Saber仿真开关电源设计

合集下载

Saber电源仿真--基础篇[

Saber电源仿真--基础篇[

Saber电源仿真——基础篇电路仿真作为电路计算的必要补充和论证手段,在工程应用中起着越来越重要的作用。

熟练地使用仿真工具,在设计的起始阶段就能够发现方案设计和参数计算的重大错误,在产品开发过程中,辅之以精确的建模和仿真,可以替代大量的实际调试工作,节约可观的人力和物力投入,极大的提高开发效率。

Saber仿真软件是一个功能非常强大的电路仿真软件,尤其适合应用在开关电源领域的时域和频域仿真。

但由于国内的学术机构和公司不太重视仿真应用,所以相关的研究较少,没有形成系统化的文档体系,这给想学习仿真软件应用的工程师造成了许多的困扰,始终在门外徘徊而不得入。

本人从事4年多的开关电源研发工作,对仿真软件从一开始的茫然无知,到一个人的苦苦探索,几年下来也不过是了解皮毛而已,深感个人力量的渺小,希望以这篇文章为引子,能够激发大家的兴趣,积聚众人的智慧,使得我们能够对saber仿真软件有全新的认识和理解,能够在开发工作中更加熟练的使用它,提高我们的开发效率。

下面仅以简单的实例,介绍一下saber的基本应用,供初学者参考。

在saber安装完成之后,点击进入saber sketch,然后选择file—> new—>schematic,进入原理图绘制画面,如下图所示:在进入原理图绘制界面之后,可以按照我们自己的需要来绘制电路原理图。

首先,我们来绘制一个简单的三极管共发射极电路。

第一步,添加元器件,在空白处点击鼠标右键菜单get part—>part gallery有两个选择器件的方法,上面的左图是search画面,可以在搜索框中键入关键字来检索,右图是borwse画面,可以在相关的文件目录下查找自己需要的器件。

通常情况下,选择search方式更为快捷,根据关键字可以快速定位到自己想要的器件。

如下图所示,输入双极型晶体管的缩写bjt,回车确定,列表中显示所有含有关键字bjt的器件,我们选择第三个选择项,这是一个理想的NPN型三极管,双击之后,在原理图中就添加了该器件。

Saber仿真开关电源设计

Saber仿真开关电源设计

2.0 Specifications
The following specifications will be used to design the power converter.
2.1 Input Specifications
Line Input Pin(max) = Pout(max) Eff = 30/.85 150Vdc, ± 6V 35 Watts
2.2 Output Specifications
Vout Vout(ripple) Iout Iout(ripple) Pout(max) = (15V)(2A) 15Vdc ≤ 25mV p-p 50mA to 2A ≤100mA p-p 30 Watts
2.3 Other Specifications
Efficiency Switching Frequency ≥ 85% 200KHz (derived)
Page 3 of 32
®
3.0 Step-By-Step Design Process
This section details the steps necessary to design the power converter.
Page 5 of ห้องสมุดไป่ตู้2
®
The input filter capacitor value can be found in two ways Input Capacitor Value - Method 1 C = (Idc)(T3) / Vr Idc = Pin(max) / Vdc = 35W / 150V = .233A Vr = (2)(Vpeak-Vdc) = (2)(11.3) = 22.6V T3 = Time the capacitor must deliver its energy to the circuit Solving for T3: T3 = t1 + t2 t1 = (1/4)(1/f) where f = input frequency = 60Hz = (1/4)(1/60) = 4.166 msec Note: Most text books at this point assume that the input ripple is small and therefore that t2 ≅ t1 which would yield T3 = 4.166 msec + 4.166 msec = 8.33 msec However, this is not the case in many designs. Therefore we need to use the following equations to calculate t2: Referring to FIGURE 1: Vmin = Vpeak(Sinθ) θ= Sin-1 Vmin Vpeak

基于Saber的开关电源设计与仿真

基于Saber的开关电源设计与仿真

压: =Z ( ) . 【 / 】 m 力 一 式中: = 5V, =5 = 1 1 V; 3; 0

2 . V, 5
=08 V 因此 ,输 出稳 定后 的控 制电压 = .5
O0
10 O
20 0
3 00
40 0
5O O
6O 0
刀 + /m 2 x ( + . ) 5 = . 2 . ( ) = . 3 5 0 5 10 0 9 如果电路不经 V 5 1 8/ 7 5
图 1 见, 可 经过 2 0 左右 , 出电 5 s 输 压 稳定 于 1 这 与设计 的指标 一致 . 5 V, 因仿 真 时输 入 电压 与 控 制 电压稳 定 不 变 ,输 出 电压 也稳定 不变 . 实 际 但 电路 会 因输 入 电压 的 波 动 而 导致 输 出 电压 变化 【.由 图 1可见 ,输入 电 4 】
O 引 言
近年来 ,随着 电子 电路 仿真技 术应 用领域 的不 断扩 展 ,对 仿真 技术 也不 断提 出新 的要 求 ,如增 强仿真 的可靠 性和 准确性 ,提 高仿 真和建模 效率 等[. 1 为满 足这 些要求 ,相继 推 出 了一 系列 的仿 真 软件 【. 】 2 】 Sbr a e 是全 球最 先进 的 ,也是 唯一 的多技 术 、多 领域 的系统 仿真 软件产 品 ,它 已成 为混合 信号 、混合技 术设计 和验 证工 具 的业 界标 准 ,可用 于电子 、电力 电子 、机 电一体化 、机 械 、光 电 、光学 、控 制等类 型 系 统构成 的混 合 系统仿 真.它可兼 容模 拟 、数 字 、控 制量 的混合 仿真 ,便 于在不 同层面 上分析 和解 决 问题.
“n u” ip t ,点击 “ 编辑 ” ,在输 入域 中 输人 “ s2 ,点 击 “ K”按 钮 . ue” O 仿 真时 , 这就 通过选 择开关 将交 流 电压

Saber仿真电源案例详解

Saber仿真电源案例详解

file://E:\设计相关\saber专辑\Saber Power.htm
2006-3-19
Saber Power
页码,3/5
电源变压器设计的三种解决方案:
·器件模型法:Saber软件自带大量的变压器模型,以适应不同的磁心材料 (如3c2、3c6、3c8 等)、
磁心形状 (如EC、EP、EI、POT、SQUARE、TOROID、UI、UU、ETD等) 以及线圈的不同端口数目。
协同仿真功能:
Saber 的协同仿真器将 Saber 的混合信号分析同 Mentor Graphics 公司 ModelSim、Mo delSim/PLUS 或 Cadence 的 Verilog-XL 的纯数字仿真能力结合起来。这个接口使得 Avant! 的 Saber 仿真器拥有同其它设计环境中用的工业标准 VHDL 及 Verilog 仿真器协同仿真的优势。 这些设计环境包括 Avant!的 SaberSketch、Mentor Graphics、Cadence 和 Innoveda 等。 仿真输出的结果在 SaberScope 波形分析器中按时间排列起来,这使你更容易观察并对照模拟及 数字信号的数据。
模拟/数字边界的接口:
Saber 混合仿真产品在模拟/数字边界应用了 Avant!特殊的 Hypermodel 接口模型来使设计 的数字部分在数模接口处有着正确的电路特性。Hypermodel 是在网表产生时自动加到设计中去 的,使得同模拟器件相连的数字管脚具有精确的模拟电路仿真特性。对于 TTL,CMOS,ECL 等 各种不同工艺的标准逻辑管脚,Saber 提供给您至少 3500 多种 Hypermodel。这些 Hypermo del 可以被修改来同用户自定义的数字特性相匹配。Hypermodel 都是用 MAST 语言来完成的(而 不象其竞争产品一样将数模接口写死在设计中),这就意味着如果库中不存在,你可以创建自己的 Hypermodel 库。

开关电源仿真

开关电源仿真

开关电源中变压器的Saber仿真辅助设计一:反激一、Saber在变压器辅助设计中的优势:1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。

主要功率级指标是相当接近真实的,细节也可以被充分体现。

2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。

3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。

从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。

4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。

附件下载磁芯手册.XLS二、Saber 中的变压器我们用得上的Saber 中的变压器是这些:(实际上是我只会用这些)分别是:xfrl 线性变压器模型,2~6绕组xfrnl 非线性变压器模型,2~6绕组单绕组的就是电感模型:也分线性和非线性2种线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。

需要注意的是,k 为0。

99 时,漏感并不等于lp 或者ls 的1/100。

Saber在电源系统设计仿真中的应用[1]

Saber在电源系统设计仿真中的应用[1]

SABER在电源系统设计仿真中的应用北京才略科技有限公司二零壹零年肆月未经许可 请勿复制全部或者部分文档©才略科技 版权所有 文档名称:Saber 在电源系统设计仿真中的应用 文档编号:Saber ‐DY ‐001 文档版本:v1.0 文档类别:详细技术资料 密 级:目 录1. 电源设计面临的挑战 (1)1.1.1. 仿真模型库 (2)1.1.2. 收敛性能 (2)1.1.3. 变压器设计 (2)1.1.4. 仿真速度 (2)1.1.5. 分析功能 (2)2. 基于SABER的电源设计解决方案 (3)2.1. Saber简介 (3)2.1.1. 完备的电子、电气设计支持 (3)2.1.2. 模型的开放性及建模工具 (4)2.1.3. 强大的优化及分析能力 (4)2.2. Saber在电源设计中的特点 (5)2.2.1. 丰富的器件模型 (5)2.2.2. 电源变压器设计的三种解决方案 (7)2.2.3. 多种补偿电路解决方案 (8)2.2.4. 多种专利算法 (8)2.2.5. 精确的分析精度 (9)2.3. Saber的主要接口说明 (9)2.3.1. 针对数模混合仿真的接口 (9)2.3.2. 针对控制系统设计的接口 (9)2.3.3. 针对CAD软件的接口 (10)2.3.4. HIL仿真 (10)3. 与其他仿真软件的对比 (10)3.1. Saber与Pspice (11)3.1.1. 总揽 (11)3.1.2. 仿真器 (11)3.1.3. 模型库 (12)3.1.4. 前后端处理能力 (13)3.1.5. 分析设置与操作 (14)3.1.6. 外部接口机协同仿真 (15)3.2. Saber与Matlab (16)3.2.1. 总揽 (16)3.2.2. 仿真器 (16)3.2.3. 模型库与建模手段 (19)3.2.4. 使用环境 (20)4. 电源设计的案例 (21)4.1. 功率变化器的全面仿真 (21)4.1.1. 原理图及主要器件 (21)4.1.2. 仿真结果分析 (22)4.1.3. Saber仿真的优点 (23)4.2. 汽车充电系统中电池/发电机的测定 (24)5. 关于才略科技 (24)1.电源设计面临的挑战在电子产品迅速发展的今天,电源越来越显示出其重要作用,它被广泛应用于计算机、通信、航天航空、消费类电子等各方面。

Saber仿真在开关电源产品设计中的应用

Saber仿真在开关电源产品设计中的应用

Saber仿真在开关电源产品设计中的应用
充电状态时,最低电压为42V
Saber仿真在开关电源产品设计中的应用
驱动波形和谐振电流波形如下
Saber仿真在开关电源产品设计中的应用
谐振电容电压波形
Saber仿真在开关电源产品设计中的应用
从以上仿真可以看出,在所有工作区间,开 关频率最低为180kHz(58V满载输出时)。 谐振电容的电压最大有效值为366V(58V满 载输出时)。 谐振电感电流和励磁电感电流均在58V满载输 出时达到最大值。 以上结论和相关数据,对于磁性器件损耗计 算和仿真,谐振电容选型,开关频率参数设 定等具有指导性意义。
Saber仿真在开关电源产品设计中的应用 在所有的解决方案中,平均电流控制模式的CCM BOOST PFC电路应用最为成熟,广泛应用于中大功 率电源场合。 但是,一般单路CCM BOOST PFC电路在1~3kW的 功率范围内可以达到最佳的设计效果。在3kW以上 的应用中,单路PFC电路的优化设计将变得困难。 在此背景下,交错并联PFC电路引起大家的关注和 重视。其每个并联支路的设计思路与单路PFC电路 完全相同,因此可以获得体积,布局和热设计的优 化设计结果。而两路之间错相180°控制,开关纹 波可以相互抵消,因此可以简化输入EMI滤波器的 设计。
Saber仿真在开关电源产品设计中的应用
负载动态电压波形(更改431补偿电容为47nF,3842 COMP 端电阻为2k)
负载动态调整时间缩小到2ms左右,电压过冲降到15.4V
Saber仿真在开关电源产品设计中的应用
本文由于写作时间的关系,不再对环路进行 详细的计算和仿真。 关于环路补偿部分的计算和仿真,请参考本 人在21世纪电源网论坛发的文章《环路补 偿—计算和仿真》。 反激电路在DCM模式下的传递函数在张兴柱 博士的公司网站上()可以找 到相关资料。

推挽电路 Saber 仿真实例

推挽电路  Saber 仿真实例

Saber仿真实例稳压管电路仿真 (1)带输出钳位功能的运算放大器 (2)5V/2A的线性稳压源仿真 (5)半桥推挽电路的开环仿真 (7)使用Saber 仿真35W AC-DC 反激电源设计 (21)使用Saber 仿真35W AC-DC 反激电源设计(续 I) (23)使用Saber 仿真35W AC-DC 反激电源设计(续 II) ........................................ 2006-07-2726稳压管电路仿真今天是俺在网博电源网上开始写Blog的第一天,一直没想好写点什么,正好论坛上有网友问我在Saber环境中如何仿真稳压管电路,就以稳压管电路仿真做为俺在网博上的第一篇Blog吧。

稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。

下面就介绍一个简单例子,仿真电路如下图所示:在分析稳压管电路时,可以用TR分析,也可以用DT分析。

从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。

因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示:从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。

需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输出足以超出稳压管工作范围的电流。

带输出钳位功能的运算放大器运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路, 其放大倍数是5,稳压二极管1N5233用于钳位输出电压.真结果如下图所示:从仿真结果可以看出,当输入电压超出一定范围时, 输出电压被钳位. 输出上限时6.5V, 下限是-6.5V. 电路的放大倍数A=-5.注意:1. lm258n_3 是Saber中模型的名字, _3代表了该模型是基于第三级运算放大器模板建立的.2. Saber软件中二极管器件级模型的名字头上都带字母d, 所以d1n5233a代表1n5233的模型.5V/2A的线性稳压源仿真下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A的输出能力。

开关电源电路中拓扑电感的Saber仿真辅助设计

开关电源电路中拓扑电感的Saber仿真辅助设计

开关电源电路中拓扑电感的Saber仿真辅助设计一、(输入输出)滤波网络在电路中的地位拓扑电感(变压器)是拓扑需要,滤波电感是纹波需要,只有当拓扑电感不足以满足纹波要求时,才使用滤波电感(增加LC滤波网络)。

这意味着:1、如果拓扑电感满足纹波要求,可以不要滤波电路。

2、当拓扑电感不能满足纹波要求时,才另外单独考虑滤波电路。

3、拓扑电感的主要任务是应对拓扑需要的能量转移,而不是应对纹波的。

4、滤波电路的唯一任务就是滤波,不干别的。

二、滤波网络与拓扑的关系所有电压型拓扑总可以这样表达:其中,输入电容Cin、输出电容Cout都的拓扑允许的,甚至是拓扑必须的。

同时,Cin、Cout也可以理解为拓扑本身的、自带的滤波电路。

这里,虚线内的滤波网络现在是一个电容,也就是二端滤波网络,但是它也可以是三端甚至四端网络。

注意:图中没有任何电感,拓扑的电感(或者变压器)在拓扑模块内没有画出来。

三、输出滤波网络对于大多数电压型拓扑而言,输出端总有一个电容Cout,而且这个电容就是滤波的意思。

一般情况下,我们总可以通过调整Cout的大小满足任何需要的纹波要求。

然而在某些情况下,我们无法通过调整Cout的大小获得需要的输出纹波,比如:1、满足需要的纹波时,需要的Cout太大,成本和体积不允许。

2、在接近短路运行时(比如电焊机或者点焊机),普通电容的电流指标不能满足要求。

3、某些应用不允许太大的Cout存在,比如逆变系统,太大的Cout将导致控制的困难。

4、出于可靠性的考虑,在输出端不使用电解电容。

5、高精度电源,由于电容ESR的存在,始终达不到要求的输出纹波指标。

怎么办呢?其实很简单:1、找出能够接受的电容2、把这个电容一分为二3、中间放一个适当的电感4、调整这个电感直到满足输。

LED电路仿真设计-Saber篇

LED电路仿真设计-Saber篇

学习曲线陡峭
Saber软件功能强大但操作复杂, 需要设计师具备一定的专业知识 和技能。
资源占用较大
Saber软件的仿真过程需要占用较 大的计算资源,对于小型项目可 能存在一定的性能挑战。
成本较高
Saber软件是一款商业软件,购买 和维护成本较高,可能不适合小 型项目或个人用户。
THANKS
感谢观看
仿真精度设置
用户可以根据需要设置仿真的精度, 如采样点数、仿真步长等。
Saber软件的仿真结果分析
波形分析
参数优化
通过Saber软件的波形分析功能,用户可以 观察LED电路的输入输出波形,了解电路的 工作状态和性能表现。
根据仿真结果,用户可以对元件参数进行 优化,以提高LED电路的性能指标。
可靠性分析
05
LED电路仿真设计的挑战与展望
LED电路仿真设计的挑战
高精度模拟需求
LED电路的特性要求高精度模拟,以准确预测其性能和行为。
复杂的光学效应
LED的光学效应(如散射、反射和干涉)增加了电路仿真的复杂性。
材料特性的多样性
不同LED材料的电气和光学特性差异大,增加了仿真的难度。
热效应的考量
LED在工作时会产生热量,热效应对LED性能有显著影响,需要纳入仿真设计。
总结词
LED照明电路仿真设计能够预测实际照明 效果,优化照明质量和能效,降低设计 和制作成本。
VS
详细描述
LED照明电路的设计需要考虑照明的均匀 性、颜色和亮度等参数。通过仿真设计, 可以预测不同电路参数下的照明效果,从 而优化电路设计,提高照明质量和能效。 此外,仿真设计还可以帮助设计师快速评 估不同方案的成本和性能,为实际制作提 供可靠的依据。

Saber软件在电源系统仿真中的应用

Saber软件在电源系统仿真中的应用

1.从磁性材料 的数据手册 中扫描提取
2. 指定 Hsat & Bsat
4. 可手动微调BH曲线的形态
3. 利用优化工 具拟合模型BH曲线匹配扫 描输入的B-H 曲线
© Synopsys 2011 Nhomakorabea22
Saber软件仿真电源系统(续)
Ø Saber磁性器件建模工具(MCT)的使用 ü 定义磁芯几何尺寸
Ø Saber建模
ü 如何解决Pspice模型转换Saber模型中出现的问题;
如何建立需要模型 ü 如何使用Saber中磁性器件模型 ;
ü 如何使用Saber中的磁性器件建模工具(MCT);
如üü何如 如使何 何创 在用建 建所 模S需 语a要 言b的MeA新rS中模T中型的引;用磁C语性言编器写的件外部模子型程序; 如何使用磁性建模工具(MCT)
分析
28
分析系统应力和 实效模式
优化的 电源设计
电源系统仿真的趋势-鲁棒性仿真(续)
Saber
确定需要评估的行为和参数 建立相应模型加入系统
控制、数字信号、软件及物理器件建模
验证系统的设计思想
直流工作点、时域、频域分析
找出影响系统性能 的关键器件
Saber软件仿真电源系统(续)
模型非线性变压器 xfrnl
np:value
ns:value
area:value len_fe:value matl:3c8
xfrnl
np:value
ns:value
ØSaber中磁性器件模型的使用
üxfrnl.sin 模型主要用于在仿真中考虑磁饱和效 应和磁滞效应的情况。
len:value area:value ur:value

基于saber软件开关电路的仿真

基于saber软件开关电路的仿真

基于saber软件开关电路的仿真【摘要】电力电子系统的计算机仿真已经成为其产品设计研发过程中一个很重要的环节,MATLAB和SABER是目前使用最多的电力电子仿真软件。

与MATLAB相比SABER由其较为突出的优点软件相比其仿真速度快、收敛性好、仿真结果的准确性高。

本文使用电力电子仿真软件SABER对移相全桥DC/DC 变换器与零电压转换器进行了分析和验证。

【关键词】saber仿真;移相全桥DC/DC变换器一、引言SABER作为混合仿真系统,可以兼容模拟,数字,控制量的混合仿真,便于在不同层面上分析和解决问题,其他仿真软件不具备这样的功能。

Saber软件主要用于外围电路的仿真模拟,包括SaberSketch、SaberDesigner两部分。

SaberSketch用于绘制电路图,而Saber-Designer用于对电路仿真模拟,模拟结果可在SaberScope和DesignProbe中查看[5][6]。

由于移相全桥DC/DC变换器具有鲜明的特点,最近在大功率多电飞机电源系统中备受关注。

所谓的多电飞机是指提高使用电力同时将液压和气动的使用降到最低。

这种改变使多电飞机比传统的飞机有明显的优势。

由于多电飞机对电力的要求增加,它就需要一个更适合的配电和转换系统,因此电力电子在其中的分量不断增加[1][2]。

移相全桥DC/DC变换器可以为飞机提供电源,这种类型的转换器拓扑允许所有的开关设备在零电压开关下进行操作,并且大大减小了开关损耗。

此外它能高频率的操作开关来提高功率密度,从而降低了转换器的尺寸[3][4]。

二、移相全桥移DC/DC变换器相全桥DC/DC变换器是一种典型的零电压开关转换器,其基于全桥隔离变压器模块的转换器。

基本为:全桥开关网络、高频变压器、整流和LC滤波器。

互感LS也显示在图表中。

这个电感通常包括变压器漏感和附加分离原件的电感,并且和变压器是串联的。

C1-C4是瞬间关断电容,可以和LS一起实现零电压开关转换。

基于Saber的开关电源设计仿真

基于Saber的开关电源设计仿真

• 9•本文介绍了开关电源的设计原理和saber 仿真软件,在开关电源主电路部分采用半桥结构,控制芯片采用美国Sllicon General 公司生产的电压模式PWM 控制器SG3525,最后通过Saber 仿真软件得到了多个输出参考点的仿真波形,由波形可见仿真效率高且设计满足开关电源稳定输出直流7.5V 电压的指标。

随着电子信息产业的不断进步,开关电源技术也在日新月异的发生变化。

目前,开关电源主要应用于生活中一些常见的电子设备中,具有体积小、可靠性好和高效率等特点,已经逐步发展为当代电子信息产业中一种不可或缺的电源设备。

开关电源通过不同种类的拓扑结构,将标准电压转换为各种设备所需求的电压的电能转换装置。

在电力电子中,开关电源的拓扑结构有好多种,常用的电路拓扑有单端正激、单端反激、推挽、全桥和半桥等结构。

在设计过程中,我们可以利用仿真软件对开关电源进行设计和验证,从而能够节约成本、减少工作量等。

在本论文中,主电路采用半桥结构,控制电路选用PWM 控制芯片SG3525,最后利用Saber 仿真软件进行建模和仿真,设计了一款将220V 交流电压降为7.5V 直流电压输出,在Saber 软件中分析直流工作点和瞬态分析工作过程的仿真输出波形进行参数的调整,从而在一定程度上验证了该款电源具有良好的稳定性,满足设计指标。

1 设计原理主电路采用半桥拓扑结构,其工作原理是:当开关S 1开通后,二极管VD1处于导通状态,S2开通后,二极管VD2处于导通状态;当两个开关都处于关断状态时,变压器绕组W1中的电流值为零,此时绕组W2和W3中电流幅值大小相等,方向相反,二极管VD1和VD2处于导通状态。

半桥变换电路变压器励磁方式为双向,可靠性低且需要复杂的隔离驱动电路。

其拓扑结构如图1所示:图1 半桥变换电路原理图控制电路部分选用PWM 控制芯片SG3525,SG3525芯片是由美国Sllicon General 公司研发,是一款电压模式控制的PWM 控制芯片。

基于Saber的反激式开关电源仿真

基于Saber的反激式开关电源仿真

基于Saber的反激式开关电源仿真摘要通过使用Saber软件,搭建电路级模型,仿真研究反激式开关电源。

分析反激式开关电源原理,并与试验样机做对比,体现仿真对设计的指导性作用。

关键词aber;反激式开关电源;仿真开关电源被誉为高效节能电源,它代表着稳压电源的发展方向。

目前,随着各种新科技不断涌现,新工艺被普遍采用,新产品层出不穷,开关电源正向小体积、高功率密度、高效率的方向发展,开关电源的保护电路日趋完善,开关电源的电磁兼容性设计及取得突破性进展,专用计算机软件的问世为开关电源的优化设计提供了便利条件。

Saber是美国Analogy公司开发,现由Synopsys公司经营的系统仿真软件,被誉为全球最先进的系统仿真软件,也是唯一的多技术,多领域的系统仿真产品,现已成为混合信号、混合设计技术和验证工具的业界标准,可用于电子、机电一体化、机械、光电、光学、控制等不同类型系统构成的混合系统仿真,与其他由电路仿真软件相比,其具有更丰富的元件库和更精致的仿真描述能力,仿真真实性更好。

1反激式开关电源基本原理反激式开关电源其拓扑结构如图1。

其电磁能量储存与转换关系如下如图2(a)当开关管导通,原边绕组的电流Ip将线形增加,磁芯内的磁感应强度将增大到工作峰值,这时可以把变压器看成一个电感,逐步储能的过程。

如图2(b)当开关管关断,初级电流降到零。

副边整流二极管导通,感生电流将出现在复边。

从而完成能量的传递。

按功率恒定原则,副边绕组安匝值与原边安匝值相等。

2基于UC3842的反激式开关电源电路设计由Buck-Boost推演并加隔离变压器后而得反激变换器原理线路。

多数设计中采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。

Saber电源仿真--基础篇

Saber电源仿真--基础篇

Saber电源仿真——基础篇电路仿真作为电路计算的必要补充和论证手段,在工程应用中起着越来越重要的作用。

熟练地使用仿真工具,在设计的起始阶段就能够发现方案设计和参数计算的重大错误,在产品开发过程中,辅之以精确的建模和仿真,可以替代大量的实际调试工作,节约可观的人力和物力投入,极大的提高开发效率。

Saber仿真软件是一个功能非常强大的电路仿真软件,尤其适合应用在开关电源领域的时域和频域仿真。

但由于国内的学术机构和公司不太重视仿真应用,所以相关的研究较少,没有形成系统化的文档体系,这给想学习仿真软件应用的工程师造成了许多的困扰,始终在门外徘徊而不得入。

本人从事4年多的开关电源研发工作,对仿真软件从一开始的茫然无知,到一个人的苦苦探索,几年下来也不过是了解皮毛而已,深感个人力量的渺小,希望以这篇文章为引子,能够激发大家的兴趣,积聚众人的智慧,使得我们能够对saber仿真软件有全新的认识和理解,能够在开发工作中更加熟练的使用它,提高我们的开发效率。

下面仅以简单的实例,介绍一下saber的基本应用,供初学者参考。

在saber安装完成之后,点击进入saber sketch,然后选择file—> new—>schematic,进入原理图绘制画面,如下图所示:在进入原理图绘制界面之后,可以按照我们自己的需要来绘制电路原理图。

首先,我们来绘制一个简单的三极管共发射极电路。

第一步,添加元器件,在空白处点击鼠标右键菜单get part—>part gallery有两个选择器件的方法,上面的左图是search画面,可以在搜索框中键入关键字来检索,右图是borwse画面,可以在相关的文件目录下查找自己需要的器件。

通常情况下,选择search方式更为快捷,根据关键字可以快速定位到自己想要的器件。

如下图所示,输入双极型晶体管的缩写bjt,回车确定,列表中显示所有含有关键字bjt的器件,我们选择第三个选择项,这是一个理想的NPN型三极管,双击之后,在原理图中就添加了该器件。

基于SABER软件的数字控制电源系统的仿真设计

基于SABER软件的数字控制电源系统的仿真设计

收稿日期:2006207204作者简介:胡雪莲(19792),女,黑龙江人,南京航空航天大学在职硕士研究生,南京工业职业技术学院教师,攻读专业为电力电子与电力传动,研究方向为功率电子变换技术。

文章编号:100923664(2006)0620050204设计应用基于SABER 软件的数字控制电源系统的仿真设计胡雪莲1,2,陈 新1(1.南京航空航天大学,江苏南京210016;2.南京工业职业技术学院,江苏南京210016) 摘要:在电源系统的设计中,计算机仿真已得到广泛的应用。

由于数字控制电源的控制算法等均由数字处理器编程实现,而数字处理器的工作特点决定了数据处理过程是离散化的,因此设计出能够反映数字控制系统离散化特点的仿真模型,是数字控制电源系统仿真亟待解决的问题。

文中在分析数字处理器的工作特点的基础上,提出一种适合于数字控制电源系统的建模仿真方法。

由于该仿真模型非常贴近于实际的数字控制电源系统,因而可以用于数字系统的原理分析和参数整定等,所获得的参数对于控制系统设计具有重要的参考价值。

关键词:数字控制;电源;仿真;建模中图分类号:TN 86文献标识码:ADesign of Simulation and Modeling for Power Supply System Based on Digital ControlHU Xue 2lian 1,2,CH EN 1Xin(1.Nanjing University of Aeronautics &Astronautics ,Nanjing 210016,China ;2.Nanjing Institute of Industry &Technology ,Nanjing ,210016,China )Abstract :Nowadays ,computer simulation has been widely used in design of power supply systems.In the system of digital controlled power supply ,control scheme is programmed in digital processor.The character of processor decides that the process of datum disposal is discrete.Therefore ,it ’s a problem to establish simulation models which can reflect its discrete feature.This paper offers a method of modeling and simulating for digital controlled power supply system ,on the basis of analyzing the feature of how datum are processed in digital processor.Because this simulated model approximates to the practical digital controlled power supply system greatly ,it can be used to principle analyzing and parameter trimming in digital control system ,and the final simulated datum provide significant reference value for the practical digital controlled system.Key words :digital control ;power supply ;simulation ;modeling 随着数字信号处理技术的飞速发展,数字控制由于其控制理论与实施手段的不断完善,并且具有高度集成化控制电路、精确的控制精度,以及稳定的工作性能、良好的设计沿继性等优点,如今已成为电力电子学的一个重要研究方向。

开关电源技术saber实验指导书

开关电源技术saber实验指导书
vcc
开关电源实验指导书
Replacement Value 61k 17.6k 300 1.1k 33n 0.1n
12
(3)然后我们开始修改NPN三极管。 A、双击三极管,以打开属性对话框; B、把q_3p的ref属性修改为q1;
C、通过点击把后面的全黑圈改成半绿; D、点击下面一行的 (type=_n)值,以修改saber_model属性,点击后会弹出一个 “STRUC model”对话框, 我们拉动右边的滚轴,找到一个“bf”列表,然后把里 面的值修改为200 E、单击OK,以关闭“STRUC model”对话框并使刚才的修改生效。 H、在属性对话窗中,单击OK按钮,以便使该项改变生效并关闭窗口
一. 实验目的 ................................................................................................. 2 二. 实验内容和要求 ..................................................................................... 2 三. 实验主要仪器设备和材料 ..................................................................... 2 四. 实验方法、步骤及结果测试 ................................................................. 2 五. 实验报告要求 ....................................................................................... 52 实验二 双管电压模式正激开关变换器设计 ................................................................. 53 一. 实验目的 ............................................................................................... 53 二. 实验内容和要求 ................................................................................... 53 三. 实验主要仪器设备和材料 ................................................................... 54 四. 实验方法、步骤及结果测试 ............................................................... 54 五. 实验报告要求 ....................................................................................... 75 六. 思考题 ................................................................................................... 75

saber仿真35W反激开关电源设计

saber仿真35W反激开关电源设计

今天开始,为大家介绍一个开关电源仿真的实例。

由于开关电源具有很强的非线性,并且经常是双环乃至多环反馈,因此无论用哪种仿真工具,对其进行仿真分析都是一件很困难的事情,相信用Saber进行开关电源分析的网友,也有过类似的经验。

这个仿真实例中使用了TI的UC3844做为控制器,实现一个反激电路。

验证电路源于TI公司的UC3844 数据手册(data sheet) 第七页所提供的反激变换器设计电路,如下图所示:在SaberSketch根据对该原理图进行适当修改,具体修改情况如下:1.输出由双路±12V/0.3A 的负载改为24V/0.6A负载.2.输出滤波电容C12/C13 由2200u 改为141u. C11 由4700u 改为3000u3.去掉负载绕组供电的复杂滤波网络, 改为RC充电模式, 其中R=10, C=C2=100u.4.将输出部分的滤波器由π 型改为电容直接滤波.5.去掉MOSFET (UFN833)的缓冲电路( SNUBBER).6.对部分Saber中没有模型的器件进行替换:a. POWER MOSFET UFN833->mtp4n80eb. Current Sense R10=0.33->R10=0.55c. Output Rectifier USD945->mbr2545ct UFS1002->ues704d. T1采用xfrl3 template 使用电感量控制变比, L1=1m, L2=10.7u, L3=216.7u, L4=66.9u.在完成以上修改后,在各种负载条件下,对该电路进行仿真分析。

测试条件:Vacin = 117V,Vout = 5V/4A (Rload =1.25)Vout = 24V/0.6A (Rload=40)分析结果如下:如上图图所示,额定负载情况下,Vout = 5.0019V/23.933V。

如上图所示,额定负载情况下输出频率为: FOSC= 39.383KHz , 占空比D=0.26761, 输入直流电压Vdc=144.31V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 Output Specifications
Vout Vout(ripple) Iout Iout(ripple) Pout(max) = (15V)(2A) 15Vdc ≤ 25mV p-p 50mA to 2A ≤100mA p-p 30 Watts
2.3 Other Specifications
3.1.2
Design the Rectifier and Filter Capacitor (Optional Section) Note: A full-wave bridge rectifier will be used to allow the design of a smaller filter capacitor.
3.1 Open Loop Design
3.1.1 Define the Duty Cycle and Turns Ratio of the Transformer The basic relationship in a forward converter is Vout ≅ (Vin)(1 / n)(D) where Vout =dc output voltage n = turns ratio = np / ns D = duty cycle Given that Vout = 15VDC and Vin = 150 VDC, we see that (1 / n)(D) must equal 0.1 i.e. 15 = (150)(.1) The duty cycle of a forward converter should not exceed .5. Therefore we will choose a value which is between 0 and 0.5. In this example we choose D = 0.3, approximately the midpoint of the range. Therefore we know (1 / n)(D) = .1 or 1 / n = .1 / D = .1 / .3 = 1/3 so n = 3 The next step is to define the maximum and nominal duty cycle which include the output diode losses. These values will be needed for future calculations. Dmax = Vout (Vin(min))(1/n)
By Steve Chwirka Analogy, Inc. Beaverton, Oregon (503) 626-9700
Page 1 of 32
®
Table of Content
1.0 Scope of Document 3 2.0 Specifications 3 2.1 Input Specifications 3 2.2 Output Specifications 3 2.3 Other Specifications 3 3.0 Step-By-Step Design Process 4 3.1 Open Loop Design 4 3.1.1 Define the Duty Cycle and Turns Ratio of the Transformer 4 3.1.2 Design the Rectifier and Filter Capacitor (Optional Section) 5 Validate the Rectifier and Filter Capacitor using Saber 9 3.1.3 Output Filter Design 10 Inductor Design 10 Capacitor Design 11 3.1.4 Validate the Open Loop Design using Saber 11 3.2 Compensator Design using an Averaged Model 15 3.2.1 Validate the Averaged Model using Saber 16 3.2.2 Open-Loop AC Analysis 18 3.2.3 Designing the Compensation Circuit 18 3.2.4 Validate the Compensator Design using Saber 21 3.2.5 Validate the Closed Loop Parameters using Saber 21 3.3 Modulator Design and Final Closed Loop Simulation 23 3.3.1 Validate the Modulator Design using Saber 25 3.3.2 Validate the Closed Loop Design using Saber 27 3.4 Final Component Level Design 29
FIGURE 1 shows the rectified waveform, the desired DC input voltage of 150VDC and the resulting input ripple voltage (Vr) .
Rectified input voltage without filter capacitor Rectified input voltage with filter capacitor 11.3 Vpeak Vdc Vmin Vr 11.3
Page 5 of 32
®
The input filter capacitor value can be found in two ways Input Capacitor Value - Method 1 C = (Idc)(T3) / Vr Idc = Pin(max) / Vdc = 35W / 150V = .233A Vr = (2)(Vpeak-Vdc) = (2)(11.3) = 22.6V T3 = Time the capacitor must deliver its energy to the circuit Solving for T3: T3 = t1 + t2 t1 = (1/4)(1/f) where f = input frequency = 60Hz = (1/4)(1/60) = 4.166 msec Note: Most text books at this point assume that the input ripple is small and therefore that t2 ≅ t1 which would yield T3 = 4.166 msec + 4.166 msec = 8.33 msec However, this is not the case in many designs. Therefore we need to use the following equations to calculate t2: Referring to FIGURE 1: Vmin = Vpeak(Sinθ) θ= Sin-1 Vmin Vpeak
θ = Sin-1(138.7 / 161.3) = 59.3o We know that 180o = θ t2 (1/2) (1/f) t2 = (θ)(1/2)(1/f) 180o t2 = 2.745 msec where f = input freq = 60Hz

= (59.3)(1/2)(1/60) / 180o
2.0 Specifications
The following specifications will be used to design the poications
Line Input Pin(max) = Pout(max) Eff = 30/.85 150Vdc, ± 6V 35 Watts
n = turns ration = np / ns = 3 Vin(min) = 144 (per specifications) Vout = 15V + (output diode losses ≅ .85V) = 15.85V ∴ Dmax = 15.85 / (144)(1/3) = .3302 Note that this is less than .5, the maximum duty cycle allowed in a forward converter.
Page 2 of 32
®
1.0 Scope of Document
This engineering document will guide the reader through the step-by-step design of a two switch, voltage mode, forward power converter using the Saber Simulator. In the process, we will describe typical design considerations and problems and how to overcome them. Validation of each step in the design process will be performed using Saber.
t1
t2
θ
T3
FIGURE 1 Filtering of Rectified Input Voltage
From FIGURE 1: Vpeak = Vin(ac) / .707 = 115 / .707 = 162.7 162.7 - (rectifier diode drops) ≅ 161.3V (where Vd ≅ .7) Vdc = 150 V Vmin = Vdc - (Vpeak - Vdc) = 150 - (161.3 - 150) = 138.7V
相关文档
最新文档