专题14数列解答题三年高考(2015-2017)数学(理)试题分项版解析+Word版含解析
专题14 数列解答题-三年高考(2015-2017)数学(理)试题分项版解析(原卷版)
1.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .2.【2017北京,理20】设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.3.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;4.【2017浙江,22】(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(*∈N n ).证明:当*∈N n 时, (Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1− x n ≤12n n x x +; (Ⅲ)112n +≤x n ≤212n +.5.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n ka a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.6. 【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和. 7. 【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 8.【2015高考广东,理21】数列{}n a 满足()*1212242n n n a a na n N -+++=-∈, (1) 求3a 的值;(2) 求数列{}n a 前n 项和n T ; (3) 令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足n S n ln 22+<.9.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+kT t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.10.【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由. 11. 【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .12. 【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑13.【2016高考新课标3理数】已知数列{}n a 错误!未找到引用源。
三年高考(2015-2017)数学(理)试题分项版解析+Word版含解析-专题01 集合
1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =<B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以 {|1}{|0}{|0}A B x x x x x x =<<=< ,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =( ) A.{}1,3- B.{}1,0 C.{}1,3 D.{}1,5【答案】C【解析】由{}1A B = 得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C.【考点】 交集运算,元素与集合的关系3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意,结合A 表示以()0,0 为圆心, 为半径的单位圆上所有点组成的集合,集合B 表示直线y x = 上所有的点组成的集合,圆221x y += 与直线y x = 相交于两点()1,1 ,()1,1-- ,则A B 中有两个元素.故选B .【考点】 交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =( )(A ){x |–2<x <–1} (B ){x |–2<x <3}(C ){x |–1<x <1} (D ){x |1<x <3}【答案】A 【解析】利用数轴可知{}21A B x x =-<<- ,故选A.【考点】集合的运算5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-= ,,,,,, ,选B.【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2016课标1,理1】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭ 【答案】D 【解析】因为23{|-430}={|13},={|},2A x x x x xB x x =+<<<>所以33={|13}{|}={|3},22A B x x x x x x <<><< 故选D. 考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.8.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T = ( )(A) 2,3] (B)(-∞ ,2]U 3,+∞) (C) 3,+∞) (D)(0,2]U 3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥ 或,故选D .考点:1、不等式的解法;2、集合的交集运算.9.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,,【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}= ,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.10. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞(D )(0,)+∞【答案】C【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞ (-1,+),选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( )A .2,3]B .( -2,3 ]C .1,2)D .(,2][1,)-∞-⋃+∞【答案】B【解析】 试题分析:根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=- R R Q x x P Q 痧.故选B . 考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.12.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B = ( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】试题分析:由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C.考点:集合交集.13.【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C【解析】由题意,{2,1,0,1,2}A Z =-- ,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.14.【2015重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【答案】D【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.15.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B = ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U A B = ð,故选A. 【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.16.【2015四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )(){|13}A x x -<<(){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【答案】A【解析】 {|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<< ,选A.【考点定位】集合的基本运算.17.【2015广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .【解析】因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅ ,故选A .【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题. 18.【2015浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q = ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q = ð,故选C.27. 【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1} (B ){4} (C ){1,3}(D ){1,4}【解析】试题分析:{1,4,7,10},A B {1,4}.B == 选D .考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.28. 【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N = ,故选A .【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“ ”还是求“ ”和要注意对数的真数大于,否则很容易出现错误.29.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A 【解析】由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A .【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题. 综上所述,“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的充要条件.30.【2015福建,理1】若集合{}234,,,A i i i i = (是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .【解析】由已知得{},1,,1A i i =--,故A B = {}1,1-,故选C .【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用21i =-和交集的定义求解,属于基础题,要注意运算准确度.31.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = 则实数的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.32.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________.【答案】{}1,2-【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-考点:集合运算33.【2015江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5A 中元素的个数为5个.【解析】{123}{245}{12345}A B==,,,,,,,,,,,则集合B【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.。
「精品」高考高考数学试题分项版解析专题14椭圆及其相关的综合问题文
专题14 椭圆及其相关的综合问题1.【2017浙江,2】椭圆22194x y +=的离心率是A .3B .3C .23D .59【答案】B【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【解析】试题分析:当03m <<,焦点在轴上,要使C 上存在点M 满足120AMB ∠=,则t a n 603ab≥=≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab ≥=≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A . 【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件 120=∠AMB 转化为360tan =≥ ba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.3.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .3B .3C .3D .13【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )(A )13 (B )12 (C )23 (D )34【答案】B 【解析】试题分析:如图,由题意得在椭圆中,11OF c,OB b,OD 2b b 42===⨯= 在Rt OFB ∆中,|OF ||OB||BF ||OD |⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B.考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .5.2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出. 6.【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( )(A ) (B ) (C ) (D )12 【答案】B【解析】∵抛物线2:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭圆E 的右焦点为(2,0),∴椭圆E 的焦点在x 轴上,设方程为22221(0)x y a b a b+=>>,c=2,∵12c e a ==,∴4a =,∴22212b a c =-=,∴椭圆E 方程为2211612x y +=, 将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B. 【考点定位】抛物线性质;椭圆标准方程与性质【名师点睛】本题是抛物线与椭圆结合的基础题目,解此类问题的关键是要熟悉抛物线的定义、标准方程与性质、椭圆的定义、标准方程与性质,先由已知曲线与待确定曲线的关系结合已知曲线方程求出待确定曲线中的量,写出待确定曲线的方程或求出其相关性质.7.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线的距离不小于45,则椭圆E 的离心率的取值范围是( )A . (0,2 B .3(0,]4 C .2 D .3[,1)4【答案】A【考点定位】1、椭圆的定义和简单几何性质;2、点到直线距离公式.【名师点睛】本题考查椭圆的简单几何性质,将4AF BF +=转化为142AF AF a +==,进而确定的值,是本题关键所在,体现了椭圆的对称性和椭圆概念的重要性,属于难题.求离心率取值范围就是利用代数方法或平面几何知识寻找椭圆中基本量,,a b c 满足的不等量关系,以确定ca的取值范围. 8.【2015高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A . B . C . D .【答案】C【考点定位】椭圆的简单几何性质.【名师点晴】本题主要考查的是椭圆的简单几何性质,属于容易题.解题时要注意椭圆的焦点落在哪个轴上,否则很容易出现错误.解本题需要掌握的知识点是椭圆的简单几何性质,即椭圆22221x y a b+=(0a b >>)的左焦点()1F ,0c -,右焦点()2F ,0c ,其中222a b c =+. 9.【2015高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .【答案】2【解析】设()F ,0c 关于直线b y x c =的对称点为(,)Q m n ,则有1222n bm c cn b m c ⎧⋅=-⎪⎪-⎨+⎪=⨯⎪⎩,解得3222222,c b bc bcm n a a --==,所以3222222(,)c b bc bcQ a a --在椭圆上,即有32222422(2)(2)1c b b c b c a a b --+=,解得222a c=,所以离心率c e a ==. 【考点定位】1.点关于直线对称;2.椭圆的离心率.【名师点睛】本题主要考查椭圆的离心率.利用点关于直线对称的关系,计算得到右焦点的对称点,通过该点在椭圆上,代入方程,转化得到关于,a c 的方程,由此计算离心率.本题属于中等题。
专题11 解三角形—三年高考(2015-2017)数学(理)真题分项版解析(解析版)
1.【2017山东,理9】在中,角,,的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是(A )(B )(C )(D )【答案】A【解析】试题分析:所以,选A.【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有,,的式子,用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 2.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )(A B (C )-(D )- 【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC ==,AB =.由余弦定理,知222cos2AB AC BC A AB AC +-==⋅,故选C . 考点:余弦定理.3.【2016高考天津理数】在△ABC 中,若AB ,BC=3,120C ∠= ,则AC = ()(A )1(B )2(C )3(D )4【答案】A 【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A.考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.4.【2017浙江,14】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【解析】试题分析:取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,△ABE 中,1cos 4BE ABC AB ∠==,1cos ,sin 4DBC DBC ∴∠=-∠==,BC 1sin 2D S BD BC DBC ∴=⨯⨯⨯∠=△.又21cos 12sin ,sin 4DBC DBF DBF ∴∠=-∠=-∴∠=,cos sin BDC DBF ∴∠=∠=综上可得,△BCD cos BDC ∠=.【考点】解三角形5.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc+-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.6.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是. 【答案】8.【解析】sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan tan tan tan 8A B C A B C A B C A B C =++=+≥≥,即最小值为8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识7.【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是.【答案】【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE ,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF 所以AB 的取值范围,.【考点定位】正余弦定理;数形结合思想8.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b =. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a bA B=, 所以sin 21sin 13a Bb A ==.考点:三角函数和差公式,正弦定理.能用到。
三年高考2015_2017高考数学试题分项版解析专题14数列解答题理20171102341
专题14 数列解答题1.【2017山东,理19】已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2 (Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2)…P n+1(x n+1, n+1)得到折线P 1 P2…P n+1,求由该折线与直线y=0,x x1,x x n1所围成的区域的面积T.n【答案】(I) 2n1.Tx (II)(21)2 1.n nn n2【解析】试题分析:(I)依题意布列x和公比的方程组.11(II)过P P P……1,2,3,P 向轴作垂线,垂足分别为Q1,Q2,Q3,……Q n1,n1由(I)得11x x12n 2n2n. n n记梯形P P Q Q的面积为b n.n n1n1n由题意(1)21(21)22b n n nn nn2,所以T b b b ……+bn123n=321520721……+(2n 1)2n3(2n 1)2n2①又2T 320521722……+(2n 1)2n2(2n 1)2n1②n①-②得T 321(222......2n1)(2n 1)2n1n=32(12)n1n1(2n1) 2.n1212所以Tn(2n1)21n.2【考点】1.等比数列的通项公式;2.等比数列的求和;3.“错位相减法”.2.【2017北京,理20】设{a}和{b}是两个等差数列,记n nc max{b a n,b a n,,b a n}(n 1,2,3,),n1122n n其中max{x1,x2,, x s}表示x x x这个数中最大的数.1,2,,s(Ⅰ)若a n n,211,2,3b n ,求c c c的值,并证明{c}是等差数列;n nc (Ⅱ)证明:或者对任意正数M,存在正整数m,当n m时,nnM;或者存在正整数m,使得c,c ,c,是等差数列.m m1m22【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)分别代入求c c c,观察规律,再证明当n 3时,1,2,3c c c,观察规律,再证明当n3时,()()20b na b na n,所以k1k1k k b na关于k N*单调递减. 所以k kcb a n b a n b a n b a nn,即证明;(Ⅱ)首先求max{,,,}1c的通n1122n n11n 项公式,分d10,d10,d10三种情况讨论证明.试题解析:解:(Ⅰ)c1b1a1110,cb a b a,2max{121,222}max{121,322}1c3max{b13a1,b23a2,b33a3}max{131,332,533}2.当n 3时,bnab na bb n aan ,()()()()20k1k1k k k1k k1k所以b k na k关于k N单调递减.*(Ⅱ)设数列{a}和{}1,2b的公差分别为d d,则n nb na b1(k 1)d2[a1(k 1)d1]n b1a1n (d2nd1)(k 1). k k所以cn(1)(),b a n n d nd当d nd 时,(1)(),112121b a n,当d nd时,1121dd时,取正整数210m,则当n m时,nd d,因此c b a n.①当12n11d1c,c ,c,是等差数列. 此时,m m1m2d时,对任意n1,10②当c b a n nd b a n d a11(1)max{2,0}11(1)(max{2,0}1).n3c 1,c 2 ,c 3,,c n ,是等差数列.此时,d 10时,③当d当 n2时,有 ndd .12d 1cba n (n 1)(dnd )bd 所以112112nn (d ) dad1112n nnn (d ) dad| bd |.111212M | bd | add d对任意正数 M ,取正整数121122m max{, },dd11c 故当时, nnM . 【考点】1.新定义;2.数列的综合应用;3.推理与证明.3.【2017天津,理 18】已知{a }为等差数列,前 n 项和为()S n N ,{b }是首项为 2的 nnn等比数列,且公比大于 0,b 2 b 3 12,b 3 a 42a 1 ,Sb . 1111 4(Ⅰ)求{a }和{b }的通项公式;nn(Ⅱ)求数列{a b}的前 n 项和 (nN ).2n 2n 1【答案】 (1) a3n 2 . 2nT n.b.(2)32418T nnn n n33【解析】试题分析:根据等差数列和等比数列通项公式及前项和公式列方程求出等差数列首项a和公1差d及等比数列的公比,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确.试题解析:(I)设等差数列{a}的公差为d,等比数列{b}的公比为.n nb b,得22312b q q,而b,所以q2q60.1()1212 由已知4又因为 q 0 ,解得 q 2.所以,b2n .n由b 3a 4 2a 1 ,可得3da 8 ①.1由S 11=11b 4 ,可得 1 5 16a d②,联立①②,解得a 1 1, d 3,由此可得 a3n 2 .n所以,数列{a }的通项公式为 a3n 2 ,数列{b }的通项公式为b2n .nnnn(II )解:设数列{ }a b的前项和为T n ,2n 2n 1由an ,b 12n6 2n,有a bnn , 2 12 4221 (3 1)4nnn故T24 542 843(3n 1)4n , n4T245484(3n 4)4n(3n 1)4n ,2341n上述两式相减,得3T24 342 34334n (3n 1)4n 1n12 (1 4 )n4 (3n 1)4n 11 4(3n 2)4 8. n 1得T3 2418n .nn33 所以,数列{}3n 284n 13 3a b 的前项和为2n2n1.【考点】等差数列、等比数列、数列求和4.【2017浙江,22】(本题满分15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n).N证明:当n时,N(Ⅰ)0<x n+1<x n;x x (Ⅱ)2x n+1−x n≤1n n2;(Ⅲ)12n1≤x n≤12n2.5【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试 题 分 析 : ( Ⅰ) 由 数 学 归 纳 法 证 明 ; ( Ⅱ) 由 ( Ⅰ) 得x x14x12xx12x1(x12) ln(1 x1) ,构 造 函 数2 n nnnnnnnf (x ) x2x (x 2) ln(1 x )(x 0), 由 函 数 单 调 性 可 证 ;( Ⅲ) 由2xx1ln(1 x1) x1x1 ,得nnnnnx x n n 122xx ,递 推 可得n 1n11n2212试题解析:(Ⅰ)用数学归纳法证明: xn当 n =1时,x 1=1>0假设 n =k 时,x k >0,那么 n =k +1时,若11x,则 0 xln(1) 0 ,矛盾,故kxxkkk1x1 . 0k因此 x n0(nN ) ,所以1ln(1 1)1x n xx x ,因此 0()xx nNnnnnn 1(Ⅱ)由x n x x x 得1 ln(1)nn 1n 1x x14x12xx12x1(x12) ln(1 x1)2 n nnnnnnn记函数 f (x ) x 2 2x (x 2) ln(1 x )(x 0)函数 f (x )在 0,+∞)上单调递增,所以 f (x )f (0) =0,因此x 212x1(x12) ln(1 x1) f (x1) 0 ,nnnnnx x2 n n 1(N )xxnn 1n2(Ⅲ)因为xx1ln(1 x1) x1x1 ,所以 n nnnn1 x x x得 n n 1nn 1222xx ,n 1n111 1 1 1 1 1 1 1,n 1n2 ,2() 02() 2 ( ) 2xx 2 2 x2 x2 x2 n 1nnn 11故1 x,nn2211(N )nxnn12n2 26【考点】不等式证明5.【 2017江 苏 , 19】 对 于 给 定 的 正 整 数 ,若 数 列 {a }满 足naaaaaan kn k 1n 1n 1n k 1n k对任意正整数 n (n k ) 总成立,则称数列{a }是“ P (k ) 数列”. 2kann(1)证明:等差数列{a }是“P (3) 数列”;n(2)若数列{a }既是“ P (2) 数列”,又是“ P (3) 数列”,证明:{a }是等差数列.nn【答案】(1)见解析(2)见解析【解析】证明:(1)因为a 是等差数列,设其公差为 d ,则 aan d , 1( 1) nn从而,当 n 4时, aaa 1 (n k 1)d a 1(n k 1)dn kn k2a2(n 1)d2a , k1, 2,3,1n所以 a n3a n2+a n 1+a n1a n2+a n 36a n ,因此等差数列a是“P 3数列”.na2a34a1(a n1a n ) ,④nnn将③④代入②,得 a n 1a n 12a n ,其中 n 4 ,所以 a 3,a 4 ,a 5,是等差数列,设其公差为 d' .在①中,取n4,则235644a a a a a,所以a a d',237在①中,取n 3,则a1a2a4a54a3,所以a1a22d',所以数列{a}n是等差数列.【考点】等差数列定义及通项公式【名师点睛】证明{a}为等差数列的方法:n(1)用定义证明:a 1a d(d为常数);n n(2)用等差中项证明:2aa a ;n1n n2 (3)通项法:a为的一次函数;nS An Bn2(4)前项和法:n6. 【2016高考新课标2理数】S 为等差数列a,S记=lga的前项和,且1=1728.ba,n n nn其中x 表示不超过的最大整数,如0.9=0,lg 99=1.(Ⅰ)求b,b,b;111101(Ⅱ)求数列b的前1 000项和.n【答案】(Ⅰ)b ,b111,b ,b111,10b ;(Ⅱ)1893. 1012【解析】试题分析:(Ⅰ)先用等差数列的求和公式求公差d,从而求得通项a ,再根据已知条件xn表示不超过的最大整数,求b,b,b;(Ⅱ)对分类讨论,再用分段函数表示b,再求数111101n列b的前1 000项和.n试题解析:(Ⅰ)设{a}的公差为d,据已知有721d 28,解得d 1.n所以{}a的通项公式为a n.n nbbb1[lg1]0,11[lg11]1,101[lg101] 2.(Ⅱ)因为bnn 0,110,n1,10100, 2,100n1000,3,n1000.所以数列{b}的前1000项和为1902900311893.n8考点:等差数列的的性质,前项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析, 多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别 关注创新题型的切入点和生长点.于是,B m =A m -d m >2-1=1,B m -1=min{a m ,B m }≥2. 故 d m -1=A m -1-B m -1≤2-2=0,与 d m -1=1矛盾.所以对于任意 n ≥1,有 a n ≤2,即非负整数列{a n }的各项只能为 1或 2. 因为对任意 n ≥1,a n ≤2=a 1, 所以 A n =2.故 B n =A n -d n =2-1=1.因此对于任意正整数 n ,存在 m 满足 m >n ,且 a m =1,即数列{a n }有无穷多项为 1. 考点定位:本题考查新定义信息题,考查学生对新定义的理解能力和使用能力。
近三年数列全国卷高考真题
2015-2017年全国卷数列真题1、(2015全国1卷17题)n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式;(Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 2、(2015全国2卷4题)已知等比数列{}n a 满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .843、(2015全国2卷16题)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.4、(2016全国1卷3题)已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A )100 (B )99 (C )98 (D )975、(2016全国2卷15题)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .6、(2016全国2卷17题)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.7、(2016全国3卷17题)已知数列{}n a 的前n 项和1n nS a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式;(II )若53132S =,求λ.8、(2017年国1卷4题)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .89、(2017年国1卷12题)几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 10、(2017全国2卷3题)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏11、(2017全国2卷15题)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ .12、(2017全国3卷9题)等差数列{}na 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8 13、(2017全国3卷14题)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________.。
三年高考2015_2017高考数学试题分项版解析专题27统计理20171102328
0.6826 2
68.26% ,
(D)31.74%
0.1359 , 故选 B.
2
【考点定位】正态分布的概念与正态密度曲线的性质. 【名师点睛】本题考查了正态分布的有关概念与运算,重点考查了正态密度曲线的性质以及如 何利用正态密度曲线求概率,意在考查学生对正态分布密度曲线性质的理解及基本的运算能力. 8.【2014 山东.理 7】 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者 的舒张压数据(单位:kPa)的分组区间为 12,13),13,14),14,15),15,16),16,17],将其按从 左到右的顺序分别编号为第一组,第二组, ,第五组,右图是根据试验数据制成的频率 分布直方图,已知第一组与第二组共有 20 人,第三组中没有疗效的有 6 人,则第三组中有疗 效的人数为( )
(A)56
(B)60
(C)120
(D)140
【答案】D 【解析】 试题分析:由频率分布直方图知,自习时间不少于 22.5 小时为后三组,有
200 (0.16 0.08 0.04) 2.5 140 (人),选 D.
考点:频率分布直方图
7.【2015 高考山东,理 8】已知某批零件的长度误差(单位:毫米)服从正态分布
(B)163
【答案】C
225
10 y
,
i
i1
(C)166
1600 , bˆ
4 .该班某学生的脚
(D)
3.【2014 高考广东卷.理.6】已知某地区中小学生人数和近视情况分别如图 1 和如图 2 所示,
为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取 2% 的学生进行调查,则样
本容量和抽取的高中生近视人数分别为( )
高考化学化学反应中的能量变化—三年高考(2015-2017)化学真题分项版解析(解析版)
1.【2017江苏卷】通过以下反应可获得新型能源二甲醚(CH3OCH3 )。
下列说法不正确...的是①C(s) + H2O(g)CO(g) + H2 (g) ΔH1 = a kJ·mol−1②CO(g) + H2O(g)CO2 (g) + H2 (g) ΔH 2 = b kJ·mol−1③CO2 (g) + 3H2 (g)CH3OH(g) + H2O(g) ΔH 3 = c kJ·mol−1④2CH3OH(g)CH3OCH3 (g) + H2O(g) ΔH 4 = d kJ·mol−1A.反应①、②为反应③提供原料气B.反应③也是CO2资源化利用的方法之一C.反应CH3OH(g)CH3OCH3 (g) +H2O(l)的ΔH =kJ·mol−1D.反应2CO(g) + 4H2 (g) CH3OCH3 (g) + H2O(g)的ΔH = ( 2b + 2c + d ) kJ·mol−1【答案】C【名师点睛】本题以合成新能源二甲醚为背景,考查学生对简单化工流程的反应原理、能量的转化关系、化学反应焓变的概念、盖斯定律的运用等知识的掌握和理解程度,同时关注了节能减排、工业三废资源化处理、开发利用新能源等社会热点问题。
2.【2016海南卷】油酸甘油酯(相对分子质量884)在体内代谢时可发生如下反应:C57H104O6(s)+80O2(g)=57CO2(g)+52H2O(l)已知燃烧1kg该化合物释放出热量3.8×104kJ。
油酸甘油酯的燃烧热△H为A.3.8×104kJ·mol-1B.-3.8×104kJ·mol-1C.3.4×104kJ·mol-1D.-3.4×104kJ·mol-1【答案】D【解析】试题分析:燃烧热指的是燃烧1mol可燃物生成稳定的氧化物所放出的热量。
中考数学专题14阅读理解问题(第01期)-2017年中考数学试题分项版解析汇编(原卷版)
专题14 阅读理解问题一、选择题目1.(2017山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.7292.(2017贵州黔东南州第10题)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.1903.(2017四川泸州第10题)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=2a b c++;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=12,若一个三角形的三边长分别为2,3,4,则其面积是( )二、填空题目1.(2017四川宜宾第16题)规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是 .(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7; ③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点. 三、解答题1.(2017浙江衢州第22题)定义:如图1,抛物线与轴交于A ,B 两点,点P 在抛物线上(点P 与A ,B 两点不重合),如果△ABP 的三边满足,则称点P 为抛物线的勾股点。
专题13数列小题-三年高考(2015-2017)数学(理)试题分项版解析+Word版含解析
1.【2017课标1,理4】记n S 为等差数列{}n a 的前项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.2.【2017课标3,理9】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .24-B .3-C .3D .8【答案】A 【解析】故选A .【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【2017课标II ,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 【答案】B 【解析】试题分析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:()71238112x ⨯-=-,解得3x =,即塔的顶层共有灯3盏,故选B 。
三年高考2015_2017高考数学试题分项版解析专题27统计理20171102328
1
2.【2017 山东,理 5】为了研究某班学生的脚长(单位厘米)和身高 y (单位:厘米)的关
系,从该班随机抽取 10 名学生,根据测量数据的散点图可以看出 y 与之间有线性相关关系,
设其回归直线方程为 yˆ bˆx aˆ .已知 10 x i i1
长为 24,据此估计其身高为
(A)160 170
专题 27 统计
1.【2017 课标 3,理 3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理 了 2014 年 1 月至 2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折 线图.
根据该折线图,下列结论错误的是 A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在 7,8 月 D.各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳 【答案】A 【解析】
(B)七月的平均温差比一月的平均温差大
(D)平均气温高于 20 C 的月份有 5 个
考点:1、平均数;2、统计图. 【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只 觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错 选 B.
5.【 2014 湖南 2】对一个容量为 N 的总体抽取容量为的样本,当选取简单随机抽样、系统抽
(A)56
(B)60
(C)120
(D)140
【答案】D 【解析】 试题分析:由频率分布直方图知,自习时间不少于 22.5 小时为后三组,有
200 (0.16 0.08 0.04) 2.5 140 (人),选 D.
考点:频率分布直方图
7.【2015 高考山东,理 8】已知某批零件的长度误差(单位:毫米)服从正态分布
备考2018-三年高考(2015-2017)数学(理)试题分项版解析:专题30推理与证明(解析版)
B.丁可以知道四人的成绩 D.乙、丁可以知道自己的成绩
故选 D。
【考点】合情推理
【名师点睛】合情推理主要包括归纳推理和类比推理。数学研究中,在得到一个新结论前,
合情推理能帮助猜测和发现结论, 在证明一个数学结论之前, 合情推理常常能为证明提供思
路与方向。合情推理仅是 “合乎情理 ”的推理,它得到的结论不一定正确。而演绎推理得到的
C.甲车以 80 千米 / 小时的速度行驶 1 小时,消耗 10 升汽油
D.某城市机动车最高限速 【答案】 D
80 千米 / 小时 . 相同条件下,在该市用丙车比用乙车更省油
【解析】 “燃油效率 ”是指汽车每消耗 1 升汽油行驶的里程, A 中乙车消耗 1 升汽油,最
多行驶的路程为乙车图象最高点的纵坐标值,
1
3
对③ 1 x 3dx 1
1 (
x4)
|1 1
0 ,则 f ( x) 、 g( x) 为区间 [
1,1] 上的正交函数 .
4
所以满足条件的正交函数有 2 组,故选 C.
考点:新定义题型,微积分基本定理的运用,容易题
.
9. 【 2014 年普通高等学校招生全国统一考试湖北卷 8】《算数书》 竹简于上世纪八十年代在
B. 命题①和命题②都不成立 D. 命题①不成立,命题②成立
【解析】命题 ① 显然正确,通过如下文氏图亦可知 d ( A, C ) 表示的区域不大于
d ( A, B) d( B,C ) 的区域,故命题 ② 也正确,故选 A.
【考点定位】集合的性质 【名师点睛】 本题是集合的阅读材料题, 属于中档题, 在解题过程中需首先理解材料中相关 概念与已知的集合相关知识点的结合,即可知命题①正确,同时注重数形结合思想的运用,
三年高考2015_2017高考数学试题分项版解析专题13数列小题理20171102342
专题13数列小题1.【2017课标1,理4】记S为等差数列{a}的前项和.若a4a524,n n S648,则{a}n的公差为A.1 B.2 C.4 D.8【答案】C【解析】试题分析:设公差为d,a4a5a13d a14d 2a1 7d 24,2a 7d 2465S6a d6a15d48,,联立161126a15d481解得d 4,故选C.6(a a)秒杀解析:因为S 163(a a)48,即6342a a ,则3416(a a)(a a)24168,即5328a a d ,解得d 4,故选C. 4534【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{a}为等差数列,n若m n p q,则a a a a.m n p q2.【2017课标3,理9】等差数列a的首项为1,公差不为0.若a2,a3,a6成等比数列,n则a前6项的和为nA.24B.3C.3 D.8【答案】A【解析】故选A.【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式1在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:x 12712381,解得x 3,即塔的顶层共有灯3盏,故选B。
高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题13数列小题
专题13数列小题一、选择题1.【等差数列及其运算】【2016,新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a =( ) A.100 B.99 C.98 D.97【答案】C2. 【等差数列的定义】【2016,浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}n S 是等差数列 C .{}n d 是等差数列D .2{}n d 是等差数列【答案】A3. 【等比数列的应用】【2016,四川理数】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) A.2018年B.2019年C.2020年D.2021年【答案】B4. 【等差数列及作差比较法】【2015,北京,理6】设{}n a 是等差数列. 下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->【答案】C5. 【等差数列的通项公式及其前n 项和,等比数列的概念】【2015,浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B.140,0a d dS <<C.140,0a d dS ><D.140,0a d dS <>【答案】B.6. 【等差数列的通项公式与等差数列的性质】【2015,重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a =( )A.-1B.0C.1D.6【答案】B7. 【等差中项和等比中项】【2015,福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A .6B .7C .8D .9【答案】D8. 【等比数列通项公式和性质】【2015,课标2理4】已知等比数列{}n a 满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84【答案】B 二、非选择题9. 【等比数列的定义,等比数列的前n 项和】【2016,浙江理数】设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=_______,S 5=____________.【答案】112110. 【等比数列及其应用】【2016,新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为____________.【答案】6411. 【等差数列性质】【2016,江苏卷】已知{}n a 是等差数列,{S }n 是其前n 项和.若21253,S =10a a +=-,则9a 的值是 .【答案】2012. 【等差数列和递推关系】【2015,新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n-13.【数列通项,裂项求和】【2015,江苏,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为__________.【答案】201114. 【等差中项】【2015,陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为______.【答案】515. 【等比数列的性质,等比数列的前n 项和公式】【2015,安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于_________.【答案】21n-16. 【等差数列与等比数列的性质】【2015,湖南理14】设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a =________________.【答案】13-n .1. 【等差数列的基本量求解】【2017,课标1,理4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .8【答案】C 【解析】秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C.【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.2. 【等差数列求和公式,等差数列基本量的计算】【2017,课标3,理9】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A .24-B .3-C .3D . 8【答案】A 【解析】故选A.【名师点睛】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【等比数列的应用,等比数列的求和公式】【2017,课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()71238112x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。
专题03 基本初等函数—三年高考(2015-2017)数学(理)真题分项版解析(解析版)
应用,利用方程的思想解决参数的取值问题,注意分类讨论思想方法的应用.
14.【2015 高考浙江,理 18】已知函数 f (x) x2 ax b(a,b R) ,记 M (a,b) 是| f (x) |
在区间 [1,1] 上的最大值.
(1)证明:当| a | 2 时, M (a,b) 2 ;
1.【2017 北京,理 5】已知函数 f (x) 3x (1)x ,则 f (x) 3
(A)是奇函数,且在 R 上是增函数(B)是偶函数,且在 R 上是增函数 (C)是奇函数,且在 R 上是减函数 (D)是偶函数,且在 R 上是减函数 【答案】A 【解析】
试题分析:
f
x
3 x
1 3
x
1 x 3
数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否
属于相应段自变量的范围;2.在研究函数的单调性时,常需要先将函数化简,转化为讨论一
些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将
大大缩短我们的判断过程.
12.【2015
高考福建,理
14】若函数
5.【2015
高考新课标
2,理
5】设函数
f
(x)
1 log2 (2 2x1, x 1,
x), x
1,
,
f
(2)
f
(log2 12)
()
A.3 B.6
C.9 D.12
【答案】C
【 解 析 】 由 已 知 得 f (2) 1 log2 4 3 , 又 log2 12 1 , 所 以
f (log2 12) 2log2121 2log2 6 6 ,故 f (2) f (log2 12) 9 ,故选 C.
备考2018-三年高考(2015-2017)数学(理)试题分项版解析:专题25排列组合、二项式定理(原卷版)
x2 y7 的系数为 ________.(用数字填
写答案)
28.【2015 高考重庆,理 12】 x3
5
1
的展开式中 x8 的系数是 ________(用数字作答 ).
2x
29.【2015 高考安徽,理 11】 (x 3 1 )7 的展开式中 x5 的系数是 x
30.【2015 高考福建,理
11】 x
n
+1)
C
m n
=(
m
+1)
C m+2 n+2
.
5
2 的展开式中,
x2 的系数等于
.(用数字填写答案) .(用数
字作答)
31.【2016 高考江苏卷】 (本小题满分 10 分)
( 1)求
7C
3 6
–4
C47
的值;
( 2)设 m , n N*,n≥m,求证:
(
m
+1)
C
m m
+(
m
+2)
C
m m
+1
+(m +3)
C
m m+2
+…+nCΒιβλιοθήκη m n–1+(
奇数项的二项式系数和为(
)
A. 212
B. 211
C. 210
D. 29
12. 【2014 辽宁理 6】把椅子摆成一排, 3 人随机就座, 任何两人不相邻的做法种数为 ( )
A.144 B.120 C. 72
D. 24
13. 【 2015 湖南理 2】已知
x
a
5
3
的展开式中含 x2 的项的系数为 30,则 a
三年高考(2015-2017)数学(理)试题分项版分析+Word版含分析-专题07导数应用求函数最值、单调性等
【2017年】1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 【答案】A 【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e-'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减所以()f x 极小值为()111(111)1f e -=--=-,故选A 。
【考点】函数的极值;函数的单调性2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为0x ,且图象在0x 两侧附近连续分布于轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间. 3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。
【答案】(1)1a =;(2)证明略。
【解析】试题解析:(1)()f x 的定义域为()0,+∞。
设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥。
高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题14数列解答题
专题14数列解答题一、非选择题1. 【等差数列的的性质,前n 项和公式,对数的运算】【2016,新课标2理数】n S 为等差数列{}n a 的前n项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893.2. 【等差数列的通项公式,等差数列、等比数列的求和,“错位相减法”】【2016,山东理数】 已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .3. 【等比数列的通项公式、求和】【2016,江苏卷】记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥ .【答案】(1)13n n a -=(2)略(3)略4. 【等差数列,等比中项,分组求和,裂项相消求和】【2016,天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项. (Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设 ()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)略(Ⅱ)略5. 【数列通项a n 与前n 项和S n 的关系,等比数列的定义与通项及前n 项和为S n 】【2016,新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠. (I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ.【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 6. 【数列,“累加法”,证明不等式】【2016,浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ; (II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )略;(II )略.7. 【数列,对新定义的理解】【2016,北京理数】 设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)略;(3)略.8. 【数列的通项公式,双曲线的离心率,等比数列的求和公式】【2016,四川理数】已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q -;(Ⅱ)略.9. 【前n 项和关系求项值及通项公式,等比数列前n 项和,不等式放缩】【2015,广东,理21】数列{}n a 满足()*1212242n n n a a na n N -+++=-∈ , (1) 求3a 的值;(2) 求数列{}n a 前n 项和n T ; (3) 令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足n S n ln 22+<.【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)略.10.【等差、等比数列的定义及性质,函数与方程】【2015,江苏,20】 设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n kn k n n a a a a 342321,,,+++依次成等比数列,并说明理由.【答案】(1)略(2)不存在(3)不存在11. 【数列前n 项和S n 与 通项a n 的关系,特殊数列的求和问题】【2015,山东,理18】设数列{}n a 的前n 项和为n S .已知233nn S =+. (I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n n n T +=+⨯. 12.【等差数列与等比数列的概念,等比数列通项公式与前n 项和公式】【2015,四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1{}n a 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.【答案】(1)2nn a =;(2)10.13. 【数列前n 项和与第n 项的关系,等差数列定义与通项公式,“拆项消去法”】【2015,新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和.【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 14. 【数列与不等式结合综合题】【2015,浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2na 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【答案】(1)略;(2)略.15. 【等比数列的通项公式,数列的递推公式,放缩法证明不等式】【2015,重庆,理22】在数列{}n a 中,()21113,0n n n n a a a a a n N λμ+++=++=∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010011223121k a k k ++<<+++【答案】(1)132n n a -=⋅;(2)略.16. 【曲线的切线方程,数列的通项公式,放缩法证明不等式】【2015,安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标. (Ⅰ)求数列{}n x 的通项公式; (Ⅱ)记2221321n n T x x x -= ,证明14n T n≥.【答案】(Ⅰ)1n n x n =+;(Ⅱ)14n T n≥. 17. 【等差数列定义,等比数列及前n 项和公式,错位相减法求和】【2015,天津,理18】 已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且233445,,a a a a a a +++成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列{}n b 的前n 项和.【答案】(I) 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.18.【等差数列,等比数列通项公式,错位相减法求数列的前n 项和】 【2015,湖北,理18】设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n -+-.1. 【等比数列的通项公式,等比数列的求和,“错位相减法”.】【2017,山东,理19】 已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T.【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=【解析】试题分析:(I)依题意布列1x 和公比q 的方程组.(II )过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +, 由(I)得111222.nn n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++……+n b=101325272-⨯+⨯+⨯+……+32(21)2(21)2n n n n ---⨯++⨯ ① 又0122325272n T =⨯+⨯+⨯+……+21(21)2(21)2n n n n ---⨯++⨯ ② ①-②得121132(22......2)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=2. 【新定义,数列的综合应用,推理与证明】【2017,北京,理20】设{}n a 和{}n b 是两个等差数列, 记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅, 其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得 12,,,m m m c c c ++⋅⋅⋅是等差数列.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)分别代入求123,,c c c ,观察规律,再证明当3n ≥时,11()()20k k k k b na b na n ++---=-<,所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=- ,即证明;(Ⅱ)首先求{}n c 的通项公式,分1110,0,0d d d >=<三种情况讨论证明. 试题解析:解:(Ⅰ)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减.(Ⅱ)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++ 是等差数列. ②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c 是等差数列. ③当10d <时, 当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n-+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-,故当时,nc M n>.3. 【等差数列,等比数列,数列求和】【2017,天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .【答案】 (1)32n a n =-.2nn b =.(2)1328433n n n T +-=⨯+. 【解析】试题分析:根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列首项1a 和公差d 及等比数列的公比q ,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确. 试题解析:(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2nn b =. 由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(II )解:设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4nn T n =⨯+⨯+⨯++-⨯ ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,上述两式相减,得231324343434(31)4nn n T n +-=⨯+⨯+⨯++⨯--⨯1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 4. 【数列与不等式综合题】【2017,浙江,22】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(*∈N n ).证明:当*∈N n 时,(Ⅰ)0<x n +1<x n ;(Ⅱ)2x n +1− x n ≤12n n x x +; (Ⅲ)112n +≤x n ≤212n +. 【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】试题解析:(Ⅰ)用数学归纳法证明:0>n x当n =1时,x 1=1>0假设n =k 时,x k >0,那么n =k +1时,若01≤+k x ,则0)1ln(011≤++=<++k k k x x x ,矛盾,故01>+k x . 因此)(0*∈>N n x n ,所以111)1ln(+++>++=n n n n x x x x ,因此)(01*+∈<<N n x x n n (Ⅱ)由111)1ln(+++>++=n n n n x x x x 得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,112(N )2n n n n x x x x n *++-≤∈ (Ⅲ)因为1111ln(1)n n n n n x x x x x ++++=++≤+,所以112n n x -≥得1122n n n n x x x x ++≥-, 111112()022n n x x +-≥-〉,12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅-=, 故212n n x -≤, 1211(N )22n n n x n *--≤≤∈5. 【等差数列定义及通项公式】【2017,江苏,19】 对于给定的正整数k ,若数列{}n a 满足 1111n k n k n n n k n k a a a a a a --+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6,因此等差数列{}n a 是“()3P 数列”.n n n a a a ++++=-23141()n n a a -+,④ 将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'. 在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】证明{}n a 为等差数列的方法:(1)用定义证明:1(n n a a d d +-=为常数);(2)用等差中项证明:122n n n a a a ++=+;(3)通项法: n a 为n 的一次函数;(4)前n 项和法:2n S An Bn =+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=【解析】试题分析:(I)依题意布列1x 和公比的方程组.(II )过123,,,P P P ……1n P +向轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +, 由(I)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++……+n b=101325272-⨯+⨯+⨯+……+32(21)2(21)2n n n n ---⨯++⨯① 又0122325272n T =⨯+⨯+⨯+……+21(21)2(21)2n n n n ---⨯++⨯② ①-②得121132(22......2)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=【考点】1.等比数列的通项公式;2.等比数列的求和;3.“错位相减法”.2.【2017北京,理20】设{}n a 和{}n b 是两个等差数列,记1122m a x {,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3n =⋅⋅⋅, 其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)分别代入求123,,c c c ,观察规律,再证明当3n ≥时,11()()20k k k k b na b na n ++---=-<,所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=- ,即证明;(Ⅱ)首先求{}n c 的通项公式,分1110,0,0d d d >=<三种情况讨论证明. 试题解析:解:(Ⅰ)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减.(Ⅱ)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++ 是等差数列. ②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c 是等差数列. ③当10d <时, 当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n-+---==-+-++111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-,故当时,nc M n>. 【考点】1.新定义;2.数列的综合应用;3.推理与证明.3.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】(1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】试题分析:根据等差数列和等比数列通项公式及前项和公式列方程求出等差数列首项1a 和公差d 及等比数列的公比,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确.试题解析:(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为. 由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2n n b =. 由3412b a a =-,可得138d a -=①. 由114=11S b ,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =.(II )解:设数列221{}n n a b -的前项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4n n n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯ ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前项和为1328433n n +-⨯+. 【考点】等差数列、等比数列、数列求和4.【2017浙江,22】(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(*∈N n ).证明:当*∈N n 时, (Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1− x n ≤12n n x x +; (Ⅲ)112n +≤x n≤212n +. 【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)由数学归纳法证明;(Ⅱ)由(Ⅰ)得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++, 构造函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,由函数单调性可证; (Ⅲ)由111l n (1)n n n n nx x x x x ++++=++≤+,得1122n n n n x x x x ++≥-,递推可得1211(N )22n n n x n *--≤≤∈ 试题解析:(Ⅰ)用数学归纳法证明:0>n x当n =1时,x 1=1>0假设n =k 时,x k >0,那么n =k +1时,若01≤+k x ,则0)1ln(011≤++=<++k k k x x x ,矛盾,故01>+k x .因此)(0*∈>N n x n ,所以111)1ln(+++>++=n n n n x x x x ,因此)(01*+∈<<N n x x n n (Ⅱ)由111)1l n (+++>++=n n n n x x x x 得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥ 函数f (x )在0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,112(N )2n n n n x x x x n *++-≤∈ (Ⅲ)因为1111ln(1)n n n n n x x x x x ++++=++≤+,所以112n n x -≥得1122n n n n x x x x ++≥-, 111112()022n n x x +-≥-〉,12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅-=, 故212n n x -≤,1211(N )22n n n x n *--≤≤∈ 【考点】不等式证明5.【2017江苏,19】对于给定的正整数,若数列{}n a 满足1111n knkn n nk n ka a a a aa --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“()3P 数列”.n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法: (1)用定义证明:1(n n a a d d +-=为常数); (2)用等差中项证明:122n n n a a a ++=+; (3)通项法: n a 为的一次函数;(4)前项和法:2n S An Bn =+6.【2016高考新课标2理数】n S 为等差数列{}n a 的前项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =,1012b =;(Ⅱ)1893. 【解析】试题分析:(Ⅰ)先用等差数列的求和公式求公差d ,从而求得通项n a ,再根据已知条件[]x 表示不超过的最大整数,求111101b b b ,,;(Ⅱ)对分类讨论,再用分段函数表示n b ,再求数列{}n b 的前1 000项和.试题解析:(Ⅰ)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =111101[lg1]0,[lg11]1,[lg101] 2.b b b ======(Ⅱ)因为0,110,1,10100,2,1001000,3,1000.n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893.⨯+⨯+⨯= 考点:等差数列的的性质,前项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.于是,B m =A m -d m >2-1=1,B m -1=min{a m ,B m }≥2. 故d m -1=A m -1-B m -1≤2-2=0,与d m -1=1矛盾.所以对于任意n ≥1,有a n ≤2,即非负整数列{a n }的各项只能为1或2. 因为对任意n ≥1,a n ≤2=a 1, 所以A n =2.故B n =A n -d n =2-1=1.因此对于任意正整数n ,存在m 满足m >n ,且a m =1,即数列{a n }有无穷多项为1. 考点定位:本题考查新定义信息题,考查学生对新定义的理解能力和使用能力。