工程光学-第二章习题解析

合集下载

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学课后答案-第二版-郁道银

工程光学课后答案-第二版-郁道银

工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题参考答案第二章理想光学系统

工程光学习题参考答案第二章理想光学系统

第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。

解:1.0'>f ()-∞=l a()'2f l b -=()f f l c =-=()/f l d -=()0=l e()/f l f =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′=(6)x ′=3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。

求该物镜焦距,并绘出基点位置图。

解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。

解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。

工程光学基础教程 习题答案(完整)

工程光学基础教程 习题答案(完整)

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学第二版习题答案(李湘宁_贾志宏)

工程光学第二版习题答案(李湘宁_贾志宏)

丝,问其通过球面的共轭像在何处?当入射高度
h=10mm,实际光线的像方截距为多少?与高斯像面的距离
为多少?
解:
8、一球面镜半径 r=-100mm, 求 = 0 , -0.1 , -0.2 , -1 ,1 , 5, 10,∝时的物距像距。
第 4 页 共 29 页
解:( 1)
东北石油大学测控 09 级工程光学期末复习资料
解:
100mm,则所得像与物
6.希望得到一个对无限远成像的长焦距物镜,焦距 系统最后一面到像平面的距离 (工作距) 为 并画出光路图。
解:
=1200mm,由物镜顶点到像面的距离 L=700 mm,由 ,按最简单结构的薄透镜系统考虑, 求系统结构,
7.一短焦距物镜,已知其焦距为 系统结构。
35 mm,筒长 L=65 mm,工作距 , 按最简单结构的薄透镜系统考虑,求
3.一光学系统由一透镜和平面镜组成,如图
3-29 所示,平面镜 MM与透镜光轴垂直交于 D 点,透镜前方
离平面镜 600 mm有一物体 AB,经透镜和平面镜后,所成虚像
至平面镜的距离为 150 mm,且像高为
物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
解:平面镜成 β =1 的像,且分别在镜子两侧,物像虚实相反 级工程光学期末复习资料
第六章习题
1.如果一个光学系统的初级子午彗差等于焦宽(),则
应等于多少?
解:
2.如果一个光学系统的初级球差等于焦深
(),则
应为多少? 解:
3. 设计一双胶合消色差望远物镜,
和火石玻璃 F2(

面的曲率半径。
解:
,采用冕牌玻璃 K9 (
解:设一个气泡在中心处,另一个在第二面和中心之间。

工程光学习题解答--第二章-理想光学系统

工程光学习题解答--第二章-理想光学系统

第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。

解:1.0'>f ()-∞=l a()'2f l b -=()f f l c=-=()/f l d -=()0=l e()/f lf =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′=0.5625 (3)x ′=0.703 (4)x ′=0.937 (5)x ′=1.4(6)x ′=2.813.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。

求该物镜焦距,并绘出基点位置图。

解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。

解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少? 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。

工程光学第二章练习参考答案

工程光学第二章练习参考答案

f 2' ' f1 f 2'
D2 20 x 0.714286 tg 2 ' 2 0.09920635 f1 108
5.66557
2 11.331
渐晕50%视场
ω
F1’ F2
D2 20 tg 2' 2 0.07936508 f1 108
8
(2)
100
f o' f e' 100 ' fo f' 8 e
f o' 88.89mm ' f e 11.11mm
第七章 (3)
6
-l=-100
l’
1 1 1 l ' 100 11.11 l ' 12.5mm
第七章 (4)
l1 90, l1 ' 270
第二章
4
l1 90,
l1 ' 270
1 1 1 l1 ' l1 f ' f ' 67.5 1 1 1 270 90 f '
第二章
4
1 1 1 l1 ' l1 f ' 1 1 1 l2 ' l2 f'
1 1 1 3l1 l1 f ' 1 1 1 4l 2 l 2 f'
f '1 f '2 f '1 f '2 f ' d f '1 f 2 f '2 240mm
450 f '2 1200 300 450 f '2
第二章 10
f '1 f '2 f '1 f '2 f ' 100 d f '1 f 2 100 50 100 d 100 50 d 100mm

工程光学第2章习题

工程光学第2章习题

(1)折射玻璃球
成像过程:光束先经左侧
球面折射形成像,再经右侧
球面折射形成像。
Q n n n n l l r
求得:
l1
9Байду номын сангаас, 1
nl1 nl1
0
l2 90 60 30
l2
15, 2
nl2 nl2
0
12 0
物像虚实相同,为实像.
(2)若凸面镀上反射膜, 光束经左侧球面反射成像.
Q 1 1 2 l l r
2-8 一个实物放在曲率半径为R的凹面镜前的什么位置才能得到(1)垂轴放大 率为4倍的实像;(2)垂轴放大率为4倍的虚像。

根据题意,凹面镜 r R
(1) 实物成垂轴放大率为4倍的实像,即
y ' 4
y
y' l'
yl
l ' 4 l
l ' 4l
1 1 2 l' l r
1 1 2 4l l R
lB 200mm lA 80mm
两者相距120mm
求得:
l 15
l 0
l
物像虚实相反,成虚像。
(3)光束先经左侧球面折射形成
像 A1 ,再经右侧球面反射形成像 A2 , 最后经左侧球面折射形成像 A3 。
由(1)得,l2 30 代入公式:
1 1 2 l l r
得,
l2
10, 2
l2 l2
0
12 12 0
物像虚实相同,故 A2为实像. 它又
即:物体位于-∞时,其高斯像点在第二面的中心处。
2)由光路的可逆性可知 :第二面上的十字丝像在物方∞处。
3)当 h1 10mm 时

工程光学基础 习题参考答案-第二章_02

工程光学基础 习题参考答案-第二章_02

3、设一系统位于空气中, 设一系统位于空气中,垂轴放大 率 β = −10 × , 由物面到像面的距离 (共轭距) 共轭距)为 7200mm,物镜两焦点 间距离为 1140mm。求该物镜焦距, 求该物镜焦距, 并绘出基点位置图。 并绘出基点位置图。 解: 由公式 β = − x' f = − (2-4) , f' x
f 2 ' = −240mm
8、一短焦距物镜 一短焦距物镜, 焦距物镜,已知其焦距为 35mm,筒长 L=65mm,工作距离 l k ' = 50mm ,按 最简单结构的薄透镜系统考虑, 最简单结构的薄透镜系统考虑,求系统结构。 求系统结构。 解: (仿照 (仿照 P32 P32 例 2) 利用正切计算法,设 h1 = 100mm ,有公式:
1 1 1 d (2-33) = + − f ' f1 ' f 2 ' f1 ' f 2 '
f1 ' f 2 ' nr1 r2 f ' = − f = − ∆ = ( n − 1)[n( r − r ) + ( n − 1)d ] 2 1 1 Φ = f ' − dr2 l ' = H n( r2 − r1 ) + ( n − 1)d − dr1 l = H n( r2 − r1 ) + ( n − 1)d
xx' = ff ' = − f ' 2 ∴ x' = − f2 x
代入数据得:
x = −∞, x' = 0.5625mm x = −10m, x' = 0.703mm x = −6m, x' = 0.9375mm x = −4m, x' = 1.406mm x = −2m, x' = 2.813mm

工程光学 章节2 球面系统

工程光学  章节2 球面系统
3. 光路计算是根据给定的光学系统,由物求像或由像 求物的过程。 4. 光路计算是根据几何光学的基本定律利用成像光路 图建立起的物象计算式。
光线经球面折射时的光路计算
要讨论成像规律,即像的虚实,成像的位置、正倒和大小问题,必须 计算出光线的走向,所以我们先讨论计算公式。 包含光轴和物点的平面称为含轴面(纸面)或子午面。
第一种情况
求光束经过两次成像后的会聚,图 已知系统 r1 R r2 R n1 1 n2 1.5 n3 1
•第一次成像
n1 1
n'1 1.5
r R
l1
1.5 1 1 .5 1 l '1 R
l1 '求得
A′ -Y′ B′
规则: 以球面的顶点为原点 2-1 沿轴量向右取正,向左取负 垂轴量向上取正,向下取负
单个球面的折射光路
B Y
A -U -L n E I
h I′ O C U′ r L′
n′
A′ -Y′ B′
2-1
角度的符号
• 角度量:U、U′、I、 I ′、φ
规则: 角度正切值为正时该角度为正,反 之为负
第二章 共轴球面光学系统
第一节 光路计算
• • • • 一、概述 二、符号规则 三、单个球面的成像计算 四、共轴球面的成像计算
一、概述
1. 绝大多数光学系统由球面、平面或非球面组成,如 果各曲面的曲率中心在一条直线上,则称该光学系 统为共轴光学系统,该直线为光轴。
2. 非球面, 如抛物面、椭球面等对某些位置等光程的 像质不错, 但加工检验有一定困难。因此,后面的讨 论主要是由球面和平面组成的光学系统。
• 实际光线的光路计算
严格按照几何光学基本定律的光线计算,这类 光线称为实际光线

工程光学课后答案-第二版-郁道银

工程光学课后答案-第二版-郁道银

工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学课后答案完整版机械工业出版社第二版郁道银

工程光学课后答案完整版机械工业出版社第二版郁道银

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学第二章讲解

工程光学第二章讲解

(2)物空间中每一条直线对应于像空间中唯一相应
直线,这两条直线称为共轭线。
2019/6/8
8
B
D •A PC
O1
Ok P’
C’
D’ •A’ B’
(3)物空间中每一个平面对应于像空间中唯一平面,
这两个面称为共轭面。
(4)如果物空间任意一点D位于直线BC上,那么 其在像空间的像D’也必位于BC的共轭线B’C’上。
由于这两组光线是共轭的,所以Q与Q’点必是共轭点,QH 与Q’H’也是一对共轭面。
2019/6/8
27
光学系统
A
E1 Q Q' E k
B
P1 h h P k
H
H'
F
O1
OK
F'
-f
f’
QH与Q’H’在光轴同侧,且高度都为h,故其横向放大率为: β=+1
结论:主平面的横向放大率为+1。
※ 在追迹光线时,出射光线在像方主平面上的投射高 度一定与入射光线在物方主平面上的投射高度相等。
f' f r 2
2019/6/8
33
实际光学系统的基点位置和焦距的计算
2019/6/8
34
小结:
一对共轭面,两对共轭点是最常用的共轴系统的基点
物方焦距
F
物方主点
H -f
像方主点
H’ f’
像方焦距
F’
物方主平面 像方主平面
一对共轭面: 两个主平面。
问:物方焦平面与像方焦平面是不是共轭面?
两对共轭点: 无限远轴上物点与F ’,F与无限远轴上像点。 它们构成了一个光学系统的基本模型。
47
方法2:过F 作辅助线,过光组后与光轴平行, 交像方焦平面于N ’,则A点射出的与 辅助光线平行的光线过光组后过 N ’点, 与光轴交点即是A’。

工程光学基础教程_习题参考答案

工程光学基础教程_习题参考答案

工程光学基础教程_习题参考答案工程光学基础教程_习题参考答案第一章光学基本知识与技术1.1 什么是光学?光学在人类生活中有哪些应用?答:光学是研究光的行为和性质的物理学科。

它涉及到光的产生、传播、变换、干涉、衍射、偏振以及光在介质中的行为等问题。

光学在人类生活中有着广泛的应用,如眼镜、镜头、显示器、照明、医疗器械、天文望远镜等。

1.2 光的波动性是如何描述的?答:光的波动性是指光是一种电磁波,具有振幅、频率、波长等特征。

它可以在空间中传播,并且可以表现出干涉、衍射等波动性质。

光的波动性可以通过波长、频率、振幅等参数进行描述。

1.3 什么是光的干涉?举例说明其应用。

答:光的干涉是指两列或两列以上的光波在空间中叠加时,由于光波的叠加产生明暗相间的干涉条纹的现象。

光的干涉在很多领域都有应用,例如光学干涉仪、双缝干涉实验、全息照相、光学通信等。

1.4 什么是光的衍射?举例说明其应用。

答:光的衍射是指光在遇到障碍物或孔径时,会绕过障碍物或孔径边缘,产生明暗相间的衍射图案的现象。

光的衍射在很多领域也有应用,例如光学透镜、衍射光学器件、全息照相、光学存储等。

1.5 什么是光的偏振?举例说明其应用。

答:光的偏振是指光波的电矢量在振动时,只在某个方向上振动,而在其他方向上振动为零的现象。

光的偏振在很多领域也有应用,例如偏振眼镜、偏振片、偏振光学器件等。

第二章光学透镜与成像2.1 什么是透镜?列举几种常见的透镜及其特点。

答:透镜是一种光学器件,它由一块透明材料制成,可以聚焦或发散光线。

常见的透镜包括凸透镜、凹透镜、平凸透镜、平凹透镜等。

2.2 凸透镜的成像原理是什么?如何计算凸透镜的焦距?答:凸透镜的成像原理是光线经过凸透镜后,平行于主轴的光线会聚于一点,这个点称为焦点。

焦距是指从透镜中心到焦点的距离。

凸透镜的焦距可以通过公式 f=1/v+1/u 进行计算,其中f为焦距,u为物距,v为像距。

2.3 凹透镜的成像原理是什么?如何计算凹透镜的焦距?答:凹透镜的成像原理是光线经过凹透镜后,平行于主轴的光线会朝透镜中心方向会聚于一点,这个点称为虚焦点。

工程光学习题解答

工程光学习题解答

工程光学习题解答 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第一章习题1、已知真空中的光速c=3m/s,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。

?解:则当光在水中,n=时,v=m/s,当光在冕牌玻璃中,n=时,v=m/s,当光在火石玻璃中,n=时,v=m/s,当光在加拿大树胶中,n=时,v=m/s,当光在金刚石中,n=时,v=m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

?解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm?即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1,n1=,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=的玻璃球上,求其会聚点的位置。

工程光学习题解答

工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


r2
(1 n)(r1 d ) nr2
成缩小的像 1
实物成虚像 0
y l
yl 1 l 5 10
l 2mm
1 1 2 l l r 1 1 2 r 5mm 2 10 r
f=f = r 2
f0
凸面镜
2020/3/21
7
2 6. 一个实物放在曲率半径为R的凹面镜的什么位置才能得到: (1)垂轴放大率为4倍的实像 (2)垂轴放大率为4倍的虚像
L
r(1
sin I sinU
)
30
1
sin12.84 sin 6.63
87.74
(2) 近轴光线的像距
n n n n l l r
1.5 1 1.5 1 l 30
l 90mm
2020/3/21
4
2 3. 一个实物与被球面反射镜所成的实像像距1.2m,如物高为像高的 4倍,求球面镜的曲率半径。
解 r R 凹面镜f 0
(1) 4 实物成实像 =-4 0
y l
yl 1 1 2 l l r
l 4l
1 1 2 l 5R
4l l r
8
(2) 4 实物成虚像 =4 0
y l
yl 1 1 2 l l r
l 4l
1 1 2 l 3R
4l l r
8
2020/3/21
解 第一个面
l1 r1 100 mm n1 1 n1 1.5
n1 n1 n1 n1
l1 l1
r1
1.5 l1
1
1.5 1 100
l1
300
mm
第二个面 l2 l1 d 300 300 0
d 300mm
2020/3/21
11
2 10. 已知一个透镜第一面和第二面的半径分别为r1和r2,透镜的厚度为d, 折射率为n。当一个物体置于第一面的球心时,证明该物体的垂轴放 大率为
第二章
习题
2020/3/21
第七章 光度学基础
1
2 1. 一个18mm高的物体位于折射球面前180mm处,球面半径r 30mm, n 1,n 1.52,求像的位置、大小、正倒及虚实情况。
解法1: y 18mm l 180 mm r 30mm
n 1 n 1.52 n n n n l l r 1.52 1 1.52 1 l 180 30 l 129.06mm
解法2: y 18mm l 180 mm
n 1 n 1.52 n n n n l l r 1.52 1 1.52 1
l 180 30 l 129.06mm
y lr y l r 18 180 30 y 129 .06 30
r 30mm
y n 1
n 1.52
y
r 30mm
r 0.64m r 640mm
2020/3/21
5
2 4. 一个玻璃球半径为R,若以平行光入射,当玻璃的折射率为何值 时,会聚点恰好落在球面的后表面上?
解法1 n 1 l l 2R r R
n n n n l l r
n 1 n 1 2R R
n 2
I
I
n 1 n
U
1 1 2 l l r
y l
yl
1 1 2 r 0.21m 0.1 1.75 r
y l y 0.1 1.75 0.1m
l
1.75
2020/3/21
10

2 9. 有一个光学透镜,其结构参数列于下表:
r/mm
d/mm
n
100
300
1.5

当l1 时,其像在何处?又如 果在第二面的表面刻上 十字线,问 十字线的共轭像在何处 ?
l 180mm
l
y 8.49 0.47
y 18
y 8.49mm
缩小、倒立、实像
2020/3/21
3
2 2. 一个球面半径r 30mm,物像方的折射率n 1,n 1.5,平行光的 入射高度为10mm。(1)求实际出射光线的像方截距;(2)求近轴 光线的像距,并比较之。
解: r 30mm n 1 n 1.5
f0
11 2 l2 l2 r
1 150
1 l2
2 120
l2
42.857mm
凹面镜
2020/3/21
9
2 8. 在汽车驾驶员的侧面有一个凸面反射镜,有一个人身高1.75m,在 凸面镜前的1.75m处,被球面镜成像在镜后0.1m处,求此人的像高 和凸面镜的半径。
解 已知条件
y 1.75m l 1.75m l 0.1m
I
l h 10mm
(1) 求实际光线的像方截距
sin I h 10 1 r 30 3
I 19.47
h 10mm
n 1
I U
C
r 30mm n 1.52
nsin I nsin I
sin I 2/ 9 I 12.84
I IU
U I 19.47 12.84 6.63
y n l 1 129 .06 0.47
y n l 1.52 180 y 0.47y 0.4718 8.49mm
l 180mm n 1
n 1.52
缩小、倒立、实像
2020/3/21
2
2 1. 一个18mm高的物体位于折射球面前180mm处,球面半径r 30mm, n 1,n 1.52,求像的位置、大小、正倒及虚实情况。
解: y n l
y n l 反射面 n n
y l
yl 实物成实像 物像同侧 0 y l 1 l 4l
yl4
l (l) l l 1.2
l 0.4m l 1.6m
n n n n l l r
1 1 2 l l r
1 1 2 1.6 0.4 r
解法2 n 1 l l 2R r R
I U I I U 2I
近轴光 nI nI n 2I nI n 2n 2
l=2R
2020/3/21
6
2 5. 大小为5mm的物体放在球面反射镜前10mm处,成1mm高的虚像。 试求球面反射镜的曲率半径,并说明反射镜的凹凸状况。
解 已知条件 y 5mm y 1mm l 10mm
8
2 7. 一物体在球面镜前150mm处,成实像于镜前100mm处。如果有一 虚物位于镜后150mm处,求成像的位置?球面镜是凸还是凹?
解 已知条件 l1 150 mm l1 100 mm l2 150 mm
112 l1 l1 r
1 1 2 r 120mm 100 150 r
f=f = r 120 60mm 22
相关文档
最新文档