电赛四旋翼飞行器
电子设计大赛四旋翼设计报告最终版

电子设计大赛四旋翼设计报告最终版四旋翼飞行器(A 题)参赛队号:20140057号四旋翼飞行器设计摘要:四旋翼作为一种具有结构特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进行机动,结构简单,易于控制,且能执行各种特殊、危险任务等特点。
因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。
多旋翼无人机飞行原理上比较简单,但涉及的科技领域比较广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。
四旋翼无人机的飞行控制技术是无人机研究的重点之一。
它使用直接力矩,实现六自由度(位置与姿态)控制,具有多变量、非线性、强耦合和干扰敏感的特性。
此外,由于飞行过程中,微型飞行器同时受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。
因此,研究既能精确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。
2.1.1 方案一:选择Coldfire系列芯片作为系统控制的主控板,因为在以往队员们做过飞思卡尔智能车竞赛,对此系列的芯片做的比较熟悉,芯片功能强大,但以往做的核心板较大,所需的电路较多,考虑到四轴飞行器的轻便,故而不太是一个很理想的选择。
2.1.2 方案二:主控板使用STM32。
STM32板子的I/O口很多,自带定时器和多路PWM,可以实现的功能较多,符合实验要求。
Stm32迷你板在体积和重量上也不是很大,对飞机的载重量要求不是很高。
综上所述,我们一致决定使用STM32 MMC10作为此次大学生电子竞赛的主控板。
2.2 飞行姿态的方案论证:2.2.1 方案一:十字飞行方式。
四轴的四个电机以十字的方式排列,x轴和y轴成直角,调整俯仰角和翻滚角的时候分开调整,角度融合简单,适合初学者,能明确头尾,飞行时机体动作精准,飞控起来也容易。
2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题)2015年8月15日摘要本文对四旋翼碟形飞行器进行了初步的研究和设计。
首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。
本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。
整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。
角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。
本系统经过飞行测试,可以达到设计要求。
关键字:R5F100LEA单片机、传感器、PWM、PID控制。
目录1系统方案本系统主要由电源模块、电机调速控制模块、飞行控制模块、传感器模块组成,下面分别论证这几个模块的选择。
电机的论证与选择四旋翼无人飞行器是通过控制四个不同无刷直流电机的转速,达到控制四旋翼无人飞行器的飞行姿态和位置,与传统直升机通过控制舵机来改变螺旋桨的桨距角,达到控制直升机的目的不同。
在电机的选型上,主要有直流有刷电机和直流无刷电机两种。
方案一:直流有刷电机是当前普遍使用的一种直流电机,它的驱动电路简单、控制方法成熟,但是直流有刷电机使用电刷进行换向,换向时电刷与线圈触电存在机械接触,电机长时间高速转动使极易因磨损导致电气接触不良等问题,而且有刷电机效率低、力矩小、重量大,不适合对功率重量比敏感的电动小型飞行器。
方案二:直流无刷电机能量密度高、力矩大、重量轻,采用非接触式的电子换向方法,消除了电刷磨损,较好地解决了直流有刷电机的缺点,适用于对功率重量比敏感的用途,同时增强了电机的可靠性。
综合以上两种方案,选择方案二。
红外对管检测传感器的论证与选择探测地面黑线的基本原理是:光线照射到路面并反射,由于黑线和白色地面对光的反射系数不同,所以可以根据接收到的反射光强弱来判断黑线。
电子设计大赛四旋翼飞行器报告

选题编号:C题全国大学生电子设计竞赛设计报告选题名称:多旋翼自主飞行器主办单位:辽宁省教育厅比赛时间:2015年08月12日08时起2015年08月15日20时止摘要多旋翼飞行器也称为多旋翼直升机,是一种有多个螺旋桨的飞行器。
本设计实现基于ATMEGA328P和R5F100LEA的四旋翼飞行器。
本飞行器由飞行控制模块、导航模块、电源模块和航拍携物模块等四部分组成。
主控模块采用ATMEGA328P芯片,负责飞行姿态控制;导航模块以G13MCU为核心,由陀螺仪、声波测距等几部分构成,该模块经过瑞萨芯片处理采集的数据,用PID控制算法对数据进行处理,同时解算出相应电机需要的PWM增减量,及时调整电机,调整飞行姿态,使飞行器的飞行更加稳定;电源模块负责提供持续稳定电流;航拍携物模块由摄像头、电磁铁等构成,负责完成比赛相应动作。
飞行器测试稳定,实现了飞行器运动速度和转向的精准控制,能够完成航拍,触高报警,携物飞行,空中投递等动作要求。
关键词:四旋翼,PID控制,瑞萨目录摘要................................................................................................................................ i i1.题意分析 (1)2.系统方案 (1)2.1 飞行控制模块方案选择 (1)2.2 飞行数据处理方案选择 (1)2.3 电源模块方案选择 (2)2.4 总体方案描述 (2)3.设计与论证 (2)3.1 飞行控制方法 (2)3.2 PID控制算法 (3)3.3 建模参数计算 (3)3.4 建立坐标轴计算 (4)4.电路设计 (5)4.1 系统组成及原理框图 (5)4.2 系统电路图 (5)5.程序设计 (6)5.1 主程序思路图 (6)5.2 PID算法流程图 (7)5.3 系统软件 (7)6. 测试方案 (7)6.1 硬件测试 (7)6.2 软件仿真测试 (7)6.3 测试条件 (8)6.4 软硬件联调 (8)7.测试结果及分析 (8)7.1 测试结果 (8)7.2 结果分析 (9)8.参考文献 (9)1.题意分析设计并制作一架带航拍功能的多旋翼自主飞行器。
多旋翼自主飞行器报告..

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题)2015年8月15日摘要四旋翼飞行器是一种结构新颖、性能优越的垂直起降飞行器,具有操作灵活、带负载能力强等特点,具有重要的军事和民用价值,本系统以瑞萨R5F100LE作为四旋翼自主飞行器控制的核心。
由电源模块、电机调速控制模块、电机模块、MPU9150模块、飞行器控制模块等构成。
飞行控制模块包括角度传感器、陀螺仪,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。
在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。
测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。
关键词:四旋翼飞行器;MPU9150;瑞萨R5F100LE;PID目录一、系统方案 (4)1、系统方案论证与控制方案的选择 (4)1.1 飞行器控制系统模块 (4)1.2 电源模块的选择与论证 (4)1.3电机模块的选择与论证 (5)1.4电机调速控制模块 (5)二、系统理论分析与计算 (6)四旋翼飞行器动力学模型..................................................................... 错误!未定义书签。
2.2 PID控制算法结构分析 (7)三、电路与程序设计 (9)1、电路的设计 (9)(1)系统总体框图 (9)(2)飞行控制系统实物图与电路原理图 (9)(3)给R5F100LE单片机为核心提供的5V电源系统框图与电路原理图 (11)(4)总电源 (12)(5)MPU9150模块 (12)2、程序的设计 (13)四、测试方案与结果分析 (14)4.1 测试设备方案 (14)4.2 测试结果 (15)五、总结 (16)六、参考文献 (16)七、附录 (16)多旋翼自主飞行器(C题)【高职组】一、系统方案本系统主要由飞行器控制模块、电源模块、电机模块、电机调速控制模块、MPU9150模块等构成5大模块组织,下面分别论证这几个模块的选择。
四旋翼飞行器的工作原理

四旋翼飞行器的工作原理
四旋翼飞行器,作为一种无人机类型,由四个电动马达驱动,每个马达带动一
个螺旋桨,通过旋转螺旋桨产生的升力和推力来实现飞行。
在四个螺旋桨的作用下,四旋翼飞行器可以进行上升、下降、前进、后退、向左、向右移动等各种飞行动作。
结构组成
四旋翼飞行器的主要结构包括机架、电机、螺旋桨、飞控以及电池等部件。
其中,电机和螺旋桨的组合负责提供飞行器的动力,飞控系统则控制着电机的转速,从而操控四旋翼飞行器的姿态和飞行方向。
工作原理
四旋翼飞行器的工作原理主要是通过控制四个电动马达的转速,来调节四个螺
旋桨产生的推力大小和方向,在空气中形成动力平衡,从而实现飞行。
当四个电动马达以相同的速度旋转时,四旋翼飞行器将悬停在空中;当电机转速有所不同时,四旋翼飞行器就会产生倾斜,从而实现前进、后退、向左或向右移动。
升力和推力
四旋翼飞行器的飞行靠的是螺旋桨产生的升力和推力。
当四个螺旋桨以适当的
速度旋转时,它们将向下推动大量的空气,产生向上的升力。
通过协调四个螺旋桨的转速和方向,四旋翼飞行器可以在空中保持平衡,实现稳定的飞行。
飞控系统
飞控系统是四旋翼飞行器的大脑,负责控制电机的转速和姿态,以实现飞行器
的稳定飞行。
飞控系统通过传感器感知四旋翼飞行器的姿态和环境信息,然后通过内置的控制算法计算出最优的控制指令,控制电机的运行状态,确保飞行器能够稳定飞行。
结语
总的来说,四旋翼飞行器的工作原理是通过控制螺旋桨产生的升力和推力来实
现飞行。
通过合理设计机身结构和配备飞控系统,四旋翼飞行器能够实现各种复杂的飞行动作,是一种十分便捷和灵活的无人机类型。
四旋翼飞行原理是什么

四旋翼飞行原理解析四旋翼无人机在现代社会中逐渐成为一种重要的飞行器。
但是,许多人对四旋翼飞行的原理仍然知之甚少。
在本文中,我将深入探讨四旋翼飞行的根本原理,以帮助读者更好地理解这项技术。
1. 四旋翼结构概述四旋翼无人机通常由四个对称分布的旋翼组成,这些旋翼通过电机叶片驱动。
每个旋翼的转速和叶片角度可以独立调节,从而实现对无人机的飞行姿态控制。
2. 升力的产生四旋翼飞行器的升力产生与传统固定翼飞行器有着明显的不同。
固定翼飞行器通过机翼形状和速度差产生升力,而四旋翼无人机则通过旋翼产生升力。
旋翼在高速旋转时,会吸入空气并产生向下的推力,从而推动整个机体向上飞行。
3. 姿态控制原理四旋翼无人机通过调节四个旋翼的转速和叶片角度来控制飞行器的姿态,包括横滚、俯仰和航向。
当需要向前飞行时,前方的两个旋翼加大推力,而后方的两个旋翼减小推力,从而使得飞行器产生向前的倾斜角度。
4. 悬停技术原理四旋翼无人机在空中保持悬停状态是其最基本的飞行技巧之一。
悬停技术的实现依赖于飞行控制系统对四个旋翼的高频率调节。
通过细微地调整旋翼的转速和叶片角度,飞行控制系统可以使飞行器在空中保持静止。
5. 起飞与降落原理四旋翼无人机的起飞和降落过程也是其飞行技术中的重要部分。
在起飞时,四个旋翼需要以足够的转速产生足够的升力来克服重力,使得飞行器脱离地面。
而在降落时,飞行器需要逐渐减小升力以平稳降落。
结语通过本文的介绍,希望读者能对四旋翼飞行的原理有一个更清晰的认识。
四旋翼无人机的飞行技术是一个综合了物理学、工程学和控制理论的复杂系统,只有深入理解其原理才能更好地驾驭这一技术。
电子设计大赛四旋翼设计报告

电子设计大赛四旋翼设计报告一、设计背景和目的四旋翼是一种无人机的形式,它由四个旋转桨叶提供升力和稳定性。
四旋翼的设计和制造对于提高飞行品质和有效性非常重要。
因此,我们参加了电子设计大赛,目的是设计一种高性能、高稳定性的四旋翼。
二、设计要求和功能1. 提高飞行品质:设计一个稳定的四旋翼,可以在各种气候和环境条件下飞行,并保持平稳。
2. 提高控制性:设计一个精确的控制系统,可以实现精确的飞行操作和操纵。
3. 增强可靠性:设计一个可靠的四旋翼,能够有效地预防故障并提供必要的安全性能。
4. 提高机动性:设计一个具有高机动性的四旋翼,能够实现各种飞行动作和任务,如起飞、降落、转弯等。
三、设计方案1. 结构设计:- 使用轻质材料制造机身和旋转桨叶,以减少整体重量并提高机动性。
- 采用可折叠设计,便于携带和储存。
2. 电力系统:- 配备高性能的电机和螺旋桨,以提供足够的升力和稳定性。
- 安装高容量的电池,以延长飞行时间。
3. 控制系统:- 使用高精度的陀螺仪和加速度计,以提供准确的飞行数据。
- 配备先进的飞行控制系统,实现精确的操纵和飞行操作。
4. 通信系统:- 配备可靠的遥控器,实现远程控制操作。
- 安装高清晰度的摄像头,传输实时视频和图像。
5. 安全系统:- 配备传感器和防撞装置,以避免与障碍物碰撞。
- 设置飞行限制区域和高度限制,确保飞行的安全性。
6. 程序设计:- 开发合适的飞行控制软件,实现四旋翼的智能化飞行和任务执行。
四、预期成果和可行性分析我们预期通过设计和制造一个高性能、高稳定性的四旋翼,能够在电子设计大赛中取得好成绩。
我们的设计方案经过多次验证和测试,证明具有良好的可行性和实用性。
在实际操作中,我们可以利用这个四旋翼进行各种任务和应用,如航拍、物流输送、环境监测等。
这个四旋翼除了参加电子设计大赛,还可以在其他领域得到广泛应用,具有很高的市场潜力。
我们相信我们的四旋翼设计能够达到预期的目标,并取得好成绩。
四旋翼飞行器毕业论文

四旋翼飞行器毕业论文随着科技的不断发展和人们生活水平的不断提高,现代航空技术取得了长足的发展,航空器种类日益丰富,其中四旋翼飞行器也越来越受到人们的关注和喜欢。
四旋翼飞行器是一种由四个电动机驱动旋转的旋翼,通过不同旋翼旋转速度的协调,控制飞行器的飞行姿态,实现飞行的目的。
它具有体积小、重量轻、机动性好、简单易操作等优势,同时可完成多种飞行任务,如航拍、搜救、越野竞速等。
本篇毕业论文将从四旋翼飞行器的发展历程、工作原理以及其在军事和民用领域上的应用等方面进行详细介绍。
一、四旋翼飞行器的发展历程早在20世纪60年代,美国国防部就开始研制一种可以远距离侦察和无人攻击的,能够垂直起降的飞行器,即直升机无人机。
后来随着电子技术的发展,直升机无人机逐渐淘汰,直到四旋翼飞行器出现。
1970年代,欧洲某个国家开始研制一种四旋翼飞行器,以执行监察、识别突发事件、洪灾救援等多种任务。
1990年代,美国开始研制四旋翼飞行器,主要用于情报收集和巡逻。
而到了21世纪,四旋翼飞行器开始进入了广泛应用的时期,被应用于工业、航拍、救援等不同领域。
二、四旋翼飞行器的工作原理四旋翼飞行器的工作原理就是通过控制各电机的旋转速度实现不同方向的推力,进而控制飞行姿态。
四旋翼飞行器包含四个电机,通过正反转和加减速控制旋翼的旋转速度,以实现飞行。
不同的旋翼间通过协调的控制实现整体运动,达到平稳飞行和各种飞行姿态的控制。
三、四旋翼飞行器的应用四旋翼飞行器在不同领域均有广泛应用,如:1、民用领域主要应用于航拍、农业、物流、救援等。
在航拍领域,四旋翼飞行器可以飞入空旷的天际,实现高清晰度的照片和视频拍摄。
而在农业方面,四旋翼飞行器可以对农作物进行施肥、喷洒农药等工作,提高农业效率。
此外,四旋翼飞行器还被应用于物流配送和救援等领域。
2、军事领域四旋翼飞行器在军事领域的作用主要是情报收集和实施巡逻。
四旋翼飞行器可以远程操控,对敌方情况进行监测和侦察,收集有用信息,并可以执行攻击任务。
四旋翼飞行器飞行控制技术综述

四旋翼飞行器飞行控制技术综述四旋翼飞行器是一种利用四个独立旋转的螺旋桨来实现飞行的航空器。
它可以垂直起降,并且具有灵活的飞行能力,因此在无人机、航拍等领域得到了广泛的应用。
要保证四旋翼飞行器的安全飞行,飞行控制技术起着至关重要的作用。
本文将对四旋翼飞行器的飞行控制技术进行综述,包括飞行原理、飞行控制系统、姿态稳定控制、导航控制、避障技术等方面的内容。
一、飞行原理四旋翼飞行器的飞行原理是利用四个螺旋桨产生的升力来支撑整个飞行器,再通过改变螺旋桨的转速和倾斜角来实现飞行方向和姿态的控制。
螺旋桨的旋转产生的气流通过空气动力学原理产生升力,从而支持飞行器的重量。
通过改变四个螺旋桨的转速和相对倾斜角,可以控制飞行器的上升、下降、向前、向后、向左、向右的运动。
利用螺旋桨的差速旋转可以实现飞行器的姿态控制,从而使得飞行器可以实现各种飞行动作。
二、飞行控制系统飞行控制系统是四旋翼飞行器的核心部件,它由传感器、处理器、执行器等多个部分组成,用于感知环境、执行控制指令,实现飞行器的姿态稳定控制、导航控制和避障等功能。
传感器用于获取飞行器的姿态、位置、速度等信息,包括加速度计、陀螺仪、磁力计、气压计等。
处理器用于处理传感器获取的数据,并根据飞行器的姿态、位置和控制指令来生成执行器的控制信号,执行器包括电动调节器和螺旋桨。
飞行控制系统的核心是飞控芯片,它是飞行控制系统的“大脑”,负责控制飞行器的姿态稳定、导航和飞行动作的执行。
常用的飞控芯片包括Pixhawk、Naze32、Ardupilot等,它们具有强大的计算能力和丰富的控制算法,可以实现飞行器的高度稳定性和精确控制。
三、姿态稳定控制姿态稳定控制是指通过控制飞行器的姿态角度来实现飞行器的稳定飞行。
四旋翼飞行器的姿态包括俯仰角、横滚角和偏航角,分别对应飞行器绕前后轴、左右轴和上下轴的转动姿态。
姿态稳定控制主要通过改变四个螺旋桨的转速和相对倾斜角来实现,可以采用PID控制算法、自适应控制算法等方法来实现。
电赛校赛题目资料

风板控制装置(A题)一、任务设计并制作一个风板控制装置。
该装置能通过控制风机的风量来控制风板完成规定动作,风板控制装置参考示意图见图1。
图1风板控制装置参考示意图二、要求1.基本要求(1)预置风板控制角度(控制角度在45°~135°之间设定)。
由起点开始启动装置,控制风板达到预置角度,过渡过程时间不大于10s,控制角度误差不大于5°,在预置角度上的稳定停留时间为5s,误差不大于1s。
动作完成后风板平稳停留在终点位置上;(2)在45°~135°范围内预置两个角度值(Φ1和Φ2)。
由终点开始启动装置,在10s内控制风板到达第一个预置角度上;然后到达第二个预置角度,在两个预置角度之间做3次摆动,摆动周期不大于5s,摆动幅角误差不大于5°,动作完成后风板平稳停留在起点位置上;(3)显示风板设置的控制角度。
风板从一个状态转变到另一个状态时应有明显的声光提示。
2.发挥部分用细线绳将一个重量为10g物体(可以用10g砝码代替),拴在小长尾金属夹的尾端上,小长尾金属夹与重物的总长度不小于50mm,并整体夹在图1所示风板对应位置上。
(1)预置风板控制角度(控制角度在45°~135°之间设定)。
由起点开始启动装置,控制风板达到预置角度,过渡过程时间不大于15s,控制角度误差不大于5°,在预置角度上的稳定停留时间5s,误差不大于1s,最后控制风板平稳停留在终点位置上;(2)在45°~135°范围内预置两个角度值(Φ1和Φ2)。
由终点开始启动装置,在15s内控制风板到达第一个预置角度上;然后到达第二个预置角度,在两个预置角度之间做4次摆动,摆动周期不大于5s,摆动幅角误差不大于5°,动作完成后风板平稳停留在起点位置上;(3)其他。
三、说明1. 给出的图1仅作参考,风板的外形尺寸要求为:高150mm×宽200mm,厚度和制作材料及风板支架的机械连接方式不做限定;风板上除安装风板转动轴、角度指示针和传感器外,不能安装其他任何装置;风机数量和控制风向方式可自行设计确定;可以设置风板起始位置、终点位置的限位装置,限定风板能在与水平线成30°~150°的夹角内摆动;2. 风板的运动状态,都要通过控制风机的风量来完成,不能受机械结构或其它外力的控制。
四旋翼无人机设计

四旋翼无人机设计四旋翼自主飞行器是一种能够垂直起降、多旋翼式的飞行器,其通过自带电源驱动电机来提供动力。
它在总体布局上属于非共轴式碟形飞行器,与常规旋翼式飞行器相比,因其四只旋翼可相互抵消反扭力矩的优点,而不需要专门的反扭矩桨从而使其结构更为紧凑,能够产生更大的升力。
同时又因其具有灵活性高、要求的飞行空间小、能源利用率高、隐蔽性强以及安全性能高等优势,特别适合在近地面环境(如室内、城区和丛林等)中执行监视、侦查等任务,其在军事(电子战)和民用(通信、气象、灾害监测)方面都有很大的应用前景。
另外,新颖的外形、简单的结构、低廉的成本、卓越的性能及独特的飞行控制方式(通过控制四只旋翼的转速实现飞行控制)使其对广大科研人员具有很强的吸引力,成为国际上新的研究热点。
四旋翼飞行器按照四只旋翼和机架布置的方式其飞行控制平台(机架)可以分为十字模式和X模式。
X模式比十字模式灵活,但是对于姿态测量和控制的算法编程来说,十字模式较X模式简单,更容易实现。
X模式通过同时控制两对旋翼转速的大小来实现飞行控制及姿态的调整,而十字模式只要同时控制一对旋翼的转速就能实现相应的飞行动作。
十字模式容易操作,飞行平稳,综合考虑采用十字模式。
四旋翼自主飞行器是由安装在十字型刚性结构的四个电机作为驱动的飞行器。
控制器通过调节四个电机的转速使四个旋翼间出现特定的转速差从而实现飞行器的各种动作。
由于四旋翼自主飞行器是通过增大或减小四只旋翼的转速达到四个方向升力的变化进而控制飞行器的飞行姿态和位置的稳定,相对于传统的直升机少去了舵机调节平衡、控制方向,并且不用改变螺旋桨的桨距角,使得四旋翼自主飞行器更容易控制。
但是四旋翼自主飞行器有六个状态输出,即是一种六自由度的飞行器,而它却只有四个输入,是一个欠驱动系统。
也正是由于这个原因使得四旋翼自主飞行器非常适合在静态及准静态的条件下飞行。
四旋翼自主飞行器飞行控制系统由飞行控制器、各类测量传感器装置、驱动电机、被控对象(飞行器机体)等部分组成,如图1。
四旋翼飞行器控制系统硬件电路设计

四旋翼飞行器控制系统硬件电路设计首先,在硬件电路设计中,关键是选择合适的传感器。
常用的传感器包括加速度计、陀螺仪和磁力计等。
加速度计用于测量飞行器的线性加速度,陀螺仪用于测量飞行器的角速度,磁力计用于测量飞行器的方向。
这些传感器需要与处理器进行接口连接,并能够提供准确的数据。
因此,在硬件电路设计中,需要选取高性能的传感器,同时设计稳定可靠的电路板。
其次,处理器是控制系统的核心。
处理器的选择应综合考虑性能、功耗和成本等因素。
常用的处理器有单片机和微处理器。
单片机适用于简单的控制任务,如姿态控制和飞行模式切换等。
而微处理器适用于复杂的控制任务,如路线规划和数据处理等。
在硬件电路设计中,处理器需要与传感器和电调进行接口连接,并能够高效地处理控制指令。
此外,处理器还需要具备足够的计算能力和存储空间,以便实现飞行控制算法和数据记录功能。
电调是控制电机转速的关键组件。
通常,四旋翼飞行器需要四个电调以控制四个电机的转速。
电调需要接收处理器发送的PWM信号,并将其转换为适当的电机转速。
在硬件电路设计中,电调需要具备快速响应的能力,并能够输出稳定的PWM信号。
此外,电调还需要有适当的保护机制,以避免过载和短路等故障。
最后,电机是驱动飞行器旋转的关键组件。
电机的选择应综合考虑功率和效率等因素。
常用的电机有无刷电机和有刷电机。
无刷电机具有高效率和长寿命等优点,因此在硬件电路设计中通常选择无刷电机。
电机需要与电调进行接口连接,并能够输出适当的推力。
此外,电机还需要具备足够的扭矩和转速范围,以应对不同的飞行任务。
总之,四旋翼飞行器控制系统硬件电路设计涉及多个组件的选择和接口设计等方面。
在设计过程中,需要综合考虑传感器、处理器、电调和电机等因素,以实现飞行器的控制能力和飞行稳定性。
四旋翼无人机原理

四旋翼无人机原理四旋翼无人机,又称为四轴飞行器,是一种由四个电动马达驱动的无人机器人。
它通过改变四个电动马达的转速和转向来实现飞行、悬停、转向和姿态调整。
四旋翼无人机的原理是基于飞行动力学和控制理论,结合先进的传感器和计算机技术,实现了稳定、灵活、高效的飞行能力。
四旋翼无人机的飞行原理主要包括以下几个方面,飞行动力学、电动马达、飞行控制系统和姿态稳定系统。
首先,飞行动力学是四旋翼无人机飞行的基本原理。
根据牛顿第三定律,四个电动马达产生的推力会使无人机产生向上的升力,从而实现飞行。
同时,通过改变四个电动马达的转速和转向,可以实现飞行器的姿态调整和转向飞行。
其次,四个电动马达是四旋翼无人机飞行的动力来源。
这些电动马达通过旋转螺旋桨产生推力,从而使飞行器产生升力。
同时,电动马达的转速和转向可以通过飞行控制系统进行调整,实现飞行器的姿态控制和飞行方向的调整。
飞行控制系统是四旋翼无人机飞行的关键。
它通过传感器获取飞行器的姿态、速度和位置信息,然后通过计算机进行数据处理和控制指令生成,最终输出到电动马达,实现飞行器的稳定飞行、悬停和转向。
飞行控制系统的设计和优化是保证无人机飞行性能的关键。
最后,姿态稳定系统是四旋翼无人机实现稳定飞行的重要部分。
它通过陀螺仪、加速度计和磁力计等传感器获取飞行器的姿态信息,然后通过飞行控制系统进行姿态调整和稳定控制,保证飞行器在飞行中保持平稳、稳定的飞行状态。
总的来说,四旋翼无人机的飞行原理是基于飞行动力学、电动马达、飞行控制系统和姿态稳定系统的综合应用。
它通过先进的传感器和计算机技术,实现了稳定、灵活、高效的飞行能力,广泛应用于航拍、搜救、农业、环境监测等领域。
四旋翼无人机的发展和应用前景十分广阔,将在未来发挥越来越重要的作用。
四旋翼飞行器飞行控制技术综述

四旋翼飞行器飞行控制技术综述四旋翼飞行器是一种由四个电动马达驱动的多旋翼飞行器,它通过改变四个电动马达的转速来实现飞行器的飞行、俯仰、滚转和偏航的控制。
随着科技的不断发展,四旋翼飞行器的应用范围越来越广,从娱乐飞行、航拍摄影到军事侦察等领域都有广泛的应用。
这些应用对飞行控制技术提出了更高的要求,使得飞行控制技术在不断发展和完善。
本文将对四旋翼飞行器的飞行控制技术进行综述,并介绍其发展现状和未来趋势。
一、四旋翼飞行器的基本结构四旋翼飞行器是一种以四个电动马达为动力的多旋翼飞行器。
它的基本结构包括机身、四个电动马达、螺旋桨和飞行控制系统。
四个电动马达分别安装在飞行器的四个角上,每个电动马达带动一个螺旋桨,通过改变四个电动马达的转速来控制飞行器的飞行、俯仰、滚转和偏航。
飞行控制系统是四旋翼飞行器的核心部件,它包括传感器、处理器和执行器。
传感器用于感知飞行器的姿态、位置和速度等信息,包括加速度计、陀螺仪、磁力计和气压计等。
处理器用于处理传感器采集的信息,并根据飞行器的控制策略生成相应的控制指令。
执行器用于执行处理器生成的控制指令,包括电动马达和螺旋桨。
二、飞行控制技术的发展历程四旋翼飞行器的飞行控制技术发展经历了多个阶段。
最初的四旋翼飞行器采用手动遥控的方式进行飞行控制,需要操纵员具有较高的飞行技能。
随着计算机技术和传感技术的发展,飞行控制系统逐渐引入了自动稳定、自动悬停和自动导航等功能,大大降低了对操纵员的飞行技能要求,并使飞行器的飞行更加稳定和安全。
近年来,随着人工智能技术和无人机技术的飞速发展,四旋翼飞行器的飞行控制技术也得到了进一步的完善。
飞行控制系统不仅能够实现自动稳定和悬停,还可以实现自主飞行、避障、跟随和编队飞行等高级功能。
这些功能使得四旋翼飞行器在无人飞行、军事侦察和应急救援等领域具有更广泛的应用前景。
飞行控制技术的关键技术包括飞行器姿态控制、位置控制、导航控制和避障控制等。
1. 姿态控制技术姿态控制技术是指飞行器在空中保持特定的姿态,包括飞行、俯仰、滚转和偏航。
电子设计大赛四旋翼设计报告最终版精选全文

可编辑修改精选全文完整版四旋翼飞行器〔A 题〕参赛队号:20140057号四旋翼飞行器设计摘要:四旋翼作为一种具有构造特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进展机动,构造简单,易于控制,且能执行各种特殊、危险任务等特点。
因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。
多旋翼无人机飞行原理上比拟简单,但涉及的科技领域比拟广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。
四旋翼无人机的飞行控制技术是无人机研究的重点之一。
它使用直接力矩,实现六自由度〔位置与姿态〕控制,具有多变量、非线性、强耦合和干扰敏感的特性。
此外,由于飞行过程中,微型飞行器同时受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。
因此,研究既能准确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。
一、引言:1.1 题目理解:四旋翼飞行器,顾名思义,其四只旋转的翅膀为飞行的动力来源。
四只旋转翼是无刷电机,因此对于无刷电机的控制调速系统对飞行器的方案一:选择Coldfire系列芯片作为系统控制的主控板,因为在以往队员们做过飞思卡尔智能车竞赛,对此系列的芯片做的比拟熟悉,芯片功能强大,但以往做的核心板较大,所需的电路较多,考虑到四轴飞行器的轻便,故而不太是一个很理想的选择。
方案二:主控板使用STM32。
STM32板子的I/O口很多,自带定时器和多路PWM,可以实现的功能较多,符合实验要求。
Stm32迷你板在体积和重量上也不是很大,对飞机的载重量要求不是很高。
综上所述,我们一致决定使用STM32 MMC10作为此次大学生电子竞赛的主控板。
2.2 飞行姿态的方案论证:方案一:十字飞行方式。
四旋翼飞行器制作方法

四旋翼飞行器制作方法四旋翼飞行器是一种多旋翼飞行器,由四个对称分布的螺旋桨驱动,具备垂直起降和悬停能力。
它在军事、民用、娱乐等领域有广泛的应用,制作四旋翼飞行器可以满足个人飞行兴趣、科学研究、拍摄摄影、物流运输等需求。
下面将介绍四旋翼飞行器的制作方法。
首先,制作四旋翼飞行器需要准备一些必要的器材和材料,包括电机、电调、飞控、无线电遥控器、锂电池、螺旋桨、机架等。
1. 机架的制作机架是支撑整个飞行器的骨架,可以通过购买现成的机架或自行制作。
自行制作机架时,可以使用轻质的材料如碳纤维板或铝合金,根据设计要求切割、钻孔和组装成所需形状。
2. 安装电机和电调将选购的电机安装在机架的四个角上,每个电机安装一个电调。
通过电缆将电机与电调相连接,确保电机能够正常工作并受到电调的控制。
3. 飞控系统的安装飞控是四旋翼飞行器的核心控制系统,负责接收遥控器的指令并控制电机输出推力。
将飞控安装在机架上的中心位置,然后将其与电调连接,确保飞控系统正常工作。
4. 安装无线电遥控器选择适用于飞行控制的无线电遥控器,并将其与飞控系统配对。
遥控器通过无线信号发送指令,控制四旋翼飞行器的起航、降落、悬停、飞行方向等动作。
5. 安装锂电池选择适用于四旋翼飞行器的锂电池,并根据飞行器的功率需求选择合适的电池容量。
将锂电池安装在机架上的合适位置,并使用电缆将其与飞控系统和电调连接。
6. 安装螺旋桨选择适用于飞行器的螺旋桨,并按照电机的转向将螺旋桨安装在机架上的电机上。
确保螺旋桨安装牢固且方向正确,以保证飞行器能够正常运转。
7. 连接电路和调试将飞控系统、电调、电机、无线电遥控器、锂电池等各个部件互相连接,确保电路连接正确。
此外,还需要进行各个系统的校准和参数设置,以确保四旋翼飞行器能够稳定飞行和操控。
最后,完成飞行器的组装后,应进行地面测试和飞行测试,确保飞行器各项功能正常。
在飞行测试中,注意选择合适的场地和条件,确保飞行安全。
飞行器的操控和调校可能需要一些时间和经验,建议初学者在有经验的指导下进行操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年电子设计竞赛四旋翼自主飞行器(G题)2013年9月11日目录摘要关键词 (1)一系统方案 (2)1.1控制系统的选择 (2)1.2飞行姿态控制的论证与选择 (2)1.3电机的选择 (2)1.4高度测量模块的论证与选择 (2)1.5电机调速模块的选择 (2)1.6循迹模块的方案选择 (2)1.7薄铁片拾取的方案的论证与选择 (2)1.8角速度与角加速度测量模块选择 (3)二设计与论证 (3)2.1控制方法设计 (3)2.1.1降落及飞行轨迹控制设计 (3)2.1.2飞行高度控制设计 (4)2.1.3飞行姿态控制设计 (4)2.1.4铁片拾取与投放控制设计 (4)2.2参数计算 (5)三理论分析与计算 (5)3.1Pid控制算法分析..............................................................................................5.3.2飞行姿态控制单元 (6)四电路与程序设计 (7)4.1系统组成 (7)4.2 原理框图 (7)4.3电路图 (8)4.4系统软件与流程图 (9)五测试方案与测试条件 (11)5.1测试方案 (11)5.2测试条件 (11)六结论 (11)附录 (12)附一:元器件明细表 (12)附二:仪器设备清单 (12)附三:源程序 (12)摘要:本系统由数据采集、数据信号处理和飞行姿态和航向控制部分组成。
系统选用STC89C52单片机作为主控芯片,对从MPU-6050芯片读取到的一系列数据进行PID算法处理并给飞行器的电调给出相应指令从而达到对飞行器的飞行姿态的控制。
采用MPU-6050芯片采集四旋翼飞行器的三轴角速度和三轴角加速度数据。
用红外传感器来检测出黑色指示线,以保证飞行器不脱离指定飞行区域及达到指定圆形区域。
利用超声波传感器来检测飞行器与地面的距离,以保证飞行器能越过一米示高线。
利用电磁铁来吸取和投放铁片。
关键词:STC89C52单片机 MPU-6050模块激光传感器循迹电磁铁拾取铁片超声波测距定高 PID算法一系统方案本系统主要由控制模块、薄铁片拾取、高度测量模块、电机调速模块、循迹模块、角速度和角加速度模块组成,下面分别论证这几个模块的选择。
1.1控制系统的选择STC89C52RC单片机作为主控芯片来控制飞行器的飞行姿态与方向。
1.2 飞行姿态控制的论证与选择方案一:单片机将从MPU-6050中读取出来的飞行原始数据进行PID算法运算,得到当前的飞行器欧拉角,单片机得到这个欧拉角后根据欧拉角的角度及方向输出相应的指令给电调,从而达到控制飞行器平稳飞行的目的方案二:单片机将从MPU-6050中读取出来的飞行原始数据进行PID算法运算,得到当前飞行器的四元数,单片机再将数据融合,并对电调发出相应指令,从而达到控制飞行器的飞行姿态的目的。
但四元数法需要进行大量的运算,且运算复杂。
从算法的复杂程度及我们对算法的熟悉程度,我们选择方案一。
1.3电机的选择方案一:采用有刷电机。
有刷电机采用机械转向,寿命短,噪声大,产生电火花,效率低。
它长期使用碳刷磨损严重,较易损坏,同时磨损产生了大量的碳粉尘,这些粉尘落轴承中,使轴承油加速干涸,电机噪声进一步增大。
有刷电机连续使用一定时间就需更换电机内碳刷。
方案二:采用无刷电机。
无刷电机以电子转向取代机械转向。
无机械摩擦,无摩擦,无电火花,免维护且能做到更加密封等特点所以技术上要优于有刷电机。
考虑到各方面,我们采用无刷电机,选用新西达A2212无刷电机。
1.4高度测量模块的论证与选择方案一:采用bmp085气压传感器测量大气压并转换为海拔高度,把当前的海拔测量值减去起飞时的海拔值即得飞机的离地高度。
但芯片价格较贵,误差较大,而且以前也没用过这个芯片。
方案二:采用HC-SR04超声波传感器测量飞行器当前的飞行高度。
考虑到对元件的熟悉程度、元件的价格和程序的编写,选择方案二。
1.5电机调速模块的选择由于本四旋翼飞行器选用的是无刷电机,所以电调只能选用无刷电机的电调,自己做电调需要的时间长,而且可能不稳定,所以直接用的是成品电调,我们选用电机配套的新西达A2212电调。
1.6循迹模块的选择普通的红外传感器检测的距离很近,无法在离地面一米以上的距离检测出地面的黑线,所以我们选择了漫反射远距离激光传感器,来检测指示线。
1.7薄铁片拾取的选择方案一:在飞行器起飞时由系统控制机械臂拾取起铁片,到达B区放松机械臂,投下薄铁片。
缺点:机械臂重量大,对飞行器的飞行姿态影响较大,薄铁片厚度非常小,不易拾取。
方案二:采用电磁铁拾取,用瑞萨MCU控制电磁铁,在飞行器起飞时吸取铁片,到B区后投下铁片。
优点:电磁铁体积小而且有较强的拾取能力而且好操作方便。
综上所述,我们选择用经济又灵活的电磁铁作为薄铁片的拾取工具,采用方案二1.8角速度与加速度测量模块选择方案一:选用MMA7361 角度传感器测量飞行器的的与地面的角度,返回信号给单片机处理,从而保持飞行器的平衡。
方案二:用MPU-6050芯片采集飞行器的飞行数据,过采用MPU-6050整合的3轴陀螺仪、3轴加速器,功能MPU-6000(6050)整合了3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,并为应用开发提供架构化的API。
免除了组合陀螺仪与加速器时之轴间差的问题,减少了大量的包装空间。
综上,选择方案二。
二设计与论证2.1控制方法设计2.1.1降落及飞行轨迹控制由于题中有指示线,所我们采用漫反射红外开关来识别地面的指示线,红外模块将识别指示线后的信号以高低电平的方式传给单片机,单片机对信号做出反应,控制电调,从而控制飞行器飞行轨迹。
程序流程图如图一图一图二2.1.2飞行高度控制飞行高度的采集采用超声波模块来实现,通过超声波发出时开始计时,收4到返回信号时停止计时,单片机利用声音在空气中的传播速度与时间的数学关系来计算出飞行器距离地面的时间,从而控制飞行器的飞行高度达到我们所需的高度。
程序流程图如图二。
2.1.3飞行姿态控制通过MPU6050模块来测量当前飞行器的三轴加速度和三轴角加速度,利用瑞萨单片机的IIC协议从MPU6050中读取出数据,解读飞行器的飞行姿态,并经过PID算法程序来对数据进行处理,得到当前欧拉角的值,并将处理后的信号传给电调,控制电机的转速,从而达到控制飞行器的飞行姿态的目的。
程序流程图如图三。
2.1.4薄铁片拾取与投放控制根据电磁铁的通电具有磁性,断电磁性消失的原理,从A起飞时我们让单片机控制电磁铁通电,让飞行器吸取薄铁片飞向B区,到达B区后让电磁铁断电,从而投下薄铁片,让其落到B区。
程序流程图如图四。
图三图四2.2参数计算本系统最主要的参数计算是对MPU-6050等传感器采集的原始飞行数据进行处理。
单片机从MPU-6050芯片获取的数据是飞行器的三轴角速度和三轴角加速度,MCU对数据进行PID算法处理可以得到飞行器当前的飞行姿态,PID是比例,积分,微分的缩写。
比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti 越小,积分作用就越强。
反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID 调节器。
三理论分析与计算3.1Pid控制算法分析由于四旋翼飞行器由四路电机带动两对反向螺旋桨来产生推力,所以如何保证电机在平稳悬浮或上升状态时转速的一致性及不同动作时各个电机转速的比例关系是飞行器按照期望姿态飞行的关键。
所以这里我们采用到pid控制理论把飞机的当前姿态调整到期望姿态。
Pid 控制是通过姿态采集模块发送回来的数据与期望姿态进行比对,如果存在误差,就对误差进行比例、积分、微分的调整,再将调整后的值加到当前电机上,从而达到调整的目的。
比例调节的反应速度较快,而且调节作用明显,飞机出现俯仰和翻滚时能快速调节回来,但是稳定性较差,往往会调节过火;积分调节可以消除长期误差,排除外界因素的干扰,但是同样会降低系统整体的稳定性,使飞机发生震荡;微分调节可以预测被控设备的将来状态,及时的进行调整,而且对比例调节有抑制作用,加强单比例调节的稳定性,排除调节过度的问题。
所以通过pid 控制可以完全考虑到整个系统的过去、现在、将来,以使系统达到稳定。
3.2飞行姿态控制单元飞行器模拟图如下图,姿态控制是通过陀螺仪模块进行数据的采集,根据它采集回来的俯仰角(pitch ),翻滚角(roll ),四旋翼采用十字型连接,这样的话能明确分离俯仰姿态和翻滚姿态,进行分别控制。
这时如果飞机处于俯仰状态就调机头和机尾的电机,那边高就C(t)减小那边电机的转速,相应的那边低则加大那边电机的转速。
如果飞机处于翻滚状态,则调左右电机。
4.1系统组成本四旋翼飞行系统由瑞萨最小系统板、MPU-6050芯片模块、红外循迹、超声波模块和电磁铁构成,由瑞萨单片机用PID算法处理外围传感器传回来的数据,用处理后的数据来控制飞行器的外围器件从而试飞行器能沿着指示线飞行。
4.2原理框图4.3电路图MPU6050电路图激光传感器测指示线STC89C52MCU电磁铁电调电机超声波模块MPU-6050电源模块电路4.4系统软件与程序流程图本系统程序的编写采用KEIL软件进行程序的编写,用USB ISP程序下载器将编写好的程序烧写入STC89C52单片机,软件界面如下图程序流程图五测试方案与测试条件5.1测试方案将飞行器放在圆形区域A或B,让单片机自主控制飞行器飞行,观察飞行器的飞行高度与飞行方向和时间,若飞行器不能按预定的方案飞行就调整程序的PID参数再进行测试。
5.2测试条件飞行器应该在水平的地面上起飞,0605芯片不能倾斜。
场地应有黑线作为指示线引导飞行器前进六结论1、由于对PID算法不够了解,导致不能够用无刷电调控制电机转动,2、原理图命名严禁重复,同一类器件最好按功能模块的不同明显的加以区分,例如模块1中的电阻命名为R101,R102⋯⋯,模块2中的电阻命名为R201,R202⋯⋯,以此类推;在原理图中制作Library元件时,在放置引脚时,末端的黑色小圆圈一定要朝外,否则将无连接;原理图中的标号一定要正确放置在引脚或连线上,有时看上去连在一起了,其实并未连上;画原理图电气线时,导线要用Place wire,而非Drawing Tools,不然在PCB设计中,装入元件后发现无飞线,在ERC 检查及装入网表时并未报错;用电容滤除噪声信号,达到去耦效果。