初中数学概率初步知识点复习汇总
新人教版九年级数学上册《概率初步》知识点
第二十五章概率初步知识点总结25.1 概率1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.随机事件发生的可能性(概率)的计算方法:2.可能性大小(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.3.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.25.2 用列举法求概率1.概率的公式(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.2. 几何概型的概率问题是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G 的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3.列举法和树状法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举.4.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数总情况数.25.3 利用频率估计概率1. 利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2.模拟实验(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。
初中数学:概率初步知识点
初中数学:概率初步知识点一.事件学校组织六年级八个班进行“元旦联欢会”活动,每个班都准备了一个节目,活动的时候用抽签的方式确定各个班级的出场顺序.那么哪个年级可能第一个出场?此时,每个班级都有第一个出场的可能,但无法确定具体哪个班级第一个出场.像上述的问题,我们把它称为事件.类似的事件有许多,如抛掷一枚硬币,落地后是正面朝上还是背面朝上?掷骰子停止后,哪一点朝上?等等..二.确定事件和随机事件在一定条件下必定出现的现象叫做必然事件.在一定条件下必定不出现的现象叫做不可能事件.必然事件和不可能事件统称为确定事件.那些在一定条件下可能出现也可能不出现的现象叫做随机事件,也称为不确定事件.三.事件的概率一般地,如果一个实验共有n 个等可能的结果,事件A 包含其中的k 个结果,那么事件A 的概率:()==A k P A n事件包含的可能结果数所有的可能结果总数.1.确定事件与随机事件⎧⎧⎪⎨⎨⎩⎪⎩必然事件不可能事件随机事件确定事件事件必然事件:在一定条件下必定出现的现象,叫做必然事件.不可能事件:在一定条件下必定不出现的现象叫做不可能事件.确定事件:必然事件和不可能事件统称确定事件.随机事件:在一定条件下可能出现也可能不出现的现象叫随机事件.2.事件发生的可能性100%())10P A ⎧⎪⎫⎪⎪<<⎪⎨⎬⎪⎪⎭⎪⎪⎩必然()很有可能有可能随机事件可能性大小(不太可能不可能(0)3.事件的概率=A 1A =1=0A A A k n ⎧⎪⎨⎪<<⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩定义:用来表示某事件发生的;为必然事件:P(A)事件的概率为不可能事件:P(A)为随机事件:P(A)用频率估计概率:把与的叫该事件发生的频率;定义:试验结果有限,各种结果可能出现的,任何两个等可能试验:结果不可能;事件包含的等可能性大小的数0频数试验总次数比值机会均等同时出现可能结果可能事件的概率数所有:P(A)=利用树形可能结果数图求概率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩:可以避免重复和遗漏,直观又条理分明.。
初中概率知识点总结大全
初中概率知识点总结大全一、概率基础知识1. 随机试验:指条件具备,结果不确定的实验,比如掷骰子、抛硬币等。
2. 样本空间:随机试验的所有可能结果组成的集合。
3. 事件:样本空间的子集称为事件,包含了我们关心的一些结果。
4. 必然事件和不可能事件:必然事件是指一定会出现的事件,比如抛硬币一定会出现正反面其中之一;不可能事件是指一定不会出现的事件,比如抛硬币会出现正反面之外的结果。
5. 等可能事件:指所有事件发生的可能性相等。
6. 概率:事件发生的可能性大小。
用符号 P(A) 表示事件 A 的概率。
二、概率计算1. 古典概型计算当样本空间中的元素个数有限且每个基本事件发生的可能性相等时,可使用古典概型计算概率。
例如:掷一枚骰子,求点数为偶数的概率。
样本空间 S = {1, 2, 3, 4, 5, 6},事件A是点数为偶数的结果,即 A = {2, 4, 6}。
所以 P(A) = n(A) / n(S) = 3 / 6 = 1/2。
2. 几何概型计算当事件的发生是与随机试验的空间几何结构有关时,可使用几何概型计算概率。
例如:在一个圆形的靶子上打靶,求打在靶心的概率。
由于靶心只有一个点,而靶子的面积是一个圆,所以 P(A) = 0。
3. 频率法计算当样本空间中的元素个数非常大,无法通过统计来确定每个基本事件的发生概率时,可使用频率法计算概率。
例如:抛掷硬币,实验多次后计算正面朝上的频率来估算正面朝上的概率。
4. 排列和组合排列和组合是概率计算中常用的计算方法。
排列是指从n 个不同元素中任取m(m ≤ n)个元素按照一定顺序排成一列的不同排列数。
排列数用 P(n, m) 或 n!/(n-m)! 表示。
组合是指从 n 个不同元素中任取 m(m ≤ n)个元素并成一组的不同组合数。
组合数用 C(n, m) 或 n!/m!(n-m)! 表示。
三、概率的运算1. 事件的关系事件的关系包括事件的和、差、积和余事件。
概率初中知识点总结
概率初中知识点总结概率初中知识点总结正文:一、随机事件和概率1. 随机事件:在一定条件下可能发生的事件称为随机事件。
2. 样本空间:所有可能事件所组成的空间称为样本空间。
3. 事件的概率:一个随机事件发生的概率等于该事件发生的次数除以样本空间中该事件发生的次数。
4. 独立事件:两个事件互不影响,且其中一个事件的发生不会影响另一个事件的发生。
5. 等可能事件:两个事件都是可能发生的,称为等可能事件。
二、随机变量和概率分布1. 随机变量:表示随机事件的序列或集合的变量称为随机变量。
2. 离散型随机变量:其取值只分布在有限或可数个离散点上的变量称为离散型随机变量。
3. 连续型随机变量:其取值连续或可无限连续的变量称为连续型随机变量。
4. 概率分布:随机变量取值的概率密度函数称为该变量的概率分布。
5. 概率分布的密度函数:表示随机变量取值的概率密度函数称为该变量的概率分布的密度函数。
三、概率的计算方法1. 期望:随机变量的平均值称为该变量的期望。
2. 方差:随机变量的标准差称为该变量的方差。
3. 协方差:两个随机变量之间相互关联的程度称为它们之间的协方差。
4. 相关系数:表示两个变量之间相互关联程度的系数称为它们之间的相关系数。
拓展:1. 随机变量的数字特征:表示随机变量取值离散程度的特征称为随机变量的数字特征。
2. 概率分布的图形表示:概率分布的密度函数可以用概率分布的图形表示,如散点图、密度图等。
3. 概率分布的应用:概率分布可以用于模拟、预测、决策等领域。
4. 随机变量的独立性:两个独立随机变量之间相互独立,即它们之间的方差之和为0。
初中《概率》知识点归纳
初中《概率》知识点归纳概率是数学中的一个分支,研究随机事件的发生概率和可能性的科学。
初中阶段,学生会学习一些基础的概率知识,本文将对初中《概率》知识点进行归纳总结。
一、随机事件和样本空间1.随机事件:具有不确定性的事件称为随机事件,如抛掷一枚硬币的结果、掷骰子的点数等。
2.样本空间:随机试验的所有可能结果的集合称为样本空间,用S表示。
例如,抛掷一枚硬币的样本空间为{正面,反面}。
二、事件的概率1.定义:事件A的概率是指在一次随机试验中,事件A发生的可能性,用P(A)表示。
2.概率的性质:-非负性:对于任意事件A,0≤P(A)≤1-必然事件:对于一定发生的事件,概率为1-不可能事件:对于一定不发生的事件,概率为0。
-加法公式:若A、B为互斥事件,则P(A∪B)=P(A)+P(B)。
3.等可能概率:在样本空间中,每个事件的发生概率相等。
例如,抛掷一枚硬币正面朝上的概率为1/24.事件的互斥与独立:-互斥事件:两个事件不能同时发生,P(A∩B)=0。
-独立事件:两个事件的发生不会相互影响,P(A∩B)=P(A)×P(B)。
三、事件的确定性和可能性1.确定性事件:在一次随机试验中,一定会发生的事件。
2.可能性事件:在一次随机试验中,可能发生也可能不发生的事件。
四、频率与概率1.频率:在大量重复试验中,事件A发生的频次与总试验次数的比值称为事件A的频率,记作f(A)。
2.大数定律:在试验次数很大时,事件A的频率趋近于事件A的概率。
五、排列和组合1.排列:从n个不同元素中,按照一定顺序取出m(m≤n)个元素,称为从n个不同元素中选取m个元素的排列数,记作A(n,m)。
2.组合:从n个不同元素中,取出m(m≤n)个元素,不考虑其顺序,称为从n个不同元素中选取m个元素的组合数,记作C(n,m)。
3.公式:-A(n,m)=n!/(n-m)!-C(n,m)=n!/(m!(n-m)!)六、概率的计算1.等可能概率的计算:P(A)=有利的结果数/总结果数。
九年级数学概率初步知识点总结
九年级数学概率初步知识点总结经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
下面是整理的九年级数学概率初步知识点,仅供参考希望能够帮助到大家。
九年级数学概率初步知识点(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;(2)不可能事件是指一定不能发生的事件;(3)随机事件是指在一定条件下,可能发生也可能不发生的.事件;(4)随机事件的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.(5)概率一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.统计初步的有关概念总体:所要考查对象的全体叫总体;个体:总体中每一个考查对象.样本:从总体中所抽取的一部分个体叫总体的一个样本.样本容量:样本中个体的数目.样本平均数:样本中所有个体的平均数叫样本平均数.总体平均数:总体中所有个体的平均数叫做总体平均数.统计学中的基本思想就是用样本对总体进行估计、推断,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分析规律.数学学习方法及技巧学好初中数学认真听课很重要初中学生想要学好数学,在课上一定要认真听老师讲课。
老师在课堂上讲的是非常重要的知识点,但是在初中数学课上选择做笔记并不是一个正确的做法。
在初中数学课上你需要做的就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。
大部分的初中数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。
学好初中数学要较真数学是一门严谨的学科,对于自己不会的地区和知识点初中生绝对不能模棱两可的就过去了,而是要把它弄清楚做明白。
初三数学概率知识点总结
初三数学概率知识点总结一、事件的分类。
1. 必然事件。
- 在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
例如:太阳从东方升起。
2. 不可能事件。
- 在一定的条件下重复进行试验时,在每次试验中都不可能发生的事件。
例如:掷骰子得到的点数大于6。
3. 随机事件。
- 在一定的条件下重复进行试验时,可能发生也可能不发生的事件。
例如:掷一枚硬币,正面朝上。
二、概率的定义。
1. 概率的概念。
- 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=(m)/(n)。
- 例如:掷一枚均匀的骰子,共有6种等可能的结果(1点、2点、3点、4点、5点、6点),掷出偶数点(事件A)包含3种结果(2点、4点、6点),则P(A)=(3)/(6)=(1)/(2)。
2. 概率的取值范围。
- 对于任何事件A,0≤ P(A)≤1。
- 当P(A) = 0时,事件A是不可能事件;当P(A)=1时,事件A是必然事件;当0时,事件A是随机事件。
三、用列举法求概率。
1. 直接列举法。
- 当试验的结果较少时,可以直接列举出所有可能的结果,然后计算事件的概率。
- 例如:一个布袋中有1个红球和2个白球,除颜色外其余都相同。
从袋中随机摸出一个球,求摸到红球的概率。
- 这里总共有3个球(1个红球和2个白球),摸出红球这一事件包含1种结果,所以P(摸到红球)=(1)/(3)。
2. 列表法。
- 当一次试验涉及两个因素(例如掷两枚骰子),并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,可以采用列表法。
- 例如:同时掷两枚质地均匀的骰子,求两枚骰子点数之和为7的概率。
- 列表如下:第一枚骰子\\第二枚骰子 1 2 3 4 5 6。
1 2 3 4 5 6 7.2 3 4 5 6 7 8.3 4 5 6 7 8 9.4 5 6 7 8 9 10.5 6 7 8 9 10 11.6 7 8 9 10 11 12.- 共有36种等可能的结果,点数之和为7的情况有6种(1和6、2和5、3和4、4和3、5和2、6和1),所以P(点数之和为7)=(6)/(36)=(1)/(6)。
初中《概率》知识点归纳
初中《概率》知识点归纳初中《概率》知识点归纳1、科学记数法:把一个数字写成的形式的记数方法。
2、统计图:形象地表示收集到的数据的图。
3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。
4、条形统计图:清楚地表示出每个项目的具体数目。
5、折线统计图:清楚地反映事物的变化情况。
6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。
7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。
8、事件的概率:可用事件结果除以所以可能结果求得理论概率。
9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。
10、游戏双方公平:双方获胜的可能性相同。
11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。
13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。
中学数学概率知识点归纳214、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。
15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。
16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。
17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。
18、频数:每次对象出现的次数。
19、频率:每次对象出现的次数与总次数的比值20、级差:一组数据中最大数据与最小数据的差,刻画数据的离散程度21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度22、方差计算公式23、标准方差:方差的算数平方根刻画数据的离散程度。
24、一组数据的级差、方差、标准方差越小,这组数据就越稳定。
九年级数学概率初步知识点
九年级数学概率初步知识点
九年级数学概率初步的知识点包括以下内容:
1. 事件与样本空间:事件是指在一次随机实验中可能发生的结果,样本空间是指随机实验的所有可能结果组成的集合。
2. 事件的概率:事件A的概率表示为P(A),计算方法为P(A) = 事件A的有利结果数/样本空间的总结果数。
3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件只能发生其中一个。
4. 事件的并、交与差:事件A和事件B的并集是指事件A和事件B中至少有一个事件发生的情况,事件A和事件B的交集是指事件A和事件B同时发生的情况,事件A对事件B的差是指事件A发生但事件B不发生的情况。
5. 等可能事件:指在一个随机实验中,每个结果发生的概率相等。
6. 事件的组合:指将多个事件进行排列组合,计算不同情况发生的概率。
7. 古典概型:指样本空间有限,且每个样本发生的概率相等的情况。
8. 条件概率:指在已知事件A发生的情况下,事件B发生的概率,表示为P(B|A),计算方法为P(B|A) = P(A并B)/P(A)。
9. 独立事件:指事件A的发生与事件B的发生没有相互影响,即P(A并B) = P(A) ×P(B)。
10. 事件系列:指多个事件相继进行,每个事件的发生与否会影响下一个事件的发生概率计算。
这些知识点是九年级数学概率初步的基础,通过掌握这些知识,可以进行一些简单的概率计算与推理。
中考数学复习《概率》考点及经典题型
中考数学复习《概率》考点及经典题型知识点一:概率 1. 概率及公式(1)定义:表示一个事件发生的可能性大小的数. (2)概率公式:P (A )=mn(m 表示试验中事件A 出现的次数,n 表示所有等可能出现的结果的次数). 2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.变式练习2:设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是14.2. 用频率可以估计概率一般地,在大量重复试验中,如果事件A 发生的频率 会稳定在某个常数p 附近,那么事件A 发生的概率P (A )=p =m n. 变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.注意:(1)在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
(2)在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
变式练习2:在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( )A. 2B. 3C. 4D. 12【解析】B 由已知得4个黄球占总球的13,所以共有12个球,则白球的个数为12-5-4=3(个).变式练习3:在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为0.7.3. 事件的类型及其概率 1)确定事件和随机事件 (1)确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
七年级概率初步知识点总结
七年级概率初步知识点总结概率,是指某件事情发生的可能性大小。
在数学中,概率是一个十分重要的概念,也是数学中比较基础的知识之一。
下面我们来总结一下七年级概率初步的知识点。
一、基础概念1. 事件:概率问题中所研究的问题2. 样本空间:在概率问题中,所有可能出现的情况组成的集合3. 事件的概率:事件发生的可能性大小,通常用P(A)表示4. 必然事件:有些事件必然会发生,如掷一枚硬币,正反两面一定会有一面朝上5. 不可能事件:有些事件不可能会发生,如掷一枚硬币的正反两面同时朝上二、概率的计算方法1. 等可能概型下的概率计算:对于每种可能性发生的概率相同的问题,可以使用总数与被计数项数的比值计算例如:在掷一枚硬币的情况下,正面向上的概率为1/2。
2. 容斥原理:指如果想要求得至少发生其中一个事件的概率,可以先将每个事件的概率相加,再减去同时发生两个事件的概率,最后加上同时发生所有事件的概率例如:一枚骰子掷两次,至少有一次出现3点的概率为11/36。
3. 互不相容事件的概率计算:指若两个事件不会发生重叠部分,概率可以直接相加例如:在掷一枚骰子的情况下,得到2点或3点的概率为1/6+1/6=1/3。
三、概率模型的修改1. 添加事件:指增加概率模型中事件的可能性例如:在掷两次一枚骰子的情况下,至少有一次获得5点及以上的概率为11/18。
2. 删除事件:指减少概率模型中事件的可能性例如:在初始有5个红球和3个蓝球的情况下,如果从中随机取出一个球,得到红球的概率为5/8;但如果从中取出一个红球后,放回去又取一次,得到两次都得到红球的概率为25/64。
以上就是七年级概率初步的知识点总结,希望能对大家的学习有帮助。
初中概率初步知识点归纳
初中概率初步知识点归纳1.概率的基本概念:概率是指一些事件发生的可能性大小。
用数字来表示概率,概率的范围在0到1之间,其中0表示不可能发生,1表示必然发生。
2.试验与样本空间:试验是指一些随机事件的观察或测试过程,样本空间是指试验的所有可能结果的集合。
例如,抛一枚硬币的试验,样本空间为{正面,反面}。
3.事件与事件的概率:事件是指样本空间的一个子集,即一些试验的可能结果的集合。
事件的概率是指该事件发生的可能性大小。
事件的概率可以通过计算实验中该事件发生的次数与实验总次数的比例来确定。
4.相等概率事件:如果一个试验的样本空间中的每个结果发生的概率相等,那么每个结果就是一个相等概率事件。
例如,抛一枚均匀硬币的结果正面和反面都是相等概率事件。
5.基本事件与复合事件:基本事件是样本空间中的一个单独结果,复合事件是样本空间中的一个或多个事件的集合。
复合事件可以通过基本事件的交、并、非等运算得到。
6.事件的互斥与独立:两个事件互斥是指它们不能同时发生,即它们的交集为空集;两个事件独立是指它们的发生与不发生相互独立,即一个事件的发生不影响另一个事件的发生。
7.计数原理:计数原理是概率问题中常用的计算方法。
包括排列计数原理和组合计数原理。
排列是指从一组不同的元素中取出若干个按照一定顺序排列的方式,组合是指从一组不同的元素中取出若干个按照任意顺序排列的方式。
8.条件概率:条件概率是指在一些条件下事件发生的概率。
如果事件A和事件B相互独立,那么事件A在事件B发生的条件下发生的概率与事件A发生的概率相等。
9.事件的发生次数的概率分布:事件的发生次数的概率分布可以用频率来近似估计。
当试验次数很大时,事件发生次数的频率趋近于事件发生的概率。
10.古典概型:古典概型是指试验的样本空间有限且所有结果发生的概率相等的情况。
在古典概型中,事件发生的概率可以通过计数原理进行计算。
初中数学 概率初步(知识点总结及练习)
概率初步一、随机事件与概率1.随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
一般地,事件用英文大写字母A,B,C,…,表示。
2.确定事件(1)必然事件:在一定的条件下重复进行试验时,在每次试验中必然事件。
(2)不可能事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能事件。
3.概率(1)概率的意义:对于一个随机事件A,我们把刻画其发生可能性大小的数据,称为随机事件A 发生的概率。
(2)概率的表示:一般地,如果在一次实验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中m 种结果,那么事件A 发生的概率P(A)=nm 。
由m,n 的含义可知,n m ≤≤0,进而有10≤≤nm,因此1)(0≤≤A P 。
特别地,当A 为必然事件时,P(A)=1;当A 为不可能事件时,P(A)=0。
二、列表法求概率1.列表法:在一次实验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举实验结果的方法,求出随机事件发生的概率。
2.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
3.例题:例1:把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,并且每种结果出现的可能性相等。
所有可能结果中,2张牌牌面数字相同(记为事件A)的结果有三种,所以P(A)=3193=。
2张牌牌面数字不同(记为事件B)的结果有六种,所以P(B)=3296=。
初中中考概率知识点总结
初中中考概率知识点总结一、概率的基本概念1. 随机事件与样本空间随机事件是指在一次试验中可能出现也可能不出现的事件,样本空间是指这个试验中所有可能结果组成的集合。
比如,掷一枚硬币,样本空间就是正面和反面,出现正面和出现反面就是两个随机事件。
2. 概率的定义概率是随机事件发生的可能性大小的度量,通常用P(A)表示,其中A表示随机事件。
概率的取值范围是[0,1],即0表示不可能发生,1表示必然发生,而在0和1之间表示可能性大小。
3. 事件的互斥与对立互斥事件指两个事件不能同时发生,对立事件指两个事件一定有一个发生,但是不能同时发生。
二、概率的计算方法1. 定义法计算概率概率的定义法指直接利用概率的定义进行计算,即事件A发生的次数除以试验次数。
例如,掷一枚硬币,正面朝上的概率可以用正面出现的次数除以总次数来计算。
2. 古典概率古典概率适用于有限个等可能结果的试验。
古典概率的计算公式为P(A)=m/n,其中m为事件A发生的次数,n为试验次数。
3. 几何概率几何概率适用于连续随机事件。
计算几何概率时,可以利用事件发生的面积或长度除以总的可能性的面积或长度。
4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率。
条件概率的计算公式为P(A|B)=P(AB)/P(B)。
5. 事件的独立性如果事件A和事件B的发生互不影响,即P(A|B)=P(A),P(B|A)=P(B),则称事件A和事件B是独立事件。
这时有P(AB)=P(A)P(B)。
6. 事件的联合概率事件A和事件B联合发生的概率可以用P(AB)表示,计算公式为P(AB)=P(A)P(B|A)=P(B)P(A|B)。
三、概率与统计的关系1. 随机变量随机变量是一个随机试验结果的数值表示,可以是离散的也可以是连续的。
对于随机变量,可以计算它的期望值、方差等统计指标。
2. 概率分布概率分布是指随机变量取值和相应概率的对应关系。
对于离散随机变量,可以通过列出取值和概率的对应关系来表示概率分布;对于连续随机变量,可以通过概率密度函数来表示概率分布。
七年级概率初步知识点
七年级概率初步知识点概率是数学中一个非常重要的概念,也是我们日常生活中不可避免的问题。
简单来说,概率就是某一个事件发生的可能性大小。
在七年级的初步学习中,我们将会学到概率的基本概念、公式运用、以及实际中的应用。
一、基本概念1.概率的定义概率是某个事件发生的可能性大小,通常是用一个介于0和1之间的数值来表示。
2.样本空间和事件样本空间是指某个试验中所有可能结果组成的集合,事件则是样本空间中的任意一个子集。
3.基本事件基本事件是指样本空间中的一个单独的结果,例如掷一枚骰子得到的点数就是一个基本事件。
二、公式运用1.频率和概率的关系频率是某个事件在大量试验中出现的相对次数,而概率则是某个事件出现的理论可能性大小。
当试验次数无限接近时,频率将会无限接近于概率。
2.概率的加法原理当某个事件可以用两个或多个不相交的事件来表示时,该事件的概率等于每个不相交事件的概率之和。
3.概率的乘法原理当某个事件可以用两个或多个独立事件的组合来表示时,该事件的概率等于每个独立事件概率的乘积。
三、实际应用1.在游戏中应用概率在玩掷骰子的游戏时,我们可以利用概率来计算掷出某个数字的可能性大小,从而决策自己的游戏策略。
2.概率在科学中的应用概率在统计学中广泛应用,可以用来对某些自然现象进行预测和研究,例如气象、物理等领域。
3.概率在经济中的应用概率在金融和股票市场中广泛应用,可以用来帮助投资者预测股市走向和做出相应的决策。
总结以上是七年级概率初步知识点的基本内容,希望同学们能够掌握概率的基本概念、公式运用以及实际中的应用。
在实践中,通过不断地练习和探索,我们可以更深入地了解概率,以及如何在实际应用中更好地运用概率。
概率初步九年级知识点
概率初步九年级知识点一、概率的基本概念概率是研究随机事件发生可能性的数学工具。
在我们日常生活中,概率无处不在。
我们可以通过概率来计算各种事件的发生概率,从而进行合理的决策。
二、事件与样本空间1. 事件:概率论中,事件是指一个随机试验的结果。
例如,掷一枚硬币,正面朝上为事件A,反面朝上为事件B。
2. 样本空间:样本空间是指随机试验的所有可能结果的集合。
对于掷一枚硬币的试验,样本空间为{正面,反面}。
三、概率的计算概率的计算可以通过频率法和几何法两种方法。
1. 频率法:通过实验的结果次数与实验总次数的比值来计算概率。
例如,掷一枚硬币,正面朝上的次数除以总次数即可得到正面出现的概率。
2. 几何法:通过样本点在样本空间中的位置来计算概率。
例如,在掷一枚骰子的试验中,三点出现的概率为1/6。
四、基本事件的概率1. 基本事件:样本空间中的单个元素称为基本事件。
例如,掷一枚硬币,正面朝上、反面朝上分别为两个基本事件。
2. 基本事件的概率:基本事件的概率等于事件发生的可能性除以样本空间的大小。
例如,掷一枚硬币,正面朝上的概率为1/2。
五、互斥事件与对立事件1. 互斥事件:两个事件不能同时发生,称为互斥事件。
例如,掷一枚硬币,正面朝上和反面朝上是互斥事件。
2. 对立事件:两个事件发生其中一个必然排除另一个,称为对立事件。
例如,掷一枚硬币,正面朝上和反面朝上是对立事件。
六、加法定理加法定理是计算事件并的概率的公式。
对于两个事件A和B,其并的概率等于A事件的概率加上B事件的概率减去A和B同时发生的概率。
即P(A∪B) = P(A) + P(B) - P(A∩B)。
七、乘法定理乘法定理是计算事件交的概率的公式。
对于两个事件A和B,其交的概率等于A事件的概率乘上B事件在A发生的条件下的概率。
即P(A∩B) = P(A) * P(B|A)。
八、条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。
用P(B|A)表示在事件A发生的条件下B发生的概率。
初中概率知识点总结
初中概率知识点总结
1. 事件与概率
- 事件是指某个结果的集合,概率是指这个事件发生的可能性。
- 概率的取值范围是0到1,0代表不可能事件,1代表必然事件。
2. 等可能事件
- 对于等可能事件,每个事件发生的可能性是一样的。
- 等可能事件的概率可以通过计算事件发生的次数与样本空间
中的总数的比值得到。
3. 互斥事件
- 互斥事件是指两个事件不能同时发生的情况。
- 互斥事件的概率可以通过将两个事件发生的概率相加得到。
4. 独立事件
- 独立事件是指一个事件的发生不受其他事件发生与否的影响。
- 独立事件的概率可以通过将各个事件发生的概率相乘得到。
5. 抽样与统计调查
- 在抽样调查中,通过对部分样本进行观察和研究,以得出总体特征或规律。
- 抽样调查中的概率抽样是指每个样本被选中的概率相等。
6. 相关事件
- 相关事件是指两个事件发生与否存在某种关联性。
- 相关事件的概率可以通过根据给定的条件来计算。
7. 条件概率
- 条件概率是指在给定另一事件已经发生的条件下,某一事件发生的概率。
- 条件概率的计算可以利用总体样本中的频率或者基于互斥事件和相关事件的概率来推导。
8. 概率分布
- 概率分布是指对某个随机事件的可能结果及其概率进行表示和总结的方式。
- 常见的概率分布包括二项分布、正态分布等。
以上是初中概率知识的简要总结。
概率知识在日常生活中有着广泛的应用,对于进一步学习数学以及理解世界中的不确定性具有重要意义。
初中数学概率初步知识点复习汇总
名师精编优秀资料初中数学概率初步既然有初步二字,明显会有更深入的内容,而目前来说知识基础中的基础,生活中,概率应用也是很广,尤其是对某些事情的推断,对某些数据的统计,都需要用到,那么,你首先要学着去初步理解初中数学概率初步的思维方式,然后,来看中考复习要求。
1、理解什么是必然发生的事件、不可能发生的事件,什么是随机事件.2、在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解概率的取值范围的意义,发展随机观念.·3、能够运用列举法(包括列表、画树形图)计算简单事件发生的概率.4、能够通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值,理解频率与概率的区别与联系,并能够自主设计满足条件的概率模型.5、通过实例进一步丰富对概率的认识,并能解决一些实际问题.6、解进行模拟实验的必要性,能根据问题的实际背景设计合理的模拟实验.7、体会随机观念和概率思想1.随机事件的定义.3·计算简单事件概率的方法,重点学习了两种随机事件概率的计算方法,第一种,只涉及一步实验的随机事件发生的概率,如根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种,通过列表法、列举法、树形图来计算涉及两步或两步以上实验的随机事件发生的概率,如配紫色,对游戏是否公平的计算.4·利用频率估计概率,分为如下两种情况:第一种,利用实验的方法进行概率估算;第二种,利用模拟实验的方法进行概率估算.如利用计算器产生随机数来模拟实验的方法.5.体会大量重复实验中的频率与事件发生的概率之间的关系,通过设计简单的概率模型.重在对事件发生可能性的刻画,来帮助人们在不确定的情境中做出合理的决策,如通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/xwdt/2012/0323/4346.html
初中数学概率初步既然有初步二字,明显会有更深入的内容,而目前来说知识基础中的基础,生活中,概率应用也是很广,尤其是对某些事情的推断,对某些数据的统计,都需要用到,那么,你首先要学着去初步理解初中数学概率初步的思维方式,然后,来看中考复习要求。
1、理解什么是必然发生的事件、不可能发生的事件,什么是随机事件.
2、在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解
概率的取值范围的意义,发展随机观念.·
3、能够运用列举法(包括列表、画树形图)计算简单事件发生的概率.
4、能够通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率
的估计值,理解频率与概率的区别与联系,并能够自主设计满足条件的概率模型.
5、通过实例进一步丰富对概率的认识,并能解决一些实际问题.
6、解进行模拟实验的必要性,能根据问题的实际背景设计合理的模拟实验.
7、体会随机观念和概率思想
1.随机事件的定义.
3·计算简单事件概率的方法,重点学习了两种随机事件概率的计算方法,第一种,只涉及一步实验的随机事件发生的概率,如根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种,通过列表法、列举法、树形图来计算涉及两步或两步以上实验的随机事件发生的概率,如配紫色,对游戏是否公平的计算.
4·利用频率估计概率,分为如下两种情况:第一种,利用实验的方法进行概率估算;第二种,利用模拟实验的方法进行概率估算.如利用计算器产生随机数来模拟实验的方法.
5.体会大量重复实验中的频率与事件发生的概率之间的关系,通过设计简单的概率模型.重在对事件发生可能性的刻画,来帮助人们在不确定的情境中做出合理的决策,如通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型.。