三角形知识点复习(经典归纳)
(完整版)解三角形专题题型归纳
《解三角形》知识点、题型与方法归纳一、知识点归纳(★☆注重细节,熟记考点☆★)1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b B b B c C c C=== 2.正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况).3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-= 4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R===∆为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 7.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
第七章《三角形》知识点归纳与练习
第七章三角形知识点一:三角形1、定义:由不在同一条直线上的三条线段顺次首尾相接所组成的图形叫做三角形。
2、分类:<1)按角分:锐角三角形;直角三角形;钝角三角形;<2)按边分:不等边三角形;等腰三角形;等边三角形;3、角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
b5E2RGbCAP4、中线:连接一个顶点与对边中点的线段叫做三角形的中线。
5、高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。
注意:三角形的角平分线、中线和高都有三条。
6、三角形的三边关系:三角形的任意两边的和大于第三边,任意两边的差小于第三边。
7、三角形的内角:三角形的内角和等于。
如图:8、三角形的外角<1)三角形的一个外角与相邻的内角互补。
<2)三角形的一个外角等于与它不相邻的两个内角的和。
<3)三角形的一个外角大于任何一个与它不相邻的内角。
>或>6、三角形的周长、面积求法和三角形稳定性。
<1)如图1:C△ABC=AB+BC+AC或C△ABC= a+b+c。
四个量中已知其中三个能求第四个。
<2)如图2:AD为高,S△ABC=·BC·AD三个量中已知其中两个能求第三个。
<3)如图3:△ABC中,∠ACB=90°,CD为AB边上的高,则有:S△ABC=·AB·CD=·AC·BC即:AB·CD=AC·BC四条线段中已知其中三条能求第四条。
知识点二:多边形及其内角和1、边形的内角和=;2、边形的外角和=。
3、一个边形的对角线有条,过边形一个顶点能作出条对角线,把边形分成了个三角形。
例题讲解例 1.如图,为估计池塘岸边的距离,小方在池塘的一侧选取一点,测得M,=10M,间的距离不可能是< )p1EanqFDPwA.20MB.15MC.10MD.5M例2已知一个多边形的内角和与某个外角的度数的总和为1350°,求这个多边形的边数.例3 若一个多边形有77条对角线,求它的内角和.例4 下列各组三条线段中,不能组成三角形的是< )。
部编人教版数学《三角形》知识点归纳
《三角形》知识点归纳1、 三角形的分类按角分⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形按边分⎪⎩⎪⎨⎧⎩⎨⎧等边三角形三角形腰和底边不相等的等腰等腰三角形不等边三角形 2、三角形三边的关系:两边之和大于第三边,两边之差小于第三边3、已知两边求第三边的范围:两边之差<第三边<两边之和4、三角形的高(1)锐角三角形的三条高都在三角形内,它们在三角形内交于一点. (2)直角三角形的一条高在三角形内,另外两条高就是两条直角边,三条高在直角顶点相交.(3)钝角三角形有一条高在三角形内,还有两条高在三角形外,三条高延长后在三角形外交于一点 5、三角形的中线(1)三角形的三条中线在三角形内交于一点。
(重心)(2)三角形的一条中线将这个三角形分成面积相等的两个三角形。
6、三角形的三条角平分线在三角形内交于一点(内心) 7、三角形的内角和等于180°,外角和等于360° 8、直角三角形的两个锐角互余。
9、有两个角互余的三角形是直角三角形;有两个角的和等于第三个角的三角形是直角三角形; 有两个角的差等于第三个角的三角形是直角三角形 10、三角形的外角的性质:(1)三角形的外角等于与它不相邻的两个内角的和。
(2)三角形的外角大于与它不相邻的任意一个内角。
11、三角形角平分线的有关结论:(1)三角形两个内角的角平分线相交所成的钝角等于90°加上第三个角的一半。
(2)三角形两个外角的角平分线相交所成的锐角等于90°减去第三个角的一半。
(3)三角形一个内角和一个外角的角平分线相交所成的锐角等于第三个角的一半。
12、从n 边形的一个顶点出发,可以引(n-3)条对角线,它将n 边形分成(n-2)个三角形. n 边形的对角线公式是:2)3(-n n13、n 边形的内角和等于(n-2)×180°,多边形的外角和等于360°。
14、正多边形的每个内角等于nn 180)2(⨯- ,每个外角等于 n 360015、三角形的内角和是外角和的一半,四边形的内角和与外角和相等,六边形的内角和是外角和的2倍。
三角形知识点复习(经典归纳)
三角形知识点复习(经典归纳)初二上册知识点:三角形复习1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点,2、三角形的表示三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.三个顶点用大写字母A,B,C 来表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.3、三角形的分类: (1)按边分类:(2)按角分类 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 ()()等边三角形 三角形 直角三象形斜三角形 锐角三角形大于0度钝角三角形_C _B _A21DC B AD C B A4、三角形的主要线段的定义:(1)三角形的中线(在中文中,中有中间的意思而在这里就是边上的中线)三角形中,连结一个顶点和它对边中点的线段.表示法:(1)AD 是△ABC 的BC 上的中线.(2)BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点 (注:这点叫重心:当我们用一条线穿过重心的时候,三角形不会乱晃)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:(1)AD 是△ABC 的∠BAC 的平分线.(2)∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内A 部且交于三角形内部一点;(注:这一点角三角形的内心。
角平分线的性质:角平分线上的点到角的两边距离相等)③用量角器画三角形的角平分线.(3)三角形的高在的直线作垂线,顶点和垂足之间的线段.表示法①AD 是△ABC 的BC 上的高线②AD ⊥BC 于D ③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;(三角形三条高所在直线交于一点.这点叫垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)5、三角形的主要线段的表示法:三角形的角平分线的表示法:如图1,根据具体情况使用以下任意一种方式表示:① AD 是∆ABC 的角平分线;② AD 平分∠BAC ,交BC 于D ;③ 如果AD 是∆ABC 的角平分线,那么∠BAD =∠DAC =21∠BAC . (2)三角形的中线表示法:如图1,根据具体情况使用以下任意一种方式表示:①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③如果AE 是∆ABC 的中线,那么BE=EC =21BC . (3)三角线的高的表示法:如图2,根据具体情况,使用以下任意一种方式表示:① A M 是∆ABC 的高;② A M 是∆ABC 中BC 边上的高;③ 如果AM 是∆ABC 中BC 边上高,那么AM ⊥BC ,垂足是E ;④ 如果AM 是∆ABC 中BC 边上的高,那么∠AMB =∠AMC =90︒.⒌ 在画三角形的三条角平分线,三条中线,三条高时应注意:(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部.(2)如图4,三角形的三条中线交点一点,交点都在三角形内部.ABC D E 图图2如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.6、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.图3图4图5图6 图77、三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.8、三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
三角形知识点总结完
三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。
判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。
③有一个角是60度的等腰三角形是等边三角形。
结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。
④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。
三角形知识点归纳总结
三角形知识点归纳总结
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
在平面上三角形的内角和等于180°(内角和定理)。
直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
三角形分类判定法一
1、锐角三角形:三角形的三个内角都小于90度。
2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。
3、钝角三角形:三角形的三个内角中有一个角大于90度。
三角形分类判定法二
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
完整版)解三角形知识点归纳总结
完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。
变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。
利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。
②已知两边和其中一个角的对角,求其他两个角及另一边。
例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。
4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。
二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。
三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。
第十一章三角形(知识点+题型分类练习)
三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2.三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。
②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。
④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。
二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。
三角形的三条高的交于一点,这一点叫做“三角形的垂心”。
2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。
三角形三条中线的交于一点,这一点叫做“三角形的重心”。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。
解三角形知识点归纳
解三角形知识点归纳一 正弦定理(一)知识与工具:正弦定理:在△ABC 中,R Cc B b A a 2sin sin sin ===。
在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。
注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180°(2)两边之和大于第三边,两边之差小于第三边(3)面积公式:S=21absinC=Rabc 4=2R 2sinAsinBsinC (4)三角函数的恒等变形。
sin(A+B)=sinC ,cos(A+B)=-cosC ,sin2B A +=cos 2C ,cos 2B A +=sin 2C (二)题型 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。
题型3 三角形解的个数的讨论方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。
二 余弦定理(一)知识与工具:a 2=b 2+c 2﹣2bccosA cosA=bc a 2c b 222-+ b 2=a 2+c 2﹣2accosB cosB=ac b c a 2222-+ c 2=a 2+b 2﹣2abcosC cosC=ab c b a 2222-+ 注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。
在变形中,注意三角形中其他条件的应用:(1)三内角和为180°;(2)两边之和大于第三边,两边之差小于第三边。
(3)面积公式:S=21absinC=R abc 4=2R 2sinAsinBsinC (4)三角函数的恒等变形。
(二)题型使用余弦定理解三角形共有三种现象的题型题型1 利用余弦定理公式的原型解三角形题型2 利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
解三角形知识点与题型总结
解三角形常用知识点归纳与题型总结1、①三角形三角关系:A+B+C=180°;C=180°—(A+B);②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比.③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒.2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++=== (1)和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=. (2) 二倍角公式sin2α = 2cosαsinα. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 221cos 21cos 2sin ,cos 22αααα-+== (3)辅助角公式(化一公式))sin(cos sin 22ϕ±+=±=x b a x b x a y 其中ab =ϕtan 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B =2R 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---(海伦公式)8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
八年级数学《三角形》知识点归纳
21D CB AD CBAD CB A八年级数学《三角形》知识点⒈ 三角形的定义三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的“△”没有意义. ⒉ 三角形的分类 (1)按边分类 (2)按角分类:⒊ 三角形的主要线段的定义 (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点;这个点叫做三角形的重心。
④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;这个点叫做三角形的内心。
④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段; ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形等腰三角形不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三角形斜三角形锐角三角形钝角三角形_C_B _A③三角形三条高所在直线交于一点.这个点叫做三角形的垂心。
初一下册数学《三角形》知识点复习总结
初一下册数学《三角形》知识点复习总结初一下册数学《三角形》知识点复习总结章一一、三角函数1.定义:在rt△abc中,∠c=rt∠,则sina= ;cosa= ;tga= ;ctga= .2. 特殊角的三角函数值:0° 30° 45° 60° 90°sinαcosαtgα /ctgα /3. 互余两角的三角函数关系:sin(90°-α)=cosα;…4. 三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2. 依据:①边的关系:②角的关系:a+b=90°③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理1. 俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
初一下册数学《三角形》知识点复习总结章二一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。
三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
小学数学三角形知识点总结
小学数学三角形知识点总结1.三角形的特性【知识点归纳】三角形具有稳定性.三内角之和等于180度,根据角可以分为锐角三角形(每个角小于90°),直角三角形(有一个角等于90°),钝角三角形(有一个角大于90°).任意两边之和大于第三边,任意两边之差小于第三边.【命题方向】常考题型:例1:可以围成一个三角形的三条线段是.()A、B、C、分析:紧扣三角形三边关系,即可选择正确答案.解:A:5厘米+4厘米<10厘米,两边之和小于第三边,不能围成三角形,B:5厘米+5厘米=10厘米,两边之和等于第三边,不能围成三角形,C:5厘米+6厘米>10厘米,两边之和大于第三边,能围成三角形,故选:C.点评:此题是考查了三角形三边关系的应用.例2:下面图形是用木条钉成的支架,其中最不容易变形的是()A、B、C、分析:不容易变形,是三角形的特性,由此找出图形中含有三角形的即可.解:根据三角形的特性:三角形具有稳定性;故选:C.点评:此题主要考查三角形的稳定性在实际问题中的运用.2.三角形的分类【知识点归纳】1.按角分判定法一:锐角三角形:三个角都小于90°.直角三角形:可记作Rt△.其中一个角必须等于90°.钝角三角形:有一个角大于90°.判定法二:锐角三角形:最大角小于90°.直角三角形:最大角等于90°.钝角三角形:最大角大于90°.其中锐角三角形和钝角三角形统称为斜三角形.2.按边分不等边三角形;等腰三角形;等边三角形.【命题方向】常考题型:例:一个三角形,三个内角的度数比是2:3:4,这个三角形为()A、锐角三角形B、直角三角形C、钝角三角形D、不能确定分析:判断这个三角形是什么三角形,要知道这个三角形中最大角的度数情况,由题意知:把这个三角形的内角和180°平均分了(2+3+4)=9份,最大角占总和的,根据一个数乘分数的意义,求出最大角的度数,继而根据三角形的分类判断即可.解:最大角:180×=80(度),因为最大角是锐角,所以这个三角形是锐角三角形;故选:A.点评:此题考查了根据角对三角形分类的方法:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.3.三角形的内角和【知识点归纳】三角形内角和为180°.直角三角形的两个锐角互余.【命题方向】常考题型:例1:把一个大三角形分成两个小三角形,每个小三角形的内角和是()A、90°B、180°C、60°分析:根据三角形的内角和是180°,三角形的内角和永远是180度,你把一个三角形分成两个小三角形,每个的内角和还是180度,据此解答.解:因为三角形的内角和等于180°,所以每个小三角形的内角和也是180°.故选:B.点评:本题考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.例2:在三角形三个内角中,∠1=∠2+∠3,那么这个三角形一定是()三角形.A、锐角B、直角C、钝角D、不能确定分析:根据三角形的内角和为180°结合已知,可求∠1=90°,即可判断三角形的形状.解:因为∠1=∠2+∠3,所以∠1=180°÷2=90°,所以这个三角形是直角三角形.故选:B.点评:此题考查了三角形的内角和定理以及三角形的分类,三角形按角分类有锐角三角形、直角三角形、钝角三角形.4.等腰三角形与等边三角形【知识点归纳】1.等腰三角形的定义和性质:定义法:在同一三角形中,有两条边相等的三角形是等腰三角形.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边).2.等边三角形定义:三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”.是特殊的等如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:(1)三边长度相等;(2)三个内角度数均为60度;(3)一个内角为60度的等腰三角形.【命题方向】常考题型:例1:等边三角形是()A、钝角三角形B、锐角三角形C、直角三角形分析:等边三角形也叫正三角形,是指三条边、三个角都相等的三角形,每一个角都是180°÷3=60°,所以等边三角形一定是锐角三角形.解:因为等边三角形的每一个角都是60°,所以等边三角形一定是锐角三角形.故选:B.点评:解决此题关键是掌握等边三角形的特征:三条边、三个角都相等.再根据锐角、钝角、直角三角形的特征进行判断即可.例2:一个三角形中有两个角相等,那么这个三角形一定是()A、锐角三角形B、直角三角形C、等腰三角形分析:根据等角对等边,可知这个三角形中有两条边相等,依此即可作出判断.解:因为一个三角形中有两个角相等,所以这个三角形中有两条边相等;那么这个三角形一定是等腰三角形.故选:C.点评:此题考查了等腰三角形判定,本题关键是熟悉三角形中等角对等边的性质.5.图形的拼组【知识点归纳】1.平面镶嵌的概念:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地拼接在一起,这就是平面镶嵌.用相同的正多边形镶嵌:只用一种多边形时,可以进行镶嵌的是三角形、四边形或正六边形.用不同的正多边形镶嵌:(1)用正三角形和正六边形能够进行平面镶嵌;(2)用正十二边形、正六边形,正方形能够进行平面镶嵌.【命题方向】常考题型:例:把9个边长是2厘米的小正方形排成一个大的正方形,这个大正方形的周长是()A、24厘米B、36厘米C、38厘米分析:把9个边长是2厘米的小正方形排成一个大的正方形,这个大正方形有边长就是(3×2)厘米,根据正方形有周长公式可列式解答.解:根据题意画图如下,正方形的周长:(3×2)×4,=6×4,=24(厘米).答:周长是24厘米.故选:A.点评:本题考查了学生对拼组图形周长的计算能力.画图可更好的帮助学生理解.6.角的度量【知识点归纳】1.角的度量:角度的测量是最基本的测量,最常用的工具是量角器.2.角的度量单位通常有两种,一种是角度制,另一种就是弧度制.角度制,就是用角的大小来度量角的大小的方法.在角度制中,我们把周角的看作1度,那么,半周就是180度,一周就是360度.由于1度的大小不因为圆的大小而改变,所以角度大小是一个与圆的半径无关的量.弧度制,顾名思义,就是用弧的长度来度量角的大小的方法.单位弧度定义为圆周上长度等于半径的圆弧与圆心构成的角.由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量.角度以弧度给出时,通常不写弧度单位,有时记为rad或R.3.度量方法:量角要注意两对齐:量角器的中心和角的顶点对齐.量角器的0刻度线和角的一条边对齐.做到两对齐后看角的另一条边对着刻度线几,这个角就是几度.看刻度要分清内外圈.【命题方向】常考题型:例1:用一个放大10倍的放大镜看一个50°的角,看到的角是()A、50°B、500°C、100°分析:用放大镜看角时,放大的是角的边,不改变角的形状,根据角的大小与边长无关可知角的度数不会改变.解:用放大镜看角时,放大的是角的边,不改变角的形状,根据角的大小与边长无关可知角的度数不会改变.所以用放大10倍的放大镜看一个50度的角,看到的度数仍是50度.故选:A.点评:用放大镜看角,很容易错误认为角的度数会被放大相同倍数,关键要学生理解角的大小与边的长短无关.也要认识到一个普遍规律:放大镜只改变物体大小,不改变物体形状,对角而言只是一种图形,既然形状不变,角度也不会改变.例2:下面每对时刻中,时钟的时针和分针所成的角不一样的有()A、1:30和2:30B、3:30和8:30C、9:00和3:00D、10:30和1:30分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出不同时间下,时针和分针之间相差的大格数,用大格数乘30°即可进行判断,选择.解:A,1:30时针和分针中间相差,4.5个大格,夹角是:30×4.5=135度,2:30时针和分针中间相差3.5个大格,夹角是:30×3.5=105度;符合题意;B,3:30时针和分针中间相差2.5个大格,夹角是2.5×30=75度,8点30分,时针和分针中间相差2.5个大格,夹角是2.5×30°=75度;C,9:00时针和分针中间相差3个大格,夹角是:30×3=90度,3:00时针和分针中间相差3个大格,夹角是:30×3=90度;D,10:30时针和分针中间相差4.5个大格,夹角是:30×4.5=135度,1:30时针和分针中间相差,4.5个大格,夹角是:30×4.5=135度;所以夹角不同的是A.故选:A.点评:本题考查了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.7.多边形的内角和【知识点归纳】多边形内角和定理n边形的内角的和等于:(n﹣2)×180°(n大于等于3).【命题方向】常考题型:例1:我们已经知道三角形三个内角度数的和是180°,(1)你能运用这个知识求出四边形、五边形、六边形等多边形的内角和吗?(2)你发现的规律是什么?多边形每增加一个边,内角和就增加180°(3)请用字母式子表示n边形内角和.分析:根据过同一顶点作出的对角线把多边形分成的三角形的个数的规律,再利用三角形的内角和等于180°即可推出多边形的内角和公式.解:(1)四边形分成2个三角形;180°×2=360°;五边形分成3个三角形;180°×3=540°;六边形分成4个三角形:180°×4=720°(2)可得规律:多边形每增加一个边,内角和就增加180°;(3)n边形的内角和可以表示为:(n﹣2)•180°.故答案为:多边形每增加一个边,内角和就增加180°.点评:本题考查了多边形的内角和公式的推导,理清过同一个顶点把多边形分成的三角形的个数是解题的关键,也是本题的难点.8.和倍问题【知识点归纳】公式:两数和÷份数和=小数小数×倍数=大数或两数和﹣小数=大数和倍问题的特点是利用大小两个数的和与它们的倍数关系,求大小两个数各是多少的应用题,解答和倍应用题的最好助手是,采用画线段图的方法来表示两种量间的数量关系,以便找到解题的途径.【命题方向】常考题型:例1:学校数学小组和语文小组共有学生60人,数学小组的人数是语文小组的1.5倍,两个小组各有多少人?分析:设语文小组有x人,则数学小组就有1.5x人,根据等量关系:数学小组和语文小组共有60人,列出方程即可解决问题.解:设语文小组有x人,则数学小组就有1.5x人,根据题意可得方程:x+1.5x=60,2.5x=60,x=24,1.5×24=36(人),答:数学小组有36人,语文小组有24人.点评:此题是典型的和倍问题,一般都是用倍数的等量关系设出未知数,用和的等量关系列出方程即可解决此类问题.。
三角形知识点温习(经典归纳)
21D CB AD C BADC B A 初二上册知识点:三角形温习一、三角形的概念:由不在同一直线上的三条线段首尾按序相接组成的图形叫做三角形.三角形有三条边,三个内角,三个极点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的极点,2、三角形的表示三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.三个极点用大写字母A,B,C 来表示。
注意:(1)三条线段要不在同一直线上,且首尾按序相接;(2)三角形是一个封锁的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没成心义. 3、三角形的分类: (1)按边分类: (2)按角分类4、三角形的要紧线段的概念:(1)三角形的中线(在中文中,中有中间的意思而在那个地址确实是边上的中线)三角形中,连结一个极点和它对边中点的线段. 表示法:(1)AD 是△ABC 的BC 上的中线.(2)BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点 (注:这点叫重心:当咱们用一条线穿过重心的时候,三角形可不能乱晃)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,那个角极点与交点之间的线段表示法:(1)AD 是△ABC 的∠BAC 的平分线. (2)∠1=∠2=12∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点;(注:这一点角三角形的内心。
角平分线的性质:角平分线上的点到角的两边距离相等)③用量角器画三角形的角平分线. (3)三角形的高从三角形的一个极点向它的对边所在的直线作垂线,极点和垂足之间的线段. 表示法①AD 是△ABC 的BC 上的高线②AD ⊥BC 于D ③∠ADB=∠ADC=90°. 注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形三角形 等腰三角形不等边三角形 底边和腰不相等的等腰三角形等边三角形 三角形直角三象形 斜三角形 锐角三角形钝角三角形 _C_B _A有两条高在形外;(三角形三条高所在直线交于一点.这点叫垂心)③由于三角形有三条高线,因此求三角形的面积的时候就有三种(因为高底不一样) 五、三角形的要紧线段的表示法: 三角形的角平分线的表示法:如图1,依照具体情形利用以下任意一种方式表示:① AD 是∆ABC 的角平分线; ② AD 平分∠BAC ,交BC 于D ;③ 若是AD 是∆ABC 的角平分线,那么∠BAD =∠DAC =21∠BAC . (2)三角形的中线表示法:如图1,依照具体情形利用以下任意一种方式表示: ①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③若是AE 是∆ABC 的中线,那么BE=EC =21BC .(3)三角线的高的表示法:如图2,依照具体情形,利用以下任意一种方式表示: ① AM 是∆ABC 的高;② AM 是∆ABC 中BC 边上的高;③ 若是AM 是∆ABC 中BC 边上高,那么AM ⊥BC ,垂足是E ; ④ 若是AM 是∆ABC 中BC 边上的高,那么∠AMB =∠AMC =90︒. ⒌ 在画三角形的三条角平分线,三条中线,三条高时应注意:(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角极点上.六、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;图3图4 图5 图6图7ABC D E 图1图221B ACMD (2)围成三角形的条件是任意两边之和大于第三边. 7、三角形的角与角之间的关系: (1)三角形三个内角的和等于180︒;(2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余. 八、三角形的内角和定理定理:三角形的内角和等于180°. 推论:直角三角形的两个锐角互余。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
D C
B A
A
D
C
B A 初二上册知识点:三角形复习
1、三角形的定义:
由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. 三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 2、三角形的表示
三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.三个顶点用大写字母A,B,C 来表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;
(2)三角形是一个封闭的图形;
(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. 3、三角形的分类: (1)按边分类: (2)按角分类
4、三角形的主要线段的定义:
(1)三角形的中线(在中文中,中有中间的意思而在这里就是边上的中线)
三角形中,连结一个顶点和它对边中点的线段. 表示法:(1)AD 是△ABC 的BC 上的中线.(2)BD=DC=12
BC. 注意:①三角形的中线是线段;
②三角形三条中线全在三角形的内部且交于三角形内部一点 (注:这点叫重心:当我们用一条线穿过重心的时候,三角形不会乱晃)
③中线把三角形分成两个面积相等的三角形.
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
表示法:(1)AD 是△ABC 的∠BAC 的平分线. (2)∠1=∠2=1
2
∠BAC.
注意:①三角形的角平分线是线段;
②三角形三条角平分线全在三角形的内部且交于三角形内部一点;(注:这一点角三角形的内心。
角平分线的性质:角平分线上的点到角的两边距离相等)
③用量角器画三角形的角平分线. (3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法①AD 是△ABC 的BC 上的高线②AD ⊥BC 于D ③∠ADB=∠ADC=90°. 三角形 等腰三角形
不等边三角形 底边和腰不相等的等腰三角形
等边三角形 三角形
直角三象形 斜三角形 锐角三角形钝角三角形 _C _B _A
注意:①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;(三角形三条高所在直线交于一点.这点叫垂心)
③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)
5、三角形的主要线段的表示法:
三角形的角平分线的表示法:
如图1,根据具体情况使用以下任意一种方式表示:
①AD是∆ABC的角平分线;
②AD平分∠BAC,交BC于D;
③如果AD是∆ABC的角平分线,那么∠BAD=∠DAC=
2
1
∠BAC.
(2)三角形的中线表示法:
如图1,根据具体情况使用以下任意一种方式表示:
①AE是∆ABC的中线;
②AE是∆ABC中BC边上的中线;
③如果AE是∆ABC的中线,那么BE=EC=
2
1
BC.
(3)三角线的高的表示法:
如图2,根据具体情况,使用以下任意一种方式表示:
①AM是∆ABC的高;
②AM是∆ABC中BC边上的高;
③如果AM是∆ABC中BC边上高,那么AM⊥BC,垂足是E;
④如果AM是∆ABC中BC边上的高,那么∠AMB=∠AMC=90︒.
⒌在画三角形的三条角平分线,三条中线,三条高时应注意:
(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部.
(2)如图4,三角形的三条中线交点一点,交点都在三角形内部.
如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.
图3
图4
A
B
C
D
E
图1
图2
6、三角形的三边关系
三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;
(2)围成三角形的条件是任意两边之和大于第三边. 7、三角形的角与角之间的关系: (1)三角形三个内角的和等于180 ;
(2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余. 8、三角形的内角和定理
定理:三角形的内角和等于180°. 推论:直角三角形的两个锐角互余。
推理过程:
一、作CM ∥AB ,则∠4=∠1,而∠2+∠3+∠4=1800, 即∠A+∠B+∠ACB=1800.
二、作MN ∥BC ,则∠2=∠B ,∠3=∠C ,而∠1+∠2+∠3=1800, 即∠BAC+∠B+∠C=1800.
注意:
(1)证明的思路很多,基本思想是组成平角. (2)应用内角和定理可解决已知二个角求第三个角或已知三角关系求三个角. 9、三角形的外角的定义
三角形一边与另一边的延长线组成的角,叫做三角形的外角. 注意:每个顶点处都有两个外角,但这两个外角是对顶角.(所以一般我们只研究一个)
如:∠ACD 、∠BCE 都是△ABC 的外角,且∠ACD=∠BCE.
所以说一个三角形有六个外角,但我们每个一个顶点处
只选一个外角,这样三角形的外角就只有三个了. 图5 图6
图7
图8
B
A C D
21B A
C
M
D 10、三角形外角的性质
(1)三角形的一个外角等于它不相邻的两个内角之和. (2)三角形的一个角大于与它不相邻的任何一个内角. 注意:(1)它不相邻的内角不容忽视;
(2)作CM ∥AB 由于B 、C 、D 共线
∴∠A=∠1,∠B=∠2.
即∠ACD=∠1+∠2=∠A+∠B.
那么∠ACD>∠A.∠ACD>∠B.
11、三角形的稳定性:
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性. 注意:(1)三角形具有稳定性;
(2)四边形没有稳定性.
关于三角形会经常遇到的题型:适当添加辅助线,寻找基本图形 (1)基本图形一,如图8,在∆ABC 中,AB=AC ,B,A,D 成一条直线,则∠DAC =2∠B =2∠C 或∠B =∠C =
2
1
∠DAC .
(2)基本图形二,如图9,如果CO 是∠AOB 的角平分线,DE ∥OB 交OA,OC 于D,E ,那么∆DOE 是等腰三角形,DO=DE .当几何问题的
条件和结论中,或在推理过程中出现有角平分线,平行线,等腰
三角形三个条件中的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.即:角平分线+平行线→等腰三角形.
基本图形三,如图10,如果BD 是∠ABC 的角平分线,M 是AB 上一点,MN ⊥BD ,且与BP,BC 相交于P,N .那么BM=BN ,即∆BMN 是等腰三角形,且MP=NP ,即:角平分线+垂线→等腰三角形.
当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰三角形不完整就应将基本图形补完整,如图11,图12.
图11
12、多边形
在同一平面内,由一些线段首尾顺次相接组成的图形叫多边形。
(1)多边形的对角线 图9
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
(3)正多边形
各边相等,各角都相等的多边形叫做正多边形
(4)多边形的内角和为(n-2)*180度
多边形的外角和为 360度
注:当求角度时应该想起内角和或者外角和或者一个角的外角
13、密铺
所谓“密铺”,就是指任何一种图形,如果能既无空隙又不重叠的铺在平面上,这种铺法就叫做“密铺”。
用形状、大小完全相同的一种或几种进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌。
(1)可单独密铺的图形
1、所有三角形与四边形均可以单独密铺。
2、只有正三角形、、可以单独密铺。
3、对边平行的六边形可以单独密铺。
平面上有:完全相同的三角形、四边形能密铺(或三角形与四边形组合)、正多边形密铺时,只有正三、四、六边形可以密铺。
(利用内角和的知识来计算,如:任意三角形内角180,则三个相同的任意三角形即可形成∠180,六个就可以密铺;同理,四边形内角360,四个就可以密铺;正多边形的顶角的整数倍等于180或360)
曲面像12个正五边形和20个正六边形可以铺成个球(足球就是)。