中有3名男员工和5名女员工。
请问,从这8名员工中选出4名员工组成一个小组,使得小组中至少有1名男员工的概率是多少?答案:小组中至少有1名男员工的概率等于1减去小组全为女员工的概率。
全为女员工的概率可以用排列组合来计算,即从5名女员工中选出4名女员工组成小组的概率。
因此,小组中至少有1名男员工的概率为1减去(C(5, 4) / C(8, 4))。
4. 一批音乐CD包含5张古典音乐CD和7张摇滚音乐CD。
现从这批CD中随机选取3张,求以下概率:- 所选的3张CD中至少有2张是摇滚音乐CD的概率是多少?答案:所选的3张CD中至少有2张是摇滚音乐CD的概率等于1减去3张CD都是古典音乐CD的概率。
3张CD都是古典音乐CD的概率可以用排列组合来计算,即从5张古典音乐CD中选出3张古典音乐CD的概率。
因此,所选的3张CD中至少有2张是摇滚音乐CD的概率为1减去(C(5, 3) / C(12, 3))。
5. 一位学生参加了5项体育比赛,他能获得的奖牌有金牌、银牌和铜牌。
高中数学选修2-3《排列与组合》精选练习题(含答案)
高中数学选修2-3《排列与组合》基础练习题排列1.90×9l ×92×……×100=( )A 、10100AB 、11100AC 、12100AD 、11101A2.下列各式中与排列数m n A 相等的是( )A 、!(1)!-+n n mB 、n(n -1)(n -2)……(n -m)C 、11m n nA n m --+ D 、111m n n A A -- 3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于( )A 、827n A -B 、2734n n A --C 、734n A -D 、834n A -4.若S=123100123100A A A A ++++L L ,则S 的个位数字是( )A 、0B 、3C 、5D 、85.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( )A 、24个B 、30个C 、40个D 、60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有( )A 、20个B 、19个C 、25个D 、30个7.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有( )A 、12种B 、18种C 、24种D 、96种8.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )A 、6种B 、9种C 、18种D 、24种9.有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( )A 、88A 种B 、48A 种C 、44A ·44A 种D 、44A 种10.有4位学生和3位老师站在一排拍照,任何两位老师不站在一起的不同排法共有( )A 、(4!)2种B 、4!·3!种C 、34A ·4!种D 、35A ·4!种11.把5件不同的商品在货架上排成一排,其中a,b两种必须排在一起,而c,d两种不能排在一起,则不同排法共有()A、12种B、20种C、24种D、48种二.填空题:12.6个人站一排,甲不在排头,共有种不同排法.13.6个人站一排,甲不在排头,乙不在排尾,共有种不同排法.14.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.15.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的口袋中,但红口袋不能装入红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每人各一本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每人各一本,共有种不同的送法.三、解答题:17.一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单(1)前4个节目中要有舞蹈,有多少种排法?(2) 3个舞蹈节目要排在一起,有多少种排法?(3) 3个舞蹈节目彼此要隔开,有多少种排法?18.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?参考答案1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C 12.600 13.504 14.480 15.9616.(1) 60; (2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 720高中数学选修2-3《排列与组合》精选练习题组合一、选择题:1.下列等式不正确的是( )A 、!!()!m n n C m n m =-B 、11m m n n mC C n m++=- C 、1111m m n n m C C n +++=+ D 、11m m n n C C ++= 2.下列等式不正确的是( )A 、m n m n n C C -=B 、11m m m m m mC C C -++=C 、123455555552C C C C C ++++=D 、11111m m m m n n n n C C C C --+--=++3.方程2551616x x x C C --=的解共有( ) A 、1个 B 、2个 C 、3个 D 、4个4.若372345n n n C A ---=,则n 的值是( )A 、11B 、12C 、13D 、145.已知7781n n n C C C +-=,那么n 的值是()A 、12B 、13C 、14D 、156.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )A 、3254C C 种B 、 3254C C 55A 种C 、 3254A A 种D 、 3254A A 55A 种7.从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有一个女生参加的选法共有( )A 、12种B 、34种C 、35种 (D )340种8.平面上有7个点,除某三点在一直线上外,再无其它三点共线,若过其中两点作一直线,则可作成不同的直线( )A 、18条B 、19条C 、20条D 、21条9.在9件产品中,有一级品4件,二级品3件,三级品2件,现抽取4个检查,至少有两件一级品的抽法共有( )A 、60种B 、81种C 、100种D 、126种10.某电子元件电路有一个由三节电阻串联组成的回路,共有6个焊点,若其中某一焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有( )A 、5种B 、6种C 、63种D 、64种二.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每人教两个班,分配方案共有 种。
2020年高中数学选修2-3《排列与组合》测试卷及答案解析
又因为2≤x≤9,且x∈N*,
∴原不等式的解集为{2,3,4,5,6,7}.
【点评】本题考查了排列数与组合数的定义与公式应用问题,是中档题.
2.解下列各式中的n值.
(1)90 = ;(2) • =42 .
【分析】(1)利用排列数公式得到90n(n﹣1)=n(n﹣1)(n﹣2)(n﹣3),由此能求出n.
解得n=7或n=﹣6(舍),
∴n=7.
【点评】本题考查方程的解法,考查排列数公式、组合数公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
3.规定 =x(x﹣1)…(x﹣m+1),其中x∈R,m为正整数,且 =1,这是排列数 (n,m是正整数,且m≤n)的一种推广.
(2)利用排列数公式和组合数公式得到 ,从而n(n﹣1)=42,由此能求出n.
【解答】解:(1)∵90 = ,
∴90n(n﹣1)=n(n﹣1)(n﹣2)(n﹣3),
∴n2﹣5n﹣84=0,
∴(n﹣12)(n+7)=0,
解得n=12或n=﹣7(舍).
∴n=12.
(2)∵ • =42 ,
∴ ,
∴n(n﹣1)=42,∴n2﹣n﹣42=0,
11.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.
(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?
(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?
12.某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影.
(2)解不等式: .
【分析】(1)由组合数的定义和公式求出n的值,再计算 + 的值;
排列组合练习题___(含答案)
排列组合练习题___(含答案)选修2—3第一章一.填空题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。
2、8名同学争夺3项冠军,获得冠军的可能性有种。
3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。
4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。
5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。
7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。
8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。
9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。
10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。
12、4名男生和3名女生排成一排,要求男女相间的排法有种。
13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有种排法。
14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。
15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。
若4个空位中恰有3个空位连在一起,有种坐法。
16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。
17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。
(完整版)高中数学选修(2-3)综合测试题(3)附答案
高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++L , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++L L可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++L01202422222()()n n n n n n n n n n C C C C C C C C =+++++++++L L 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ 30a -30100-30P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x y C C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。
数学选修2-3(排列组合二项式定理)练习题
数学选修2-3(排列组合二项式定理)练习题篇一:第十三章排列组合及二项式定理习题及答案第十三章排列组合二项式定理复习题及答案一、概念:分类加法计数原理分步乘法计数原理排列组合排列数公式Anm?n?n?1??n?2???n?m?1??mn!?n?m?!组合数公式Cmn?AnAmm?n!m!??n?m?!排列数性质:①Ann?n! ②0!?1组合数性质:①Cn0?1②Cnm?Cnn?m③Cnm?Cnm?1?Cnm?1 二、应用:1. 把3本书放到4个抽屉中,不同的放法有▁▁▁种. 答案:43=64 .2. 中国、美国、古巴、日本举行四国女排邀请赛,每个国家都有得冠亚军的可能,但冠军均不能并列,则得冠亚军的所有不同情况共有▁▁种.答案:А24=12.3. 某班有3名学生准备参加校运动会的百米、二百米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生参赛的不同方法有▁▁▁种.答案:А34=244. 从1、3、5、10、20这五个数中任选两个相加,则可得不同的和数▁▁▁个.能得到不同的和▁▁个.答案:С25=10С5+С545+С5+С325+С5=3115. 有6个排球队,举行单循环比赛.则比赛的场数有▁▁.答案: С26=156. 有10个人两两碰杯,共碰杯▁▁▁次.答案: С210=45 .7. 用1元、2元、5元、10元人民币各一张,能组成不同的币值▁▁▁种.答案: С14+С24+С34+С44=158. 正十二边形共有▁▁▁条对角线.答案: С212-12=54减去12个顺次相连不成对角线.9.用1、2、3、4、5五个数可以组成不充许数字重复的自然数▁▁个.答案:А15+А25+А3+А545+А5=325 510.用1、2、3、4、5五个不同的数组成不许重复的三位数为▁▁.充许重复的三位数为▁答案:А3=6053=125 511.在三位正整数中0的个数共▁▁▁个.答案:分为三类:一类含两个零有100、200、···900共18个二类十位为0而个位不为0有9×9=81.如101、102、···109、201、202、···909三类十位不为0而个位为0的有9×9=81合计有18+81+81=18012.数72有多少个正约数?.其中正偶数有多少个?答案:72=23×32约数2r×3x其中2的指数有0、1、2、3四种取法,3的指数有0、1、2三种取法共有4×3=12种.偶约数2的指数有1、2、3三种取法共有3×3=9种13. 现有男学生8名,女学生2名,要从中选4人组成一个学习小组,必须有女学生选法种数是▁▁▁.答案:С123·С8+С22·С28=112+28=14014. 要从8名男医生和7名女医生中选5人组成一个医疗小组,如果医疗小组中男.女医生均不少于2人,则不同的选法种数是▁▁. 答案:С28·С37+С8·С327=215615.直线a∥b,a上有5个点,b上有4个点.以这9个点为顶点,可组成不同三角形个数▁▁▁个.答案:С25·С5+С5·С1124=70.16.除点O外,在∠AOB的边OA上另有5点,边OB上另有4点,以含点O在内的10个点为顶点,可以组成多少不同的三角形.答案:① С2310-С6-С5=90. OA中6取3. OB中5取3在一条直线上1433② С5·С+С5·С24+С5·С114=90 OA、OB有一个和两个点及O17. 在10名学生中有6名男学生,4名女学生,要从中选5名参加义务劳动,女学生至多有2名的选法有▁▁▁种.答案:С4·С6+С514·С46+С24·С6=186318.某校从8名教师中选派4名教师同时去4个边远地区支教?每地1人?,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有▁▁▁种. 答案:甲去则乙不去丙去有С25·А44甲不去则丙不去有С46·А44共有240+360=60019.安排7位工作人员在5月1日至5月7 日值班,其中甲乙二人都不安排在5月1日和2 日,不同的安排方法共有▁▁▁▁种.答案:甲乙两人不在1日和2日有А有А225种方法,其余5人在剩下的5天中安排一天有А5 共5·А5=240 520.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中确定一名幸运伙伴,有____种不同的结果.答案:28800分两类:①幸运之星在甲信箱中抽,先定幸运之星,再在两信箱中各定幸运伙伴有30?29?20?17400种结果②幸运之星在乙信箱中抽,同理有20?19?30?11400种结果.因此,共有不同结果17400?11400?28800种21. 某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有()А. 35 B. 70С. 210D. 105答案:B. 从7人中选出3人有C73?35种情况,再对选出的3人调整座位有2种情况3有2C7?7022. 要从10名男生和5名女生中选出6人组成啦啦队,若男生选取同的选法种数▁▁▁种. 答案:男10名女5名С41023,剩余选女生,则不·С25=210023. 将5名实习生教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( ) А. 30种 B. 90种С. 180种D. 270种答案:分下列4步:① 三个班中桃一个班得一名教师有С3种② 5个教师中选一人进这个班有С5种③从剩下的4名教师中再选2人进第二个班有С4种④ 最后剩下的2名教师进第三个班有С2种由分步计数原理共有С3·С5·С11112224·С22=90种24. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不个,则该外商不同的投资方案有()А. 16种в.36种С.42种D.60种答案:分两类① 三个项目分别在三个城市内有А②三个项目分别在两个城市内有С2334种24·А 共有24+36=60种25.正六边形ABCDEF中,АС∥у轴,从六个顶点中任取三点,使这三点能确定一条形如y?ax?bx?c?a?0?的抛物线的概率是▁▁▁.2答案:由二次函数性质知三点可确定一条抛物线但两点连线不能与纵轴平行,故概率为C6?2?4C363?35对AC有上下左右4种抛物线不满足题意26. 从1、2、3┅100中,任选两个不同的数相乘,乘积(如两数相等仍按两个积计算)能被3整除的取法有▁▁▁种.答案:能被3整除的数33个,不能被3整除的数67个.则С133·С167+С233=2739 不能被3整除的数С2100-2739=27. 一个袋子装有红球与白球各5个,要从中取4个,取出的红球多于白球的取法有▁▁种.答案:С3·С15+С545·С5=5528. 用数字0、1、2┅9这10个数字可组成第一位数字是2或3或6的7位电话号码个答案:2开头106 个3开头106个6开头106个共3×1062229. 己知,a?{1,2,3},b?{3,4},r?{1,2,3,4},那么方程?x?a???y?b??r2共可表示▁▁▁个不同的圆.答案:3×2×4=2430. 十字路口来往的车辆共有▁▁种不同的行车路线.答案:A42?12每个路口有两种方法.31. 若m∈{?2,?1,0,1,2,3},n∈{?3,?2,?1,0,1,2},方程示中心在原点的双曲线,则最多可表示▁▁条不同的双曲线.答案:13.m??2n=1 、2两条m??1 n=1 .2 两条m?1 n=?3,?2,?1. 三条m?2时n三条m?3时n三条共13条32. 有一元币3张,5元币一张,10元币2张.,可以组成多少种不同的币值.答案:有一种币值时3+1+2=6种两种币值时1元、5元有1×3=3种1元、10元有3×2=6种5元、10元有2×1=2种三种币值时3×2×1=6种共6+3+6+2+6=23种.33. 直线Ax?By?0,若从0、1、2、3、5、7六个数字中每次取两个不同的数作为Α、B的值,则表示不同直线的条数为()Α.2条B. 12条C.22条D. 25条答案:C 取出的两个数中含有0时有两条直线.取出的两个数中不含0时有Α共Α2525x2m+y2n=1 表+2=22条.34. 设集合M={K|K?3 ,K?Z}. Ρ(x ,y)是坐标平面上的点,且x,y?M 则Ρ表示平面上▁▁个点.答案:25.M={?2,?1,0,1,2}横纵坐标均5种共5×5=25个35.有386、486、586型电脑各一台,甲、乙、丙、丁四名操作人员的技术等次不同,甲、乙会操作三种型号的电脑,丙不能操作586,而丁只会操作386,今从这四名操作人员中选3人分别去操作以上电脑,则不同的选派方法有()Α. 4种B. 6种C. 8种D. 12种答案:C有丁时586486386 无丁时586486386甲丙丁甲乙丙乙丙丁甲丙乙乙甲丁乙丙甲甲乙丁乙甲丙共4+4=8种36. 从一个3×4方格中的一个顶点Α到对角顶点B的最短路线有几条.答案:从Α到B的最短路线均需7步,包括横4纵3,则从7步中取4步或3步的组合.42则从Α到B的最短路线共有C7=C3=35条.若2×5方格为C7=C5 7737. 5人排成一排,甲不站在正中间的排法种数为()Α. 24B. 48 C. 96 D. 119答案:C甲不在正中有Α14. 其余4人任选Α44则Α14?Α44=96也可Α5-Α544=9638.7人站成一排,如果甲、乙两人必须不相邻,则不同的排法种数()Α. 1440B. 3600C. 4320 D. 4800 答案:Α77-2Α6=3600639. 一名老师和4名获奖同学排一排照相留念,若老师不排在两端,则不同的排法共▁▁种.答案:72 老师A3学生Α14414A3A4?7240. 5人排一排,如果Α必须站在B的左边(Α、B可以不相邻),则不同的排法有▁▁▁种.答案:Α44+Α3?Α3+Α1312?Α3+Α3=6033× × × × × Α BBBBΑ BBBΑ BBΑ B41. 5人排成一排,甲不站在左端,乙不站在右端,共有多少种不同的排法.答案:Α5-甲在左或乙在右2A4+多减的一个Α3=7842.有Α、B、C、D、E五人并排站在一排,如果Α、B必须相邻且B在Α的右边.不同的排法▁▁种答案:4Α3=24 ×××××3543ΑB????ΑB??篇二:选修2-3二项式定理练习题二项式定理练习题1、在(x?1)4的展开式中,x的系数为.(用数字作答).1??22、在?x? 的展开式中,的系数为.(用数字作答). x?4x??3、(x3?)7的展开式中x5的系数是.(用数字作答).4、在(2x?1)的展开式中,含x2的项的系数是(用数字作答). 561x?385、?x的展开式中的系数是________(用数字作答). x?6、已知(1?x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()5A.212 B.211C.210D.297、?x?2? 的展开式中,x2的系数等于.(用数字作答).8、在?2?x?的展开式中,x3的系数为55.(用数字作答).9、二项式(x?1)n(n?N?)的展开式中x2的系数为15,则n?()A.4 B.5C.6 D.73210、已知?的展开式中含x的项的系数为30,则a?()5A.B. C.6 D-625B.11、(x?x?y)的展开式中,xy的系数为()52(A)10(B)20 (C)30 (D)60篇三:选修2-3_排列、组合与二项式定理测试题选修2-3 排列、组合与二项式定理一、选择题:(本大题共10小题,每小题5分,共50分)1.若从集合P到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q到集合P可作的不同的映射共有()A.32个B.27个C.81个D.64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插入方法总数为()A.42B.36C.30D.123.全班48名学生坐成6排,每排8人,排法总数为P,排成前后两排,每排24人,排法总数为Q,则有()A.P>QB.P=QC.P D.不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有()种A.8 B.12C.16D.205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.CCC4124844B.3CCC4124844C.CCCA412484433D.C12C8C4A334446.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有()种A.350B.300C.65D.507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有()种重新站位的方法A.1680B.256C.360D.2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有()种不同的坐法A.7200 B.3600 C.2400 D.1200 9.在(1x?1x3)n的展开式中,所有奇数项二项式系数之和等于1024,则中间项的二项式系数是()A. 462B. 330C.682 D.79210.在(1+ax)的展开式中,x项的系数是x项系数与x项系数的等比中项,则a的值为() A.73255B.53C.259D.253二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A、B、C三只小船,A船可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有_____________种。
高中数学 排列与组合综合(一)课后练习 新人教A版选修2-3
排列与组合综合(一)课后练习题一:用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).题二:六人站一横排,甲不站两端, 有多少种不同的站法?题三:高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( ) (A)16种 (B)18种 (C)37种 (D)48种题四:将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A 班,那么不同的分配方案种数是________.题五:20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数为________.题六:某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中队中至少有一名内科医生和一名外科医生,有几种选法?题七:现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( )种. (A)3565A A ⋅ (B)863863A A A -⋅(C)3353A A ⋅ (D)8486A A - 题八:有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答). 题九:6男4女站成一排,男生甲、乙、丙排序一定,有多少种排法?题十:将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A)12种 (B)18种 (C)36种 (D)54种题十一:按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6个; (2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.题十二:12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( )A .B .C .D .题十三:将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有_______种(用数字作答).题十四:4个不同的球,4个不同的盒子,把球全部放入盒内.恰有2个盒不放球,共有几种放法?排列与组合综合(一) 课后练习参考答案题一: 14.详解:因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以符合题意的四位数有24-2=14个.题二: 480.详解:若对甲没有限制条件共有A 66种站法,甲在两端共有2A 55种站法,从总数中减去这两种情况的排列数,即共有站法:A 66-2A 55=480(种)题三: C.详解:用间接法.先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即: 4×4×4-3×3×3=37种方案.题四: 24种.详解:将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排一名学生有C 24A 33种分配方案,其中甲同学分配到A 班共有C 23A 22+C 13A 22种方案.因此满足条件的不同方案共有C 24A 33-C 23A 22-C 13A 22=24(种)题五: 120.详解: 先在编号为2,3的盒内放入1,2个球,还剩17个小球,三个盒内每个至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C 216=120种方法.题六: 14656.详解:由20名医生中减去五名都是内科医生和五名都是外科医生的选法种数, 得C 520-(C 512+C 58)=14 656(种).题七: B.详解:在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙三人不相邻的方法数,即863863A A A -⋅,故选B .题八: 72种详解:甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是1333C A =18,而总的分配方法数是把五人分为三组再进行分配,方法数是1223542322C C C A A =90,故不同的住宿安排共有90-18=72种.题九:101033A A 种.详解:10人的所有排列方法有1010A 种,其中甲、乙、丙的排序有33A 种,又对应甲、乙、丙只有一种排序,所以甲、乙、丙排序一定的排法有101033A A 种.题十: B.详解:标号1,2的卡片放入同一封信有13C 种方法;其他四封信放入两个信封,每个信封两个有224222C A A ⋅种方法,共有21243222C C A 18A ⋅⋅=种,故选B. 题十一: (1) 13 860(种);(2) 5 775(种);(3) 34 650(种).详解:(1)24612106C C C =13 860(种);(2)444128433C C C A =5 775(种); (3)分两步:第一步平均分三组;第二步让三个小组分别进入三个不同车间,故有44431284333C C C A A ⋅=4441284C C C =34 650(种)不同的分法.题十二: B .详解: 因为将12个组分成3个组的分法有444128433C C C A 种, 而3个强队恰好被分在同一组分法有3144398422C C C CA ,故3个强队恰好被分在同一组的概率为3144398422444128433C C C C 3A C C C 55A =. 题十三: 36.详解: 分两步完成:第一步将4名大学生按2,1,1分成三组,其分法有21142122C C C A ⋅⋅;第二步将分好的三组分配到3个乡镇,其分法有所以满足条件的分配的方案有2113421322C C C A 36A ⋅⋅⋅=. 题十四: 84种.详解:确定2个空盒有24C 种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类第一类有序不均匀分组有312412C C A 种方法;第二类有序均匀分组有22242222C CAA⋅种方法.故共有2223122424412222C CC(C C A A)A+⋅=84种.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
排列组合测试题(含答案)
排列组合一、选择题:1. 将3个不同的小球放入4个盒子中,那么不同放法种数有A .81B .64C .12D .142.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有A .33AB .334AC .523533A A A -D .2311323233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是A.20 B .16 C .10 D .64.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是A .男生2人女生6人B .男生3人女生5人C .男生5人女生3人D .男生6人女生2人. 5. 6.A .180B .90C .45D .3606.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有A .60个B .48个C .36个D . 24个7.3张不同的电影票全局部给10个人,每人至多一张,那么有不同分法的种数是A .1260B .120C .240D .720 8.n N ∈且55n <,那么乘积(55)(56)(69)n n n ---等于A .5569nn A -- B .1569n A - C .1555n A - D .1469n A -9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为A .120B .240C .280D .6010.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3B .4C .6D .711.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,那么TS的值为 A.20128 B .15128 C .16128 D .2112815.4名男生,4名女生排成一排,女生不排两端,那么有 种不同排法. 〔8640 〕17.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个. 〔840〕 18.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总与为288,那么x = . 〔2〕5.假设2222345363,n C C C C ++++=那么自然数n =_____.(13)19.n 个人参加某项资格考试,能否通过,有 种可能的结果?( 2n )20.集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个. (23)22.{}1,2,3,4,5,6,7,8,9A =,那么含有五个元素,且其中至少有两个偶数的子集个数为_____.10523.8张椅子排成,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种_______ 48025.7个人排成一排,在以下情况下,各有多少种不同排法? 〔1〕甲排头:〔2〕甲不排头,也不排尾: 〔3〕甲、乙、丙三人必须在一起: 〔4〕甲、乙之间有且只有两人: 〔5〕甲、乙、丙三人两两不相邻: 〔6〕甲在乙的左边〔不一定相邻〕:〔7〕甲、乙、丙三人按从高到矮,自左向右的顺序: 〔8〕甲不排头,乙不排当中:解:〔1〕甲固定不动,其余有66720A =,即共有66720A =种;〔2〕甲有中间5个位置供选择,有15A ,其余有66720A =,即共有16563600A A =种; 〔3〕先排甲、乙、丙三人,有33A ,再把该三人当成一个整体,再加上另四人,相当于5人的全排列,即55A ,那么共有5353720A A =种;〔4〕从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有22A ,把该四人当成一个整体,再加上另三人,相当于4人的全排列,那么共有224524960A A A =种;〔5〕先排甲、乙、丙之外的四人,有44A ,四人形成五个空位,甲、乙、丙三人排这五个空位,有35A ,那么共有34541440A A =种;〔6〕不考虑限制条件有77A ,甲在乙的左边〔不一定相邻〕,占总数的一半, 即种;〔7〕先在7个位置上排甲、乙、丙之外的四人,有47A ,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即47840A =〔8〕不考虑限制条件有77A ,而甲排头有66A ,乙排当中有66A ,这样重复了甲排头,乙排当中55A 一次,即76576523720A A A -+=1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种(2)4个空位只有3个相邻的坐法有多少种(3) 4个空位至多有2个相邻的坐法有多少种解:6个人排有66A 种, 6人排好后包括两端共有7个“间隔〞可以插入空位.(1)空位不相邻相当于将4个空位安插在上述7个“间隔〞中,有4735C =种插法,故空位不相邻的坐法有646725200A C =种。
2020-2021学年高二数学选修2-3《排列与组合》测试试卷解析版
2020-2021学年高二数学选修2-3《排列与组合》测试试卷解析版
一.选择题(共30小题)
1.﹣等于()
A.0B.﹣10C.10D.﹣40
【分析】利用排列组合数的计算公式即可得出.
【解答】解:原式=﹣
==10.
故选:C.
【点评】本题考查了排列组合数的计算公式,考查了推理能力与计算能力,属于基础题.2.=7×8×n,则n=()
A.7B.8C.9D.10
【分析】利用排列数公式求解.
【解答】解:∵=7×8×n,
∴由排列数公式得n=9.
故选:C.
【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用.
3.已知A n2=132,则n=()
A.11B.12C.13D.14
【分析】根据排列数的公式,列出方程,求出n的值即可.
【解答】解:∵=132,
∴n(n﹣1)=132,
整理,得,
n2﹣n﹣132=0;
解得n=12,或n=﹣11(不合题意,舍去);
∴n的值为12.
故选:B.
【点评】本题考查了排列数公式的应用问题,也考查了解一元二次方程的应用问题,是
第1 页共20 页。
2019年人教版 高中数学 选修2-3 排列与组合综合(3)
2019年编·人教版高中数学专题 排列与组合综合(三) 课后练习题一: 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A)72 (B)96 (C) 108 (D)144题二:一名老师和两名男生两名女生站成一排照相,要求两名女生必须站在一起且老师不站在两端,则不同站法的种数为( ).A .8B .12C .16D .24题三:在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A)30个 (B)20个 (C)35个 (D)15个题四:同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A)6种 (B)9种 (C)11种 (D)13种题五:有3张都标着字母A,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中5张卡片组成牌号,则可以组成的不同牌号的总数等于________.(用数字作答)题六:方程ay =b 2x 2+c 中的a ,b ,c ∈{-3,-2,0,1,2,3},且a ,b ,c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A .60条B .62条C .71条D .80条题七:集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.题八:满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为( )A .14B .13C .12D .10题九:已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36题十:在集合{}1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量(,)a bα=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n,其中面积不超过...4的平行四边形的个数为m,则mn=( )(A)415(B)13(C)25(D)23题十一:在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.题十二:回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.专题 排列与组合综合(三)课后练习参考答案题一: C.详解:先选一个偶数字排个位,有3种选法.①若5在十位或十万位,则1、3有三个位置可排,22232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个题二: D.详解:两名女生站一起有A 22 种站法,她们与两个男生站一起共有A 22A 33种站法,老师站在他们的中间有A 22A 33C 12=24种站法,故应选D.题三: A详解:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.题四: B详解:设四人分别是甲、乙、丙、丁,他们写的卡片分别为a ,b ,c ,d ,则甲有三种拿卡片的方法,甲可以拿b ,c ,d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为badc ,bcda ,bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.题五: 4020.详解:若无字母A ,则有56A 种;若含有一个字母A ,则有4565C A 种;若含有两个字母A ,则有3365C A 种;若含有三个字母A ,则有2265C A 种,综上所述,共有54533226656565A C A C A C A +++=4 020(种). 题六: B.详解:当a =1时,若c =0,则b 2有4,9两个取值,共2条抛物线,若c ≠0,则c 有4种取值,b 2有两种,共有2×4=8条抛物线;当a =2时,若c =0,b 2取1,4,9三种取值,共有3条抛物线,若c ≠0,c 取1时,b 2有2个取值,共有2条抛物线,c 取-2时,b 2有2个取值,共有2条抛物线,c 取3时,b 2有3个取值,共有3条抛物线,c 取-3时,b 2有3个取值,共有3条抛物线.所以共有3+2+2+3+3=13条抛物线.同理,a =-2,-3,3时,共有抛物线3×13=39条.由分类加法计数原理知,共有抛物线39+13+8+2=62条.题七: 35详解: 其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.题八: B.详解: 因为a ,b ∈{-1,0,1,2},可分为两类:①当a =0时,b 可能为-1或1或0或2,即b 有4种不同的选法;②当a≠0时,依题意得Δ=4-4ab≥0,所以ab≤1.当a =-1时,b 有4种不同的选法;当a =1时,b 可能为-1或0或1,即b 有3种不同的选法;当a =2时,b 可能为-1或0,即b 有2种不同的选法.根据分类加法计数原理,(a ,b)的个数为4+4+3+2=13.题九: A.详解:①所得空间直角坐标系中的点的坐标中不含1的有C 12·A 33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C 12·A 33+A 33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C 13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.题十: B详解:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515nC ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3);m =3+2=5故51153m n ==. 题十一: 732详解: 共分三类:考虑A 、C 、E 种同一种植物,此时共有4×3×3×3=108种方法.考虑A 、C 、E 种二种植物,此时共有3×4×3×3×2×2=432种方法.考虑A 、C 、E 种三种植物,此时共有34A ×2×2×2=192种方法.故总计有108+432+192=732种方法.故答案为:732题十二: (1)90 (2)9×10n详解:(1)4位回文数第1、4位取同一个非零数有19C =9(种)选法,第2、3位可取0,有10种选法,故有9×10=90(个),即4位回文数有90个.(2)首位和末位不能取0,故有9种选法,其余位关于中间数对称,每两数都有10种选法,中间数也有10种选法,故2n +1(n ∈N*)位回文数有9×10n 个.。
高中数学选修2-3排列题目精选(附答案)
排列的应用习题一、数字排列问题1.用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复数字的数?(1)六位数且是奇数;(2)个位上的数字不是5的六位数;(3)不大于4 310的四位数且是偶数.解析:(1)法一:从特殊位置入手(直接法):第一步,排个位,从1,3,5三个数字中选1个,有A13种排法;第二步,排十万位,有A14种排法;第三步,排其他位,有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A13A14A44=288个数.法二:从特殊元素入手(直接法):0不在两端有A14种排法;从1,3,5中任选一个排在个位上,有A13种排法;其他数字全排列有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A14A13A44=288个数.法三:①从整体上排除:6个数字的全排列数为A66,0,2,4在个位上的排列数为3A55,而1,3,5在个位上,0在十万位上的排列数为3A44,故符合题意的六位奇数共有A66-3A55-3A44=288个数.②从局部上排除:1在个位上的排列有A55个,其中0在十万位上的排列有A44个,故1在个位上的六位奇数有(A55-A44)个,同理,3,5在个位上的六位奇数也各有(A55-A44)个,因此符合题意的六位奇数共有3(A55-A44)=288个数.(2)法一:(排除法)6个数字的全排列有A66个,0在十万位上的排列有A55个,5在个位上的排列有A55个,0在十万位上且5在个位上的排列有A44个,故符合题意的六位数共有A66-2A55+A44=504个数.法二:(直接法)个位上不排5,有A15种排法.但十万位上数字的排法因个位上排0与不排0而有所不同,因此,需分两类:第一类,当个位上排0时,有A55种排法;第二类,当个位上不排0时,有A14·A14·A44种排法.故符合题意的六位数共有A55+A14·A14·A44=504个.(3)法一:(直接法)①当千位上排1,3时,有A12·A13·A24种排法.②当千位上排2时,有A12·A24种排法.③当千位上排4时,形如40□□,42□□的各有A13种排法,形如41□□的有A13·A12种排法,形如43□□的只有4 310和4 302这2个数.故共有A12·A13·A24+A12·A24+2A13+A12·A13+2=110个符合条件的四位偶数.法二:(排除法)四位偶数中:①0在个位的有A35个.②0在十位和百位的有A12·A12·A24个.③不含0的有A12·A34个.故四位偶数有A35+A12·A12·A24+A12·A34=156个.其中形如5□□□的有A13·A24个,形如45□□的有A12·A13个,形如435□的有A12个,形如432□的有1个,形如431□而大于4310的只有4312这1个数,故大于4 310的四位偶数共有A13·A24+A12·A13+A12+1+1=46个数,因此符合题意的四位偶数共有156-46=110个数.注:(1)数字的排列是一类典型的排列问题,往往涉及排列特殊数,如奇数,被5整除的数等.需要注意以下几个问题:①首位数字不为0;②若所选数字中含有0,则可先排0,即“元素分析法”;③若排列的是特殊数字,如偶数,则先排个位数字,即“位置分析法”;④此类问题往往需要分类,可依据特殊元素,特殊位置分类.(2)对于有限制条件的排列问题,先考虑安排特殊元素(或位置),再安排一般的元素(或位置),即先特殊后一般,此方法为直接分步法;也可以按特殊元素当选情况(或特殊位置元素的情况)分类,再安排一般的元素(或位置),即先分类后分步,此方法为直接分类法;还可以先不考虑特殊元素(或位置),而求出所有元素的全排列数,再从中减去不满足特殊元素(或位置)要求的排列数.即先全体后排除,此方法为间接法(排除法).2.用0,1,2,…,9十个数字可组成多少个满足以下条件的且没有重复数字的数:(1)五位奇数;(2)大于30 000的五位偶数.解:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取法,取定末位数字后,首位就有除这个数字和0之外的8种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数位选取,共有A38种不同的排列方法.因此由分步乘法计数原理得共有5×8×A38=13 440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要得比30 000大的五位偶数,可分两类:①末位数字从0,2中选取,则首位可取3,4,5,6,7,8,9中任一个,共7种选取方法,其余三个数位就有除首尾两个数位上的数字之外的八个数字可以选取,共A38种取法.所以共有2×7×A38种不同情况.②末位数字从4,6,8中选取,则首位应从3,4,5,6,7,8,9中除去末位数字的六个数字中选取,其余三个数位仍有A38种取法,所以共有3×6×A38种不同的情况.由分类加法计数原理,比30 000大的无重复数字的五位偶数共有2×7×A38+3×6×A38=10 752(个).二、排队问题1.3名男生,4名女生,按照不同的要求排队拍照,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,其中甲、乙必须在两端;(3)全体站成一排,其中甲不在最左端,乙不在最右端;(4)全体站成一排,男、女生各站在一起;(5)全体站成一排,男生必须站在一起;(6)全体站成一排,男生不能站在一起;(7)全体站成一排,男、女生各不相邻;(8)全体站成一排,甲、乙中间必须有2人;(9)排成前后两排,前排3人,后排4人.解析:(1)(特殊元素优先法)先考虑甲的位置,有A13种方法,再考虑其余6人的位置,有A66种方法.故有A13·A66=2 160种方法.(2)(特殊元素优先法)先安排甲、乙的位置,有A22种方法,再安排其余5人的位置,有A55种方法.故有A22·A55=240种方法.(3)法一:(特殊元素优先法)按甲是否在最右端分两类:第一类,甲在最右端,有A66种方法;第二类,甲不在最右端,甲有A15个位置可选,乙也有A15个位置可选,其余5人有A55种排法,即A15·A15·A55种方法.故有A66+A15·A15·A55=3 720种方法.法二:(间接法)无限制条件的排列方法共有A77种,而甲在最左端,乙在最右端的排法分别有A66种,甲在最左端且乙在最右端的排法有A55种.故有A77-2A66+A55=3 720种方法.法三:(特殊元素优先法)按最左端先安排分步.对于最左端、除甲外有A16种排法,余下六个位置全排列有A66种排法,其中甲不在最左端,乙在最右端的排法有A15·A55种.故有A16·A66-A15·A55=3 720种方法.(4)(相邻问题捆绑法)男生必须站在一起,即把3名男生进行全排列,有A33种排法,女生必须站在一起,即把4名女生进行全排列,有A44种排法,全体男生、女生各看成一个元素全排列有A22种排法,由分步乘法计数原理知共有A33·A44·A22=288种排法.(5)(捆绑法)把所有男生看成一个元素,与4名女生组成5个元素全排列,故有A33·A55=720种不同的排法.(6)(不相邻问题插空法)先排女生有A44种排法,把3名男生安排在4名女生隔成的五个空中,有A35种排法,故有A44·A35=1 440种不同的排法.(7)对比(6),让女生插空,有A33·A44=144种不同的排法.(8)(捆绑法)除甲、乙外,从其余的5人中任取2人,并站在甲、乙之间,与甲、乙组成一个整体,再与余下的3个人进行全排列,故有A25·A22·A44=960种不同的排法.(9)直接分步完成,共有A37·A44=5 040种不同的排法.注:(1)“排队”问题与“排数”问题有些类似,主要是从特殊位置或特殊元素两个方面考虑,当正面考虑情况复杂时,可考虑用间接法;(2)直接法解题一般采用元素分析法和位置分析法,要注意分类时不重不漏,分步要连续、独立;间接法要注意不符合条件的情形,做到不重不漏;(3)某些元素要求必须相邻时,可以先将这些元素看成一个整体,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”,即“相邻元素捆绑法”;(4)某些元素要求不相邻时,可以先安排其他元素,再将这些不相邻元素插入空档,这种方法称为“插空法”,即“不相邻元素插空法”.2.(1)7名同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(2)7名同学站成一排,甲、乙只能站在两端的排法共有多少种?(3)7名同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解:(1)第一步,安排除了甲之外没有特殊要求的6名同学,其为全排列,其排法数为A66=720;第二步,安排甲,甲只能在已经排好的6名同学的正中间,其排法只有1种.根据分步乘法计数原理知,共有720×1=720种不同的排法.(2)第一步,先排甲、乙,这2名同学只能排在两端,其排法有A22种;第二步,将余下的5名同学进行全排列,有A55种排法.根据分步乘法计数原理知,共有A22·A55=240种排法.(3)法一(直接法):第一步,从除去甲、乙外的其余5名同学中选2名同学站在排头和排尾,有A25种排法;第二步,余下的5名同学进行全排列,有A 55种排法.所以一共有A 25·A 55=2 400种排法.法二(间接法):若甲站在排头或排尾,有2A 66种方法,若乙站在排头或排尾,有2A 66种排法,若甲站在排头且乙站在排尾,有A 55种排法,若甲站在排尾且乙站在排头,有A 55种排法,所以甲、乙不能站在排头和排尾的排法共有A 77-2A 66-2A 66+A 55+A 55=2 400(种).法三(直接法):第一步,对除去甲、乙以外的5名同学进行全排列,有A 55种排法;第二步,把甲安排到已排好的5人队伍中,但不能安排到排头和排尾,有A 14种排法;第三步,把乙安排到已排好的6人队伍中,但不能安排到排头和排尾,有A 15种排法.根据分步乘法计数原理,总的排法有A 55·A 14·A 15=2 400(种).三、排列中的定序问题1.五个人排成一排,求满足下列条件的不同排列各有多少种.(1)A ,B ,C 三人左中右顺序不变(不一定相邻);(2)A 在B 的左边且C 在D 的右边(可以不相邻).解析: (1)首先五个人站成一排,共有A 55种排法,其中A ,B ,C 三人的全排列有A 33种排法,而A ,B ,C 从左到右的顺序只是其中一种,所以满足条件的排法共A 55A 33=20(种). (2)同(1),不过此题中A 和B ,C 和D 被指定了顺序,则满足条件的排法共A 55A 22·A 22=30(种).注:在有些排列问题中,某些元素的前后顺序是确定的(不一定相邻).解决这类问题的基本方法有两个:(1)整体法,即若有m +n 个元素排成一列,其中m 个元素之间的先后顺序确定不变,将这m +n 个元素排成一列,有A m +n m +n 种不同的排法;然后任取一个排列,固定其他n个元素的位置不动,把这m个元素交换顺序,有A m m种排法,其中只有一个排列是我们需要的,因此共有A m+nm+nA m m种满足条件的不同排法;(2)插空法,即m个元素之间的先后顺序确定不变,因此先排这m个元素,只有一种排法,然后把剩下的n个元素分类或分步插入由以上m个元素形成的空中.2.7人排成一列,甲必须在乙的后面(可以不相邻),有________种不同的排法.解析:7人排队,2人顺序固定,∴共有A77A22=5 0402=2 520种不同的排法.答案:2 5203.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有________个七位数符合条件.解析:若1,3,5,7的顺序不定,有A44=24种排法,故1,3,5,7的顺序一定的排法数只占总排法数的1 24,故有124A77=210个七位数符合条件.答案:210巩固练习:(基础题)题组1数字排列问题1.用数字1,2,3,4,6可以组成无重复数字的五位偶数有()A.48个B.64个C.72个D.90个解析:选C有A13A44=72个无重复数字的五位偶数.2.用0,1,2,3组成的能被5整除且没有重复数字的四位数的个数为________.解析:因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其个数为A33=6.答案:63.用数字0,1,2,3,4,5组成没有重复数字的四位数.(1)可组成多少个不同的四位数?(2)可组成多少个不同的四位偶数?(3)在所有的四位数中按从小到大的顺序排成一个数列,则第85个数为多少?解:(1)法一(直接法):A15·A35=300(个).法二(间接法):A46-A35=300(个).(2)法一(直接法):因为0为特殊元素,故先考虑0.若0在个位有A35个;0不在个位时,从2,4中选一个放在个位,再从余下的四个数中选一个放在首位,有A12·A14·A24,故有A35+A12·A14·A24=156个不同的四位偶数.法二:(间接法):从这六个数字中任取四个数字组成最后一位是偶数的排法,有A13·A35个,其中第一位是0的有A12·A24个.故适合题意的有A13·A35-A12A24=156个不同的四位偶数.(3)1在首位的数的个数为A35=60.2在首位且0在第二位的数的个数为A24=12.2在首位且1在第二位的数的个数为A24=12.以上四位数共有84个,故第85个数是2 301.题组2排队问题4.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3! B.3×(3!)3C.(3!)4D.9!解析:选C利用“捆绑法”求解.满足题意的坐法种数为A33(A33)3=(3!)4.5.4名男生和4名女生并坐一排照相,女生要排在一起,不同排法的种数为()A.A88B.A55A44C.A44A44D.A58解析:选B因为4名女生要排在一起,所以先将4名女生捆绑与其他4名男生一起排列,然后再将4名女生排列,共有A55A44种排法.6.6个人排成一行,其中甲、乙两人不相邻的不同排法共有()A.120种B.240种C.360种D.480种解析:选D由于甲、乙两人不相邻,故应先将剩余4人全排列,然后将甲、乙分别插入4人排列后的5个空中,故共有A44A25=4×3×2×1×5×4=480种排法.7.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有________种.解析:先将5名志愿者排好,有A55种排法,再将2位老人“捆绑”起来插入中间的间隔,有A14·A22种排法,由分步乘法计数原理知,共有A55×A14A22=960种排法.答案:9608.喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起留照合影(排成一排).(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?(2)要求灰太狼、红太狼不相邻,有多少种排法?解:(1)把喜羊羊家族的四位成员看成一个元素,排法种数为A33.又因为四位成员交换顺序产生不同排列,所以共有A33·A44=144种排法.(2)分两步:第1步,将喜羊羊家族的四位成员排好,有A44种排法;第2步,让灰太狼、红太狼插四位成员形成的空(包括两端),有A25种排法,共有A44·A25=480种排法.题组3排列中的定序问题9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有()A.20种B.30种C.40种D.60种解析:选A分类完成,甲排周一,乙、丙只能从周二至周五这4天中选2天排,有A24种安排方法;甲排周二,乙、丙有A23种安排方法;甲排周三,乙、丙只能排周四和周五,有A22种安排方法.由分类加法计数原理可知,共有A24+A23+A22=20种不同的安排方法.10.A,B,C,D,E五人并排站成一排,若B必须站在A的右边(A,B可以不相邻),则不同的排法共有________种.解析:由于B 在A 的左边与B 在A 的右边的机会均等,故B 站在A 的右边的排法有12×A 55=12×5×4×3×2×1=60(种).答案:60巩固练习:(提升题)1.一个长椅上共有10个座位,现有4人去坐,其中恰有5个连续空位的坐法共有( )A .240种B .600种C .408种D .480种解析:选D 将四个排成一排共有A 44种排法,产生5个空位,将五个空位和一个空位构成的两个元素插入共A 25种方法.由分步乘法计数原理满足条件的共A 44·A 25=480种坐法.2.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程x 2a 2+y 2b 2=1中的a 和b ,则能组成落在矩形区域B ={(x ,y )||x |<11,且|y |<9}内的椭圆个数为( )A .43B .72C .863D .90解析:选B 在1,2,3,…,8中任取两个作为a 和b ,共有A 28=56个椭圆;在9,10中取一个作为a ,在1,2,3,…,8中取一个作为b ,共有A 12A 18=16个椭圆,由分类加法计数原理,知满足条件的椭圆的个数为56+16=72.3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B ,C 实施时必须相邻,则实验顺序的编排方法共有( )A .24种B .96种C .120种D .144种解析:选B 先安排程序A ,从第一步或最后一步选一个,有A 12种,再把B ,C 看成一个整体和其余三个程序编排,有A 44种,最后B ,C 排序,有A 22种,故共有A 12A 44A 22=96种.4.甲、乙、丙、丁和戊5名同学进行数学应用知识比赛,决出第一名至第五名(没有并列名次).已知甲、乙均未得第一名,且乙不是最后一名,则5人的名次排列情况有()A.27种B.48种C.54种D.72种解析:选C由题意,知乙的限制最多,故先排乙,有3种排法;再排甲,也有3种排法;余下3人有A33种排法.故共有3×3×A33=54种不同的排法,故选C.5.5位同学排队演出,其中3位女生,2位男生.如果2位男生不能相邻,且女生甲不能排在第一位,则排法种数为________.解析:若第一个出场的是男生,则第二个出场的是女生,以后的顺序任意排,有2×3×A33=36种排法;若第一个出场的是女生(不是女生甲),则将剩余的2位女生排列好,2位男生插空,有2×A22×A23=24种排法.故所有的排法种数为36+24=60.答案:606.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是________.解析:将3,4两个数全排列,有A22种排法,当1,2不相邻且不与5相邻时有A33种方法,当1,2相邻且不与5相邻时有A22·A23种方法,故满足题意的数的个数为A22(A33+A22·A23)=36.答案:367.七名班委中有A,B,C三人,有七种不同的职务,现对七名班委进行职务具体分工.(1)若正、副班长两职只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A,B,C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方案,再安排其余职务有A55种方案,依分步乘法计数原理知,共有A23A55=720种分工方案.(2)七人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55种,因此A,B,C三人中至少有一人任正、副班长的分工方案有A77-A24A55=3 600(种).8.5男5女共10名同学排成一行.(1)女生都排在一起,有几种排法?(2)女生与男生相间,有几种排法?(3)任何两个男生都不相邻,有几种排法?(4)5名男生不排在一起,有几种排法?(5)男生甲与男生乙中间必须排而且只能排2名女生,女生又不能排在队伍的两端,有几种排法?解:(1)将5名女生看作一人,就是6个元素的全排列,有A66种排法.又5名女生内部有A55种排法.所以共有A66·A55=86 400种排法.(2)男生自己排,女生也自己排,然后相间插入(此时有2种插法),所以女生与男生相间共有2A55·A55=28 800种排法.(3)女生先排,女生之间及首尾共有6个空.任取其中5个安插男生即可,因而任何男生都不相邻共有A55·A56=86 400种排法.(4)直接分类较复杂,可用间接法.即从10个人的排列总数中,减去5名男生排在一起的排法数,得5名男生不排在一起的排法数为A1010-A55A66=3 542 400.(5)先安排2个女生排在男生甲、乙之间,有A25种方法;又甲、乙之间还有A22种排法. 这样就有A25·A22种排法.然后把他们4人看成一个元素(相当于一个男生),再从这一元素及另3名男生中,任选2人排在首尾,有A24种排法.最后再将余下的2名“男生”、3名女生排在中间,有A55种排法.故总排法数为A25A22A24 A55=57 600.。
【选修2-3】《排列组合综合》练习(含答案) 3
【选修2-3】《排列组合》练习(含答案)班级: 姓名:1、甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( )A. 20种B. 30种C. 40种D. 60种2、从5种不同的水果和4种不同的糖果各选出3种,放入如图所示的六个不同区(用数字且水果不能放在有公共得相邻区域内,在不同的放法有A 、720种B 、1440种C 、2160种D 、2880种3.从9名学生中选出4人参加辨论比赛,其中甲、乙、丙三人至少有两人入选的不同选法的种数为A .36B .96C .63D .514.空间有10个点,其中5点在同一平面上,其余没有4点共面,则10个点可以确定不同平面的个数是( )A 、206 B 、205 C 、111 D 、1105、2010年上海世博会组委会分配甲、乙、丙、丁四人做三项不同的工作,每一项工作至少分一人,且甲、乙两人不能同时做同一项工作,则不同的分配种数是A .24B .30C .36D .486、现有1角、2角、5角、1元、2元、5元、10元、20元,50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )(A)1024种 (B)1023种 (C)1536种 (D)1535种7、(1)有4封不同的信随机投到3个信箱中,共有__81____种不同的投法;(2)有4名同学争夺3个比赛项目的冠军,冠军获得者共有__64____种不同的报名方法;(3)集合{}d c b a A ,,,=,{}g n m B ,,=①从集合A 到集合B 可以建立___81___个不同的映射;②从集合B 到集合A 可以建立__64____个不同的映射;③以集合A 为定义域,集合B 为值域可以建立_30_____个不同的函数;特殊元素优先(位置分析法)1、0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有_30___个;2、将A 、B 、C 、D 、E 、F 六个不同的电子元件在线路上排成一排组成一个电路,如果 元件A 不排在始端,元件B 不排在末端,那么这六个电子元件组成不同的电路的种数是_ 504插空法( “不相邻”问题,先排其它元素,再排不相邻元素)1、三男四女坐成一排照相,男生不相邻,有__256_____种坐法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【选修2-3】《排列组合》练习(含答案)
班级: 姓名:
1、甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( )
A. 20种
B. 30种
C. 40种
D. 60种
2、从5种不同的水果和4种不同的糖果各选出3种,放入如图所示的六个不同区(用数字且水果不能放在有公共得相邻区域内,在不同的放法有
A 、720种
B 、1440种
C 、2160种
D 、2880种
3.从9名学生中选出4人参加辨论比赛,其中甲、乙、丙三人至少有两人入选的不同选法的种数为
A .36
B .96
C .63
D .51
4.空间有10个点,其中5点在同一平面上,其余没有4点共面,则10个点可以确定不同平面的个数是( )A 、206 B 、205 C 、111 D 、110
5、2010年上海世博会组委会分配甲、乙、丙、丁四人做三项不同的工作,每一项工作至少分一人,且甲、乙两人不能同时做同一项工作,则不同的分配种数是
A .24
B .30
C .36
D .48
6、现有1角、2角、5角、1元、2元、5元、10元、20元,50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )
(A)1024种 (B)1023种 (C)1536种 (D)1535种
7、(1)有4封不同的信随机投到3个信箱中,共有__81____种不同的投法;
(2)有4名同学争夺3个比赛项目的冠军,冠军获得者共有__64____种不同的报名方法;
(3)集合{}d c b a A ,,,=,{}g n m B ,,=
①从集合A 到集合B 可以建立___81___个不同的映射;
②从集合B 到集合A 可以建立__64____个不同的映射;
③以集合A 为定义域,集合B 为值域可以建立_30_____个不同的函数;
特殊元素优先(位置分析法)
1、0、1、
2、
3、4这5个数字,组成没有重复数字的三位数,其中偶数共有_30___个;
2、将A 、B 、C 、D 、E 、F 六个不同的电子元件在线路上排成一排组成一个电路,如果 元件A 不排在始端,元件B 不排在末端,那么这六个电子元件组成不同的电路的种数是_ 504
插空法( “不相邻”问题,先排其它元素,再排不相邻元素)
1、三男四女坐成一排照相,男生不相邻,有__256_____种坐法。
2、10盏路灯,熄灭两盏,要求熄灭的两盏不相邻且两端的路灯不能熄灭,有___21__种
3、7人站成一行,如果甲乙两人不相邻,则不同排法种数是_3600_____
4、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的有_ 20 种捆绑法(“相邻”问题,先整体排列,再局部排列)
1、三男四女坐成一排照相,甲乙二人必须相邻,有__1440_____种坐法。
2、三本不同的化学书,四本不同的物理书,五本不同的数学书排成一列,其中化学书
必须相邻,物理书也必须相邻,有_725760_____种不同的排放方法。
隔板法(“名额”问题、元素相同分组问题)
1、有5个代表名额,分到三个学校,每个学校至少一名,有_6____种分配方法。
2、8个台阶,要求7步走完,有__7_____种走法。
3、6个相同的小球放入三个盒子,盒可空有_3^6___种分法;盒都不空有_20___种分法
除序法(“顺序一定”问题,1、先让一部分坐好,其余自动排好2、取消某些元素的次序)
1、三男四女坐成一排照相,要求男生从左到右按从矮到高次序排列有__840____种排法。
2、用四个2和三个0这七个数字能组成__20____个七位数。
分组再分配问题:
“均分”问题
1、六件不同的礼品,平均分成三堆,有__15_____种分法
2、六件不同的礼品,平均分给三个人,有__90_____种分法。
“不均分”问题
1、六件不同的礼品,分成三堆,一堆3件,一堆2件,一堆1件,有__60___种分法。
2、六件不同的礼品,分给三个人,甲3件,乙2件,丙1件,有___60____种分法。
3、六件不同的礼品,分给三个人,一人3件,一人2件,一人1件,有360_____种分法。
“混合分”问题
1、六件不同的礼品,分成三堆,一堆4件,一堆1件,一堆1件,有__15___分法。
2、六件不同的礼品,分给三个人,甲4件,乙1件,丙1件,有______30种分法。
3、六件不同的礼品,分给三个人,其中一人4件,另两人各1件,有____90__种分法
典例回顾:
1、7个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头;
(2)甲不排头,也不排尾;
(3)甲、乙、丙三人必须在一起;
(4)甲、乙之间有且只有两人;
(5)甲、乙、丙三人两两不相邻;
(6)甲在乙的左边(不一定相邻);
(7)甲、乙、丙三人按从高到矮,自左向右的顺序;
(8)甲不排头,乙不排当中。
(1)=720
(2)5=3600
(3)=720
(4)=960
(5)=1440
(6)=2520
(7)=840
(8)
2、(1)从4所学校选拔6名报告员,每校至少1人,有多少种不同的选法、10
(2)将6名报告员分配到3所学校去作报告,每校2人,有多少种不同的分配方法?90
(3)将6名报告员分配到4所学校去作报告,每校至少1人,有多少种不同的分配方法?
1560
3、用0,1,2,3,4,5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四
位数①奇数②偶数③大于3125的数
4、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数
(1)这样的三位数一共有多少个?
(2)所有这些三位数的个位上的数字之和是多少?
(3)所有这些三位数的和是多少?
(4)把这些三位数按照从小到大排好,第17个数是
多少?(347)427是第几个数?(26)
(1)
(2)
(3)300×(100+10+1)=33300。