2017东城二模数学试题

合集下载

2017-4-东城二模数学理科附答案

2017-4-东城二模数学理科附答案

北京市东城区2016-2017学年度第二学期高三综合练习(二)数学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合2{|40}A x x =-<,则A =R ð(A ){|2x x ?或2}x ³ (B ){|2x x <-或2}x > (C ){|22}x x -<< (D ){|22}x x -#(2)下列函数中为奇函数的是(A )cos y x x =+ (B )sin y x x =+ (C)y =(D )||e x y -=(3)若,x y 满足10,00,x y x y y ì-+?ïï+?íï³ïî,则2x y +的最大值为(A )1- (B )0 (C )12(D )2 (4)设,a b 是非零向量,则“,a b 共线”是“||||||+=+a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(5)已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6=S(A)2716(B)278(C)634(D)632开始数学家秦九韶(约求值的秦九韶算2x =,则程序框图计算的是 (A)5432222221+++++(B)5432222225+++++(C )654322222221++++++ (D )43222221++++AP PAP(7)动点P从点A出发,按逆时针方向沿周长为l的平面图形运动一周,,A P两点间的距离y与动点P所走过的路程x的关系如图所示,那么动点P所走的图形可能是(A)(B)(C)(D)BD(8)据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a L 和123,,,,n b b b b L ,令{|,1,2,,}m mM m a b m n =<=L ,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B p ,现有三种蔬菜,,A B C ,下列说法正确的是(A )若A B p ,B C p ,则A C p(B )若A B p ,B C p 同时不成立,则A C p 不成立(C )A B p ,B A p 可同时不成立 (D )A B p,B A p 可同时成立第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

【北京市东城区】2017届高三下学期二模考试(理)数学试题

【北京市东城区】2017届高三下学期二模考试(理)数学试题

北京市东城区2017届高三下学期二模数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合24{|}0A x x =﹣<,则R A ð=( ) A .2{}2|x x x ≤≥-或B .2{2|}x x x <-或>C .2{|}2x x -<<D .2{|}2x x ≤≤-2.下列函数中为奇函数的是( ) A .cos y x x =+B .sin y x x =+C.yD .xy e=-3.若x y ,满足1000x y x y y -+≥⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A .1-B .0C .12D .24.设,a b 是非零向量,则“,a b 共线”是“||||||a b a b +=+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6S =( ) A .2716B .278C .634D .6326.我国南宋时期的数学家秦九韶(约1202﹣1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5,1,2n v x ===,则程序框图计算的是( )A .5432222221+++++B .5432222225+++++C .654322222221++++++D .43222221++++7.动点P 从点A 出发,按逆时针方向沿周长为1的平面图形运动一周,A ,P 两点间的距离Y 与动点P 所走过的路程X 的关系如图所示,那么动点P 所走的图形可能是( )A .B .C .D .8.据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a ⋯,和123,,,,b b b 令,{|}1,2,,m m M m a b m n ==<,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:,,,,,A B A B C 现有三种蔬菜下列说法正确的是( ) A .,,A B B C A C <<<若则B .,A B BC A C <<<若同时不成立,则不成立 C .,A B B A <<可同时不成立D .,A B B A <<可同时成立二、填空题共6小题,每小题5分,共30分.9.复数i(2i)-在复平面内所对应的点的坐标为_______.10.在极坐标系中,直线cos sin 10ρθθ+=与圆2cos (0)a a ρθ=>相切,则a =_______.11.4,2,4A B 某校开设类选修课门类选修课门每位同学需从两类选修课中共选门,若要求至少选一门B 类课程,则不同的选法共有_______种.(用数字作答)12.如图,在四边形1,45,30,1,2,cos 4ABCD ABD ADB BC DC BCD ∠=︒∠=︒==∠=中,则BD =_______;三角形ABD 的面积为_______.13.在直角坐标系2,4,,xOy l y x F A B =中直线过抛物线的焦点且与该抛物线相交于两点,其中点60,A x l OA ︒=在轴上方.若直线的倾斜角为则_______.14.已知函数{}{}|1|,(0,2]()min |1|,|3|,(2,4]min |3|,|5|,(4,)x x f x x x x x x x ⎧-∈⎪--∈⎨⎪--∈+∞⎩①若()f x a =有且只有一个根,则实数a 的取值范围是_______.②若关于x 的方程()()f x T f x +=有且仅有3个不同的实根,则实数T 的取值范围是_______. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知函数()f x=sin 2cos2()x a x a +∈R . (Ⅰ)若π()26f =,求a 的值;(Ⅱ)若f x ()在π7π,1212⎡⎤⎢⎥⎣⎦上单调递减,求()f x 的最大值. 16.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X 是小明游览期间遇上舒适的天数,求X 的分布列和数学期望; (Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明) 17.如图,在几何体ABCDEF 中,平面A D E A B C⊥平面,四边形ABCD 为菱形,且60,2,,DAB EA ED AB EF EF AB M BC ∠=︒===∥为中点.(Ⅰ)求证:FM BDE ∥平面;(Ⅱ)求直线CF BDE 与平面所成角的正弦值; (Ⅲ)在,CF G BG DE ⊥棱上是否存在点使?若存在,求CGCF的值;若不存在,说明理由.18.设函数2()()e ()x f x x ax a a -=+-∈R .(Ⅰ)当0,()(1,(1))a y f x f ==时求曲线在点-处的切线方程;(Ⅱ)设2()1,0,]2[g x x x t =--∈若对任意的,存在0,2[()])(s f s g t ∈≥使得成立,求a 的取值范围.19.已知椭圆C :22221(0)x y a ba b =+>>的短轴长为,右焦点为(1,0)F ,点M 是椭圆C 上异于左、右顶点,A B 的一点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线2AM x N BN E =与直线交于点,线段的中点为.证明:B EF 点关于直线的对称点在直线MF 上.20.对于12(,,,)n n A a a a =⋯维向量,若对任意1,2,{01},i i i n a a ∈==均有或,则称A 为,,,n T n T A B d A B 维向量.对于两个维向量定义()=1||ni i i a b =-∑. (Ⅰ)若(1,0,1,0,1)(0,1,1,1,0)(,)A B d A B ==,,求的值.(Ⅱ)现有一个5维1231,,,,1(1,1,1,1,1)T A A A A ⋯=向量序列:若且满足:(,1)2i i d A A +=,*i ∈N .求证:该序列中不存在5维T 向量(0,0,0,0,0).(Ⅲ)现有一个12维123T A A A 向量序列:,,,,若112(1,1,,1)A 个且满足:1()i i d A A m +=,,*,1,2,3,m i ∈=N ,若存在正整数j 使得12(0,0,,0)j A 个,j A 为12维T 向量序列中的项,求出所有的m .。

北京市东城区2016-2017学年度高三二模理科数学试题及答案(word版)

北京市东城区2016-2017学年度高三二模理科数学试题及答案(word版)

北京市东城区2016-2017学年度第二学期高三综合练习(二)数学(理科)学校_________班级___________姓名___________考号_________本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合2{|40}A x x,则A R(A ){|2x x 或2}x (B ){|2x x 或2}x(C ){|22}x x (D ){|22}x x(2)下列函数中为奇函数的是(A )cos y x x =+ (B )sin y x x =+ (C )yx (D )||e x y -=(3)若,x y 满足10,00,x y xy y,则2x y 的最大值为(A )1 (B )0 (C )12(D )2 (4)设,a b 是非零向量,则“,a b 共线”是“||||||a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(5)已知等比数列{}n a 为递增数列,n S 是其前n 15172a a ,244a a ,则6=S(A )2716 (B )278 (C )634 (D ) 632APP否 1v v x1i i输出v1i n0iAP(6)我国南宋时期的数学家秦九韶(约12021261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5n,1v ,2x ,则程序框图计算的是(A )5432222221 (B )5432222225 (C )654322222221(D )43222221(7)动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是(A ) (B ) (C ) (D )BD(8)据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a 和123,,,,n b b b b ,令{|,1,2,,}m m M m a b m n =<=,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B ,现有三种蔬菜,,A B C ,下列说法正确的是(A )若A B ,B C ,则A C(B )若A B ,B C 同时不成立,则A C 不成立 (C )A B ,B A 可同时不成立 (D )AB ,BA 可同时成立第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

东城区高三二模数学理科试卷

东城区高三二模数学理科试卷

北京市东城区2016-2017学年度第二学期高三综合练习(二)数学 (理科)学校_________班级___________姓名___________考号_________本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合2{|40}A x x =-<,则A =R ð(A ){|2x x ?或2}x ³ (B ){|2x x <-或2}x >(C ){|22}x x -<< (D ){|22}x x -#(2)下列函数中为奇函数的是(A )cos y x x =+ (B )sin y x x =+ (C)y =(D )||e x y -=(3)若,x y 满足10,00,x y x y y ì-+?ïï+?íï³ïî,则2x y +的最大值为(A )1- (B )0 (C )12(D )2 (4)设,a b 是非零向量,则“,a b 共线”是“||||||+=+a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(5)已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6=S (A )2716 (B )278 (C )634 (D ) 632APAP(6)我国南宋时期的数学家秦九韶(约12021261-)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5n =,1v =,2x =,则程序框图计算的是 (A )5432222221+++++ (B )5432222225+++++ (C )654322222221++++++ (D )43222221++++(7)动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是(A ) (B ) (C ) (D )B D(8)据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a L 和123,,,,n b b b b L ,令{|,1,2,,}m m M m a b m n =<=L ,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B p ,现有三种蔬菜,,A B C ,下列说法正确的是(A )若A B p ,B C p ,则A C p(B )若A B p ,B C p 同时不成立,则A C p 不成立(C )A B p ,B A p 可同时不成立 (D )A B p,B A p 可同时成立第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2017届北京市东城区高三5月综合练习(二模)理科数学试题Word版含答案

2017届北京市东城区高三5月综合练习(二模)理科数学试题Word版含答案

北京市东城区2017届高三5月综合练习(二模)数学理试题第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|40A x x =-<,则A C R = ( )A .{|2x x ≤-或}2x ≥B .{|2x x <-或}2x >C .{}|22x x -<<D .{}|22x x -≤≤ 2. 下列函数中为奇函数的是( )A .cos y x x =+B .sin y x x =+ C.y =.x y e -=3. 若,x y 满足1000x y x y y -+≥⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A .1-B .0C .12D .2 4. 设,a b 是非零向量,则“,a b 共线”是“a b a b +=+”的( ) A .充分而不必要条件 B .必要而不充分条件 C. 充分必要条件 D .既不充分也不必要条件5. 已知等比数列{}n a 为递增数列,n S 是其前n 项和.若152417,42a a a a +==,则6S =( ) A .2716 B .278 C. 634 D .6326. 我国南宋时期的数学家秦九韶(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输人的5,1,2n x υ===,则程序框图计算的是( )A .5432222221+++++B .5432222225+++++ C. 654322222221++++++ D .43222221++++7. 动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是( )A .B . C. D .8. 据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,...,n a a a a 和123,,,...,n b b b b ,令{}|,1,2,...,m m M m a b m n =<=,若M 中元索个数大于34n ,則称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B ,现有三种蔬菜,,A B C 下列说法正确的是( )A .若,AB BC ,则 A C B .若,A B BC 同时不成立,则A C 不成立C. ,AB BA 可同时不成立 D .,AB B A 可同时成立第Ⅱ卷(共110分)二、填空题(每题6分,满分30分,将答案填在答题纸上)9. 复数()i 2i -在平面内所对应的点的坐标为 .10. 在极坐标系中,直线cos sin 10ρθθ+=与圆()2cos 0ρθ=>a a 相切,则a = . 11. 某校开设A 类选修课4门,B 类选修课2门,每位同学需从两类选修课中共选4门.若要求至少选一门B 类课程,则不同的选法共有 种.(用数字作答)12. 如图,在四边形ABCD 中,145,30,1,2,cos 4ABD ADB BC DC BCD ∠=∠===∠=,则BD = ;三角形ABD 的面积为 .13.在直角坐标系中xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于,A B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则OA = .14. 已知函数()(]{}(]{}()1,0,2min 1,3,2,4min 3,5,4,x x f x x x x x x x ⎧-∈⎪⎪=--∈⎨⎪--∈+∞⎪⎩. ①若()f x a =有且只有1个实根,则实数a 的取值范围是 .②若关于x 的方程()()f x T f x +=有且只有3个不同的实根,则实数T 的取值范闱是 . 三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.已知函数()2cos 2(f x x a x a =+⋅∈R). (1)若26π⎛⎫=⎪⎝⎭f ,求a 的值; (2)若()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,求()f x 的最大值. 16. 小明计划在8月11日至8月20日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,0040以下为舒适,000040~60为一般,0060以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(1)求小明连续两天都遇上拥挤的概率;(2)设X 是小明游览期间遇上舒适的天数,求X 的分布列和数学期望; (3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)17. 如图,在几何体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 为菱形,且60,2,//,DAB EA ED AB EF EF AB M ∠====为BC 中点.(1)求证://FM 平面BDE ;(2)求直线CF 与平面BDE 所成角的正弦值;(3)在棱CF 上是否存在点G ,使BG DE ⊥?若存在,求CGCF的值;若不存在,说明理由. 18. 设函数()()2(xf x x ax a e a -=+-⋅∈R ).(1)当0=a 时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围.19. 已知椭圆()2222:10x y C a b a b+=>>的短轴长为()1,0F ,点M 时是椭圆C 上异于左、右顶点,A B 的一点. (1)求椭圆C 的方程;(2)若直线AM 与直线2x =交于点N ,线段BN 的中点为E .证明:点B 关于直线EF 的对称点在直线MF 上.20. 对于n 维向量()12,,...,n A a a a =,若对任意()1,2,...,i n ∈均有0i a =或1i a =,则称A 为n 维T 向量. 对于两个n 维T 向量,A B 定义()1,ni ii d A B a b==-∑.(1)若()()1,0,1,0,1,0,1,1,1,0A B ==, 求(,)d A B 的值;(2)现有一个5维T 向量序列:123,,,...A A A 若()11,1,1,1,1A =且满足:()1,2,i i d A A i N *+=∈,求证:该序列中不存在5维T 向量()0,0,0,0,0.(3) 现有一个12维T 向量序列:123,,,...A A A 若()1121,1,...,1A =且满足:()1,,,1,2,3,...i i d A A m m N i *+=∈=,若存在正整数j 使得()120,0,...,0,j j A A =为12维T 向量序列中的项,求出所有的m .北京市东城区2017届高三5月综合练习(二模)数学理试题参考答案一、选择题1-4: ABCB 5-8: DACC二、填空题9.()1,2 10.1 11.14 12.21()1,+∞ ()()4,22,4--三、解答题15. 解:(1)因为2cos 22666f a πππ⎛⎫=⋅+⋅⋅=⎪⎝⎭,所以31222a +⋅=,所以1a =.(2)由题意()22f x x x ⎫=⎪⎭()2x ϕ=+.其中tan ϕ=,所以T π=,且712122πππ-=,所以当12x π=时,max 126y f ππϕ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,所以()23k k Z πϕπ=+∈.所以tan 3a ϕ===,所以()23f x x π⎛⎫=+ ⎪⎝⎭,所以()f x的最大值为16. 解:设i A 表示事件“小明8月11日起第i 日连续两天游览主題公园”()1,2,...9i =,根据题意,()19i P A =,且()i j A A i j =∅≠.(1)设B 为事件“小明连续两天都遇上拥挤”.则47B A A =,所以()()()()474729P B P A A P A P A ==+=.(2)由题意,可知X 的所有可能取值为0,1,2.且()()()()()478478103P X P A A A P A P A P A ===++=;()()()()()()35693569419P X P A A A A P A P A P A P A ===+++=; ()()()()1212229P X P A A P A P A ===+=,所以X 的分布列为故X 的期望()280123999E X =⨯+⨯+⨯=.(3)从8月16日开始连续三天游览舒适度的方差最大.17. 解:(1)取CD 中点N ,连接,MN FN ,因为,N M 分别为,CD BC 中点,所以//MN BD ,又BD ⊂平面BDE 且MN ⊄平面BDE .所以//MN 平面BDE ,因为//,2EF AB AB EF =,所以//,EF CD EF DN =,所以四边形EFND 为平行四边形,所以//FN ED .又ED ⊂平面BDE 且FN ⊄平面BDE .所以//FN 平面BDE .又FNMN N =,所以平面//MFN 平面BDE ,又FM ⊂平面MFN ,所以//FM 平面BDE .(2) 取AD 中点O ,连结,EO BO ,因为EA ED =,所以EO AD ⊥,因为平面ADE ⊥平面ABCD ,所以EO ⊥平面,ABCD EO BO ⊥,因为,60AD AB DAB =∠=,所以ADB ∆为等边三角形,因为O 为AD 中点,所以AD BO ⊥.因为,,EO BO AO 两两垂直,设4AB =,以O 为原点,,,OA OB OE 为,,x y z轴,如图建立空间直角坐标系O xyz -.由题意,得()()()()2,0,0,,,2,0,0A B C D --,((()()(,1,3,3,23,2,0,23,0,E F CF DE BE -=-==-.设平面BDE 的法向量为(),,n x y z =,则0n BE n DE ⎧⋅=⎪⎨⋅=⎪⎩,即00y z x -=⎧⎪⎨=⎪⎩,令1z =,则1,y x ==所以()3,1,1n=-,设直线CF 与平面BDE 所成角为α,10sincos ,10CF n α==,所以直线CF 与平面ADE. (3)设G 是CF 上一点,且[],0,1CG CF λλ=∈,因此点()()34,,34,G BG λλ-+=-,由0BG DE ⋅=,解得49λ=. 所以在棱CF 上存在点G 使得BG DE ⊥,此时49CG CF =. 18. 解:(1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13x f x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅()[]222x e x a x a -=-+--()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e +⋅≥,得24a e ≥-;②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e =+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-;③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.19. 解:(1)由题意,得2221b c a b c ⎧=⎪=⎨⎪=+⎩,解得2a =,所以椭圆C 的方程为22143x y +=. (2)“点B 关于直线EF 的对称点在直线MF 上”等价于“EF 平分MFB ∠”.设直线AM 的方程为()()20y k x k =+≠,则()()2,4,2,2N k E k .设点()00,M x y ,由()222143y k x x y ⎧=+⎪⎨+=⎪⎩,得()2222341616120k x k x k +++-=,得2020286341234k x k k y k ⎧-+=⎪⎪+⎨⎪=⎪+⎩.①当MF x ⊥轴时,01x =,此时12k =±,所以()()31,,2,2,2,12M N E ⎛⎫±±± ⎪⎝⎭,此时,点E 在BFM ∠的角平分线所在的直线1y x =-或1y x =-+上,即EF 平分MFB ∠;②当12k ≠±时,直线MF 的斜率为0204114MF y k k x k ==--,所以直线MF 的方程为()244140kx k y k +--=,所以点E 直线MF 的距离d ==()22241241k k k BE k +===+,即点B 关于直线EF 的对称点在直线MF 上. 20. 解:(1)由于()()1,0,1,0,1,0,1,1,1,0A B ==,由定义()1,ai ii d A B a b==-∑,可得(),4d A B =.(2)反证法:若结论不成立,即存在一个含5维T 向量序列123,,,...m A A A A ,使得()()11,1,1,1,1,0,0,0,0,0m A A ==,因为向量()11,1,1,1,1A =的每一个分量变为0,都需要奇数次变化,不妨设1A 的第()1,2,3,4,5i i =个分量1变化了121n -次之后变成0,所以将1A 中所有分量1变化为0共需要()()()()()123452*********n n n n n -+-+-+-+-()12345221n n n n n =++++--次,此数为奇数,又因为()1,2,i i d A A i N *+=∈,说明i A 中的分量有2个数值发生改变,进而变化到1i A +,所以共需改变数值()21m -次,此数为偶函数,所以矛盾.所以该序列中不存在5维T 向量()0,0,0,0,0. (3)此时1,2,3,4,5,6,7,8,9,10,11,12m =.。

北京市东城区2017-2018学年度第二学期初三年级统一测试(二模)数学试卷及答案

北京市东城区2017-2018学年度第二学期初三年级统一测试(二模)数学试卷及答案

数学试卷 第1页(共17页)东城区2017-2018学年度第二学期初三年级统一测试(二) 数 学 试 卷 2018.5学校______________班级______________姓名_____________考号____________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的 1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为A. 205万B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组 158 159 160 160 160 161 169 乙组 158159160161161163165以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 5. 在平面直角坐标系xOy 中,若点()3,4P 在O 内,则O 的半径r 的取值范围是数学试卷 第2页(共17页)A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图3 8. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃的直径,且AB ⊥CD . 入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是A. A →O →DB. C→A→O → BC. D →O →CD. O→D→B→C 二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________. 10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符OAD数学试卷 第3页(共17页)合条件的点P 的坐标________________.11. 如图,在△ABC 中,AB =AC ,BC =8.是△ABC 的外接圆,其半径为5. 若点A在优弧BC 上,则tan ABC ∠的值为_____________.第11题图 第15题图 12. 抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5 时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .O数学试卷 第4页(共17页)15. 如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、 y 轴上,30APO ∠=︒ .先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到 线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()332sin 60+2--︒-数学试卷 第5页(共17页)18. 解不等式()()41223x x --->,并把它的解集表示在数轴上.19. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF . (1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;数学试卷 第6页(共17页)(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围. 23. 如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D .CF 为O 的切线交BM 于点F .(1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:数学试卷第7页(共17页)数学试卷 第8页(共17页)描点、画函数图象:如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.26.在平面直角坐标系中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点是轴上的动点,过点作垂直于轴的直线,直线与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形;xOy xOy P x P x l l P数学试卷 第9页(共17页)②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则. 基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;PH PF=数学试卷 第10页(共17页)②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.东城区2017-2018学年度第二学期初三年级统一测试(二)数学试题卷参考答案及评分标准 2018.5一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题 2分)9. x >0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 2 12. ()1,1m -- 13. ()2 1.8250x x ++= 14. 120 ;3 000 15. 16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)=3-217.解:原式 --------------------------------------------------------------------4分-------------------------------------------------------------------------------------------------- 5分18. 解:移项,得()1213x -<, 去分母,得 23x -<, 移项,得x <5.∴不等式组的解集为x <5. --------------------------------------------------------------------3分--------------------------------5分数学试卷 第11页(共17页)19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分 (2) ABC Rt △中,8AC =,6BC =, ∴10AB =.∵DE 平分AB , ∴5AE =. ∵ADE ABC △∽△,∴DE AEBC AC = . ∴568DE = . ∴154DE =. ---------------------------------------------------------------------5分 20. 解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>, 解得k k ≠<9且0. ----------------------------------------------------------------------2分(2) ∵k 是小于9的最大整数,∴=8k .此时的方程为28610x x -+=. 解得11=2x ,21=4x . ---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠. ∵ECF α=∠,数学试卷 第12页(共17页)∴ BCD ECF ∠=∠. ∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到, ∴=CE CF .在BEC △和DFC △中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分 (2) 解:∵四边形ABCD 是菱形, ∴ACB ACD ∠=∠,AC BD ⊥. ∴+90ACB EBC ∠=︒∠. ∵=EB EC ,∴=EBC BCE ∠∠. 由(1)可知,∵=EBC DCF ∠∠,∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠. ∴90ACF =︒∠.∴AC CF ⊥. ---------------------------------------------------------------------5分 22. 解:(1)12k =,22P ⎭,,或22P ⎛- ⎝⎭,;---------------------------3分 (2) 1k ≥. ---------------------------------------------------------------------5分23. (1)证明:∵AB 是O 的直径,∴90ACB ∠=︒.∴90DCB ∠=︒.∴90CDB FBC ∠+∠=︒. ∵ AB 是O 的直径,MB AB ⊥, ∴MB 是O 的切线. ∵CF 是O 的切线,数学试卷 第13页(共17页)∴FC FB =. ∴=FCB FBC ∠∠.∵90FCB DCF ∠+∠=︒ , ∴=CDB DCF ∠∠.∴=CF DF . ---------------------------------------------------------------------3分(2)由(1)可知,ABC △是直角三角形,在Rt ABC △中,=10AB ,=6BC ,根据勾股定理求得=8AC . 在Rt ABC △和Rt ADB △中, A A ACB ABD ∠=∠⎧⎨∠=∠⎩,,∴Rt ABC △∽Rt ADB △. ∴AB AC AD AB =. ∴10810AD = . ∴252AD =. 由(1)知,∵=CF DF ,=CF BF , ∴=DF BF . ∵=AO BO ,∴ OF 是ADB △的中位线.∴125.24OF AD ==---------------------------------------------------------------------5分24. 解:(1)四; ---------------------------------------------------------------------1分数学试卷 第14页(共17页)(2)如图: ---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分25. 解:42y x x ⎛⎫=+⎪⎝⎭;----------------------------------------------1分 810,; --------------------------------------------------------3分 如图; ----------------------------------------------------------4分 28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠,得 0--35164-3a b a b =⎧⎨=+⎩,,解得12a b ==-,. ∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',数学试卷 第15页(共17页)则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '. 设直线AB '的表达式为y mx n =+, 把点(10)-,和(45)-,分别代入y mx n =+, 得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--. --------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ', 则 'PN PN =. ∵PM PN <, ∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--,可求得点C 的横坐标为2. 又点B 的横坐标为4, ∴点P 的横坐标Px 的取值范围为24P x <<. --------------------------------------------------7分数学试卷 第16页(共17页)27. 解:(1)120°. ---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒, ∴60.ACP BCP ∠+∠=︒ ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒ ∴18060.CPD BPC ∠=︒-∠=︒ ∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒, ∴.ACD BCP ∠=∠ 在ACD △和BCP △中,AC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分 (3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N . ∵=60ADB ADC PDC ∠∠-∠=︒, ∴=60.ADB CDB ∠∠=︒ ∴=60.ADB CDB ∠∠=︒数学试卷 第17页(共17页)∴=2BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CDBN =+)2AD CD =+22==----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF = ∴.AF d CF≤≤ ∵=4AF CF,∴d 4≤---------------------------------------------------------------------------------- 5分② 1.t ≤ ------------------------------------------------------------------------8分。

2017-4-东城二模数学理科附答案

2017-4-东城二模数学理科附答案

2017-4-东城二模数学理科附答案D(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知等比数列{}na为递增数列,n S是其前n项和.若1517 2a a,244a a,则6=S(A)2716(B)278(C)634(D)632否 1v v x1i i 1i ni开(6)我国南宋时期的数学家秦九韶(约12021261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5n ,1v ,2x ,则程序框图计算的是 (A )5432222221(B )5432222225(C )654322222221(D )43222221APPAP(7)动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的P 所走过的路程x 动点P 所走的图形可能是(A)(B)(C)(D)(8)据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,na a a a 和123,,,,nb b b b ,令{|,1,2,,}mm M m ab m n =<=,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B ,现有三种蔬菜,,A B C ,下列说法正确的是 (A )若A B ,B C ,则A C(B )若A B ,B C 同时不成立,则A C 不成立(C )A B ,BA 可同时不成立(D )AB ,B A 可同时成立第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)复数i(2i)在复平面内所对应的点的坐标为 . (10)在极坐标系中,直线cos 3sin 10与圆2cos (0)a a 相切,则a _______.(11)某校开设A 类选修课4门,B 类选修课2门,每位同学需从两类选修课中共选4门.若要求至少选一门B 类课程,则不同的选法共有____种.(用数字作答)D(12)如图,在四边形ABCD 中,45ABD ∠=,30ADB ∠=,1BC =,2DC =,1cos 4BCD ∠=,则BD 的面积为___________.(13)在直角坐标系xOy 中,直线l 过抛物线24yx的焦点F ,且与该抛物线相交于,A B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则||OA .(14)已知函数|1|,(0,2],()min{|1|,|3|},(2,4],min{|3|,|5|},(4,).x x f x x x x x x x -∈⎧⎪=--∈⎨⎪--∈+∞⎩① 若()f x a =有且只有一个根,则实数a 的取值范围是_______.② 若关于x 的方程()()f x T f x +=有且仅有3个不同的实根,则实数T 的取值范围是_______.三、解答题共6小题,共80分。

【北京东城区】2017届高三下学年期二模考试(理)数学年试题

【北京东城区】2017届高三下学年期二模考试(理)数学年试题
43 (Ⅱ)证明:“点B关于直线EF的对称点在直线MF上”等价于“EF平分MFB ”.
设直线 AM的方程为y k(x 2)(k 0),则N(2,4k), E(2,2k).
y k(x 2)
设点
M(x0
,
y0
),由

x
2
4

y2 3
1
,整理得(4k 2
3)x2
16k2x 16k2
A7
A8
)

P(
A4
)

P(
A7
)

P(
A8
)

1 3
,
P(X 1) P(A3
A5
A6
A9
)

P(
A3
)

P(
A5
)

P(
A6
)

P(
A9
)

4 9
,
P(X 2) P(A1
A2 )

P( A1)

P( A2 )

2 9

所以 X 的分布列为
X
0
1
2
1
4
2
P
3
9
9
故 X 的期望 E(X ) 0 1 1 4 2 2 8 . 3 9 99
- 3 - / 11
18.解:(Ⅰ)当 a 0时, f(x) x2ex ,
∴ f (x)( x2 2x)ex , f ( 1)= 3e .
又∵ f( 1) e ,
∴曲线 y f (x)在点(1, f (1)) 处的切线方程为:
y e 3e(x 1),即3ex y 2e 0 .

2017东城二模数学试卷

2017东城二模数学试卷
cm
2
.(结果保留π )
16. 小明在他家里的时钟上安装了一个电脑软件,他设定当钟声在n 点钟响起后,下一次则在(3 n − 1) 小时后响起,例如钟声第 一次在3 点钟响起,那么第2 次在(3 × 3 − 1
= 8)


小时后,也就是11 点响起;第3 次在(3 × 11 − 1

= 32)
小时后,即7 点响 点.(如图
A.
(2, −3)
B.
(2, 3)
C.
(3, 2)
D.
(3, −2)
7. 将一副直角三角板如图放置,使含30 ∘ 角的三角板的直角边和含45 ∘ 角的三角板一条直角边在同一条直线上,则∠1 的度数为 ( ).
A.
75

B.
65

C.
45

D.
30

8. 关于x 的一元二次方程x2 + ax − 1 A. 没有实数根
= x
,△BEF 的周长为y ,
A.
B.
C.
D.
二. 填空题(本题共18分,每小题3分)
1 x − 3
11. 若分式
在实数范围内有意义,则实数x 的取值范围是

12. 请你写出一个多项式,含有字母a ,并能够在有理数范围内用平方差公式进行因式分解,此多项式可以是

13. 已知一次函数y1
= k 1x + 5
x
3
的解.
根据以上方程与函数的关系,如果我们知道函数y =
x
3
+ 2x
2
− x − 2
的图象与x 轴交点的横坐标,即可知道方程
+ 2x

7.东城2017二模答案.docx

7.东城2017二模答案.docx

2016-2017学年北京市东城区初三年级综合能力测试(二〉数学试卷参考答案及评分标准2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题8分,第29题7分)17・计算:-2 +(7T - 2017)° - 4 cos 60° + V27解:原式=2 + 1-2 + 3的 ....... 4分= 3^3 4-1・................ 5分18.解:解①得戏1,解②得x> -3. .............. 2分・•・不等式组的解集是:-3<x^l ................................. 4分将不等式组的解集表示在数轴上,_I_5_|_!_I_A_!_I_I_-5 -4 -3 -2 -1 0 1 2 3 4 5............... 5分19.解:错误的步骤是①和②........ 2分正确的化简过程:原式=4x2 -1-x(%+5)二4无2 — 1 —兀2 — 5x20•解:由题意得4P是ABAC的平分线,过点D作DE丄AB于E .................... 2分又V ZC=90°,・・.DE=CD・ .............. 3分・•・ /\ABD的面积15x4=30............... 5分21・解:(1)由题意可求反比例函数的解析式为由点A(V3,l), AB丄A•轴可知,Z・・・04丄08,・・・ZBOC=60°・・•・可求出BC=3・・••点〃的坐标为(能,一3) ............ 2分(2)点E的坐标为(-能1),在反比例函数y二逅的图象上.X理由:当x = _品时,代入y主,得到)=一1 ..................................... 5分22. 解:设乙工程队每天能完成绿化的面积是兀in?,甲工程队每天能完成绿化的面积是加!!?.根据题意得:--— = 4.x 2x解得:兀=50・经检验兀=50是原方程的解.则甲工程队每天能完成绿化的面积是50x2=100 (m2)・答:甲、乙两工程队每天能完成绿化的面积分别是100m2, 50m2.......................... 5分23. 解:(1)四边形EBGD是菱形.理由:TEG垂直平分BD,:・EB=ED, GB=GD.:.ZEBD=ZEDB・I ZEBD=ZDBC f・•・ ZEDF=ZGBF.又•:DF=BF, ZEFD=ZGFB f:・/\EFD 竺4GFB,:・ED=BG,:・BE=ED=DG=GB,・・・四边形EBGD是菱形. ...... 3分(2)过点D作DH丄BC于点H・・・・DG〃AB,A ZDGC=ZABC=30°・在Rt/\DGH中,可求D G =迟,GH = \.在RtADGH中,可求CH=乜.:.GC = 1 + V3 ・........... 5分24. 解:(1) 10010%二100・ .......... 1 分(2) 100-10-38-24-8=20;补充图如下:用户用水量频数分布直方團.......... 3分(3) 6X峠严二4. 08 (万)・答:该地区6万用户中约有4. 08万用户的用水全部享受基本价格...... 5分25. (1)证明:连接ODTCD是OO切线,・•・ ZODC=90°.即ZODB+ZBDC=90°.VAB为(DO的直径,・•・ ZADB=90°.即ZODB+ZADO=90°.:.ZBDC=ZADO.•・・OA=OD,・・・ZADO=ZA・・・・ZBDC=ZA・(2) TCE丄AE,:.ZE=ZADB=90°.:.DB//EC.:.ZDCE=ZBDC.VZBDC=ZA,・•・ ZA=ZDCE.I ZE=ZE,・•・ /\AEC^/\CED.:.Eg=DE・AE・:.16=2 (2+AD)・:.AD=6.26.解:(1)m = 0,画出函数的图象如下:.......... 2分.......... 4分.......... 5分(2)可求抛物线的顶点坐标为(加,■加+1)・不妨令加二0或1,得到两点坐标为(0,1)和(1,0)设直线解析式为y = kx + b,可求阡-1,[h = \.直线的解析式为j=-x+l. .......... 5分(3)m的取值范围是-3W加W1・ .......... 7分28. (1) APBC是等边三角形.证明:在正方形ABCD中,BC=CD, 又CD=CP,.・・ BC=CP,TP在MN上,・•・ PB=PC.・・・PB=BC=PC.:.APBC是等边三角形........... 2分(2)①补全图形如图所示.由B4=BP, ZCBP=60° ,可求得ZAPB=15°,又ZBPC=60° ,可得ZAPC=135°・根据对称性,ZAPC=ZAPC=135°・②证法一:连AC, CC・由①可得ZCPC=90°・由对称性可知PC=PC,从而可求得AC=AC=CC=42AB.从而△ACC为等边三角形;由AC=CC, DA=DC, CD=CD, 可证△ ACD 竺/\CCD,可得ZACD=ZCCD=30°・根据对称性 ZACC=ZACC 9 ZPCC=ZPCC f 从而 ZACP =ZACP 9 由△ABC 为等腰直角三角形,可得ZACB=45° , 由APBC 为等边三角形,可得ZBCP=60° , 从而ZACP=ZACP=15° ・ 所以ZPCD=ZACD- ZACP=i5° ・ .......... 8 分 证法二: 连AC, CC ・ 由 BA=BP 9 ZCBP=60° ,可求得ZAPB=75° , 又ZBAC=45° ,可得ZCAP=30° ・ 根据对称性,ZCAP=ZCAP=30°,从而ZCAC=60° ; 由对称性可知 AC=AC 9从而△ACC 为等边三角形; 以下同证法一. 29•解:(1)①PQ=逅点P, Q 的“相关圆”的面积5兀; ②依题可得12+«2=(A /5)2,解得〃 =±2・ 即点P 的坐标为(0, 1),且PQ=l. 因为点。

2017东城高三二模数学理

2017东城高三二模数学理

北京市东城区2016-2017学年度第二学期高三综合练习(二)数学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合2{|40}A x x =-<,则A =R ð(A ){|2x x ?或2}x ³ (B ){|2x x <-或2}x > (C ){|22}x x -<< (D ){|22}x x -#(2)下列函数中为奇函数的是(A )cos y x x =+ (B )sin y x x =+ (C)y =(D )||e x y -=(3)若,x y 满足10,00,x y x y y ì-+?ïï+?íï³ïî,则2x y +的最大值为(A )1- (B )0 (C )12(D )2 (4)设,a b 是非零向量,则“,a b 共线”是“||||||+=+a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(5)已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6=S (A )2716 (B )278 (C )634 (D ) 632开始12021261-)在他的着作《数书九章》中提出了多项式求值若输入的5n =,1v =,(A )5432222221+++++ (B )5432222225+++++ (C )654322222221++++++ (D )43222221++++(7)动点P 从点A 出发,按逆时针方向沿周长为l y 与动点P所走过的路程x 的关系如图所示,那么动点P (A ) (B ) (CD(8)据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a L 和123,,,,n b b b b L ,令{|,1,2,,}m m M m a b m n =<=L ,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B p ,现有三种蔬菜,,A B C ,下列说法正确的是(A )若A B p ,B C p ,则A C p(B )若A B p ,B C p 同时不成立,则A C p 不成立(C )A B p ,B A p 可同时不成立 (D )A B p,B A p 可同时成立第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京市东城区2016-2017学年度高三二模理科数学试题及答案(word版)

北京市东城区2016-2017学年度高三二模理科数学试题及答案(word版)

试卷第1页,共8页绝密★启用前北京市东城区2016-2017学年度高三二模理科数学试题及答案(word 版)试卷副标题考试范围:xxx ;考试时间:60分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、设是向量,则“”是“”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2、据统计某超市两种蔬菜连续天价格分别为和,令,若中元素个数大于,则称蔬菜在这天的价格低于蔬菜的价格,记作:,现有三种蔬菜,下列说法正确的是A .若,,则B .若,同时不成立,则不成立C .,可同时不成立试卷第2页,共8页D .,可同时成立3、动点从点出发,按逆时针方向沿周长为的平面图形运动一周,两点间的距离与动点所走过的路程的关系如图所示,那么动点所走的图形可能是A .B .C .D .4、我国南宋时期的数学家秦九韶(约)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实试卷第3页,共8页例.若输入的,,,则程序框图计算的是A .B .C .D .5、已知等比数列为递增数列,是其前项和.若,,则A .B .C .D .6、若满足,则的最大值为( )A .B .C .D .7、下列函数中为奇函数的是( )试卷第4页,共8页A .B .C .D .8、已知集合,则A .或B .或C .D .试卷第5页,共8页第II 卷(非选择题)二、填空题(题型注释)9、已知函数①若有且只有一个根,则实数的取值范围是_______.②若关于的方程有且仅有个不同的实根,则实数的取值范围是_______.10、在直角坐标系中,直线过抛物线的焦点,且与该抛物线相交于 两点,其中点在轴上方.若直线的倾斜角为,则______.11、如图,在四边形中,,,,,,则_________;三角形的面积为___________.12、某校开设类选修课门,类选修课门,每位同学需从两类选修课中共选门.若要求至少选一门类课程,则不同的选法共有____种.(用数字作答)13、在极坐标系中,直线与圆相切,则__________.试卷第6页,共8页14、复数在复平面内所对应的点的坐标为_________.三、解答题(题型注释)15、对于维向量,若对任意均有或,则称为维向量. 对于两个维向量定义.(1)若, 求的值;(2)现有一个维向量序列:若且满足:,求证:该序列中不存在维向量.(3) 现有一个维向量序列:若且满足:,若存在正整数使得为维向量序列 中的项,求出所有的.16、已知椭圆的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.(Ⅰ)求椭圆的方程; (Ⅱ)若直线与直线交于点,线段的中点为.证明:点关于直线的对称点在直线上.17、设函数.(Ⅰ)当时,求曲线在点处的切线方程;试卷第7页,共8页(Ⅱ)设,若对任意的,存在使得成立,求的取值范围.18、如图,在几何体中,平面平面,四边形为菱形,且,,∥,为中点.(Ⅰ)求证:∥平面;(Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)在棱上是否存在点,使?若存在,求的值;若不存在,说明理由.19、小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%—60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率; (Ⅱ)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)试卷第8页,共8页20、已知函数().(Ⅰ)若,求的值;(Ⅱ)若在上单调递减,求的最大值.参考答案1、D2、C3、C4、A5、D6、C7、B8、A9、10、11、12、13、14、15、(1)(2)不存在(3)16、(1)(2)见解析17、(1).(2)或.18、(1)见解析(2)(3)19、(1)(2)(3)从月日开始连续三天游览舒适度的方差最大.20、(1)(2)【解析】1、试题分析:由无法得到,充分性不成立;由,得,两向量的模不一定相等,必要性不成立,故选D.【考点】充要条件,向量运算【名师点睛】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.2、特例法:例如蔬菜连续天价格为,蔬菜连续天价格分别为时,,同时不成立,故选C.点睛:本题主要考查了“新定义”问题,属于中档题.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.在该题中,可以采取特例法,直接根据定义得到结果.3、由题意可知:对于、,当位于,图形时,函数变化有部分为直线关系,不可能全部是曲线,由此即可排除、,对于,其图象变化不会是对称的,由此排除,故选C.点睛:本题考查的是函数的图象与图象变化的问题.在解答的过程当中充分体现了观察图形、分析图形以及应用图形的能力.体现了函数图象与实际应用的完美结合,在解答时首先要充分考查所给四个图形的特点,包括对称性、圆滑性等,再结合所给,两点连线的距离与点走过的路程的函数图象即可直观的获得解答.4、∵输入的,,,故,满足进行循环的条件,;满足进行循环的条件,;满足进行循环的条件,;满足进行循环的条件,;满足进行循环的条件,;不满足进行循环的条件,故输出的值为,故选A.5、∵数列为等比数列且,∴,又∵且为递增数列,∴,,则公比,故,故选D.6、由约束条件,作出可行域如图:由,解得,化目标函数为直线方程的斜截式,得,由图可知,当直线过点时,直线在轴上的截距最大,最大,此时,故选C.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7、A和C为非奇非偶函数,为偶函数,令,定义域为,,故为奇函数,故选B.8、由得:,则或,故选A.9、①作出函数的图象,有且只有一个根等价于的图象与有一个交点,故可得,即的取值范围是;②方程有且仅有个不同的实根等价于的图象与的图象有3个交点,而的图象是将的图象向左或向右平移个单位,故可得的取值范围是.10、抛物线的焦点的坐标为,∵直线过,倾斜角为,∴直线的方程为:,即,代入抛物线方程,化简可得,∴,或,∵A在轴上方,故,则,则,故答案为.11、在中,由余弦定理可得:,则;在中,,,由正弦定理可得,则故答案为,面积为.12、可分为以下两类:①选一门类课程:;②选一门类课程:,则至少选一门类课程不同的选法共有种,故答案为.13、直线的直角坐标方程为,圆的直角坐标方程为,∵直线与圆相切,∴圆心到直线的距离为,解得,故答案为1.点睛:本题主要考查了极坐标方程与直角坐标方程之间的转化,以及直线与圆的位置关系,难度一般;主要是通过,,将极坐标方程转化为直角坐标方程,即可得圆与直线的方程,圆与直线相切等价于圆心到直线的距离等于半径,利用点到直线的距离即可得到结果.14、∵,则其在复平面内所对应的点的坐标为,故答案为.15、试题分析:(Ⅰ)根据的定义可求得其值;(Ⅱ)利用反证法,向量的每一个分量变为,都需要奇数次变化,根据,得出矛盾;(Ⅲ)根据题意可得.试题解析:(Ⅰ)由于,,由定义,可得.(Ⅱ)反证法:若结论不成立,即存在一个含维向量序列,使得,.因为向量的每一个分量变为,都需要奇数次变化,不妨设的第个分量变化了次之后变成,所以将中所有分量变为共需要次,此数为奇数.又因为,说明中的分量有个数值发生改变,进而变化到,所以共需要改变数值次,此数为偶数,所以矛盾.所以该序列中不存在维向量.(Ⅲ)此时.16、试题分析:(Ⅰ)由短轴长为,得,结合离心率及可得椭圆的方程;(Ⅱ)“点关于直线的对称点在直线上”等价于“平分”,设出直线的方程为,可解出,的坐标,联立直线与椭圆的方程可得点坐标,分为当轴时,即可求得的角平分线所在的直线方程,可得证,当时,利用点到直线的距离可求出点到直线的距离,即可得结果.试题解析:解:(Ⅰ)由题意得解得,所以椭圆的方程为.(Ⅱ)“点关于直线的对称点在直线上”等价于“平分”.设直线的方程为,则.设点,由得,得①当轴时,,此时.所以.此时,点在的角平分线所在的直线或,即平分.②当时,直线的斜率为,所以直线的方程为,所以点到直线的距离.即点关于直线的对称点在直线上.17、试题分析:(Ⅰ)由,得出的解析式,求切线方程,即先求在处的值为切线的斜率,由点斜式求出切线方程即可;(Ⅱ)将题意等价于在区间上,的最大值大于或等于的最大值”利用单调性可求出在上的最大值,在利用分类讨论的思想分为,,三种情形,求出其最大值,再进行比较即可.试题解析:解:(Ⅰ)当时,因为,所以,.又因为,所以曲线在点处的切线方程为,即.(Ⅱ)“对任意的,存在使得成立”等价于“在区间上,的最大值大于或等于的最大值”.因为,所以在上的最大值为.令,得或.①当,即时,在上恒成立,在上为单调递增函数,的最大值为,由,得.②当,即时,当时,,为单调递减函数,当时,,为单调递增函数.所以的最大值为或,由,得;由,得.又因为,所以.③当,即时,在上恒成立,在上为单调递减函数,的最大值为,由,得,又因为,所以.综上所述,实数的值范围是或.点睛:本题考查导数知识的运用,考查导数的几何意义,考查函数的极值,考查函数的最值,考查学生分析解决问题的能力,属于中档;求切线斜率的步骤:第一步确定切点;第二步求斜率,即求曲线上该点的导数;第三步利用点斜式求出直线方程;对于任意及存在问题主要转化为最值问题进行比较.18、试题分析:(Ⅰ)取中点,连结,利用面面平行平面∥平面,得到线面平行∥平面;(Ⅱ)取中点,连结,,先证两两垂直,故可以为原点,为轴,建立空间直角坐标系,求出的方向向量,面的法向量,利用可得结果;(Ⅲ)设是上一点,且,根据共线可得的坐标,结合数量积为0,可得结果.试题解析:(Ⅰ)取中点,连结.因为分别为中点,所以∥.又平面且平面,所以∥平面,因为∥,,所以∥,.所以四边形为平行四边形.所以∥.又平面且平面,所以∥平面,又,所以平面∥平面.又平面,所以∥平面.(Ⅱ)取中点,连结,.因为,所以.因为平面平面,所以平面,.因为,,所以△为等边三角形.因为为中点,所以.因为两两垂直,设,以为原点,为轴,如图建立空间直角坐标系,由题意得,,,,,,,,,.设平面的法向量为,则即令,则,.所以.设直线与平面成角为,所以直线与平面所成角的正弦值为.(Ⅲ)设是上一点,且,,因此点..由,解得.所以在棱上存在点使得,此时.点睛:本题主要考查了线面平行的判定,利用空间向量求空间角以及探究性问题在立体几何中的体现,常见的证明线面平行的方法有:1、利用三角形的中位线;2、构造平行四边形;3、通过面面平行得到线面平行等;直线的方向向量与平面的法向量所成的角满足,对于线线垂直转化为向量垂直,即数量积为0.19、试题分析:(Ⅰ)设表示事件“小明8月11日起第日连续两天游览主题公园”()且,通过观察上表可知两天都遇上拥挤为,故可得其概率;(Ⅱ)可知的所有可能取值为,计算出,,,求出分布列,运用数学期望求解即可;(Ⅲ)根据方差的意义,仔细观察表即可得结果.试题解析:设表示事件“小明8月11日起第日连续两天游览主题公园”().根据题意,,且.(Ⅰ)设为事件“小明连续两天都遇上拥挤”,则.所以.(Ⅱ)由题意,可知的所有可能取值为,,,.所以的分布列为故的期望.(Ⅲ)从月日开始连续三天游览舒适度的方差最大.20、试题分析:(Ⅰ)将代入,可得,故而可得的值;(Ⅱ)利用辅助角公式将其化为,故可得其周期,结合三角函数的性质可得该函数在当时,函数最大,故而可求得辅助角的值,进而得到,故可求得函数的最大值.试题解析:(Ⅰ)因为, 所以,所以.(Ⅱ)由题意,其中.所以,且,所以当时,. 所以,所以,,所以. 所以的最大值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市东城区2017--2017学年第二学期初三综合练习(二)数 学 试 卷下面各题均有四个选项,其中只有一个是符合题意的.1. 21-的绝对值是 A. 21 B. 21- C. 2 D. -22. 下列运算中,正确的是A .235a a a += B .3412a a a ⋅= C .236a a a =÷ D .43a a a -=3.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是A .18 B . 13 C . 38 D . 354.下列图形中,既是..轴对称图形又是..5. 若一个正多边形的一个内角等于150°,则这个正多边形的边数是A .9B .10C .11D .12则在这次活动中,该班同学捐款金额的众数和中位数是A .30,35B .50,35C .50,50D .15,7.已知反比例函数2k y x-=的图象如图所示,则一元二次方程22(21)10x k x k --+-=根的情况是 A .没有实根 B . 有两个不等实根 C .有两个相等实根 D .无法确定8.用min{a ,b }表示a ,b 两数中的最小数,若函数}1,1m in{22x x y -+=,则y 的图象为D C B AA BC D二、填空题(本题共16分,每小题4分) 9. 反比例函数ky x=的图象经过点(-2,1),则k 的值为_______. 10. 已知一个几何体的三视图如图所示,则该几何体是 .11. 如图,将三角板的直角顶点放置在直线AB 上的点O 处. 使斜边CD ∥AB ,则∠a 的余弦值为__________.12. 如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过 部分的面积(即阴影部分面积)为 . 三、解答题(本题共30分,每小题5分)13. 先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中2x =.14. 解分式方程: 11322x x x-+=--.AH BOC 1O1H 1A1C15.如图,点A 、B 、C 的坐标分别为(3,3)、(2,1)、(5,1),将△ABC 先向下平移4个单位,得△A 1B 1C 1;再将△A 1B 1C 1沿y 轴翻折,得△A 2B 2C 2. (1)画出△A 1B 1C 1和△A 2B 2C 2; (2)求线段B 2C 长.16. 如图,点D 在AB 上,DF 交AC 于点E ,CF AB ∥,AE EC =. 求证:AD CF =.17. 列方程或方程组解应用题为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的54还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.AB CDEFy x18.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点Q 的坐标为(0,2). (1)求直线QC 的解析式;(2)点P (a ,0)在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3∶1两部分,求出此时a 的值.四、解答题(本题共20分,每小题5分)19. 如图,在梯形ABCD 中,AD //BC ,BD 是∠ABC 的平分线. (1)求证:AB =AD ;(2)若∠ABC =60°,BC =3AB ,求∠C 的度数ABCD20. 如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 上一点,且∠AED =45︒. (1) 试判断CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为3,sin ∠ADE =65,求AE 的值.21.某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l 和图2. (1)第四个月销量占总销量的百分比是_______; (2)在图2中补全表示B 品牌电视机月销量的折线图;(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.图1 图2图4F E D C BA22. 如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A 的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究. (1)请在图4中画出拼接后符合条件的平行四边形; (2)请在图2中,计算裁剪的角度(即∠ABM 的度数).图1五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a . (1)若方程有实数根,试确定a ,b 之间的大小关系;(2)若a ∶b =21222x x -=,求a ,b 的值;(3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A 在点C 的左侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点,试求3x -y 的最大值.图1O E D CB A R Q P 图2O E D C B A 24. 如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿CB 方向平移得到的,连结AE ,AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,并证明你的结论; (2)如图2,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段BP 的长为何值时,以点P 、Q 、R 为顶点的三角形与△BOC 相似?25. 如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.北京市东城区2017--2017学年第二学期初三综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分)三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解: 原式222441444x x x x x =+++--- ………………3分23x =- . ………………4分当x =, 原式2271533244⎛=-=-=⎝⎭. ………………5分14.(本小题满分5分) 解:32121=-+--x x x ………………1分 去分母得 x-1+1=3(x-2)解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3. ………………5分15.(本小题满分5分) 解:(1)A 1 点的坐标为(3,-1),B 1点的坐标为(2,-3),C 1点的坐标为(5,-3);A 2 点的坐标为(-3,-1),B 2点的坐标为(-2,-3),C 2点的坐标为(-5,-3).图略,每正确画出一个三角形给2分.(2)利用勾股定理可求B 2C =………………5分16.(本小题满分5分) 证明:∵ CF AB ∥,∴ ∠A =∠ACF , ∠ADE =∠CFE . -------2分在△ADE 和△CFE 中, ∠A =∠ACF , ∠ADE =∠CFE , AE EC =,ABCD EF∴ △ADE ≌△CFE . --------4分 ∴ AD CF =. ------5分17.(本小题满分5分)解:设小刚家4、5两月各行驶了x 、y 千米. --------------------------1分依题意,得 ⎪⎩⎪⎨⎧=+-=.2601.01.0,10054y x x y ----------------------------3分 解得 ⎩⎨⎧==.1100,1500y x -------------------------------4分答:小刚家4月份行驶1500千米,5月份行驶了1100千米. -----------5分18.(本小题满分5分)解:(1)由题意可知 点C 的坐标为(1,1).…………………………………1分设直线QC 的解析式为y kx b =+. ∵ 点Q 的坐标为(0,2),∴ 可求直线QC 的解析式为2y x =-+.…………………………………2分 (2)如图,当点P 在OB 上时,设PQ 交CD 于点E ,可求点E 的坐标为(2a,1). 则522AP AD DE a ++=+,332CE BC BP a ++=-. 由题意可得 5323(3)22a a +=-.∴ 1a =. …………………………………4分 由对称性可求当点P 在OA 上时,1a =-∴ 满足题意的a 的值为1或-1. …………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)证明:∵BD 是∠ABC 的平分线,∴ ∠1=∠2.∵ AD //BC ,∴∠2=∠3. ∴ ∠1=∠3.∴AB=AD . ---------------------2分(2)作AE ⊥BC 于E ,DF ⊥BC 于F .∴ EF=AD=AB .ABCD123E FBA∵ ∠ABC =60°,BC =3AB , ∴ ∠BAE =30°.∴ BE =21AB . ∴ BF =23AB=21BC .∴ BD=DC .∴ ∠C =∠2.∵ BD 是∠ABD 的平分线, ∴ ∠1=∠2=30°.∴ ∠C =30°. -------------------------5分20.(本小题满分5分)解:(1)CD 与圆O 相切. …………………1分 证明:连接OD ,则∠AOD =2∠AED =2⨯45︒=90︒. …………………2分 ∵四边形ABCD 是平行四边形,∴AB //DC .∴∠CDO =∠AOD =90︒.∴OD ⊥CD . …………………3分 ∴CD 与圆O 相切.(2)连接BE ,则∠ADE =∠ABE .∴sin ∠ADE =sin ∠ABE =65. …………………4分∵AB 是圆O 的直径,∴∠AEB =90︒,AB =2⨯3=6.在Rt △ABE 中,sin ∠ABE =AB AE =65.∴AE =5 .21.(本小题满分5分)解:(1)30%; ……………………2分 (2)如图所示. ……………………4分(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. …………………5分 22.(本小题满分5分)解:(1)将图4中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的□ABCD .…………………2分(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30.∵ 纸带宽为15,∴ sin ∠ABM =151302AM AB==.∴∠AMB =30°. …………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.(本小题满分7分) 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴ Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0. ∵ 0,0>>b a ,∴ a+b >0,a-b ≥0.∴ b a ≥. …………………………2分(2) ∵ a ∶b =2,∴ 设2,a k b ==.解关于x 的一元二次方程22430x kx k ++=,得 -3x k k =-或.当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去).∴ 4,a b ==…………………………5分(3) 当4,a b ==2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4). 设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6 ……………7分24. (本小题满分7分)解:(1)四边形ABCE 是菱形.证明:∵ △ECD 是△ABC 沿BC 方向平移得到的,∴ EC ∥AB ,EC =AB . ∴ 四边形ABCE 是平行四边形. 又∵ AB =BC ,∴四边形ABCE 是菱形. ……………2分321GRQPOEDC BA(2)①四边形PQED 的面积不发生变化,理由如下: 由菱形的对称性知,△PBO ≌△QEO , ∴ S △PBO = S △QEO∵ △ECD 是由△ABC 平移得到的, ∴ ED ∥AC ,ED =AC =6. 又∵ BE ⊥AC , ∴BE ⊥ED∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △BED=12×BE ×ED =12×8×6=24. ……………4分②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与△COB 相似. ∵∠2是△OBP 的外角, ∴∠2>∠3. ∴∠2不与∠3对应 . ∴∠2与∠1对应 .即∠2=∠1,∴OP =OC =3 .过O 作OG ⊥BC 于G ,则G 为PC 的中点 . 可证 △OGC ∽△BOC . ∴ CG :CO =CO :BC . 即 CG :3=3:5 .∴ CG =95.∴ PB =BC -PC =BC -2CG =5-2×95=75 .∴ BD =PB +PR +RF +DF =x +185+x +185=10.∴ x =75∴ BP =75. ……………7分25.(本小题满分8分) 解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y=ax 2+bx +2.则⎩⎨⎧=++=++02390224b a b a解得 ⎪⎪⎩⎪⎪⎨⎧=-=3432b aH∴ 224233y x x =-++.……………2分 (2)由224233y x x =-++=228(1)33x --+.∴ 顶点坐标为G (1,83).过G 作GH ⊥AB ,垂足为H .则AH =BH =1,GH =83-2=23.∵ EA ⊥AB ,GH ⊥AB ,∴ EA ∥GH .∴GH 是△BEA 的中位线 . ∴EA =3GH =43. 过B 作BM ⊥OC ,垂足为M . 则MB =OA =AB .∵ ∠EBF =∠ABM =90°, ∴ ∠EBA =∠FBM =90°-∠ABF . ∴ R t △EBA ≌R t △FBM . ∴ FM =EA =43. ∵ CM =OC -OM =3-2=1, ∴ CF =FM +CM =73.……………5分 (3)要使四边形BCGH 的周长最小,可将点C 向上 平移一个单位,再做关于对称轴对称的对称点C 1,得点C 1的坐标为(-1,1). 可求出直线BC 1的解析式为1433y x =+. 直线1433y x =+与对称轴x =1的交点即为点H ,坐标为(1,53). 点G 的坐标为(1,23).……………8分。

相关文档
最新文档