第四章流体运动学流体力学
流体力学第4章9
2014-10-1
28
通过流管中有效截面面积为A的流体体积流量和质量流量分 别积分求得,即
qV vdA
qm vdA
在工程计算中为了方便起见,引入平均流速的概念。平均 流速是一个假想的流速,即假定在有效截面上各点都以相 同的平均流速流过,这时通过该有效截面上的体积流量仍
A
A
与各点以真实流速流动时所得到的体积流量相同。
述三点原因,欧拉法在流体力学研究中广泛被采用。当然
拉格朗日法在研究爆炸现象以及计算流体力学的某些问题 中还是方便的。
2014-10-1 11
第二节 流体运动的一些基本概念
一、流动的分类 (1)按照流体性质分为理想流体的流动和粘性流体的流动, 不可压缩流体的流动和可压缩流体的流动。 (2)按照运动状态分为定常流动和非定常流动,有旋流动 和无旋流动,层流流动和紊流流动,亚声速流动和超声速 流动
在流场中的一些点,流体质点不断流过空间点,空间点上 的速度指流体质点正好流过此空间点时的速度。
用欧拉法求流体质点其他物理量的时间变化率也可以采用
下式的形式,即
D( ) ( ) (V )( ) Dt t
式中,括弧内可以代表描述流体运动的任一物理量,如密
D( ) 度、温度、压强,可以是标量,也可以是矢量。 称为 Dt ( ) 全导数, 称为当地导数, (V )( )称为迁移导数。 t
1、系统:包含确定不变的物质的任何集合。 系统以外的一切称为外界。 边界的性质: ① 边界随流体一起运动; ② 边界面的形状和大小可随时间变化; ③ 系统是封闭的,没有质量交换,可以有能 量交换; ④ 边界上受到外界作用在系统上的表面力;
2014-10-1 31
2、控制体:被流体所流过的,相对于某 个坐标系来讲,固定不变的任何体积。 控制面的性质: ① 总是封闭表面; ② 相对于坐标系是固定的; ③ 在控制面上可以有质量、能量交换; ④ 在控制面上受到控制体以外物体加在 控制体内物体上的力;
(完整版)流体力学重点概念总结
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学第四章
• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。
流体运动学(课件)
由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。
高等流体力学—流体的涡旋运动
27
第四节 凯尔文定理
如果是理想、正压流体,且外力有势,则沿任 一封闭物质线的速度环量和通过任一物质面的 涡通量在运动过程中恒不变。 涡旋不生不灭定理(拉格朗日定理)
如果是理想、正压流体,且外力有势,若初始时刻在某 部分流体内无旋,则以前或以后任一时刻中这部分流体 皆无旋。反之,若初始时刻在某部分流体有旋,则以前
运动的分布形态-涡线、涡面、涡管具有冻结
性,反映涡旋运动强弱的涡通量具有恒定性。
32
第五节 涡旋的产生条件
如果是理想、斜压流体,且外力有势,则:
d 1 1 F r p r v v r L L L dt 3
d ( )v ( v) dt
1 1 F p v 3 ( v)
μ为常数时涡旋矢量Ω应满足的微分方程
11
d ( )v ( v) dt
1 1 F p v 3 ( v)
1 p r gradp S L S
1
斯托克斯定理
对斜压流体,密度不是压力的单值函数,则:
1
gradp 是多元复合函数
33
第五节 涡旋的产生条件
根据场论基本公式8 (a) rota grad a φ:标量函数 a:矢量函数
第四节 凯尔文定理
(3) 流体是正压的:
1
gradp grad
dp
1 1 gradp S S L gradp r L grad r Ld 0
工程流体力学 第4章 流体运动学
qV
vdA
A
断面平均流速:过流断面各点速度的断面平均值,以V标记,有
V
vdA
A
qV
AA
对任一点有
v V v
§4-2 描述流体运动的基本概念
四、一、二、三元流动
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动
v v (x, y, z) p p(x, y, z)
§4-2 描述流体运动的基本概念
三、流管、流束、流量与平均速度 流管:流场中过封闭曲线上各点作流线所围成的管状
曲面,见图。
流束:流管内所有流线的集合为流束。 微小流束:断面积无限小的流束。 总流:无数流束的总和。 注:(1)流束表面没有流体穿越;
间曲线,该瞬时位于曲线上各点的流体质点的速度与曲线在 该点相切,(如图示)。
§4-2 描述流体运动的基本概念
(2)流线的作法:欲作流场中某瞬时过A点的流线,可
在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v2;再在 v2上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当
工程流体力学 第四章 流体运动学
§4-1 描述流体运动的两种方法
流体运动学研究流体运动的规律,不追究导致运动的力 学因素。
研究流体运动的方法
一、拉格朗日法(Lagrange Method) 拉格朗日法又称随体法。它追踪研究每一个流体质点的
运动规律,综合所有的流体质点,从而得到整个流场的运动 规律,参见图。
a y
流体力学
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。
研
欧拉法
究
方
着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t
流体力学复习内容
dFn v v pnn pn dA
特征一: 流体静压强的方向沿作用面的内法向方向。 特征二: 静止流体中任一点上不论来自何方的静压 强均相等。
3.2 流体平衡的微分方程式
一,平衡方程:由微元受力平衡(表面力和质量力) 得出静止流体平衡的微分方程。
1、压强差公式:
dp f x dx f y dy f z dz
表明:静止液体中,流体静压强的增量dp随坐标增量 的变化决定于质量力。
3.6 静止液体作用在平面上的总压力
§2.2 流体受力平衡微分方程
压强全微分方程: 等压面方程:
dp f x dx f y dy f z dz
分子组成的,宏观尺度非常小,而微观尺度又
足够大的物理实体。
§2.2 连续介质假设
流体质点选取必须具备的两个基本条件:
宏观尺度非常小:
才能把流体视为占据整个空间的一种连续介质, 且其所有的物理量都是空间坐标和时间的连续函 数的一种假设模型。 有了这样的模型,就可以把数学上的微积分手 段加以应用了。
微观尺度又足够大的物理实体:
使得流体质点中包含足够多的分子,使各物理 量的统计平均值有意义(如密度,速度,压强,温 度,粘度,热力学能等宏观属性)。而无需研究所 有单个分子的瞬时状态。
§2.5 流体的可压缩性
流体体积随着压力和温度的改变而发生变化的 性质。
二、流体的第二个重要特性——可压缩性
单一参数影响规律
x x(a,b,c,t )
特征:追踪观察,如将不易扩散的染料滴一滴到水流
中,染了色的流体质点的运动轨迹。
用欧拉方法求流体质点物理量时间变化率的一 般公式为:
中北大学流体力学第四章习题
第四章 流体运动学基础一 选择题1. 用欧拉法表示流体质点加速度a等于 。
(A) t u (B) u u )( (C) u u t u)( (D) u u tu)(2. 恒定流就是流场中 的流动。
(A) 各断面流速分布相同 (B) 流线就是相互平行的直线 (C) 运动要素不随时间而变化 (D) 流动随时间按一定规律变化 3. 一元流动就是 。
(A) 运动参数就是一个空间坐标与时间变量的函数 (B) 速度分布按直线变化 (C) 均匀直线流 (D) 流动参数随时间而变化 4. 均匀流的 加速度为零。
(A) 当地 (B) 迁移 (C) 向心 (D) 质点 5. 在 流动中,流线与迹线重合。
(A) 恒定 (B) 非恒定 (C) 不可压缩流体 (D) 一元 6. 连续性方程表示流体运动遵循 守恒定律。
(A) 能量 (B) 动量 (C) 质量 (D) 流量7. 水在一条管道中流动,如果两断面的管径比为d 1/d 2 =2,则速度比v 1/v 2= 。
(A) 2 (B) 1/2 (C) 4 (D) 1/4 8. 流体微团 。
(A) 具有规则的几何形状 (B) 质量大小不受限制 (C) 就是由大量流体质点组成的微小质团 (D) 就是质量、体积均可忽略的微元 9. 在 流动中,伯努利方程不成立。
D(A) 恒定 (B) 理想流体 (C) 不可压缩 (D) 可压缩 10. 在总流伯努利方程中,速度 v 就是 速度。
B(A) 某点 (B) 断面平均 (C) 断面形心处 (D) 断面上最大 11. 文透里管用于测量 。
D(A) 点流速 (B) 压强 (C) 密度 (D) 流量 12. 毕托管用于测量 。
A(A) 点流速 (B) 压强 (C) 密度 (D) 流量13. 密度 = 800kg/m 3 的油在管中流动,若压强水头为2m 油柱,则压强为 N/m 2。
C(A) 1、96×104 (B) 2×103 (C) 1、57×104 (D) 1、6×103 14. 应用总流能量方程时,两断面之间 。
流体力学 第四章 量纲分析
v l
F 3 l
3 Fp Fm3 300 20 2400000 N 2400 kN l
5.按雷诺准则和佛劳德准则导出的物理量比尺表 比尺
名称
λυ=1 长度比尺λl 流速比尺λv λl λl-1
雷诺准则 λυ≠1 λl λυλl-1
弗劳德准则 λl λl1/2
加速度比尺λa
取m个基本量,组成(n-m)个无量纲的π项
F 1 , 2 ,, nm 0
例:求有压管流压强损失的表达式 解:步骤
a.找出物理过程中有关的物理量,组成未知的函数关系
f p, ,, l , d , , v 0
b.选取基本量
n7
常取:几何学量l(d),运动学量v,动力学量ρ
vp vm
up um
v λv——速度比尺
l t tm lm vm v
tp lp vp
时间比例尺 加速度比尺
v 2 a v t l
qV p qVm
流量比例尺 q 运动粘度比例尺 角速度比例尺
3 3 l 2l v lm tm t
Re
vl
雷诺数——粘性力的相似准数
(2)佛劳德准则——重力是主要的力
FGP FIP FGm FIm
改成
FIm FIP FGP FGm
FG mg gl 3
FI l 2v 2
2 vm g p l p g m lm
v2 p
无量纲数
v2 Fr gl
佛劳德数——重力的相似准数 (3)欧拉准则——压力是主要的力
20 vm v p 300 6000km / h lm 1 lp
难以实现,要改变实验条件
流体力学3-3-4流体运动学
流体运动学的应用领域和发展趋势
能源
风力发电、水力发电等领域涉及到流体运动学的知识 ,用于提高能源转换效率和稳定性。
环境
流体运动学在气候变化研究、污染物扩散等领域有广 泛应用。
流体运动学的应用领域和发展趋势
1 2 3
跨学科融合
流体运动学与数学、物理、工程学等多个学科的 交叉融合,推动流体力学理论的创新与发展。
流体机械工作原理
泵的工作原理
通过叶轮旋转产生的离心力将流体吸入,在 叶轮出口处将流体以更高的压力排出。
风机的原理
利用叶轮旋转产生的空气动力学效应,将机 械能转换为空气的压力能和动能。
流体动力学在交通工程中的应用
要点一
车辆空气动力学
要点二
道路排水设计
车辆的外形设计、车速等都会影响空气对车辆的作用力, 进而影响车辆的行驶稳定性、燃油经济性等。
加强跨学科合作与交流是推动流体运动学发展的重要途径。
THANKS
感谢观看
流体力学3-3-4流体运动学
• 流体运动学概述 • 流体运动的分类与描述 • 流体运动的物理性质 • 流体动力学方程 • 流体运动的实例分析 • 总结与展望
01
流体运动学概述
流体运动学的定义与重要性
定义
流体运动学是研究流体运动的学科, 主要关注流体速度、方向和加速度等 物理量的变化规律。
重要性
层流与湍流
层流
流体在运动过程中,流层之间互不掺混,呈规则的层次流动 。
湍流
流体在运动过程中,流层之间相互掺混,流动呈现无规则的 紊乱状态。
定常流动与非定常流动
定常流动
流体在运动过程中,流场参数不随时 间变化而变化的流动。
非定常流动
工程流体力学思考题1~4章
工程流体力学思考题1~4章第一章绪论1、什么叫流体?流体与固体的区别?流体是指可以流动的物质,包括气体和液体。
与固体相比,流体分子间引力较小,分子运动剧烈,分子排列松散,这就决定了流体不能保持一定的形状,具有较大流动性。
2、流体中气体和液体的主要区别有哪些?(1)气体有很大的压缩性,而液体的压缩性非常小;(2)容器内的气体将充满整个容器,而液体则有可能存在自由液面。
3、什么是连续介质假设?引入的意义是什么?流体充满着一个空间时是不留任何空隙的,即把流体看作是自由介质。
意义:不必研究大量分子的瞬间运动状态,而只要描述流体宏观状态物理量,如密度、质量等。
4、何谓流体的压缩性和膨胀性?如何度量?压缩性:温度不变的条件下,流体体积随压力变化而变化的性质。
用体积压缩系数βp 表示,单位Pa -1。
膨胀性:压力不变的条件下,流体体积随温度变化而变化的性质。
用体积膨胀系数βt 表示,单位K -1。
5、何谓流体的粘性,如何度量粘性大小,与温度关系?流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。
用粘度μ来表示,单位N ·S/m 2或Pa ·S 。
液体粘度随温度的升高而减小,气体粘度随温度升高而增大。
6、作用在流体上的力怎样分类,如何表示?(1)质量力:采用单位流体质量所受到的质量力f 表示;(2)表面力:常用单位面积上的表面力Pn 表示,单位Pa 。
7、什么情况下粘性应力为零?(1)静止流体(2)理想流体第二章流体静力学1、流体静压力有哪些特性?怎样证明?(1)静压力沿作用面内法线方向,即垂直指向作用面。
证明:○1流体静止时只有法向力没有切向力,静压力只能沿法线方向;○2流体不能承受拉力,只能承受压力;所以,静压力唯一可能的方向就是内法线方向。
(2)静止流体中任何一点上各个方向静压力大小相等,与作用方向无关。
证明:2、静力学基本方程式的意义和使用范围?静力学基本方程式:Z+gP ρ=C 或Z 1+g P ρ1=Z 2+g P ρ2 (1)几何意义:静止流体中测压管水头为常数物理意义:静止流体中总比能为常数(2)使用范围:重力作用下静止的均质流体3、等压面及其特性如何?在充满平衡流体的空间里,静压力相等的各点组成的平面称为等压面。
流体力学第4章相似原理和量纲分析
对于非定常流的模型试验,必须使模型与原型的流动随时间的
变化相似。
当地加速度引起的惯性力之比
kF k kl2kv2
1
kF
Fit' Fit
V
'
v
' x
V vx
t ' t
k kl3kv kt1
kl 1 l Sr (斯特劳哈尔
kv kt
vt
数或谐时数)
当地惯性力与迁移惯性力之比
4.3 流动相似的条件
同一类流动,为相同的微分方程组所描述。 • 单值条件相似,即几何条件、边界条件、
时间条件(非定常流)、物性条件(密度、 粘性等)相似。 • 同名相似准则数相等。
几个概念:
单值条件中的各物理量称为定性量,如密度 ,特
征长度 l ,流速 v ,粘度 ,重力加速度 g ;
由定性量组成的相似准则数称为定性准则数,如雷诺 数 Re vl 弗劳德数 Fr v gl
自模化状态:如在有压粘性管流中,当雷诺数大 到一定数值时,继续提高雷诺数,管内流体的 紊乱程度及速度剖面几乎不再变化,沿程能量 损失系数也不再变化,雷诺准则失去判别相似 的作用,这种状态称为自模化状态。
关于自模化区实验 ——
尼古拉兹曲线
设计模型实验只要求流动处于同一自模化区,
log(100)
而不必要求两个流动的动力相似参数严格相等。
目的
为了实验流场与真实流场具有一定的对应关 系(相似性),实验中的各物理参数应该 如何确定?模型实验中的各种测量值应该 如何被换算为实物上的相应值?
如何科学地设计实验,正确有效地反映出相 关物理参数之间的实质性联系。
例:圆管的压强损失与圆管的长度、流体的密度、粘 度、平均速度和圆管直径、粗糙度有关。
工程流体力学(孔珑版)第四章-题解
第四章 流体运动学和流体动力学基础【4-2】 已知平面流动的速度分布规律为j yx xi y x y v 222222+++-=πΓπΓ 式中Γ为常数。
求流线方程并画出若干条流线。
【解】 由题设,()222,y x y y x v x +-=πΓ,()222,y x xy x v y+=πΓ 代入流线的微分方程()()t z y x v yt z y x v x y x ,,,d ,,,d =得222222d y x x y x yx+=+-πΓπΓxy y d -=yy x x d d -=⎰⎰-=y y x x d dC y x +-=22212'22C y x =+【4-4】 已知流场的速度分布为k xy j y i xy v +-=3231(1)问属于几维流动?(2)求(x , y , z )=(1, 2, 3)点的加速度。
【解】 (1)由于速度分布可以写为()()()k y x v j y x v i y x v v z y x,,,++= (1) 流动参量是两个坐标的函数,因此属于二维流动。
(2)由题设,()2,xy y x v x = (2)()331,y y x v y -= (3)()xy y x v z =, (4)()()()()4322223222310231031d d xy xy y y xy xy zxyxy y y xy x xy xy t z vv y v v x v v t v t v a x z x y x x x x x =+⋅-+=∂∂+∂∂-∂∂+∂∂=∂∂+∂∂+∂∂+∂∂==(5)()52333332331031003131313131d d y y y y z xy y y y y x xy y t zv v yv v xv v tv tv a y zy yy xy y y =+-⋅-+=⎪⎭⎫ ⎝⎛-∂∂+⎪⎭⎫ ⎝⎛-∂∂-⎪⎭⎫ ⎝⎛-∂∂+⎪⎭⎫ ⎝⎛-∂∂=∂∂+∂∂+∂∂+∂∂== (6)()()()()3323232031031d d xy x y y xy xy zxy xy y y xy x xy xy t z vv y v v x v v t v t v a z z z y z x z z z =+⋅-⋅+=∂∂+∂∂-∂∂+∂∂=∂∂+∂∂+∂∂+∂∂==(7)将x =1,y=2,z =3代入式(5)(6)(7),得31621313144=⨯⨯==xy a x3322313155=⨯==y a y 31621323233=⨯⨯==xy a z【4-15】 图4-28所示为一文丘里管和压强计,试推导体积流量和压强计读数之间的关系式。
流体力学(流体运动学)
u x = u x ( x, y , z , t )
u y = u y ( x, y , z , t )
p = p ( x, y, z, t)
u z = u z ( x, y , z , t )
实际中,恒定流只是相对的,绝对的恒定流是不存在的。本课 程主要研究恒定流动问题。
二、迹线和流线
1、迹线 、
三、一维、二维、三维流动 一维、二维、
流体的运动要素是空间坐标和时间的函数。按照流体运动要素 与空间坐标有关的个数(维数),可以把流体分为一维流、二维流 、三维流。 一维(一元)流动,若流场中的运动参数仅与一个空间自变量 有关,这种流动称为一维流动。即
u = u ( x, t)
之为二维流动。
p = p ( x, t )
随时间的变化率,称为当地加速度(时变加速度)。后三项之和 则表示流体质点在同一时间内,因坐标位置变化而形成的加速度, 称为位变加速度(迁移加速度)。
同理可得:
ay =
duy dt
=
∂uy ∂t
+ ux
∂uy ∂x
+ uy
∂uy ∂y
+ uz
∂uy ∂z
du z ∂u z ∂u z ∂u z ∂u z az = = + ux + uy + uz dt ∂t ∂x ∂y ∂z
这种通过描述每一质点的运动达到了解流体运动的方法,称为拉格朗日法 拉格朗日法。 拉格朗日法 表达式中的自变量(a,b,c),称为拉格朗日变量 拉格朗日变量。 ( , , ) 拉格朗日变量 流体质点的速度为
∂x (a , b, c, t ) ux = ∂t ∂y ( a , b, c, t ) uy = ∂t ∂z (a , b, c, t ) uz = ∂t
流体力学-知识点
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
流体力学四章节流体运动学
(4.6)
w
iw x
jw y
k
w
z
w
w
2 x
w
2 y
w
2 z
ppx,y,z,t
(4.7)
x,y,z,t
第7页
退出 返回
(4.8)
第四章 流体运动学
第一节 流体运动的描述
因为质点在流场内是连续的,所以流体加速度的各分量为
同样
dwx wx wx x wx y wx z dt t x t y t z t
A
a
t0 et0
1
B
b
t0 1 et0
将A,B,C值代入前式得到
Cc
xaett00 1et t1
ybet0t01et t1 zc
这就是流场中的迹线方程式,也就是质点空间坐标的拉格朗日表达式,它
表示一迹线族。若某一个质点,当 t0 0时其起始位置 a 1,b2,c 3,
则这个质点的迹线方程式为 x2et t1 y3et t1 z 3
D D B t B tw x B xw y B yw z B zB t wBtwB (4.11)
(三)两种描述方法的关系 拉格朗日法和欧拉法两种表达式可以互换。例如,从拉格朗日法的坐标 位置表达式(4.1),可以求出用x,y,z,t 表示的拉格朗日变数a,b, c 的关系式
第9页 退出 返回
第四章 流体运动学
y,
z, t
wz
z t
wz x,
y,
z,
t
(b)
第10页 退出 返回
第四章 流体运动学
第一节 流体运动的描述
将(b)式进行积分,则
x F1C1, C2, C3, t
流体力学-第四章 流体动力学基础
Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS
流体力学4.1 平面流动的流函数及其性质
流体力学第四章第四章
不可压理想流体平
面无旋流动
第四章不可压理想流体平面无旋流动
流体力学第四章 主要内容:
•1、平面流动的流函数及其性质;
•2、平面流动速度势与流函数的关系;
•3、基本流动的复势和迭加原理;
•4、平面运动的像方法;
研究不可压理想流体的无旋流动的意义
流体力学第四章 可以将运动学问题与动力学问题分开讨论,即首先由连续方程和无旋条件确定速度场,再由柯西—拉格朗日积分或
者伯努利积分确定压力场。
流函数和势函数均满足拉普拉斯方程。
而拉普拉斯方程是线性方程,因此可以用基本解的叠加来满足具体问题的边
界条件,这种方法称为基本解叠加法。
速度势和流函数满足柯西—黎曼条件,就使我们有可能利用复变函数这个有力工具来求解平面无旋流动。
流体力学第四章4.1平面流动的流函数及其性质
x。
流体力学资料复习整理
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分后得 ln(x +t)= -ln(-y +t)+c
或为
(x +t)·(-y +t)= c′
代入 t = 0 ,x = -1,y = -1 得 c ′ = -1,则过点
(-1,-1)的流线方程为
y
xy = 1
x
三、流管、流束及总流
1.流管
2.流束 微小流束的极限是流线
3.总流
有压流 无压流
射流
四、过水断面、流量、流速 1.过水断面—处处与流线正交的断面
迹线方程
2.流线
流场中人为做出的光滑曲线,在同一瞬时其上每点
的切线与该点的速度矢量重合。(流线具有瞬时性)
r Va
a
b
r
c
Vc
r
Vb
流线
流线特点:
• 流线不相交
• 流线不转折,为光滑曲线。
• 定常运动时,流线形状不随时间变化,质点沿流线前 进,流线与迹线重合。
• 流线的形状与固体边界的形状有关,断面小处,流速 大、流线密,断面大处,流速小,流线疏
空间点仅仅是表示空间位置的几何点,并非实际的 流体质点。空间点是不动的,而流体质点则运动。同一 空间点,在某一瞬时为某一流体质点所占据,在另一瞬 时又为另一新的流体质点所占据。也就是说,在连续流 动过程中,同一空间点先后为不同的流体质点所经过。
一、拉格朗日法(质点法)
质点位移的坐标 x = x(a,b,c,t) y = y(a,b,c,t) z = z(a,b,c,t)
(b)-(d)段,层流向 紊流过渡
hf = kV1.75~2
三、流态判别标准
雷诺数计算
Re vd vd
上临界Rec′: 与实验条件和初始状态有关。上临界 Rec′可高达13800。(不稳定)
下临界Rec: 实验发现,无论流体性质、管径如何
变化,临界Rec总稳定在 2320 左右。
过渡状态: Re的值介于层流与紊流之间,流动不 稳定,且Re范围很小。
第四章 流体运动学
主要内容:
§4.1 研究流体运动的两种方法 §4.3 流场的基本概念 §4.4 层流和紊流
§4.1 研究流体运动的两种方法
两个基本概念:
1.流体质点
体积可以忽略的流体微团,流体就是由这种流体微团连 续组成的。流体质点在运动的过程中,在不同的瞬时,占 据不同的空间位置。
2.空间点
2.非定常流(非稳定流,非恒定流) 质点的运动要素随时间变化的流动。 u = u(x,y,z,t) p = p(x,y,z,t)
定常流与非定常流示意
H=c
Vx
V=c
H≠c
Vx
V=f(t)
二、迹线与流线
1.迹线 流体质点在空间连续经过的曲线称为迹线。
A t1Biblioteka AAt2 A
A t5 ts
特点:迹线上各点的切线方向表示同一质点在不同 时刻的速度方向。(迹线具有历时性)
2.流量 体积流量Q 单位时间内通过过水断面的流体体积。 (m3/s, m3/h) 质量流量Qm Qm =ρQ (kg/s, kg/h) 重量流量QG QG =γQ ( N/s, N/h)
§4.4 流体运动的两种状态—层流与紊流
一、雷诺实验
两种流态
1.层流:流体质点层次分明、各层互不干扰混杂、有秩序 地一层层的流动。这种流动称为“层流”
Re R
vR
2000 4
500
对于明渠临界雷诺数 Re R 300
例题:温度为t=15˚C的水 1.141106 m2 / s
在直径d=100mm的管中流动,流量Q=15L/s;另一矩形 明渠,宽2m,水深1m,平均流速0.7m/s,水温同上。试判别 两者流态。
解:圆管流速 v Q 15 103 1.911m / s
质点加速度
ux = ux(x,y,z,t) = ux(x(t),y(t),z(t),t) uy = uy(x,y,z,t) = uy(x(t),y(t),z(t),t) uz = uz(x,y,z,t) = uz(x(t),y(t),z(t),t)
ux ux dx ux dy ux dz t x dt y dt z dt
a,b,c,t—拉格朗日变量
二、欧拉法(空间点法)
质点速度 ux = ux(x,y,z,t) = ux(x(t),y(t),z(t),t) uy = uy(x,y,z,t) = uy(x(t),y(t),z(t),t) uz = uz(x,y,z,t) = uz(x(t),y(t),z(t),t) p = p(x,y,z,t) x,y,z,t—欧拉变量
A 0.12
4 圆管雷诺数 Re vd 1.911 0.1 167632 2000,(紊流)
1.141106 明渠水力半径 R A 2 1 0.5m
2 21
明渠雷诺数 Re vR 0.7 0.5 30701 300, (紊流)
3. 流线的微分方程
dx dy dz Vx Vy Vz
r Va
ab
r
rc
Vb
dl
Vc
上式可组成一微分方程组,给定速度分布,积分可得 一簇流线,确定积分常数后可得一条流线。
例 已知流场的速度分布为 vx=x + t, vy=-y + t
试求:t=0,过点(-1,-1)的流线.
流线微分方程为
dx dy xt yt
第一项为时变加速度,第二项为位变加速度
讨论问题:
1)什么情况下只有时变(局部)加速度? 2)什么情况下只有位变加速度? 3)什么情况下两部分加速度都有?
B
A
Vx
B A
Vx
§4.3 流场的基本概念
一、定常流动与非定常流动
1.定常流(稳定流,恒定流) 各空间点处质点的运动要素不随时间变化的流动。 u = u(x,y,z) p = p(x,y,z)
上临界Rec’值不稳定,工程上将下临界Rec作为判别标 准,将过渡状态一起归于紊流。
流态判别标准: Re≤2000(或2300) (层流) Re>2000(或2300) (紊流)
上述标准适用于圆截面管
非圆截面流动流态判别
以水力半径R表示的临界雷诺数
R d 4
Re vd v4R 2000
2.紊流:各层质点互相混杂,运动杂乱无章。称“紊流”
上临界流速Vc′—层流开始转变为紊流时的流速 V >Vc′(紊流)
下临界流速Vc —紊流开始转变为层流时的流速 V <Vc′(层流)
二、流态与沿程阻力损失的关系
hf的变化规律 hf = kVm
(a)-(b)段,层流,m=1 hf = kV
( d)-(e)段,紊流,m=2 hf = kV2