人教版数学七年级(下)第五章单元测试卷及答案
(完整版)人教版七年级下册数学第五章测试题及答案[1].docx
七年级数学下册第五章测试题姓名________成绩 _______一、单项选择题(每小题 3 分,共 30分)1、如图所示,∠ 1 和∠ 2 是对顶角的是()12 B 1C11A DD2A22 1 2B342、如图 AB∥ CD 可以得到()C(第 2题)A 、∠1=∠ 2B、∠ 2=∠ 3C、∠1=∠ 4D、∠3=∠ 43、直线 AB、 CD、 EF 相交于 O,则∠ 1+∠ 2+∠ 3()。
A 、90°B、120°C、 180°D、140°4、如图所示,直线 a 、b 被直线 c 所截,现给出下列四种条件:①∠ 2=∠ 6 ②∠ 2=∠ 8 ③∠ 1+∠ 4=180°④∠ 3=∠ 8,其中能123(第三题)判断是 a∥b 的条件的序号是()A 、①②B、①③C、①④D、③④2c13 4 b 6578a (第4题)5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A 、第一次左拐30°,第二次右拐 30°B、第一次右拐50°,第二次左拐 130°C、第一次右拐50°,第二次右拐 130°D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()A B C D7、如图,在一个有4×4 个小正方形组成的正方形网格中,阴影部分面积与正方形 ABCD 面积的比是()D CA 、3:4B、5:8C、 9: 16D、1: 28、下列现象属于平移的是()A(第7题)B① 打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走A 、③B、②③C、①②④D、①②⑤9、下列说法正确的是()A 、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这A B 条直线的距离。
人教版七年级下册数学第五章测试题及答案
人教版七年级下册数学第五章测试题及答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-123(第三题)12345678(第4题)ab c七年级数学下册第五章测试题姓名 ________ 成绩 _______一、单项选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( ) 2、如图AB ∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3( )。
A 、90° B 、120°C 、180°D 、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是( ) A 、①② B、①③ C、①④ D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130°A B C DE(第10题)ADEF G HABCD(第7题)D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走 A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。
人教版七年级数学下册第5章《相交线与平行线》单元测试卷(解析版)
人教版七年级数学下册第5章《相交线与平行线》单元测试卷一.选择题1.下列说法,正确的是( )A. 若ac=bc,则a=bB. 两点之间的所有连线中,线段最短C. 相等的角是对顶角D. 若AC=BC,则C是线段AB的中点【答案】B【解析】【分析】根据等式的性质可判断A的正误;根据线段的性质判断B的正误;根据对顶角的性质判断C的正误;根据中点的性质判断D的正误.【详解】解:A、若ac=bc(c≠0),则a=b,故此选项错误,B、两点之间的所有连线中,线段最短,说法正确,故此选项正确,C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误,D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误,故选:B.【点睛】此题主要考查了等式的性质、对顶角的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )A. 50°B. 55°C. 60°D. 70°【答案】D【解析】【分析】先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.【详解】∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故答案选D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A. 55°B. 60°C. 65°D. 70°【答案】D【解析】【分析】根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.4.图中的∠1、∠2可以是对顶角的是( )A. B.C. D.【答案】C【解析】【分析】根据对顶角的定义,具有公共顶点且角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:A、∠1与∠2不是对顶角,B、∠1与∠2不是对顶角,C、∠1与∠2是对顶角,D、∠1与∠2不是对顶角,故选:C.【点睛】本题主要考查了对顶角的定义,熟练掌握定义是解题关键.5.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是( )A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角【答案】C【解析】【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【详解】解:∵∠AOE=90°,∴∠BOE=90°,∵∠AOD=∠BOC,∴∠EOC+∠BOC=90°,∠EOC+∠AOD=90°,∠AOE+∠EOB=180°,故A、B、D选项正确,C错误.故选:C.【点睛】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.6.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A. 22°B. 46°C. 68°D. 78°【答案】C【解析】【分析】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数. 【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【点睛】本题考查了垂直的定义,角平分线的定义.7.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为( )A. 78°B. 132°C. 118°D. 112°【答案】D【解析】【分析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数.【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.8.如图,下列条件中,能判断AB∥CD的是( )A. ∠FEC=∠EFBB. ∠BFC+∠C=180°C. ∠BEF=∠EFCD. ∠C=∠BFD【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A.由∠FEC=∠EFB,可得CE∥BF,故本选项错误;B.由∠BFC+∠C=180°,可得CE∥BF,故本选项错误;C.由∠BEF=∠EFC,可得AB∥CD,故本选项正确;D.由∠C=∠BFD,可得CE∥BF,故本选项错误.故选C.【点睛】本题考查了平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.9.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB 最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A. ②③B. ①②③C. ③④D. ①②③④【答案】A【解析】【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】①线段AP是点A到直线PC的距离,错误;②线段BP的长是点P到直线l的距离,正确;③P A,PB,PC三条线段中,PB最短,正确;④线段PC的长是点P到直线l的距离,错误.故选A.【点睛】本题考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.10.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED′=70°,则∠AED的大小是( )A. 60°B. 50°C. 75°D. 55°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠AED′,由平角的定义得到∠AED+∠AED′+∠CED′=180°,而∠CED′=60°,则2∠DEA=180°-70°=110°,即可得到∠AED的度数.【详解】解:∵长方形ABCD沿AE折叠得到△AED′,∴∠AED=∠AED′,而∠AED+∠AED′+∠CED′=180°,∠CED′=70°,∴2∠DEA=180°-70°=110°,∴∠AED=55°.故选:D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.二.填空题11.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【解析】【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.12.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.【答案】①④【解析】【分析】根据垂直定义可得∠BCA=90°,∠ADC=∠BDC=∠ACF=90°,然后再根据余角定义和补角定义进行分析即可.【详解】∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°.∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF.∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC.∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④.故答案为:①④.【点睛】本题考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.13.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°.【答案】40【解析】【分析】根据OA⊥OC,OB⊥OD,可得∠AOC=90°,∠BOD=90°,然后得到∠AOB与∠BOC互余,∠COD与∠BOC互余,根据同角的余角相等,继而可求解即可.【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为:40°.【点睛】本题考查了余角的知识,关键发现∠AOB、∠COD都是∠BOC余角,根据同角的余角相等解答.14.点P是直线l外一点,点A,B,C,D是直线l上的点,连接PA,PB,PC,PD.其中只有PA与l垂直,若PA=7,PB=8,PC=10,PD=14,则点P到直线l的距离是_____.【答案】7【解析】【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短.∵P A与l垂直, P A=7,∴点P到直线l的距离=PA,即点P到直线l的距离=7故答案为:7.【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为______.【答案】55°【解析】【分析】过点E作EF∥AB,则EF∥CD,可得∠ABE=∠BEF, ∠DEF=∠CDE.先根据角平分线的定义,得出∠ABE =∠CBE=20°,∠ADE=∠CDE=35°,进而求得∠E的度数.【详解】过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF, ∠DEF=∠CDE.∵AB∥CD,∴∠BCD=∠ABC=40°,∠BAD=∠ADC=70°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC=20°,∠ADE=∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=20°+35°=55°.故答案为:55°.【点睛】此题考查了平行线的性质,角平分线的定义,正确做出辅助线是解题的关键.本题也考查了数形结合的数学思想.16.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【解析】【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为:40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.三.解答题17.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【解析】【分析】(1)由知∠1=∠DCF,则∠2=∠DCF,即可证明;(2)由得∠B=90°-∠2=35°,再根据(1)可知的度数.【详解】∵∴∠1=∠DCF,∵∴∠2=∠DCF,∴;(2)∵,∴∠BEF=90°,∴∠B=90°-∠2=35°,又∵∴=∠B=35°.【点睛】此题主要考察平行线的性质与判定.18.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.【答案】(1)∠BOD,∠DOE;(2)∠AOE=120°.【解析】【分析】(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.【详解】解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.【点睛】本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.19.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴_______∥______,(_______)∴∠2=______.(______)又∵∠2+∠3=180°,(已知)∴∠3+_____=180°.(等量代换)∴______∥______,(______)∴∠ADC=∠EFC.(______)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴______⊥_____.【答案】略【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.【点睛】本题考查平行线的判定和性质,已经垂线的定义,解题关键是注意平行线的性质和判定定理的综合运用.20.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.【答案】(1)证明见解析;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依据AB⊥BC于点B,DC⊥BC于点C,即可得到AB∥CF,进而得出∠BAF+∠F=180°,再根据∠BAF =∠EDF,即可得出ED∥AF,依据三角形外角性质以及角平分线的定义,即可得到∠DAF=∠F;(2)结合图形,根据余角的概念,即可得到所有与∠CED互余的角.【详解】解:(1)∵AB⊥BC于点B,DC⊥BC于点C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED与∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【点睛】本题主要考查了平行线的判定与性质、余角的概念,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】∠FOH=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(拓展)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。
新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)
人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。
【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。
人教版七年级数学下册第五章相交线与平行线单元测试卷(含答案)
第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是( )A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是( )图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是( )A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是( )A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为( )A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是( )A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有( )A.4组B.5组C.6组D.7组10.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为( )A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD 时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.参考答案第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是(D)A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是(B)图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是(D)A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是(C)A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是(D)A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为(A)A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是(D)A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(A)A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C)A.4组B.5组C.6组D.7组10.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为(D)A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是(C)A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东42°.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=270°.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是垂直;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD垂直时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF 平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.解:答案不唯一,如:已知:如图,AB⊥BC,CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∠ABC=∠DCB=90°.又∵BE∥CF,∴∠EBC=∠FCB.∴∠ABC-∠EBC=∠DCB-∠FCB,即∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C 之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).。
人教版七年级(下)数学 第5章 相交线与平行线 单元测试卷AB(附有答案解析)
七年级(下)数学(R)单元测试第五章平行线A卷满分100分,考试时间90分钟班级姓名一、选择题(每小题3分,共30分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角2.下列图形中,∠1与∠2不是对顶角的有()A.1个B.2个C.3个D.0个3.有下列四个命题,其中是真命题的是()A.相等的角是对顶角B.同位角相等C.互补的角是邻补角D.平行于同一条直线的两条直线互相平行4.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.(期中)下列说法中正确的是()A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离6.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16cm B.18cm C.20cm D.21cm7.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°8.(期末)点P是直线l外一点,A、B、C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离()A.小于2cm B.等于2cm C.不大于2cm D.等于4cm9.(期末)如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③10.(期末)在同一平面内有2014条直线a1,a2,…,a2014,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,依此类推,那么a1与a2014的位置关系是()A.垂直 B.平行 C.垂直或平行D.重合二、填空题(每小题3分,共18分)11.(期末)把命题改成“如果…,那么…”的形式:邻补角相等..2-1-c-n-j-y12.(期中)若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=50°,则∠1的度数为130°.13.(淮安月考)如图,将一长方形纸条折叠后,若∠1=70°,则∠2=.14.(东台市模拟)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为25°.15.(湖州)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90度.16.(商水县期末)如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.三、解答题(共52分)17.(南陵县期中)如图所示,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河流.(6分)(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.18.(期末)如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.(7分)解:∵EF∥AD,(已知)∴∠2=.()又∵∠1=∠2,()∴AB∥,()∴∠DGA+∠BAC=180°.()19.图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.(6分)20.(乌拉特前旗期末)如图,在边长为1的正方形网格中,平移△ABC,使点A平移到点D.(6分)(1)画出平移后的△DEF;(2)求△ABC的面积.21.(期末)如图:平行线AB、CD被直线AE所截.(7分)(1)写出∠AFD的对顶角;(2)写出∠AFD的邻补角;(3)如果∠BAF=100°,求∠AFD和∠AFC的度数.22.(期末)如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.(7分23.(期末)如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC上,满足∠FOB=∠AOB=α,OE平分∠COF.(8分)(1)用含有α的代数式表示∠COE的度数;(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.24.(校级期中)已知如图(5分)(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.参考答案一、选择题(每题3分,共30分)1.解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.2.解:根据对顶角的定义可知:图中只有第二个是对顶角,其它都不是.故选C3.解:A、相等的角是对顶角,不符合对顶角的定义,也不成立,B、前提条件没有确定,同位角不一定相等,不成立,C、互补的角是邻补角也不成立;D、平行于同一直线的两条直线平行,成立,是真命题.故选D.4.解:A、∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B、∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C、∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D、∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C5.解:A、在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故A错误;B、一条直线的垂线有无数条,故B错误;C、根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故C正确;D、点到直线的距离指的是线段的长度,而非垂线段,故D错误.故选C.6.解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.7.解:如图,∵直线m∥n,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选C.8.解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短),2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选:C.9.解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.10.解:∵a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,∴a1⊥a2,a1⊥a3,a1∥a4,a1∥a5…以四次为一个循环,⊥,⊥,∥,∥规律:下标除以4余数为2或3垂直,下标除以4余数为0或1平行,2014÷4的余数为2,∴a1⊥a2014,所以直线a1与a2014的位置关系是:a1⊥a2014.故选A.二、填空题(每小题3分,共18分)11.解:把命题“邻补角相等”改写为“如果…那么…”的形式是:如果两个角是邻补角,那么这两个角相等.故答案是:如果两个角是邻补角,那么这两个角相等.12.解:∵∠2的邻补角是∠3,∠3=50°,∴∠2=180°﹣∠3=130°.∵∠1的对顶角是∠2,∴∠1=∠2=130°.故答案为:130°.13.解:∵四边形AEFG是长方形,∴EF∥AG,∴∠ECB=∠1=70°,∴∠FCB=180°﹣70°=110°,∵沿CD折叠,∴∠2=∠FCD=∠FCB=55°,故答案为:55°.14.解:∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.15.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.16.解:同位角有∠4与∠9,∠5与∠1,∠2与∠6,∠7与∠9,∠8与∠4,∠3与∠7,∴a=6,内错角有∠7与∠1,∠4与∠6,∠5与∠9,∠2与∠9,∴b=4,同旁内角有∠7与∠4,∠1与∠6,∠6与∠9,∠1与∠9,∴c=4,∴a+b+c=6+4+4=14,故答案为:14.三、解答题(共52分)17.解:如图所示(1)沿AB走,两点之间线段最短;(2)沿AC走,垂线段最短;(3)沿BD走,垂线段最短.18.解:∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°(两直线平行,同旁内角互补).19.解:由角的和差,得∠EOF=∠COE﹣COF=90°﹣28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF﹣∠COF=62°﹣28°=34°.由对顶角相等,得∠BOD=∠AOC=34°.20.解:(1)所作图形如图所示:;(2)S△ABC=4×4﹣×1×4﹣×2×3﹣×2×4=7.21.解:(1)∠AFD的对顶角是∠EFC;(2)∠AFD的邻补角是∠EFD、∠AFC;(3)∵AB∥DC,∠BAF=100°,∴∠AFD+∠BAF=180°,∠AFC=∠BAF=100°,∴∠AFD=180°﹣∠BAF=180°﹣100°=80°,即∠AFD=80°,∠AFC=100°.22.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.23.(1)∵CB∥OA,∴∠C+∠AOC=180°.∴∠EOB=∠EOF+∠FOB=∠COF+∠FOA=(∠COF+∠FOA)=∠AOC=40°.又OE平分∠COF,∴∠COE=∠FOE=40°﹣α;(2)∠OBC:∠OFC的值不发生改变.∵BC∥OA,∴∠FBO=∠AOB,又∵∠BOF=∠AOB,∴∠FBO=∠BOF,∵∠OFC=∠FBO+∠FOB,∴∠OFC=2∠OBC,即∠OBC:∠OFC=∠OBC:2∠OBC=1:2.24.解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.七年级(下)数学(R)单元测试第五章平行线B卷满分120分,考试时间120分钟班级姓名一、选择题(每小题3分,共30分)1.(泰州期末)在下列四个汽车标志图案中,图案的形成过程可由平移得到的是()A.B.C.D.2.(县期末)∠1与∠2是内错角,∠1=40°,则()A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定3.下列句子中,不是命题的是()A.两点之间,线段最短B.对顶角相等4.(大庆)如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.35.(期末)图中,用数字表示的∠1、∠2、∠3、∠4各角中,错误的判断是()A.若将AC作为第三条直线,则∠1和∠3是同位角B.若将AC作为第三条直线,则∠2和∠4是内错角C.若将BD作为第三条直线,则∠2和∠4是内错角D.若将CD作为第三条直线,则∠3和∠4是同旁内角6.(城区期中)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24 B.40 C.42 D.487.(枣庄)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′8.(期末)同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或39.(县一模)已知∠α的两边分别与∠β的两边垂直,且∠α=20°,则∠β的度数为()A.20°B.160°C.20°或160°D.70°10.(2021•鄂尔多斯)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B. C.D.二.填空题(每小题4分,共24分)11.(2021春•阿荣旗期末)把命题“等角的补角相等”改写成“如果…那么…”的形式是.12.(2021春•赵县期中)已知如图:AC⊥BC,CD⊥AB,则点B到AC的距离是线段的长.13.(2021春•赵县期中)已知直线l1∥l2,BC=3cm,S△ABC=3cm2,则S△A1BC的高是.14.图中是德国现代建筑师丹尼尔•里伯斯金设计的“时间迷宫”挂钟,它直观地表达出了设计师对时间的理解:时间是迷宫一般的存在﹣﹣“若干抽象的连接和颇具玩味的互动”.在挂钟所在平面内,通过测量、画图等操作方式判断:AB,CD所在直线的位置关系是(填“相交”或“平行”),图中∠1与∠2的大小关系是∠1∠2.(填“>”或“=”或“<”)15.杭州期中)图中与∠1构成同位角的个数有个.16.(期中)如图,a∥b,直线a,b被直线c所截,AC1,BC1分别平分∠EAB,∠FBA,AC2,BC2分别平分∠EAC1,∠FBC1;AC3,BC3分别平分∠EAC2,∠FBC2交于点C3…依次规律,得点Cn,则∠C3=度,∠Cn= 度.三、解答题(共66分)17.(通辽期末)读下列语句,并画出图形.点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P且与直线AB垂直.(5分)18.在同一平面内,直线l的同侧有A、B、C三点,如果AB∥l,BC∥l,那么A、B、C三点是否在同一直线上?为什么?(5分)19.(福田区期末)如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.(6分)(1)若∠COM=∠AOC,求∠AOD的度数;(2)若∠COM=∠BOC,求∠AOC和∠MOD.20.(北京期末)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.(6分)21.(德清县期末)如图,AP,CP分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=α.(10分)(1)用α表示∠ACP;(2)求证:AB∥CD;(3)若AP∥CF,求证:FC平分∠DCE.22.(沙河市期末)O为直线DA上一点,OB⊥OF,EO是∠AOB的平分线.(10分)(1)如图(1),若∠AOB=130°,求∠EOF的度数;(2)若∠AOB=α,90°<α<180°,求∠EOF的度数;(3)若∠AOB=α,0°<α<90°,请在图(2)中画出射线OF,使得(2)中∠EOF的结果仍然成立.23.(龙口市期中)已知E,F分别是AB、CD上的动点,P也为一动点.(12分)(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.24.(东莞市校级期中)将一副三角板的直角重合放置,如图1所示,(12分)(1)图1中∠BEC的度数为;(2)三角板△AOB的位置保持不动,将三角板△COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角板△COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD 其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.参考答案一、选择题1.解:A、由图形旋转而成,故本选项错误;B、由轴对称而成,故本选项错误;C、由图形平移而成,故本选项正确;D、由图形旋转而成,故本选项错误.故选C.2.解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选D.3.解:A、B、C都符合命题的概念,故正确;D、没有作出判断,故错误.故选D.4.解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即⇒③;当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即⇒②;当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即⇒①,故正确的有3个.故选:D.5.解:(A)∠1和∠3是BE与CD被CA所截而成的同位角,故(A)正确;(B)∠2和∠4是BE与CD被BD所截而成的内错角,故(B)错误;(C)∠2和∠4是BE与CD被BD所截而成的内错角,故(C)正确;(D)∠3和∠4是BC与BD被CD所截而成的同旁内角,故(D)正确;故选(B).6.解:∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC=S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=×(6+10)×6=48.故选D.7.解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选B.8.解:如图,三条直线的交点个数可能是0或1或2或3.故选D.9.解:∵β的两边与α的两边分别垂直,∴α+β=180°,故β=160°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=180°﹣20°=160°;综上可知:∠β=20°或160°,故选:C.10.解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选D.二、填空题11.解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.12.解:∵AC⊥BC,∴点B到AC的距离是线段BC的长,故答案为:BC.13.解:过点A作AD⊥l2,过A1作A1E⊥l2,∵l1∥l2,∴AD=A1E,∴S△ABC=S△A1BC=3cm2,即BC•AD=BC•A1E=3,∵BC=3cm,∴A1E=2cm,则S△A1BC的高是2cm,故答案为:2cm14.解:通过测量画图可得,AB,CD所在直线不平行,交于一点,∴∠1>∠2.故答案为:相交,>15.解:如图,由同位角的定义知,能与∠1构成同位角的角有∠2、∠3、∠4,共3个,故答案为:3.16.解:∵a∥b,∴∠EAB+∠ABF=180°,∵AC1,BC1分别平分∠EAB,∴∠C1=90°.观察,发现规律:∠C1=90°,∠C2=∠C1=45°,∠C3=∠C2=22.5°,∠C4=∠C3=11.25°,…,∴∠Cn=°.故答案为:22.5;.三.解答题17.解:A、B、C三点在同一直线上,理由:过直线外一点有且只有一条直线与已知直线平行.19.解:(1)∵∠COM=∠AOC,∴∠AOC=∠AOM,∵∠BOM=90°,∴∠AOM=90°,∴∠AOC=45°,∴∠AOD=180°﹣45°=135°;(2)设∠COM=x°,则∠BOC=4x°,∴∠BOM=3x°,∵∠BOM=90°,∴3x=90,x=30,∴∠AOC=60°,∠MOD=90°+60°=150°.20.证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.21.(1)解:∵AP平分∠BAC,∴∠CAP=∠BAP=α,∵∠P=90°,∴∠ACP=90°﹣∠CAP=90°﹣α;(2)证明:由(1)可知∠ACP=90°﹣α,∵CP平分∠ACD,∴∠ACD=2∠ACP=180°﹣2α,又∠BAC=2∠BAP=2α,∴∠ACD+∠BAC=180°,∴AB∥CD;(3)证明:∵AP∥CF,∴∠ECF=∠CAP=α,由(2)可知AB∥CD,∴∠ECD=∠CAB=2α,∴∠DCF=∠ECD﹣∠ECF=α,∴∠ECF=∠DCF,∴CF平分∠DCE.22.解:(1)∵∠AOB=130°,EO是∠AOB的平分线,∴=65°,∵OB⊥OF,∴∠BOF=90°,∴∠AOF=∠AOB﹣∠BOF=130°﹣90°=40°,∴∠EOF=∠AOE﹣∠AOF=65°﹣40°=25°;(2)∵∠AOB=α,90°<α<180°,EO是∠AOB的平分线,∴∠AOE=,∵∠BOF=90°,∴∠AOF=α﹣90°,∴∠EOF=∠AOE﹣∠AOF=﹣(α﹣90°)=90;(3)如图,∵∠AOB=α,0°<α<90°,∴∠BOE=∠AOE=,∵∠BOF=90°,∴∠EOF=∠BOF﹣∠BOE=90.23.解:(1)过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BEP=∠1,∠2=∠PFD,∵∠EPF=∠1+∠2,∴∠EPF=∠BEP+∠PFD;(2)∵∠BGP是△PEG的外角,∴∠P=∠BGP﹣∠BEP.∵∠P=∠PGB﹣∠BEP,∴∠PFD=∠PGB,∴AB∥CD;(3)由(1)的结论∠EPF=∠BEP+∠PFD=90°,设∠PFD=x,则∠BEP=90°﹣x,∵∠PEG=∠BEP=90°﹣x,∴∠AEG=180°﹣2(90°﹣x)=2x,则==224.解:(1)∠CAE=180°﹣∠BAO=180°﹣60°=120°,∴∠BEC=∠C+∠CAE=45°+120°=165°,故答案为:165°.(2)①∵OD∥AB,∴∠BOD=∠B=30°,又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,∴∠AOC=∠BOD=30°.②存在,如图1,∠AOC=120°;如图2,∠AOC=165°;如图3,∠AOC=30°;如图4,∠AOC=150°;如图5,∠AOC=60°;如图6,∠AOC=15°.。
最新人教版七年级下册第五章《相交线与平行线》单元检测试题(含答案解析)
人教版七年级下册数学单元检测卷:第五章相交线与平行线一.填空题(共6小题)1.如图,直线DE经过三角形ABC的顶点A,则∠DAC与∠C的关系是.(填“内错角”或“同旁内角”)2.如图,AB∥CD,CF交AB于点E,∠AEC与∠C互余,则∠CEB是度.3.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD= °.4.把命题“等角的余角相等”写成“如果……,那么……”的形式为.5.在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量图中线段PC的长,理由是.6.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).二.选择题(共10小题)7.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°15′.则∠AOD的度数为()A.55°15′B.65°15′C.125°15′D.165°15′8.图中∠1和∠2是对顶角的是()A.B.C.D.9.在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是()A.B.C.D.10.下列命题中是假命题的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行11.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D12.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°13.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠E=45°,∠B=60°,若AE∥BC,则∠AFD=()A.75°B.85°C.90°D.65°14.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°15.下列现象是平移的是()A.电梯从底楼升到顶楼B.卫星绕地球运动C.碟片在光驱中运行D.树叶从树上落下16.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48三.解答题(共6小题)17.如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21°,求∠AOB的度数.18.如图,已知直线AB,CD,EF相交于点O.(1)若∠COF=120°,∠AOD=100°,求∠AOF的度数;(2)若∠BOC-∠BOD=20°,求∠AOC的度数.19.填空或批注理由:如图,已知∠1=∠2,∠A=∠D,试说明:AE∥BD证明:∵∠1=∠2(已知)∴AB∥CD ( )∴∠A=()( )∵∠A=∠D(已知)∴=∠D ( )∴AE∥BD ( )20.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?21.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是.22.如图,已知点D、E、B、C分别是直线m、n上的点,且m∥n,延长BD、CE交于点A,DF 平分∠ADE,若∠A=40°,∠ACB=80°.求:∠DFE的度数.23.问题情境:(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答;问题迁移:如图3,点A、B在射线OM上,点C、D在射线ON上,AD∥BC,点P在射线OM上运动(点P与A、B、O三点不重合).(2)当点P在线段AB上运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由;(3)当点P在线段AB外运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由.参考答案1. 同旁内角2.1353.154. 如果两个角相等,那么这两个角的余角相等5. 垂线段最短6. ⑤⑥7-11 CADDD12-16 CACAD17. 解:(1)∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°;(2)∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=∠BOC,∵∠COD=21°,∴21°+∠BOC=∠BOC,∴∠BOC=42°,∴∠AOB=3∠BOC=126°.18.解:(1)∵∠COF=120°,∴∠2=180°-120°=60°,∴∠DOF=∠2=60°,∵∠AOD=100°,∴∠AOF=100°-60°=40°;(2)∵∠BOC+∠BOD=180°,∠BOC-∠BOD=20°,∴∠BOC=100°,∠BOD=80°,∴∠AOC=∠BOD=80°.19. 内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.20. 解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).21. 解:(1)如图①,PQ∥MN,PN⊥MN;(2)如图②,△EFG或△EFH即为所求;(3)三角形的面积为:3×3-×1×2-×1×3-×2×3=9-1-1.5-3=3.5,22.解:∵m∥n,∠ACB=80°∴∠AED=∠ACB=80°,∵∠A=40°,∴△ADE中,∠ADE=180°-(∠A+∠AED)=180°-(40°+80°)=60°,又∵DF平分∠ADE,∴∠EDF=∠ADE=30°,∴△DEF中,∠DFE=180°-∠EDF-∠DEF=180°-30°-80°=70°.23.解:(1)∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°-∠A=50°,∠CPE=180°-∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠ADP +∠BCP,理由如下:如图3,过P作PE∥AD交CD于点E,图3∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠ADP,∠CPE=∠BCP,∴∠CPD=∠DPE+∠CPE=∠ADP +∠BCP;(3)①当点P在射线AM上时,∠CPD=∠BCP-∠ADP;理由:如图4,过点P作PE∥AD交ON于点E,∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠人教版七年级数学下册单元测试卷第五章相交线与平行线综合能力提升测试卷一、选择题(每小题4分,共24分)1.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 153°.2.“直角都相等”的题设是两个角是直角,结论是这两个角相等.3.如图,点A在直线DE上,当∠BAC=___57_____°时,DE∥BC.4. 如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是内错角 .5.互为邻补角的两个角相加等于180°.6.如图,AB∥CD,则∠1+∠3—∠2的度数等于 ___180° _____.二、选择题(每小题4分,共40分)7.如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°8.下列命题是真命题的是( C )A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交9.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为( C )A. ①②③B. ①②④C. ①③④D. ②③④10.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35°B.40°C.45°D.60°11 .经过直线外一点画直线,下列说法错误的是( B )A.可以画无数条直线与这条直线相交B.可以画无数条直线与这条直线平行C.能且只能画一条直线与这条直线平行D.能且只能画一条直线与这条直线垂直12.下列叙述中,正确的是( C )A. 在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B. 不相交的两条直线叫平行线C. 两条直线的铁轨是平行的D. 我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角13. 如图,点O为直线AB上一点,CO⊥AB于点O, OD在∠COB内,若∠COD=50°,则∠AOD的度数是( D )A.100°B.110°C.120°D.140°14. 下列图形中,周长最长的是( C )15. 如图,已知OA⊥OC,OB⊥OD, ∠BOC=50°,则∠AOD的度数为( C )A.100°B.120°C.130°D.140°16 .a、b、c是平面上的任意三条直线,它们的交点可以有( B )A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不正确三、解答题(共36分)17.(共7分)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和____是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____是内错角;(3)∠1和∠3是直线AB,AF被直线_____所截构成的_____角;(4)∠2和∠4是直线____,______被直线BC所截构成的_____角.17.(1) ∠2(2) ∠4(3) ED内错(4) AB, AF同位18. (共4分)如图,直线AB、CD是一条河的两岸,并且AB∥CD,E为直线AB、CD 外一点,现想过点E画岸CD的平行线,只需过点E画岸AB的平行线即可.画图,并说明理由.图略理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (共4分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).20. (共6分)根据下列要求画图.(1)如图1,过点P画AB的垂线;(2)如图2,过点P画OA,OB的垂线;(3)如图3,过点A画BC的垂线.答案:(1)如图1所示.(2)如图2所示.(3)如图3所示.21. (共7分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE 与DF的位置关系?试说明理由。
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。
新人教版七年级数学下册第五单元测试题及答案
新人教版七年级数学下册第五单元测试题及答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】123(第三题)A B C D E (第10题)A B C D E F G H 第13题A B CD 1234(第2题)12345678(第4题)ab c 七年级数学第五章《相交线与平行线》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、单项选择题<每小题3分,共 30 分)1、如图AB ∥CD 可以得到< ) A 、∠1=∠2 B 、∠2=∠3 C 、∠1=∠4 D 、∠3=∠42、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=< ) A 、90° B 、120° C 、180° D 、140°3、如图所示,∠1和∠2是对顶角的是< )4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是< )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是< )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的< )7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是< )A 、3:4B 、5:8C 、9:16D 、1:28、下列现象属于平移的是< )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③ B 、②③ C 、①②④ D 、①②⑤9、下列说法正确的是< ) A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
人教版七年级数学下册第5章测试卷及答案 (1).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】人教版数学七年级下册第五章单元测试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对 B.2对 C.3对 D.4对2.(3分)下图中,∠1和∠2是同位角的是()A .B .C .D .1初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140° D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°2初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.3初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 48.(3分)如图,直线a ∥b ,直线c 与a ,b 相交.若∠1=70°,则∠2= 度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= °.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 510.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= 度.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 612.(3分)如图所示,请写出能判定CE ∥AB的一个条件.13.(3分)如图,已知AB ∥CD ,∠α= .初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 714.(3分)如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB ∥CD ,∠A=70°,求∠1的度数.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 816.(5分)已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.9初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,10初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0B .a ,b 之一是0C .a ,b 互为相反数D .a ,b 互为倒数2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式B .单项式与单项式的和是多项式C .多项式与多项式的和是多项式D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数C .没有最大的负整数D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( )A .a ,b 同号B .a ,b 异号C .a >0D .b >05.大于-π并且不是自然数的整数有 ( )A .2个B .3个C .4个D .无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;11 则 ∥(内错角相等,两直线平行);若∠DAB +∠ABC=180°,则 ∥ (同旁内角互补,两直线平行);②当 ∥ 时,∠C +∠ABC=180°(两直线平行,同旁内角互补);③当 ∥ 时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.12初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖13初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.14初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.15初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;16初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对 B.2对 C.3对 D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.17初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A .B .C .D .【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;18初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140° D.160°【考点】J2:对顶角、邻补角.19初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()20初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;A.135°B.115°C.36°D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方21初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.22初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,23初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.24初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;。
人教版七年级数学下册《第5章 相交线与平行线》单元测试卷及答案解析
人教新版七年级下册《第5章相交线与平行线》单元测试卷(2)一、选择题(本大题10小题,每题4分,共40分)1.(4分)如图,能够证明a∥b的是()A.∠1=∠2B.∠4=∠5C.∠4=∠3D.∠1=∠5 2.(4分)将一个含30°角的直角三角板ABC如图所示放置,∠B=90°,点E为AC延长线上的点,若射线CD与直角边BC垂直,则∠DCE的度数是()A.10°B.20°C.30°D.50°3.(4分)直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm 4.(4分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.5.(4分)如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为()A.40°B.50°C.60°D.70°6.(4分)如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④7.(4分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°8.(4分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°9.(4分)如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC 沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC =DF;②ED⊥DF;③四边形ABFD的周长是16;④AD:EC=2:3.其中结论正确的个数有()A.1个B.2个C.3个D.4个10.(4分)如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°二、填空题(本大题10小题,每题3分,共30分)11.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:.12.(3分)如图,若∠1+∠2=220°,则∠3=.13.(3分)如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.14.(3分)如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB,CD的关系是,依据是.15.(3分)如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移格,再向上平移格.16.(3分)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MON=.17.(3分)如图,∠A与是内错角,∠B的同位角是,直线AB和CE被直线BC所截得到的同旁内角是.18.(3分)如图,AB∥CD∥EG,AC∥DF,若∠BAC=120°,则∠CDF=°.19.(3分)一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=度.20.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若AB∥CD,HG=18cm,MG=6cm,MC=3cm,则阴影部分的面积是cm2.三、解答题(本大题6小题,共80分)21.(12分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.22.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.23.(14分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.24.(14分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM 交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.25.(12分)如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠C2FE的度数;(2)若∠DEF=α,请你用含α的式子表示图③中∠C2FE的度数.26.(16分)如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC 的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.人教新版七年级下册《第5章相交线与平行线》单元测试卷(2)参考答案与试题解析一、选择题(本大题10小题,每题4分,共40分)1.(4分)如图,能够证明a∥b的是()A.∠1=∠2B.∠4=∠5C.∠4=∠3D.∠1=∠5【考点】平行线的判定.【分析】根据平行线的判定一一判断即可.【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.2.(4分)将一个含30°角的直角三角板ABC如图所示放置,∠B=90°,点E为AC延长线上的点,若射线CD与直角边BC垂直,则∠DCE的度数是()A.10°B.20°C.30°D.50°【考点】平行线的判定与性质.【分析】根据平行线的判定推出CD∥AB,根据平行线的性质得出∠A=∠DCE,代入求出即可.【解答】解:∵CD⊥BC,∴∠BCD=90°,∵∠B=90°,∴∠B=∠BCD,∴CD∥AB,∴∠DCE=∠A,∵∠A=30°,∴∠DCE=30°,故选:C.3.(4分)直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm【考点】点到直线的距离.【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【解答】解:∵垂线段最短,∴点P到直线m的距离≤3cm,故选:D.4.(4分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.5.(4分)如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为()A.40°B.50°C.60°D.70°【考点】垂线.【分析】根据垂直定义可得∠COB=90°,从而求出∠COF=40°,然后再根据对顶角相等,即可解答.【解答】解:∵AB⊥CD,∴∠COB=90°,∵∠1=50°,∴∠COF=∠COB﹣∠1=40°,∴∠2=∠COF=40°,故选:A.6.(4分)如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④【考点】同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【解答】解:①∠1与∠2是同旁内角,说法正确;②∠1与∠ACE是内错角,说法正确;③∠B与∠4是同位角,说法正确;④∠1与∠3是内错角说法正确,故选:D.7.(4分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【考点】平行线的性质.【分析】利用已知条件易求∠ACD的度数,再根据两线平行同位角相等即可求出∠1的度数.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选:B.8.(4分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【考点】平行线的性质.【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.9.(4分)如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC 沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC =DF;②ED⊥DF;③四边形ABFD的周长是16;④AD:EC=2:3.其中结论正确的个数有()A.1个B.2个C.3个D.4个【考点】平移的性质.【分析】利用平移的性质依次判断可求解.【解答】解:∵将三角形ABC沿直线BC向右平移2个单位得到三角形DEF,∴AD=BE=CF=2,AC∥DF,AB∥DE,AB=DE=3,AC=DF=4,BC=EF=5,∠BAC=∠EDF=90°,∴BF=5+2=7,EC=5﹣2=3,DE⊥DF,故①和②正确;∵四边形ABFD的周长=AB+AD+DF+BF,∴四边形ABFD的周长=3+4+2+7=16,故③正确;∵AD=2,EC=3,∴AD:EC=2:3,故④正确,故选:D.10.(4分)如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°【考点】平行线的性质.【分析】利用基本结论:∠E=∠ABE+∠CDE,∠F=∠CDF+∠ABF,构建方程组解决问题即可.【解答】解:设∠ABE=∠EBF=x,∠FDE=∠FDC=y,∵AB∥CD,∴易知∠E=∠ABE+∠CDE=x+2y,∠F=∠CDF+∠ABF=2x+y,∵2∠E﹣∠F=48°,∴2(x+2y)﹣(2x+y)=48°,∴y=16°,∴∠CDE=2y=32°,故选:B.二、填空题(本大题10小题,每题3分,共30分)11.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【考点】命题与定理.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.12.(3分)如图,若∠1+∠2=220°,则∠3=70°.【考点】对顶角、邻补角.【分析】先根据对顶角相等求出∠1的度数,再根据平角等于180°列式求解即可.【解答】解:∵∠1+∠2=220°,∠1=∠2(对顶角相等),∴∠1=×220°=110°,∴∠3=180°﹣∠1=180°﹣110°=70°.故答案为:70°.13.(3分)如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:垂线段最短.【考点】垂线段最短.【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.【解答】解:为了使李庄人乘火车最方便(即距离最近),过李庄向铁路画垂线段,根据是垂线段最短.故答案为:垂线段最短.14.(3分)如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB,CD的关系是AB∥CD,依据是同旁内角互补,两直线平行.【考点】平行线的判定.【分析】由已知∠ABC=110°,∠BCD=70°,即∠ABC+∠BCD=180°,可得关于AB ∥CD的判定条件:同旁内角互补,两直线平行.【解答】解:∵∠ABC=110°,∠BCD=70°,∴∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故答案为:AB∥CD;同旁内角互补,两直线平行.15.(3分)如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.16.(3分)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MON=56°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠NOE=∠FEO,由角平分线的性质求得答案.【解答】解:∵FE∥ON,∠FEO=28°,∴∠NOE=∠FEO=28°,∵OE平分∠MON,∠MON=2∠NOE=2∠FEO=56°.故答案为:56°.17.(3分)如图,∠A与∠ACD,∠ACE是内错角,∠B的同位角是∠ECD,∠ACD,直线AB和CE被直线BC所截得到的同旁内角是∠B与∠BCE.【考点】同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角的概念,在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.【解答】解:如图所示,∠A与∠ACD,∠ACE是内错角,∠B的同位角是∠ECD,∠ACD,直线AB和CE被直线BC所截得到的同旁内角是∠B与∠BCE,故答案为:∠ACD,∠ACE;∠ECD,∠ACD;∠B与∠BCE.18.(3分)如图,AB∥CD∥EG,AC∥DF,若∠BAC=120°,则∠CDF=60°.【考点】平行线的性质.【分析】先根据AB∥CD求出∠ACD的度数,再由AC∥DF即可得出结论.【解答】解:∵AB∥CD,∠BAC=120°,∴∠ACD=180°﹣120°=60°.∵AC∥DF,∴∠CDF=∠ACD=60°.故答案为:60.19.(3分)一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=270度.【考点】平行线的性质.【分析】首先过点B作BF∥AE,易得∠BAE+∠ABC+∠BCD=360°,又由BA⊥AE,即可求得∠ABC+∠BCD的值.【解答】解:过点B作BF∥AE,∵CD∥AE,∴CD∥BF∥AE,∴∠BCD+∠CBF=180°,∠ABF+∠BAE=180°,∴∠BAE+∠ABF+∠CBF+∠BCD=360°,即∠BAE+∠ABC+∠BCD=360°,∵BA⊥AE,∴∠BAE=90°,∴∠ABC+∠BCD=270°.故答案为:270.20.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若AB∥CD,HG=18cm,MG=6cm,MC=3cm,则阴影部分的面积是99cm2.【考点】直角梯形;平移的性质;梯形.【分析】根据平移的变换只改变图形的位置不改变图形的形状与大小可得梯形ABCD的面积等于梯形EFGH的面积,CD=HG,从而得到阴影部分的面积等于梯形DMGH的面积,再求出DM的长,然后利用梯形的面积公式列式计算即可得解.【解答】解:由平移的性质,梯形ABCD的面积=梯形EFGH的面积,CD=HG=18cm,∴阴影部分的面积=梯形DMGH的面积,∵CM=3cm,∴DM=CD﹣CM=18﹣3=15(cm),∴阴影部分的面积=(DM+HG)•MG=(15+18)×6=99(cm2),答:阴影部分面积是99cm2.故答案为:99cm2.三、解答题(本大题6小题,共80分)21.(12分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.【考点】作图—基本作图.【分析】(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)利用两直线平行,同旁内角互补即可解决问题.【解答】解:(1)如图所示:PQ即为所求;(2)如图所示:PR即为所求;(3)∠PQC=60°理由:∵PQ∥CD,∴∠DCB+∠PQC=180°,∵∠DCB=120°,∴∠PQC=180°﹣120°=60°.22.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【考点】平行线的判定与性质.【分析】(1)根据平行线的性质得出∠ABC+∠DAB=180°,求出∠ABC+∠DCB=180°,根据平行线的判定推出即可;(2)求出∠EAF和∠AEF的度数,即可求出答案.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.23.(14分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.【考点】垂线;角平分线的定义;对顶角、邻补角.【分析】(1)首先依据∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°可求得∠AOC、∠AOD的度数,然后可求得∠BOD的度数,依据角平分线的定义可求得∠DOE的度数,最后可求得∠COE的度数;(2)先求得∠FOD的度数,然后依据邻补角的定义求解即可.【解答】解:(1)∵∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°.∴∠BOD=70°.∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣35°=145°.(2)∵∠DOE=35°,OF⊥OE,∴∠FOD=55°,∴∠FOC=180°﹣55°=125°.24.(14分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM 交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.【考点】平行线的性质.【分析】先根据平行线的性质,得出∠ODC=∠BOD=30°,再根据∠EOF=90°,即可得到∠AOE=60°,再根据平行线的性质,即可得到∠AND的度数,进而得出∠ANM 的度数.【解答】解:∵扶手AB与底座CD都平行于地面,∴AB∥CD,∴∠ODC=∠BOD=30°,又∵∠EOF=90°,∴∠AOE=60°,∵DM∥OE,∴∠AND=∠AOE=60°,∴∠ANM=180°﹣∠AND=120°.25.(12分)如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠C2FE的度数;(2)若∠DEF=α,请你用含α的式子表示图③中∠C2FE的度数.【考点】平行线的性质.【分析】(1)因为长方形的对边是平行的,所以∠BFE=∠DEF=20°;在梯形EFC1D1中,∠HEF+∠EFC1+ED1C1+∠D1C1F=360°,∠C1FH=180°﹣20°﹣20°=140°;(2)由(1)的规律可以得到结果.【解答】解:(1)如图③,∵AD∥BC,∴∠BFE=∠DEF=20°,∴∠CFE=180°﹣∠BFE=160°,由折叠知∠C1FE=∠CFE=160°,∴∠C1FB=∠C1FE﹣∠BFE=160°﹣20°=140°,由折叠知∠C2FB=∠C1FB=140°,∴∠C2FE=∠C2FB﹣∠BFE=140°﹣20°=120°;(2)∵AD∥BC,∴∠BFE=∠DEF=α,∴∠CFE=180°﹣∠BFE=180°﹣α,由折叠知∠C1FE=∠CFE=∠180°﹣α,∴∠C1FB=∠C1FE﹣∠BFE=180°﹣α﹣α=180°﹣2α,由折叠知∠C2FB=∠C1FB=180°﹣2α,∴∠C2FE=∠C2FB﹣∠BFE=180°﹣2α﹣α=180°﹣3α.26.(16分)如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC 的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.【考点】平行线的性质;平移的性质.【分析】(1)由同旁内角互补,两直线平行证明.(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOCP=(∠BOF+∠FOA)=∠BOA,算出结果.(3)先得出结论,再证明.(4)由(2)(3)的结论可得.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF,又∵∠FOC=∠AOC,∴∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2;(4)由(1)知:OB∥AC,则∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,则∠OCA=∠BOC=2α+β,∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEC=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.。
人教版七年级数学下册 第五章 达标检测卷(含答案)
人教版七年级数学下册第五章达标检测卷一、选择题(每题3分,共30分)1.在下图中,∠1和∠2是对顶角的是()2.如图,在所标识的角中,下列说法不正确的是()A.∠1和∠2是邻补角B.∠1和∠4是同位角C.∠2和∠4是内错角D.∠2和∠3是对顶角(第2题)(第3题)3.如图,在6×6的方格中,图①中的图形N平移后的位置如图②所示,则图形N的平移方法是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格4.点P为直线l外一点,点A,B,C为直线l上三点,P A=4 cm,PB=5 cm,PC=3 cm,则点P到直线l的距离()A.等于4 cm B.等于5 cm C.小于3 cm D.不大于3 cm 5.下列命题中:①对顶角相等;②同位角相等;③互补的两个角为邻补角;④若l1⊥l2,l1⊥l3,则l2⊥l3.其中真命题有()A.①B.①②③C.①③D.①②③④6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是() A.60°B.50°C.40°D.30°(第6题)(第7题)(第8题)7.如图,将木条a绕点O旋转,使其与木条b平行,则旋转的最小角度为()A.65°B.85°C.95°D.115°8.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于() A.73°B.56°C.68°D.146°9.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81°B.99°C.108°D.120°(第9题)(第10题)10.图①是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中∠CFE的度数是()A.160°B.150°C.120°D.110°二、填空题(每题3分,共30分)11.下列语句:①同旁内角相等;②如果a=b,那么a+c=b+c;③对顶角相等吗?④画线段AB;⑤两点确定一条直线.其中是命题的有__________;是真命题的有__________.(只填序号)12.如图,∠3的同旁内角是________,∠4的内错角是________,∠7的同位角是________.(第12题)(第13题)(第14题)13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠COM=________.14.如图,跳远比赛时,小明从点A起跳落在沙坑内B处,跳远成绩是4.6米,则小明从起跳点到落脚点的距离________4.6米(填“大于”“小于”或“等于”).15.如图,小明从A处出发,沿北偏东60°的方向行走至B处,又沿北偏西20°的方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是________.(第15题)(第16题)(第17题)16.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=________.17.如图,将三角形ABC沿着点B到点C的方向平移3 cm得到三角形DEF,且DE交AC于点H,AB=6 cm,BC=9 cm,DH=2 cm,那么图中阴影部分的面积为________cm2.18.如图,a∥b,∠1=65°,∠2=140°,则∠3的度数是________.(第18题)(第19题)(第20题)19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.20.以下三种沿AB折叠的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三、解答题(24题10分,25题12分,26题14分,其余每题8分,共60分) 21.如图是一条河,C是河岸AB外一点.(1)过点C要修一条与河平行的绿化带(用直线表示),请作出正确的示意图;(2)现欲用水管从河岸AB将水引到C处,问:从河岸AB上的何处开口,才能使所用的水管最短?画图表示,并说明设计的理由.(第21题)22.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.(第22题)23.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.(第23题)24.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.(第24题)25.如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1,∠2的度数.(第25题)26.如图,MN∥EF,C为两直线之间一点.(1)如图①,∠CAM与∠CBE的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图②,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图③,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请写出∠ACB与∠ADB的数量关系,并证明你的结论.(第26题)答案一、1.C 2.C 3.D 4.D 5.A 6.C 7.B 8.A(第9题)9.B 点拨:如图,过点B 作MN ∥AD ,∴∠ABN =∠A =72°.∵CH ∥AD ,AD∥MN ,∴CH ∥MN ,∴∠NBC +∠BCH =180°,∴∠NBC =180°-∠BCH=180°-153°=27°.∴∠ABC =∠ABN +∠NBC =72°+27°=99°.10.B 点拨:在题图①中,因为四边形ABCD 为长方形,所以AD ∥BC ,所以∠BFE =∠DEF =10°,则∠EFC =180°-∠BFE =170°.在题图②中,∠BFC=∠EFC -∠BFE =170°-10°=160°.在题图③中,∠CFE =∠BFC -∠BFE =160°-10°=150°.故选B .二、11.①②⑤;②⑤12.∠4,∠5;∠2,∠6;∠1,∠4 13. 38° 14. 大于15.向右转80°16.55° 点拨:∵∠1=110°,纸条的两条对边互相平行,∴∠3=180°-∠1=180°-110°=70°.根据折叠的性质可知∠2=12(180°-∠3)=12(180°-70°)=55°.17.15 点拨:由平移的性质知,DE =AB =6 cm ,HE =DE -DH =4 cm ,CF =BE =3 cm ,所以EC =6 cm ,所以S 阴影部分=S 三角形EFD -S 三角形ECH =12DE ·EF -12EH ·EC =12×6×9-12×4×6=15(cm 2). 18.105° 点拨:反向延长射线b ,如图,∵∠2+∠5=180°,∴∠5=180°-∠2=180°-140°=40°.∴∠4=180°-∠1-∠5=180°-65°-40°=75°.又∵a∥b ,∴∠3=180°-∠4=180°-75°=105°.(第18题)19.140°20.(1)(2)三、21.解:(1)如图,过点C画一条平行于AB的直线MN,则MN为绿化带.(2)如图,过点C作CD⊥AB于点D,从河岸AB上的点D处开口,才能使所用的水管最短.设计的理由是垂线段最短.(第21题)22.解:(1)点D及四边形ABCD的另两条边如图所示.(第22题)(2)得到的四边形A′B′C′D′如图所示.23.解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°.∵BC平分∠ABD,∴∠ABD=2∠ABC=130°.∴∠BDC=180°-∠ABD=50°.∴∠2=∠BDC=50°.24.解:如图,过点C作∠ACF=∠A,则AB∥CF.∵∠A+∠ACD+∠D=360°,∴∠ACF+∠ACD+∠D=360°.又∵∠ACF+∠ACD+∠FCD=360°,∴∠FCD=∠D,∴CF∥DE,∴AB∥DE.点拨:本题运用了构造法,通过添加辅助线构造平行线,从而利用平行公理的推论进行判定.(第24题)25.解:∵AD∥BC,∴∠FED=∠EFG=55°,∠2+∠1=180°.由折叠的性质得∠FED=∠FEG,∴∠1=180°-∠FED-∠FEG=180°-2∠FED=70°,∴∠2=180°-∠1=110°.26.解:(1)如图①,过点C作CG∥MN,过点D作DH∥MN,(第26题)因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG.因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC=12∠ACG,∠2=12∠EBC=12∠BCG,所以∠ADB=12(∠ACG+∠BCG)=12∠ACB.因为∠ACB=100°,所以∠ADB=50°.(2)∠ADB=180°-12∠ACB.证明:如图②,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG. 因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC,∠2=12∠EBC,所以∠ADB=∠1+∠2=12(∠MAC+∠EBC)=12(180°-∠ACG+180°-∠BCG)=12(360°-∠ACB),所以∠ADB=180°-12∠ACB.(3)∠ADB=90°-12∠ACB.证明:如图③,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠DBE=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG.因为∠MAC的平分线与∠FBC的平分线所在的直线相交于点D,所以∠CAD=12∠MAC,∠DBE=12∠CBF,所以∠ADB=180°-∠CAD-∠CAN-∠BDH=180°-12∠MAC-∠ACG-12∠CBF=180°-12∠MAC-∠ACG-12∠BCG=180°-12(180°-∠ACG)-∠ACG-12∠BCG=180°-90°+12∠ACG-∠ACG-12∠BCG=90°-12∠ACG-12∠BCG=90°-12(∠ACG+∠BCG)=90°-12∠ACB.点拨:解答本题的关键是过“拐点”(折线中两条线段的公共端点)作直线的平行线,利用平行线的判定和性质求角的度数或探究角的数量关系;由于条件类似,因此其解题过程也可以类比完成,所不同的是结论虽类似但也有些变化.。
人教版七下数学第五章测试题及答案
人教版七下数学第五章测试题及答案人教版七下数学第五章测试题一、选择题(共12小题;共36分)1. 如图,∠1与∠2是A. 对顶角B. 同位角C. 内错角D. 同旁内角2. 如图,能判定EB∥AC的条件是A. ∠C=∠ABEB. ∠A=∠EBDC. ∠C=∠ABCD. ∠A=∠ABE3. 下列结论中不正确的是 ( )A. 互为邻补角的两个角的平分线互相垂直B. 互不相等的两个角,一定不是对顶角C. 两条直线相交,若有一个角为90∘,则这四个角中任取两个角都互为补角D. 不是对顶角的两个角互不相等第2页(共16 页)4. 下列命题是真命题的有①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A. 1个B. 2个C. 3个D. 4个5. 下列语句是命题的有个.①两点之间线段最短;②不平行的两条直线有一个交点;③x与y的和等于0吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段AB.A. 1B. 2C. 3D. 46. 下列图形中,∠1和∠2不是内错角的是 ( )A. B. C.D.第3页(共16 页)7. 某校九年级四个班的代表队准备举行篮球友谊赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“902 班得冠军,904 班得第三”;乙说:“901 班得第四,903 班得亚军”;丙说:“903 班得第三,904 班得冠军”.赛后得知,三人都只猜对了一半,则得冠军的是 ( )A. 901 班B. 902 班C. 903 班D. 904 班8. 希望一中初一21班班主任邓老师打电话通知班上53名同学,每名被通知到的同学再打电话通知其他的同学,如果打电话每分钟可以通知1个人,要将全班53名同学全部通知到,至少要用分钟.A. 6B. 52C. 51D. 79. 如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28∘,则∠AOG 为第4页(共16 页)A. 56∘B. 59∘C. 60∘D. 62∘10. 如图,AB∥CD,EF与AB,CD分别相交于点E,F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50∘,则∠EPF=度.A. 70B. 65C. 60D. 5511. 如图所示,NO,QO分别是∠QNM和∠PQN的平分线,且∠QON=90∘,那么MN与PQ 的关系是A. 可能平行也可能相交B. 一定平行C. 一定相交D. 以上答案都不对第5页(共16 页)12. 甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是 ( )A. 甲B. 乙C. 丙D. 不能确定二、填空题(共6小题;共18分)13. 图中与∠C是同旁内角的角是.14. 将“对顶角相等”改写成“如果……那么……”的形式为.15. 如图,直线l1∥l2,∠α=∠β,∠1=40∘,则.∠2=第6页(共16 页)16. 下列说法正确的是.(写出正确的序号)①三条直线两两相交有三个交点;②两条直线相交不可能有两个交点;③在同一平面内的三条直线的交点个数可能为0,1,2,3;④同一平面内的n条直线两两相交,其中无三线n(n−1)个交点;共点,则可得12⑤同一平面内的n条直线经过同一点可得2n(n−1)个角(平角除外).17. 如图所示,AB∥CD,∠1=56∘,∠2=56∘,则直线EF与GH的位置关系.为18. 电脑系统中有个"扫雷"游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中第7页(共16 页)第8页(共16 页)雷的个数(实际游戏中,0 通常省略不标,为方便大家识别与印刷,我把图乙中的 0 都标出来了,以示与未掀开者的区别),如图甲中的" 3 "表示它的周围八个方块中仅有 3 个埋有雷.图乙是张三玩游戏中的局部,图中有 4 个方块己确定是雷(方块上标有旗子),则图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)三、解答题(共6小题;共46分)19. 判断下列语句是不是命题,如果是命题,判断是真命题,还是假命题,对于假命题请举出反例.①画线段 AB =3 cm .②平行于同一条直线的两条直线互相平行.③两条直线相交,有几个交点?④相等的角都是直角.⑤如果a2=b2,那么a=b.⑥直角都相等.20. 如图所示,试判断下列各对角的位置关系:∠1与∠5,∠3与∠5,∠3与∠4,∠5与∠4,∠2与∠4.21. 如图所示,AD,BC相交于点O,∠1=∠B,∠2=∠C.问AB与CD平行吗?为什么?第9页(共16 页)22. 求证:如果一个角的两条边与另一个角的两条边分别平行,那么这两个角相等或互补.23. 如图,直线AB,CD,EF相交于点O,AB⊥CD,OC平分∠EOG,∠FOD=25∘,求∠AOG的度数.第10页(共16 页)24. 问题情境:如图1,AB∥CD,∠PAB=130∘,∠PCD=120∘.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50∘+60∘=110∘.问题迁移:(1) 如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2) 在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.答案第一部分1. B2. D3. D4. C5. D6. D7. B8. D9. B 10. A11. B 12. C第二部分13. ∠A,∠B14. 如果两个角是对顶角,那么这两个角相等15. 140∘16. ②③④⑤17. 平行18. B、D、F、G第三部分19. (1) ①③不是命题,因为句子中没有作出任何判断.②⑥是真命题;④⑤是假命题.对于④,如:∠A=30∘,∠B=30∘,∠A=∠B,但∠A,∠B都不是直角.对于⑤,如:a=−5,b=5时,a2=25,b2=25,满足a2=b2,但a≠b,结论不成立.20. (1) ∠1与∠5是同位角,∠3与∠5,∠3与∠4,∠5与∠4是同旁内角,∠2与∠4是内错角.21. (1) AB∥CD.理由如下:因为AD,BC交于点O,所以∠1=∠2.又因为∠1=∠B,∠2=∠C,所以∠B=∠C.所以AB∥CD.22. (1) 已知:如图,OA∥OʹAʹ,OB∥OʹBʹ,求证:∠O=∠Oʹ.证明:∵OA∥OʹAʹ,∴∠O=∠AʹCB.∵OB∥OʹBʹ,∴∠AʹCB=∠Oʹ.∴∠O=∠Oʹ.已知:如图,OA∥OʹAʹ,OB∥OʹBʹ,求证:∠AOB+∠AʹOʹBʹ=180∘.证明:∵OA∥OʹAʹ,∴∠O=∠OʹCB.∵OB∥OʹBʹ,∴∠OʹCB+∠Oʹ=180∘.∴∠O+∠Oʹ=180∘.23. (1) 因为OC平分∠EOG,所以∠COG=∠COE.因为∠COE=∠DOF=25∘(对顶角相等),所以∠COG=∠COE=25∘.因为AB⊥CD,所以∠AOC=90∘,所以∠AOG=∠AOC−∠COG=90∘−25∘=65∘.24. (1) 过P作PE∥AD,交CD于E点.∵AD∥BC,PE∥AD,∴PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α+∠β.24. (2) 当P在BO上运动时,∠CPD=∠α−∠β;当P在AM上运动时,∠CPD=∠β−∠α.。
人教版数学七年级下册第五章测试卷(含答案)
初中数学人教版七年级下学期第五章测试卷一、单选题(共6题;共12分)1. ( 2分) 如图所示,下列条件中不能判定DE∥BC的是()A. ∠1=∠CB. ∠2=∠3C. ∠1=∠2D. ∠2+∠4=180°2. ( 2分) 下面四个图形中,∠1与∠2是对顶角的是()A. B. C.D.3. ( 2分) 如图,,若,则的度数是( )A. B. C.D.4. ( 2分) 下列命题中,为真命题的是( )A. 对角线互相垂直的四边形是菱形B. 四边相等的四边形是正方形C. 对角线相等的四边形是矩形D. 两组对角分别相等的四边形是平行四边形5. ( 2分) 如图,已知CD∥BE,如果∠1=60°,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°6. ( 2分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A,B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是( )A. 25°B. 30°C. 35°D. 55°二、填空题(共6题;共10分)7. ( 1分) 如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。
(填序号)8. ( 1分) 如图,直线a、b 被直线c所截,若满足________,则a∥b.9. ( 1分) 命题“等角的余角相等”的逆命题是________命题.10. ( 5分) 已知:如图,射线OA 与OB 被直线CD 和EF 所截,∠1+ ∠2 = 180°,求证:∠3 = ∠4 .11. ( 1分) 直角三角形从点出发沿着方向匀速平移得到三角形(如图1),当点平移至点时停止运动(如图2).若,当点恰好将分为两部分时,四边形的面积为,那么平移的距离是________.12. ( 1分) 如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为________.三、解答题(共3题;共15分)13. ( 5分) 如图,已知∠B=∠C,∠B+∠D=180°,指出图中的平行线,并说明理由.14. ( 5分) 如图18,∠1=∠2,∠C=∠D,问∠A与∠F相等吗?为什么?15. ( 5分) 如图,,,,试求的大小.四、综合题(共2题;共21分)16. ( 10分) 如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.17. ( 11分) 问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.如图2,过点P作PE∥AB,∵PE∥AB(作图知)又∵AB∥CD,∴PE∥CD.________∴∠A+∠APE=180°.∠C+∠CPE=180°.________∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系.答案解析部分一、单选题1.【答案】C【考点】同位角、内错角、同旁内角【解析】【解答】A、∵∠1=∠C,∴DE∥BC(同位角相等两直线平行),正确,不符合题意;B、∵∠2=∠3,∴DE∥BC(内错角相等两直线平行),正确,不符合题意;C、∠1=∠2,∴DF∥AC(内错角相等两直线平行),而不能得到DE∥BC,错误,符合题意;D、∠2+∠4=180°,∴DE∥BC(同旁内角互补两直线平行),正确,不符合题意;故答案为:C.【分析】根据平行线的判定定理分别分析判断即可,即同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行.2.【答案】B【考点】对顶角、邻补角【解析】【解答】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故答案为:B【分析】根据对顶角的概念,即可.3.【答案】B【考点】同位角、内错角、同旁内角【解析】【解答】∵,∴.∵,∴,故答案为:B.【分析】根据互相平行的两条直线同位角相等、平角为180°的性质,可得出结果。
人教版七年级数学下册第五章章节综合检测卷及答案
第五章检测卷考试时间:120分钟满分:120分一、选择题(每小题3分,共10小题,满分30分)1.下列语句是命题的是( )A.连接A、B两点B.画一个角等于已知角C.过点C作直线AB的垂线D.两直线相交,有且只有一个交点2.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角第2题图第3题图3.如图,已知直线a∥b,直线c与a、b分别交于点A、点B,且∠1=120°,则∠2=( )A.60°B.120°C.30°D.150°4.下列各组图形可以通过平移互相得到的是( )5.如图,BD平分∠ABC,点E在BC上,EF∥AB,若∠CEF=100°,则∠ABD的度数为( )A.60°B.50°C.40°D.30°第5题图第6题图第7题图6.如图,直线a、b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.点B到AC的垂线段是线段CAB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,两角的和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行(或在同一直线上)且相等9.如图,可由三角形BOC平移得到的三角形有A.2个B.3个C.4个D.5个第9题图第10题图10.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为A.①②B.③④C.②④D.①③④二、填空题(每小题3分,共8小题,满分24分)11.把命题“三角形内角和为180°”写成“如果……那么……”的形式是.12.如图,CD⊥AB,垂足为C,∠1=130°,则∠2= 度.第12题图第13题图13.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠CED= .14.如图所示,将线段b向右平移3格,再向上平移格,能与线段重合.第14题图第15题图15.如图,FE∥ON,OE平分∠MON,若∠FEO=28°,则∠MFE= .16.如图,若计划把河水引到水池A中,可以先作AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是.第16题图第17题图第18题图17.如图,一只船从点A出发,沿北偏东60°方向航行到点B,再沿南偏西25°方向航行到点C,则∠ABC= .18.如图,在直角三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于.三、解答题(本大题共7小题,满分66分)19.(8分)(山东淄博中考)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.20.(8分)如图,三角形ABC的顶点都在方格纸的格点上.将三角形ABC向左平移2格,再向上平移4格.请在图中画出平移后的三角形A′B′C′,再在图中画出三角形A′B′C′的高C′D′.21.(8分)如图所示,两个边长为5的正方形拼合成一个长方形,则图中阴影部分的面积是多少?22.(10分)已知:如图所示,AB∥CD,∠A=∠C.求证:BC∥AD.证明:∵AB∥CD(已知),∴∠ABE=∠(),∵∠A=∠C(已知),∴(),∴BC∥AD().23.(10分)如图,直线AB交CD于点O,由点O引射线OG、OE、OF,使OC平分∠EOG,∠AOG=∠FOE,∠BOD=56°,求∠FOC.24.(10分)如图,EF∥CD,∠1+∠2=180°,试判断∠BGD与∠BCA 的大小,并给予证明.25.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别为∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别为∠ABE2和∠DCE2的平分线,交点为E3,…第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n. (1)如图①,求证:∠BEC=∠ABE+∠DCE;∠BEC;(2)如图②,求证:∠BE2C=14(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章单元测试卷
一、单项选择题(每小题3分,共 30 分)
1、如图所示,∠1和∠2是对顶角的是()
2、如图AB∥CD可以得到()
A、∠1=∠2
B、∠2=∠3
C、∠1=∠4
D、∠3=∠4
3、直线AB、CD、EF相交于O,则∠1+∠2+∠3()。
A、90°
B、120°
C、180°
D、140°
4、如图所示,直线a、b被直线c所截,现给出下列四种条件:
①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b的条件的序号是()
A、①②
B、①③
C、①④
D、③④
5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()
A、第一次左拐30°,第二次右拐30°
B、第一次右拐50°,第二次左拐130°
C、第一次右拐50°,第二次右拐130°
D、第一次向左拐50°,第二次向左拐130°
6、下列哪个图形是由左图平移得到的()
7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()
A、3:4
B、5:8
C、9:16
D、1:2
8、下列现象属于平移的是()
①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,
⑤汽车在一条笔直的马路上行走
A、③
B、②③
C、①②④
D、①②⑤
9、下列说法正确的是()
A、有且只有一条直线与已知直线平行
B、垂直于同一条直线的两条直线互相垂直
C、从直线外一点到这条直线的垂线段,叫做这点到这
条直线的距离。
D、在平面内过一点有且只有一条直线与已知直线垂直。
10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=()
A、23°
B、42°
C、65°
D、19°
二、填空题(本大题共6小题,每小题3分,共18分)
11、直线AB、CD相交于点O,若∠AOC=100°,则
∠AOD=___________。
12、若AB∥CD,AB∥EF,则CD_______EF,其理由
是_______________________。
13、如图,在正方体中,与线段AB平行的线段有______
____________________。
14、奥运会上,跳水运动员入水时,形成的水花是评委评分的一个标准,如图所示为一跳水运动员的入水前的路线示意图。
按这样的路线入水时,形成的水花很大,请你画图示意运动员如何入水才能减小水花?
15、把命题“等角的补角相等”写成“如果……那么……”的形式是:_________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的度数之比是2:7,那么这两个角分别是_______。
三、(每题5分,共15分)
17、如图所示,直线AB∥CD,∠1=75°,求∠2的度数。
18、如图,直线AB、CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB、∠BOF的度数。
19、如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S 的速度沿着A→B方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24?
四、(每题6分,共18分)
20、△ABC在网格中如图所示,请根据下列提示作图
(1)向上平移2个单位长度。
(2)再向右移3个单位长度。
21、如图,选择适当的方向击打白球,可使白球反弹后将红球撞入袋中。
此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?
22、把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数。
五、(第23题9分,第24题10分,共19分)
23、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4()
∴∠3=∠4()
∴________∥_______ ()
∴∠C=∠ABD()
∵∠C=∠D()
∴∠D=∠ABD()
∴DF∥AC()
24、如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)当∠BOC=30°,∠DOE=_______________
当∠BOC=60°,∠DOE=_______________
(2)通过上面的计算,猜想∠DOE的度数与∠AOB
有什么关系,并说明理由。