GCQJ30-120架桥机计算书

合集下载

30mt梁架桥机验算书

30mt梁架桥机验算书

30mT梁架桥机验算书一、架桥机组成该架桥机为自拼机械,主导梁由108片贝雷片并加设上下加强弦杆组成,架桥机总长57m,总重为70吨,由上下航车、双导梁、前、中、后支腿构成,可吊梁重最大为120吨,其中上航车为5吨,前支腿为3吨,30T梁重85吨。

具体结构见简图。

二、架桥机受力分析1、各种所用材料参数:杉木加上航车轨道40kg/m,贝雷片换算成500kg/m,合成g=10.4KN/mE钢=2.1*106Mpa, [ δ钢支墩]=140Mpa,贝雷片允许弯距[M]=975.0KN*m,Ⅰ= 250500cm4W=3570cm3加强弦杆允许弯距[M]=260.2 KN*m40a型工字之钢参数:I =21714cm4,Wx=1085.7cm3[ δ ]=350Mpa2、冲架桥机时内力计算①受力分析图由于架桥机冲架时后支腿压住轨道,前支腿翘起,受力主要考虑前悬臂的弯距,最大弯距位于中支腿B处,M BA=M1+M2=30*31.5+0.5*10.4*(31.5+1.5)2=6607.8KN.m判断式M BA≤1.2[M]*6*0.9=1.2*(975+260.2)*6*0.9=8004.1KN.m满足强度的要求。

(备注:上式的6是6排贝雷片,0.9是系数)3、架桥机架梁时内力分析当架桥机架梁时,由于后支腿处于悬臂状态,使主导梁架梁的主跨部份产生负弯距反而有利于导梁的最终受力,减少主跨段双导梁的正弯距。

为方便计算,且从安全考虑,只取主跨31.5m作受力计算,并简化成简支梁分析。

那么成如下分析图:∑Mmax=M1+M2=1/8*g*L2+1/4*P*L=1/8*10.4*31.5*31.5+1/4*475*31.5=5030.55KN.m判断式M BA≤1.2[M]*6*0.9=1.2*(975+260.2)*6*0.9=8004.1KN.m∑Mmax≤1.2[M]*6*0.9 满足强度的要求f=(5gL4)/384/E/I+PL3/48/E/I=(5*10.4*31.54)/384/2.1/250500+475*31.53/48/2.1/250500=0.042+0.098=0.14cm4、架桥机前支腿钢支墩强度稳定性验算方程组:∑Ma=M1+M2-M3-M4-M5=0 Ra+Rb=∑Y∑Ma=M1+M2-M3-M4-M5=Rb*31.5+1/2*10.4*1.5*1.5-1/2*10.4*(31.5+22.5+1.5)2-475*1.5-475*30.5= Rb*31.5+11.7-16017.3-712.5-14487.5=>Rb=990.7KN=>Ra=∑Y- Rb=gL+P1+P2- Rb=10.4*57+475*2-990.7 =552.1KN前支墩采用4根Ф320*6A3钢支墩支撑, 强度判断式δ=N/A ≤1.2[δ]δ=N/A=552.1/4/(0.162 *3.1416-0.1542 *3.1416) =23.320Mpa ≤1.2[δ]=168 Mpa 满足强度要求 稳定性判断式δ=N/ΨA 0≤1.2[δ] r=√Im/Am= √(R 4-r 4)/(R/2)2 =0.034λ=L 0/r=(2*1.0)/0.034=58.8(L 0=2L,一端固定,一端活动) 58.8<80,Ψ=1.02-0.55[(λ+20)/100]2=0.678δ=N/ΨA 0=552.1/0.678/4/(0.162 *3.1416-0.1542 *3.1416) =34.9Mpa≤1.2[δ] =168 Mpa 满足稳定性的要求5、上航车内力计算 ①、40a 型工字钢验算工字钢弯距最大时荷载分布图RaRbp1p2160015001600o方程式:Ra=Rb=425/2=212.5KNM 0=Ra*2.35-P1*0.75=340KN.mδ= M/W=340/1085.7/2(两根工字钢)=156.58Mpa ≤1.2[δ]=420Mpa 满足强度的要求②、支墩应力方程式:Ra+Rb=∑Y=425KN ∑Ma=M1-M2-M3=0Ra=Rb=425/2=212.5KN∑Ma=M1-M2-M3=R b*4.7-P1*0.4-P2*1.9=0=>Rb=104kn =>Ra=321KN上航车支墩采用4根Ф320*6A3钢支墩支撑,强度判断式δ=N/A≤1.2[δ]δ=N/A=321/2/(0.162 *3.1416-0.1542 *3.1416)=27.203Mpa≤1.2[δ]=168 Mpa 满足强度要求稳定性判断式δ=N/ΨA0≤1.2[δ]r=√Im/Am= √(R4-r4)/(R/2)2 =0.034λ=L0/r=(2*1.7)/0.034=100(L0=2L,一端固定,一端活动) 100>80,Ψ=3000/λ2=0.3δ=N/ΨA0=552.1/0.3/(0.162 *3.1416-0.1542 *3.1416)/2=90.7Mpa≤1.2[δ] =168 Mpa 满足稳定性的要求。

HDJH30-120J型架桥机说明书

HDJH30-120J型架桥机说明书

目录1、概述-----------------------------------------------------------------------------------------12、设计依据及参考技术规范--------------------------------------------------------------23、主要结构及功能--------------------------------------------------------------------------24、架桥机的装运、安装、拆卸----------------------------------------------------------------45、使用说明-----------------------------------------------------------------------------------96、过孔-----------------------------------------------------------------------------------------107、过孔抗倾覆计算-------------------------------------------------------------------------108、喂梁----------------------------------------------------------------------------------------119、架设----------------------------------------------------------------------------------------1110、动力配置---------------------------------------------------------------------------------1211、维护保养---------------------------------------------------------------------------------1312、注意事项及常见故障排除------------------------------------------------------------1513、标准件明细表---------------------------------------------------------------------------1714、横移轨道的使用------------------------------------------------------------------------1715、安全操作规程---------------------------------------------------------------------------1816、随机文件---------------------------------------------------------------------------------1917、架桥机操作人员培训记录表-----------------------------------------------------------19注:编页未含附图。

GCQJ30~120架桥机计算书

GCQJ30~120架桥机计算书

GCJQ120t-30m架桥机计算书编制:_______校对:_______审核:_______批准:_______市共创起重科技一主要性能参数1.1额定起重量 120t1.2架设梁跨 30m1.3卷扬机起落速度 0.8m/min1.4龙门行走速度2.9m/min1.5 卷扬机横移速度 1.8m/min1.6适应纵坡±3%1.7适应斜桥 45°1.8 整机功率 73.4KW二架桥机组成2.1 吊梁天车总成两套2.2 天车龙门两套2.3 主梁一套2.4 前框架总成一套2.5 前支腿总成一套(含油泵液压千斤顶)2.6 前支横移轨道一套2.7 中支腿总成一套2.8 中支横移轨道一套2.9 反托总成一套(含油泵液压千斤顶)2.10 后支腿总成一套2.11 后横梁总成一套2.12 电气系统一套三方案设计注:总体方案见图 JQ30120.003.1 吊梁行车3.1.1 主要性能参数额定起重量 120t运行轨距 1200mm轴距 1100mm卷扬起落速度 0.8m/min运行速度 1.8m/min驱动方式 4×2自重 11.4 t卷筒直径:φ377mm卷筒容绳量: 250m3.1.2 起升机构已知:起重能力Q静=Q+W吊具=60+1.1=61.1t粗选:单卷扬,倍率m=12,滚动轴承滑轮组,效率η=0.9, 见《起重机设计手册》表3-2-11,P223,则钢丝绳自由端静拉力S:S=Q静/(η× m)=61.1/(0.9×12)=5.6t,选择JM6t卷扬机,平均出绳速度9.5m/min;钢丝绳破断拉力总和∑t:∑t=S×n/k=5.6×5/0.82=34.2t,选择钢丝绳: 6×37-21.5-1850-特-光-右交,GB1102-74,《起重机设计手册》P199。

3.1.3 运行机构3.1.3.1 车轮直径《起重机设计手册》P355已知 Q=60t、G小=5t、4×2驱动则P c= P max=(Q+G小)/4=16.25t,车轮和轨道线接触,L=60mm,轨道方钢30×60,车轮材料ZG45,则由公式:D ≥211C C L K Pc ⨯⨯⨯=25.117.1602.71000025.16⨯⨯⨯⨯=257mm 式中 K 1—常数 7.2N/mm 2,δb ≥800MPaL —踏面宽 60mmC 1—转速系数 1.17,Vo=1.1m/min ,n=32.014.38.1⨯=1.8rpm C 2—工作级别系数 1.25选择 φ360mm 轮组3.1.3.2 运行静阻力(重载运行)摩擦阻力 F m =(Q+G 小)×w=(60+5)×0.015=0.975t坡道阻力 F P =(Q+G 小)×i =(60+5)×0.004=0.26t风阻力 F W =C ×K h ×q ×A=1.6×1.00×(0.6×150)×65/10000=0.94t式中C —风力系数 1.6 表1—3—11K h —高度系数 1.00 表1—3—10q —计算风压 0.6×150N/m 2 表1—3—9A —迎风面积 65m 2运行静阻力F j =F m +F p +F w =0.975+0.26+0.94=2.175t=21750N3.1.3.3 电机选择静功率 Pj=m Vo Fj ⨯⨯⨯⨯η100060=29.01000608.121750⨯⨯⨯⨯=0.36kw 式中Vo —运行速度 1.8m/minm —电机个数 2个粗选 P=Kd ×Pj=(1.1~1.3)×0.22=0.396~0.0.468 kw双驱动 m=2, ZDY1 22-4-1.5KW n 电=1380rpm《机械零件设计手册》下册、冶金版、P8303.1.3.4选取天车横移减速机:⑴ 已知: d=φ320 mm ,v=1.8 m/min ,n 电=1380 rpm⑵ 车轮转速: n 轮=dv π =1.8 rpm ⑶ 整机传动比: i=轮电n n =8.11380=766 ⑷ 齿轮传动比: i 齿=!Z Z 2=1641=2.56 ⑸ 减速机传动比: i 减=i/ i 齿=299⑹ 选取减速机传动比: i 减选取289⑺ 选取减速机型号: BLEN31-289-1.5kw Tp=1250N.m⑻ 车轮实际转速: n 轮=减齿电i i n =28956.21380⨯=1.86rpm ⑼ 龙门吊实际走行速度:V= n 轮πd=1.86×3.14×0.36=1.8m/min注:减速机校核计算:1.1.已知:n 电=1380rpm ,n 1=1500rpm ,T p =1250 N.M输出轴实际工作转矩计算:(按实际车轮踏面扭矩计算)已知:F j =21750N ,r=0.18m ,η齿=0.9,i 齿=41/16=2.56,m =2计算:T 轮=mr F j ⨯=218.021750⨯ =1957.5 N.m T 减出=齿齿轮η⨯i T =9.056.25.1957⨯=850 N.m 1.2.计算工作转矩:T C =ε/11⎪⎪⎭⎫ ⎝⎛n n 电×T 减出=3.015001380⎪⎭⎫ ⎝⎛×850=825 N.m <T p =1250 N.M 公式中: T C ——计算工作转矩N.Mn 电——输入实际转速N.Mε——转臂轴承寿命指数,球轴承ε=3,滚子轴承ε=10/3T p ——减速机在额定转速时的输出轴许用转矩 N.MT 减出——输出轴实际工作转矩N.M选取摆针减速机:BLEN31-289-1.5KW Tp=1250 N.M选取驱动电机: ZDY1 22-4-1.5KW n=1380rpm3.1.4结构方案选择上5定滑轮组,下6动滑轮组,采用JM6t 卷扬机见图JQ30120.003.2天车纵移主从动轮组计算:3.2.1.大车车轮踏面计算: 《起重机设计手册》P3553.2.1.1.已知:Q=60t ,G=11.4t (龙门吊整机重量),G 1=5t 3.2.1.2载荷计算:P max =27/6)560(⨯++454.11-=29.5t p min =27/15⨯+454.11-=2t p c =32min max P P +=20.3t 3.2.1.3 车轮踏面接触强度计算:P C ≤K 1DLC 1C 2车轮和轨道线接触,L=60mm ,轨道方钢30*60,车轮材料ZG45则由公式:∴D ≥211C LC K Pc =25.117.1602.7103.204⨯⨯⨯⨯=321mm 式中 K 1—常数 7.2N/mm 2,δb ≥800MPaL —踏面宽 60mmC 1—转速系数 1.17C 2—工作级别系数 1.253.2.1.4 天车纵移轮箱车轮选取: φ360mm 轮组3.2.2. 大车驱动功率计算:3.2.2.1 已知:d=φ320 mm v=2.9 m/min3.2.2.2 摩阻:F m =(Q+G)ω=(60+11.4)×0.015=1.071t3.2.2.3 坡阻:F p =(Q+G)i=(60+11.4)×0.01=0.714t3.2.2.4 风阻:F ω=CK h qA=1.6×1×(0.6×150)×65/10000=1t3.2.2.5 运行静阻力:F j =F m +F p +F ω=1.07+0.714+1=2.784t3.2.2.6 电机驱动功率:P j =m F j η1000v =6029.010009.210784.24⨯⨯⨯⨯⨯=0.74kw 3.2.2.7 确定实际功率:P=K d P j =(1.1~1.3)P j =0.814~0.1.11kw3.2.2.8 确定驱动电机:ZDY 1 22-4-2.2KW n=1380rpm3.2.2.9 龙门行走减速机n 轮=Vo/(π×d )=2.9/(π×0.32)=2.88rpmn 电=1380 rpmi 总=n 电/n 轮=1380/2.88=479i 齿=Z 2/Z 1=41/16=2.56,i 减= i 总/ i 齿=187选择减速机:BLEN31-187-1.5kw Tp=1250N.m车轮实际转速: n 轮=减齿电i i n =18756.21380⨯=2.88rpm 实际走行速度: V= n 轮πd=2.88×3.14×0.32=2.8m/min注:减速机校核计算:1.1.已知:n 电=1380rpm ,n 1=1500rpm ,T p =1250 N.M输出轴实际工作转矩计算:(按实际车轮踏面扭矩计算)已知:F j =15050N ,r=0.18m ,η齿=0.9,i 齿=41/16=2.875,m =2(电机个数)计算:T 轮=mr F j ⨯=218.015050⨯=1354.5 N.m T 减出=齿齿轮η⨯i T =9.0875.25.1354⨯=523.5N.m 1.2.计算工作转矩:T C =ε/11⎪⎪⎭⎫ ⎝⎛n n 电×T 减出=3.015001380⎪⎭⎫ ⎝⎛×523.5=509.2 N.m <T p =1250 N.M 公式中:T C ——计算工作转矩N.Mn 电——输入实际转速N.Mε——转臂轴承寿命指数,球轴承ε=3,滚子轴承ε=10/3T p ——减速机在额定转速时的输出轴许用转矩 N.MT 减出——输出轴实际工作转矩N.M3.2.3.选取摆针减速机:BLEN41-187-1.5kw Tp=1250N.m选取驱动电机: ZDY1 22-4-1.5KW n=1380rpm3.3.主横梁综合性能计算3.3.1.已知: 额定起重量: Q=120t小龙门吊整机重量: G=11.4t吊梁小行车重量: G 1=5t跨度: L=30m3.3.2.主横梁主要参数的选取:桁高:h=2 m桁宽:H=1.1 m3.3.3.主横梁截面计算和选取:(按单横梁计算)3.3.3.1.上弦杆计算和选取:(按压杆)3.3.3.1.1.已知: Q=120 t G 小=11.4 t q=0.34t/m L=30m计算主横梁最大弯矩:M max =88)1.1(2qL L G Q ++小 =83034.0830)4.11601.1(2⨯+⨯+⨯=328.5t.m 3.3.3.1.2计算轴向力:N 上=N 下=h M max =25.328=164.25t 3.3.3.1.3计算上弦杆所需最小截面积:A ≥][σφ上N =12077mm 2 3.3.3.1.4初选上弦杆截面:(双工钢夹板)2工25a+ 60×30+8×245 材料Q235BA=13502mm2 3.3.3.1.5计算上弦杆截面性能参数:节间有效长度:L x =L r =1.45 m⑴ 计算X 向性能参数:截面惯性矩: I x =141475083 mm 4截面抗压抗弯模量: W x 上=上x x y I =4.136141475083=1037207 mm 3 W x 下=下x x y I =7.143141475083=984517mm 3 压杆截面的惯性半径: r x =A I x =13502141475083=102mm 压杆的柔度(长细比):λx =x x r L =1021450=14 压杆的折减系数: φx =0.985查《机械设计手册》第一卷P1-174表1-1-122⑵ 计算Y 向性能参数:截面惯性矩: I y =43455755m 4截面抗弯模量: W y =y yy I =12043455755=362131mm 3压杆截面的惯性半径: r y =AI y =1350243455755=56.7 mm 压杆的柔度(长细比):λy =y yr L =7.561450=25.5 压杆的折减系数: φy =0.95查《机械设计手册》第一卷P1-174表1-1-122⑶ 间力学计算:已知:Q=120t ,G 1=11.4t ,m=4,轮压:P 轮=mG Q 小+=44.1160+=17.85t 节间弯距:M j =6j L P 轮=645.185.17⨯=4.32t.m ,L j =1.45 m 3.3.3.1.6上弦杆性能校核计算:⑴强度校核:σ=xj W M A N +上=9845171032.4135021025.16444⨯+⨯=121.6+0.04=121.64Mpa σ<[σ]=170 Mpa 通过检算⑵刚度校核:λ=m in γL =8.561450=25.5<[λ]=100 通过检算 ⑶稳定性校核:σ=x j W M A N +φ上=9845171032.4135020.9851025.16444⨯+⨯⨯=124MPa σx = [σ]=170 Mpa 通过检算3.3.3.2.下弦杆计算和选取:(按压杆)3.3.3.2.1计算单根下弦杆轴向力:(由上知)N 上=N 下=h M max =25.328=164.25 t N 下单=82.13t3.3.3.2.2计算单根下弦杆所需最小截面积:A ≥][σ下N =1701013.824⨯=4831 mm 2 3.3.3.2.3初选下弦杆2[18b+8×120 材料Q235BA=6818mm2 3.3.3.2.4计算下弦杆截面性能参数:⑴ 计算X 向性能参数:截面惯性矩: I x =34694439mm 4截面抗拉压弯模量: W x =x xy I =10334694439=336839mm 3。

架桥机计算书

架桥机计算书

目录一、设计规范及参考文献 (2)二、架桥机设计荷载 (2)三、架桥机倾覆稳定性计算 (3)四、结构分析 (5)五、架桥机1号、2号车横梁检算 (7)六、架桥机0号立柱横梁计算 (9)七、1号车横梁及0号柱横梁挠度计算 (11)八、150型分配梁:(1号车处) (13)九、0号柱承载力检算 (14)十、起吊系统检算 (15)十一、架桥机导梁整体稳定性计算 (16)十二、导梁天车走道梁计算 (18)十三、吊梁天车横梁计算 (18)一、设计规范及参考文献(一)重机设计规范(GB3811-83)(二)钢结构设计规范(GBJ17-88)(三)公路桥涵施工规范(041-89)(四)公路桥涵设计规范(JTJ021-89)(五)石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》(六)梁体按30米箱梁100吨计。

二、架桥机设计荷载(一)、垂直荷载梁重:Q=100t1单个天车重:Q=20t(含卷扬机、天车重、天车横梁重)2主梁、桁架及桥面系均部荷载:q=0、67t/m×1、1=0、74t/m前支腿总重: Q=4t3=2t中支腿总重:Q4=34t1号承重梁总重:Q5=34t2号承重梁总重:Q6=12t2#号横梁Q7梁增重系数取:1、1活载冲击系数取:1、2不均匀系数取:1、1(二).水平荷载1、风荷载a.设计取工作状态最大风力,风压为7级风得最大风压:q=19kg/m21b、非工作计算状态风压,设计为11级得最大风压;=66kg/m2q2(以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》)2、运行惯性力: Ф=1、1三、架桥机倾覆稳定性计算(一) 架桥机纵向稳定性计算架桥机纵向稳定性最不利情况出现在架桥机悬臂前行阶段,该工况下架桥机得支柱已经翻起,1号天车及2号天车退至架桥机尾部作为配重,计算简图见图1(单位 m):图中图1P1=4t (前支柱自重)P2=0、74×22=16、28t (导梁后段自重)P3=0、74×30=22、2t (导梁前段自重)P 5= P4=20t (含卷扬机、天车重、天车横梁重)P6为风荷载,按11级风得最大风压下得横向风荷载,所有迎风面均按实体计算,P6=ΣCKnqAi =1、2×1、39×66×(0、7+0、584+0、245+2、25+0、3+0、7+0、8+1、5)×12、9=10053kg=10、05t作用在轨面以上5.5m处M抗=16、28×11+20×(11+4+5)+20×(11+5) =899、08t、mM倾=4×30+22、2×15+10、05×5、5=508、275t、m架桥机纵向抗倾覆安全系数n=M抗/M倾=899、08/(508、275×1、1)=1、61>1、3 <可)(二) 架桥机横向倾覆稳定性计算1.正常工作状态下稳定性计算架桥机横向倾覆稳定性最不利情况发生在架边梁就位时,最不利位置在1号天车位置,检算时可偏于安全得将整个架桥机荷载全部简化到该处,计算简图如图图2P1为架桥机自重(不含起重车),作用在两支点中心(其中天车横梁重6t) P1=(16、28+22、2)×2+12×2+6×2=112、96 tP2为导梁承受得风荷载,作用点在支点以上3.8m处,导梁迎风面积按实体面积计,导梁形状系数取1、6。

GCQJ30120架桥机计算书

GCQJ30120架桥机计算书

GCJQ120t-30m架桥机计算书编制:_______校对:_______审核:_______批准:_______开封市共创起重科技有限公司一主要性能参数1.1额定起重量 120t1.2架设梁跨 30m1.3卷扬机起落速度 0.8m/min1.4龙门行走速度2.9m/min1.5 卷扬机横移速度 1.8m/min1.6适应纵坡±3%1.7适应斜桥 45°1.8 整机功率 73.4KW二架桥机组成2.1 吊梁天车总成两套2.2 天车龙门两套2.3 主梁一套2.4 前框架总成一套2.5 前支腿总成一套(含油泵液压千斤顶)2.6 前支横移轨道一套2.7 中支腿总成一套2.8 中支横移轨道 一套2.9 反托总成 一套 (含油泵液压千斤顶)2.10 后支腿总成 一套2.11 后横梁总成 一套2.12 电气系统 一套三 方案设计 注: 总体方案见图 JQ30120.003.1 吊梁行车3.1.1 主要性能参数额定起重量 120t运行轨距 1200mm轴距 1100mm卷扬起落速度 0.8m/min运行速度 1.8m/min驱动方式 4×2自重 11.4 t卷筒直径: φ377mm卷筒容绳量: 250m3.1.2 起升机构已知:起重能力Q 静=Q+W 吊具=60+1.1=61.1t粗选:单卷扬,倍率m=12,滚动轴承滑轮组,效率η=0.9, 见《起重机设计手册》表3-2-11,P223,则钢丝绳自由端静拉力S:S=Q 静/(η× m)=61.1/(0.9×12)=5.6t ,选择JM6t 卷扬机, 平均出绳速度9.5m/min ;钢丝绳破断拉力总和∑t :∑t=S ×n/k=5.6×5/0.82=34.2t ,选择钢丝绳: 6×37-21.5-1850-特-光-右交,GB1102-74,《起重机设计手册》P199。

3.1.3 运行机构3.1.3.1 车轮直径 《起重机设计手册》P355已知 Q=60t 、G 小=5t 、4×2驱动则P c = P max =(Q+G 小)/4=16.25t ,车轮和轨道线接触,L=60mm,轨道方钢30×60,车轮材料ZG45,则由公式:D ≥211C C L K Pc ⨯⨯⨯=25.117.1602.71000025.16⨯⨯⨯⨯=257mm 式中 K 1—常数 7.2N/mm 2,δb ≥800MPaL —踏面宽 60mmC 1—转速系数 1.17,Vo=1.1m/min ,n=32.014.38.1⨯=1.8rpm C 2—工作级别系数 1.25选择 φ360mm 轮组3.1.3.2 运行静阻力(重载运行)摩擦阻力 F m =(Q+G 小)×w=(60+5)×0.015=0.975t坡道阻力 F P =(Q+G 小)×i =(60+5)×0.004=0.26t风阻力 F W =C ×K h ×q ×A=1.6×1.00×(0.6×150)×65/10000=0.94t 式中C —风力系数 1.6 表1—3—11K h —高度系数 1.00 表1—3—10q —计算风压 0.6×150N/m 2 表1—3—9A —迎风面积 65m 2运行静阻力F j =F m +F p +F w =0.975+0.26+0.94=2.175t=21750N3.1.3.3 电机选择静功率 Pj=m Vo Fj ⨯⨯⨯⨯η100060=29.01000608.121750⨯⨯⨯⨯=0.36kw 式中Vo —运行速度 1.8m/minm —电机个数 2个粗选 P=Kd ×Pj=(1.1~1.3)×0.22=0.396~0.0.468 kw双驱动 m=2, ZDY1 22-4-1.5KW n 电=1380rpm《机械零件设计手册》下册、冶金版、P8303.1.3.4选取天车横移减速机:⑴ 已知: d=φ320 mm ,v=1.8 m/min ,n 电=1380 rpm⑵ 车轮转速: n 轮=dv π =1.8 rpm ⑶ 整机传动比: i=轮电n n =8.11380=766 ⑷ 齿轮传动比: i 齿=!Z Z 2=1641=2.56 ⑸ 减速机传动比: i 减=i/ i 齿=299⑹ 选取减速机传动比: i 减选取289⑺ 选取减速机型号: BLEN31-289-1.5kw Tp=1250N.m⑻ 车轮实际转速: n 轮=减齿电i i n =28956.21380⨯=1.86rpm ⑼ 龙门吊实际走行速度:V= n 轮πd=1.86×3.14×0.36=1.8m/min注:减速机校核计算:1.1.已知:n 电=1380rpm ,n 1=1500rpm ,T p =1250 N.M输出轴实际工作转矩计算:(按实际车轮踏面扭矩计算)已知:F j =21750N ,r=0.18m ,η齿=0.9,i 齿=41/16=2.56,m =2计算:T 轮=mr F j ⨯=218.021750⨯ =1957.5 N.m T 减出=齿齿轮η⨯i T =9.056.25.1957⨯=850 N.m 1.2.计算工作转矩: T C =ε/11⎪⎪⎭⎫ ⎝⎛n n 电×T 减出=3.015001380⎪⎭⎫ ⎝⎛×850=825 N.m <T p =1250 N.M 公式中: T C ——计算工作转矩N.Mn 电——输入实际转速N.Mε——转臂轴承寿命指数,球轴承ε=3,滚子轴承ε=10/3T p ——减速机在额定转速时的输出轴许用转矩 N.MT 减出——输出轴实际工作转矩N.M选取摆针减速机:BLEN31-289-1.5KW Tp=1250 N.M选取驱动电机: ZDY1 22-4-1.5KW n=1380rpm3.1.4结构方案选择上5定滑轮组,下6动滑轮组,采用JM6t 卷扬机见图JQ30120.003.2天车纵移主从动轮组计算:3.2.1.大车车轮踏面计算: 《起重机设计手册》P3553.2.1.1.已知:Q=60t ,G=11.4t (龙门吊整机重量),G 1=5t 3.2.1.2载荷计算: P max =27/6)560(⨯++454.11-=29.5t p min =27/15⨯+454.11-=2t p c =32min max P P +=20.3t 3.2.1.3 车轮踏面接触强度计算:P C ≤K 1DLC 1C 2车轮和轨道线接触,L=60mm ,轨道方钢30*60,车轮材料ZG45则由公式:∴D ≥211C LC K Pc =25.117.1602.7103.204⨯⨯⨯⨯=321mm 式中 K 1—常数 7.2N/mm 2,δb ≥800MPaL —踏面宽 60mmC 1—转速系数 1.17C 2—工作级别系数 1.253.2.1.4 天车纵移轮箱车轮选取: φ360mm 轮组3.2.2. 大车驱动功率计算:3.2.2.1 已知:d=φ320 mm v=2.9 m/min3.2.2.2 摩阻:F m =(Q+G)ω=(60+11.4)×0.015=1.071t3.2.2.3 坡阻:F p =(Q+G)i=(60+11.4)×0.01=0.714t3.2.2.4 风阻:F ω=CK h qA=1.6×1×(0.6×150)×65/10000=1t3.2.2.5 运行静阻力:F j =F m +F p +F ω=1.07+0.714+1=2.784t 3.2.2.6 电机驱动功率:P j =mF j η1000v =6029.010009.210784.24⨯⨯⨯⨯⨯=0.74kw 3.2.2.7 确定实际功率:P=K d P j =(1.1~1.3)P j =0.814~0.1.11kw3.2.2.8 确定驱动电机:ZDY 1 22-4-2.2KW n=1380rpm3.2.2.9 龙门行走减速机n 轮=Vo/(π×d )=2.9/(π×0.32)=2.88rpmn 电=1380 rpmi 总=n 电/n 轮=1380/2.88=479i 齿=Z 2/Z 1=41/16=2.56,i 减= i 总/ i 齿=187选择减速机:BLEN31-187-1.5kw Tp=1250N.m车轮实际转速: n 轮=减齿电i i n =18756.21380⨯=2.88rpm 实际走行速度: V= n 轮πd=2.88×3.14×0.32=2.8m/min注:减速机校核计算:1.1.已知:n 电=1380rpm ,n 1=1500rpm ,T p =1250 N.M输出轴实际工作转矩计算:(按实际车轮踏面扭矩计算)已知:F j =15050N ,r=0.18m ,η齿=0.9,i 齿=41/16=2.875,m =2(电机个数)计算:T 轮=mr F j ⨯=218.015050⨯=1354.5 N.m T 减出=齿齿轮η⨯i T =9.0875.25.1354⨯=523.5N.m 1.2.计算工作转矩: T C =ε/11⎪⎪⎭⎫ ⎝⎛n n 电×T 减出=3.015001380⎪⎭⎫ ⎝⎛×523.5=509.2 N.m <T p =1250 N.M 公式中:T C ——计算工作转矩N.Mn 电——输入实际转速N.Mε——转臂轴承寿命指数,球轴承ε=3,滚子轴承ε=10/3T p ——减速机在额定转速时的输出轴许用转矩 N.MT 减出——输出轴实际工作转矩N.M3.2.3.选取摆针减速机:BLEN41-187-1.5kw Tp=1250N.m选取驱动电机: ZDY1 22-4-1.5KW n=1380rpm3.3.主横梁综合性能计算3.3.1.已知: 额定起重量: Q=120t小龙门吊整机重量: G=11.4t吊梁小行车重量: G 1=5t跨度: L=30m3.3.2.主横梁主要参数的选取:桁高:h=2 m桁宽:H=1.1 m3.3.3.主横梁截面计算和选取:(按单横梁计算)3.3.3.1.上弦杆计算和选取:(按压杆)3.3.3.1.1.已知: Q=120 t G 小=11.4 t q=0.34t/m L=30m 计算主横梁最大弯矩:M max =88)1.1(2qL L G Q ++小 =83034.0830)4.11601.1(2⨯+⨯+⨯=328.5t.m 3.3.3.1.2计算轴向力:N 上=N 下=h M max =25.328=164.25t 3.3.3.1.3计算上弦杆所需最小截面积:A ≥][σφ上N =12077mm 2 3.3.3.1.4初选上弦杆截面:(双工钢夹板)2工25a+ 60×30+8×245 材料Q235BA=13502mm2 3.3.3.1.5计算上弦杆截面性能参数:节间有效长度:L x =L r =1.45 m⑴ 计算X 向性能参数:截面惯性矩: I x =141475083 mm 4截面抗压抗弯模量: W x 上=上x x y I =4.136141475083=1037207 mm 3 W x 下=下x x y I =7.143141475083=984517mm 3 压杆截面的惯性半径: r x =A I x =13502141475083=102mm 压杆的柔度(长细比):λx =x x r L =1021450=14 压杆的折减系数: φx =0.985查《机械设计手册》第一卷P1-174表1-1-122⑵ 计算Y 向性能参数:截面惯性矩: I y =43455755m 4截面抗弯模量: W y =y yy I =12043455755=362131mm 3 压杆截面的惯性半径: r y =AI y =1350243455755=56.7 mm 压杆的柔度(长细比):λy =y yr L =7.561450=25.5 压杆的折减系数: φy =0.95查《机械设计手册》第一卷P1-174表1-1-122⑶ 间力学计算:已知:Q=120t ,G 1=11.4t ,m=4,轮压:P 轮=mG Q 小+=44.1160+=17.85t 节间弯距:M j =6j L P 轮=645.185.17⨯=4.32t.m ,L j =1.45 m 3.3.3.1.6上弦杆性能校核计算:⑴强度校核:σ=xj W M A N +上=9845171032.4135021025.16444⨯+⨯=121.6+0.04=121.64Mpa σ<[σ]=170 Mpa 通过检算⑵刚度校核:λ=m in γL =8.561450=25.5<[λ]=100 通过检算 ⑶稳定性校核:σ=x j W M A N +φ上=9845171032.4135020.9851025.16444⨯+⨯⨯=124MPa σx = [σ]=170 Mpa 通过检算3.3.3.2.下弦杆计算和选取:(按压杆)3.3.3.2.1计算单根下弦杆轴向力:(由上知)N 上=N 下=h M max =25.328=164.25 t N 下单=82.13t3.3.3.2.2计算单根下弦杆所需最小截面积:A ≥][σ下N =1701013.824⨯=4831 mm 2 3.3.3.2.3初选下弦杆2[18b+8×120 材料Q235BA=6818mm2 3.3.3.2.4计算下弦杆截面性能参数:⑴ 计算X 向性能参数:截面惯性矩: I x =34694439mm 4截面抗拉压弯模量: W x =x xy I =10334694439=336839mm 3 压杆截面的惯性半径: r x =AI x =681834694439=71.3mm 压杆的柔度(长细比):λx =x x r L =3.711450=20.3 压杆的折减系数: φx =0.967查《机械设计手册》第一卷P1-174表1-1-122⑵ 计算Y 向性能参数:截面惯性矩: I y =18973100mm 4截面抗弯模量: W y =yy y I =7018973100=27104mm 3 压杆截面的惯性半径: r y =A Iy =681818973100=52.7m压杆的柔度(长细比):λy = y yr =7.52=27.5 压杆的折减系数: φy =0.943查《机械设计手册》第一卷P1-174表1-1-1223.3.3.2.5下弦杆性能校核计算:⑴强度校核:σ=jA N 下=68181013.824⨯=120 Mpa σ<[σ]=170 Mpa 材料Q235B 通过检算 ⑵刚度校核:λ=m in γL =7.521450=27.5<[λ]=100 通过检算 ⑶稳定性校核:σx =j A N φ下=6818967.01013.824⨯⨯=125MPa σx <[σ]=170 Mpa 材料Q235B 通过检算3.3.3.3腹杆计算和选取(压杆)3.3.3.3.1.计算腹杆集中载荷:已知:已知: Q=60 t G 小=11.4 t q=0.34 t/m L=30m N=221.1L q G Q ⨯++小=43.8 t 3.3.3.3.2 计算轴向力:斜腹杆:N 1=αcos 2N =29.15cos 28.43⨯=22.7t 水平杆: N 2=27.182cos 1N =11.9t 3.3.3.3.3计算腹杆所需最小截面积A ≥][2σϕN =1709.0109.114⨯⨯=777mm 2 3.3.3.3.4 初选腹杆截面:材料 Q235B (对扣)80*80*6 (A=1714 mm 2 )A=1714mm 23.3.3.3.5 计算腹杆截面性能参数:节间有效长度:L x =L y = 1948mm⑴ 计算性能参数:截面惯性矩: I=1539590mm 4截面抗拉压弯模量: W=y I =401539590=38489mm 3 压杆截面的惯性半径: r=A I =17141539590=30mm压杆的柔度(长细比):λx =r =30=65 压杆的折减系数: φx =0.78 查《机械设计手册》第一卷P1-174表1-1-1223.3.3.3.6 腹杆性能校核计算:(1)强度校核:σ=j A N 1=1714109.114⨯=70 Mpa σ<[σ]=170 Mpa 通过检算(2)刚度校核:λ=m in γL=65<[λ]=100 通过检算(3)稳定性校核:σ=j X A N φ1=171478.0109.114⨯⨯=89MPa σx <[σ]=170 Mpa 材质:Q235B 通过检算3.3.3.5 主横梁整体性能验算:3.3.3.5.1 主横梁整体截面性能参数:① 主横梁截面参数:桁宽H=1.1m ,桁高h=2m ,节间L j =1.45m ,跨度L=3m② 主横梁整体截面惯性矩: I =28222134859mm 4③ 主横梁整体截面抗弯模量:W 上=上y I =115792822213485=24392510 mm 3 W 下=下y I =109592822213485=25773639mm 3 3.3.3.5.2 主横梁整体载荷分析计算:(单根)① 主横梁最大计算弯矩: (见主横梁计算)M max =88)1.1(2qL LG Q ++小 =83034.0830)4.11601.1(2⨯+⨯+⨯=328.5t.m ② 主横梁最大剪力:Q max =221.1qL G Q ++小=23034.024.11601.1⨯++⨯=43.8 t 3.3.3.5.3 主横梁整体性能校核验算:(单根)① 主横梁整体强度验算:σ上=WM max =24392510105.3287⨯=135Mpa <[σ]=170Mpa 上弦材料Q235B σ下=WM max =25773639105.3287⨯=127Mpa <[σ]=170 Mpa 下弦材料Q235B ② 主横梁整体刚度验算:主横梁跨中集中载荷下挠计算: f=EI PL 483=38主横梁整体刚度:f=44.1<[f ]= 500L =60主横梁跨中均布载荷下挠计算: f=EI qL 38454=592822.213481.238410003034.054⨯⨯⨯⨯⨯=6.3mm主横梁整体性能参数通过计算3.3.3.6联接销轴与联接耳板的计算选取:3.3.3.6.1联接销轴计算拉力F=N=164.25t=1.64×106N上弦双销板,3个φ50销轴销轴材质45 [τ]=34.14308.0⨯=257MPa上弦销轴直径τ=A F12= 69MPa ≤257MPa下弦初定为单销双剪切2个φ50销轴下弦销轴τ=A F8=104≤257MPa3.4 支腿综合性能计算:3.4.1支腿拉压杆强度计算:3.4.1.1支腿最大载荷分析:轴距B=5~6m ,支腿高度h 支=2.5m q=0.32t F ×32-32q ×16+16q ×8=0 F=3.9tP=1.1Q+G 小+F=1.1×50+10.7/2+4.8=64.3t (吊梁行车移至支腿极限位置时)3.4.1.2 计算支腿所需最小截面积:材料Q235BA ≥][σφP =1706.0103.644⨯⨯=6304mm 23.4.1.3 初选支腿型材:材料Q235B支腿:φ299×10 A=9079mm 2,q=90.5kg/m 材料许用应力:[σ]=170Mpa 3.4.1.4 支腿截面性能参数计算:节间有效长度: L x =L y =2845mm(1)计算X 向性能参数:截面惯性矩: I x =194258666 mm 4压杆截面的惯性半径: r x =129.8mm 压杆的柔度(长细比):λx =x xr L =8.1292845=21.9压杆的折减系数: φx =0.963查《机械设计手册》第一卷P1-174表1-1-122(2)计算Y 向性能参数:(与X 向相同)3.4.1.5 支腿性能校核计算:(1)强度校核:σ=支A P = 11530102.1174⨯=102Mpa σ<[σ]=170 Mpa 通过检算(2)刚度校核:λ=m inγL=8.1292845=21.2<[λ]=120 通过检算 (3)定性校核:σ=支A P φ=11530963.0102.1174⨯⨯=106MPa σ <[σ]=170 Mpa 材质:Q235B 通过检算4 载荷计算4.1 水平载荷提升小车在主梁上横移速度为0.02m/s,加速度α=0.12m/。

架桥机计算书模板

架桥机计算书模板

***项目架桥机计算书1、工程概况简单扼要介绍工程概况2、编制依据1、《公路桥涵施工技术规范》(JTG/T F50-2020);2、《无缝钢管尺寸、外形、重量及允许偏差》(GB/T 17395-2008)3、《结构用无缝钢管》(GB/T 8162-2008)4、《建筑地基基础设计规范》(GB 50007-2011);5、《混凝土结构设计规范》(GB 50010-2010)6、《高速公路施工标准化技术指南》;7、《路桥计算手册》(根据实际施工情况进行增减)3、总体计算计算说明:JQ200T-40MA3型架桥机是指:适应跨度40米内,起升重量在100t+100t=200t内的架桥机3.1、主参数的确定JQ200T-40MA3型架桥机是依据“ JQ200T-40MA3型架桥机设计任务书"而设计的用于混凝土梁预制场的吊装设备。

主钩起吊能力为 100t+100t,用于预制梁的起吊作业。

3.1.1、主要技术参数主钩起吊能力:100t+100t适应跨度:40m小车提升速度:0. 8m/min小车横移速度:2m/min小车纵移速度:3m/min大车横移速度:2m/min大车纵移速度:3m/min3.1.2、设计参考标准及资料[l] GB/T3811-2008《起重机设计规范》[2]《起重机设计手册》3.1.3、整机稳定性校核根据本机结构特点,工作状态无需进行整机稳定性校核计算,非工作状态时,沿大车方向有暴风袭来,要求锚固、缆风绳紧固,故无需验证其稳定性。

4、计算依据本架桥机用于桥梁工程混凝土预制梁的安装及预制场吊装作业场台,每年工作4-8个月,每天连续工作不超过8-8小时,故只对结构进行强度及刚度计算,而不计算其疲劳强度。

主梁采用Q235B钢材,支腿材料为Q235B钢,销轴为40#钢,安全系数取k=1.33,采用许用应力法进行强度校核,满足:[σ]=σ s/k[τj y]=1.5[σ]表4-1材料许用应力表单位:Mpa4.1工况一:架桥机过孔4.1.1过孔(过40米孔,以42米计算)主梁过孔时强度计算:自重荷载:(1)68m主梁单列自重P主梁=37.4t、q主梁=550kg/m ;(2)前支腿自重 P=5.8t;前支=7.8t(3)中支腿自重 P中支=1.2t(4)单后退自重 P后托=0.8t(5)单后支自重 P后支(6)单天车自重 P天车=9.8t(7)前支横移轨道P前横=5.8t、q前横=200kg/m(2)主梁截面参数:A= 39129mm2IX= 62175304156mm4W上= 43234704mm3图4.1-1主梁断面图(按工程实际情况做出修改)表4.1-1截面几何参数表过40m孔时单主梁中支处的最大弯矩Mmax=P前支/2 × 42m+ q主梁×42m×21in=5.8t/2×42m+0.55t/m×42mX21m=122+485tm=607tm单主梁上下弦杆所承受的最大轴力:N max =Mmax/h=607tm/2.5m=242.8t上下弦杆的面积为:A上=20452mm2、 A下=20676mm2上弦杆的工作应力:σ max=N max/A上=242.8t/20452mm2=120 MPa 工作应力:σ max=120MPa<178MPa,过孔时上弦杆满足强度条件下弦杆的工作应力σ max= N max/A下=242.8t/20676mm2= 130 Mpa工作应力:σ max=l30Mpa <178Mpa,过孔时下弦满足强度条件。

架桥机稳定性计算书

架桥机稳定性计算书

架桥机稳定性计算书架桥机验算书附件:一、设计规范及参考文献1、《起重机械设计规范》(GB3811-83);2、《起重机械安全规程》(GB6067-85);3、《钢结构设计规范》(GBJ17-88);4、《公路桥涵施工规范》(041-89);5、《公路桥涵设计规范》(JTJ021-89);6、石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》;7、梁体按照40米箱梁150t计。

二、架桥机设计荷载(一)、垂直荷载桥梁重(40m箱梁):Q1=150t;提梁小车重:Q2=7.5t(含卷扬机重);天车承重梁重:Q3=5.3t(含纵向走行机构);前支腿总重:Q4=5.6t;左承重主梁总重:Q5=36.3t(55m);右承重主梁总重:Q6=36.3t(55m);1号天车总重:Q7=7.5+5.3=12.8t;2号天车总重:Q8=7.5+5.3=12.8t;左导梁总重:Q9=8t(20m);右导梁总重:Q10=8t (20m);主梁、桁架及连结均布荷载:q=0.6t/m某1.1=0.66t/m;主梁增重系数取1.1;活载冲击系数取1.2;不均匀系数取1.1。

(二)、水平荷载1、风荷载取工作状态最大风力,风压为7级风的最大风压:q1=19kg/m2;架桥机验算书非工作状态风压取11级风的最大风压:q2=66kg/m2;(以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》)。

2、运行惯性力:Φ=1.1.三、架桥机纵向稳定性计算架桥机纵向稳定性最不利情况出现在架桥机悬臂前行阶段,该工况下架桥机前支腿已悬空,1号天车及2号天车退至架桥机后部做配重,计算见图见下图:P6P5P2P1P3P4图1P1=5.6t(前支腿自重);P2=0.66t/m某2榀某(16.5m+16.5m)=43.56t;P3=0.66t/m某2榀某22m=29.04t;P4=16t;P5=P6=12.8t;P7为风荷载,架桥机工作环境允许风压为6级,验算时按照7级风压下横向风荷载计算,P7=19kg/m2某1.2某141m2=2.7t,作用在中间支点以上2m处。

汽车起重机总体计算书

汽车起重机总体计算书
汽车起重机总体设计(计算书)
汽车起重机 总 体 设 计(计 算 书)
0
汽车起重机总体设计(计算书)
一、 整机主要技术性能参数 二、 总体计算参数的确定 三、 坐标系的建立 四、 行驶状态整机重心及轴荷计算 五、 变幅机构三铰点计算 六、 起重作业吊臂仰角、起升高度计算 七、 吊臂伸缩机构计算 八、 吊臂强度起重量计算 九、 稳定性起重量计算 十、 吊臂强度校核计算 十一、 支腿反力计算 十二、 回转支承计算 十三、 回转机构计算 十四、 起升机构计算 十五、 整机作业稳定性及行驶稳定性计算 十六、 活动支腿危险截面强度校核计算
注:底盘整备质量 其中: G 前 =3820kg G 后 =4750kg
行驶状态下车重量、重心计算 下车总重
G 底 =8570kg
G 下 = ∑Gi =12708kg 重心至双后桥中心线水平距离
X

= ∑Gi × Xi ∑ Gi
=166cm
重心至地面的垂直距离
Y

= ∑Gi ×Yi ∑ Gi
=84cm
LL
= 23421× (470 −112)
470
=17839kg
P 前=G 车 - P 后=23421-17839=5582kg
Y 全= G上 × Y上 + G下 × Y下 = 9916 × 95 + 12708 × 84 =85cm
G全
23421
9
五、 变幅机构三铰点计算
汽车起重机总体设计(计算书)
1
一、 整机主要性能参数
汽车起重机总体设计(计算书)
1.最大额定起重量(t)
16
2.最大额定起重力矩(t·m)
60
3.基本臂最大起升高度(m)

架桥机计算书

架桥机计算书

目录一、设计规范及参考文献 (2)二.架桥机设计荷载 (2)三.架桥机倾覆稳定性计算 (3)四.结构分析 (5)五.架桥机1号、2号车横梁检算 (7)六.架桥机0号立柱横梁计算 (9)七、1号车横梁及0号柱横梁挠度计算 (11)八.150型分配梁:(1号车处) (13)九、0号柱承载力检算 (14)十、起吊系统检算 (15)十一 .架桥机导梁整体稳定性计算 (16)十二.导梁天车走道梁计算 (18)十三.吊梁天车横梁计算 (18)一、设计规范及参考文献(一)重机设计规范(GB3811-83)(二)钢结构设计规范(GBJ17-88)(三)公路桥涵施工规范(041-89)(四)公路桥涵设计规范(JTJ021-89)(五)石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》(六)梁体按30米箱梁100吨计。

二.架桥机设计荷载(一).垂直荷载=100t梁重:Q1单个天车重:Q=20t(含卷扬机、天车重、天车横梁重)2主梁、桁架及桥面系均部荷载:q=0.67t/m×1.1=0.74t/m=4t前支腿总重: Q3中支腿总重:Q=2t4=34t1号承重梁总重:Q52号承重梁总重:Q=34t6=12t2#号横梁Q7梁增重系数取:1.1活载冲击系数取:1.2不均匀系数取:1.1(二).水平荷载1.风荷载a.设计取工作状态最大风力,风压为7级风的最大风压:=19kg/m2q1b. 非工作计算状态风压,设计为11级的最大风压;q=66kg/m22(以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》) 2.运行惯性力:Ф=1.1三.架桥机倾覆稳定性计算(一) 架桥机纵向稳定性计算架桥机纵向稳定性最不利情况出现在架桥机悬臂前行阶段,该工况下架桥机的支柱已经翻起,1号天车及2号天车退至架桥机尾部作为配重,计算简图见图1(单位 m):图中图1P1=4t (前支柱自重)P2=0.74×22=16.28t (导梁后段自重)P3=0.74×30=22.2t (导梁前段自重)P 5= P4=20t (含卷扬机、天车重、天车横梁重)P6为风荷载,按11级风的最大风压下的横向风荷载,所有迎风面均按实体计算,P6=ΣCKnqAi =1.2×1.39×66×(0.7+0.584+0.245+2.25+0.3+0.7+0.8+1.5) ×12.9=10053kg=10.05t作用在轨面以上5.5m处M抗=16.28×11+20×(11+4+5)+20×(11+5) =899.08t.mM倾=4×30+22.2×15+10.05×5.5=508.275t.m架桥机纵向抗倾覆安全系数n=M抗/M倾=899.08/(508.275×1.1)=1.61>1.3 <可)(二) 架桥机横向倾覆稳定性计算1.正常工作状态下稳定性计算架桥机横向倾覆稳定性最不利情况发生在架边梁就位时,最不利位置在1号天车位置,检算时可偏于安全的将整个架桥机荷载全部简化到该处,计算简图如图图2P1为架桥机自重(不含起重车),作用在两支点中心(其中天车横梁重6t)P1=(16.28+22.2)×2+12×2+6×2=112.96 tP2为导梁承受的风荷载,作用点在支点以上3.8m处,导梁迎风面积按实体面积计,导梁形状系数取1.6。

架桥机计算书

架桥机计算书

SN200T/50m型桥机复核计算书目录1工程概述 (1)2 架桥机主要技术参数 (1)3 材料特性及计算依据 (1)3.1 材料性质 (1)3.1.1 材料特性 (1)3. 2 主体结构材质 (2)3.1.2 容许应力 (2)3.3 设计依据 (2)4 结构计算 (2)4.1计算载荷 (2)4.1.1砼荷载 (2)4.1.2风载荷 (3)4.1.3天车自重载荷 (3)4.2 计算工况 (4)4.3 计算模型及结果 (4)4.4计算结果 (4)4.4.1 工况1计算 (4)4.4.2 工况2计算 (7)4.4.3 工况3计算 (9)4.4.4 工况4计算 (11)4.4.5 工况5计算 (13)4.4.6 工况6计算 (15)4.4.7 工况7计算 (17)4.4.8 工况8计算 (19)4.4.9 工况9计算 (21)4.4.6 工况10计算 (23)4.4.7 工况11计算 (25)4.4.8计算结果汇总 (27)4.5 铰接计算 (27)4.5.1 主梁上下弦杆连接销轴计算 (27)4.5.2 前支腿伸缩筒销轴计算 (31)4.5.3 主梁上下弦杆连接耳板计算 (33)4.5.3 前支腿伸缩筒连接耳板计算 (34)4.6 螺栓连接计算 (35)4.7 轨道接触计算 (36)5.稳定性校核 (36)5.1前支腿稳定性校核 (37)6.复核结论及建议 (38)6.1复核结论 (38)6.2建议..................................................................................................... 错误!未定义书签。

1工程概述架桥机主要由主梁、前支腿、中支腿、后支腿、中拖轮、起重天车、卷扬机等组成。

2 架桥机主要技术参数设计单位提出的架桥机主要技术参数如下:(1) 架桥跨径:≤50m(2) 额定起吊重量:≤2×100t(3) 适宜纵坡:≤±3﹪(4) 吊钩提升速度:0.75m/min(5) 提升小车运行速度:1.38 m/min(6) 边梁架设速度:1.38 m/min(7) 桥机过孔速度:1.38m/min(8) 桥机横移速度:1.38m/min(9) 整机功率:51kw(10) 自重:100t3 材料特性及计算依据3.1 材料性质3.1.1 材料特性钢的材料特性:弹性模量E=2.1×105 MPa泊松比:μ=0.3密度:ρ=7850 kg/m33. 2 主体结构材质主体结构材质如表1。

40米架桥机计算书

40米架桥机计算书

40米架桥机计算书1、架桥机概况架桥机由主梁总装、前支腿总装、中托总装、后托总装、提升小车总装、后支腿总装、液压系统及电控部分组成,可完成架桥机的过孔,架梁功能,架桥机的高度可由安装于前支腿、后托的液压系统调节,整个架桥机的所有功能可由电控系统控制完成。

2、架桥机的结构计算2.1、架桥机主梁的承载力计算计算架桥机主梁承载力,要分别考虑架桥机的三个情况。

a过孔过孔时计算主梁上、下弦的强度,此工况,梁中的弯矩,可能是主梁所承担的最大弯矩,所以校核此状态时可计算主梁的强度。

b架中梁此工况时,前提升小车位于主梁41米的跨中,弯矩可能出现最大值c架边梁当提升小车偏移架桥机主梁一侧时,此侧主梁中的剪力最大,所以应校核主梁腹杆的强度及稳定性。

2.1.1主梁上下弦杆的强度计算2.1.1.1过孔时,当架桥机前支腿达到前桥台,尚未支撑时悬臂端根部的最大弯矩(如图)Mm ax=717t·m架中梁时,当提升小车位于主梁41米的跨中时,梁中的最大弯矩(如图)Mm ax=477t·m此较两处的弯矩可知过孔时的弯矩是主梁承受的最大弯矩,也是控制弯矩,按此弯矩来校核主梁上、下弦的强度Mm ax =717t·m主梁截面如图:上弦是两根工字钢32b,中间加焊10mm芯板。

下弦是四根槽钢25a,中间加焊8mm 芯板。

截面几何参数如表所示:主梁的正应力:/W X=717×104/46812866.6441×10-9σmax=Mm ax=153MPa<[σ]=170Mpa主梁上、下弦采用Q235B钢材其许用应力为170Mpa所以过孔时主梁是安全的。

2.1.1.2架中梁时,主梁的最不利位置在跨中,梁中的最大弯矩=477t·mMm ax主梁的正应力:/W X=477×104/46812866.6441×10-9σmax=Mm ax=102MPa<[σ]=170Mpa主梁上、下弦采用Q235B钢材其许用应力为170Mpa工作应力小于Q235B的许用应力,满足强度条件,所以架中梁时,弦杆是安全的。

架桥机计算书

架桥机计算书

目录一、设计规范及参考文献 (1)二.架桥机设计荷载 (1)三.架桥机倾覆稳定性计算 (2)四.结构分析 (4)五.架桥机1号、2号车横梁检算 (5)六.架桥机0号立柱横梁计算 (6)七、1号车横梁及0号柱横梁挠度计算 (8)八.150型分配梁:(1号车处) (9)九、0号柱承载力检算 (10)十、起吊系统检算 (11)十一 .架桥机导梁整体稳定性计算 (12)十二.导梁天车走道梁计算 (13)十三.吊梁天车横梁计算 (14)一、设计规范及参考文献(一)重机设计规范(GB3811-83)(二)钢结构设计规范(GBJ17-88)(三)公路桥涵施工规范(041-89)(四)公路桥涵设计规范(JTJ021-89)(五)石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》(六)梁体按30米箱梁100吨计。

二.架桥机设计荷载(一).垂直荷载梁重:Q=100t1单个天车重:Q2=20t(含卷扬机、天车重、天车横梁重)主梁、桁架及桥面系均部荷载:q=0.67t/m×1.1=0.74t/m前支腿总重: Q3=4t中支腿总重:Q4=2t1号承重梁总重:Q5=34t2号承重梁总重:Q6=34t2#号横梁Q7=12t梁增重系数取:1.1活载冲击系数取:1.2不均匀系数取:1.1(二).水平荷载1.风荷载a.设计取工作状态最大风力,风压为7级风的最大风压:q1=19kg/m2b. 非工作计算状态风压,设计为11级的最大风压;q2=66kg/m2(以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》)2.运行惯性力:Ф=1.1三.架桥机倾覆稳定性计算(一) 架桥机纵向稳定性计算架桥机纵向稳定性最不利情况出现在架桥机悬臂前行阶段,该工况下架桥机的支柱已经翻起,1号天车及2号天车退至架桥机尾部作为配重,计算简图见图1(单位 m): 图中P1=4t (前支柱自重)P2=0.74×22=16.28t (导梁后段自重)P3=0.74×30=22.2t (导梁前段自重)P5= P4=20t (含卷扬机、天车重、天车横梁重)P6为风荷载,按11级风的最大风压下的横向风荷载,所有迎风面均按实体计算,P6=ΣCKnqAi =1.2×1.39×66×(0.7+0.584+0.245+2.25+0.3+0.7+0.8+1.5)×12.9=10053kg=10.05t作用在轨面以上5.5m处M抗=16.28×11+20×(11+4+5)+20×(11+5) =899.08t.m M倾=4×30+22.2×15+10.05×5.5=508.275t.m架桥机纵向抗倾覆安全系数n=M抗/M倾=899.08/(508.275×1.1)=1.61>1.3 <可)(二) 架桥机横向倾覆稳定性计算1.正常工作状态下稳定性计算架桥机横向倾覆稳定性最不利情况发生在架边梁就位时,最不利位置在1号天车位置,检算时可偏于安全的将整个架桥机荷载全部简化到该处,计算简图如图P1为架桥机自重(不含起重车),作用在两支点中心(其中天车横梁重6t)P1=(16.28+22.2)×2+12×2+6×2=112.96 tP2为导梁承受的风荷载,作用点在支点以上3.8m处,导梁迎风面积按实体面积计,导梁形状系数取1.6。

米架桥机计算书

米架桥机计算书

40米架桥机计算书1、架桥机概况架桥机由主梁总装、前支腿总装、中托总装、后托总装、提升小车总装、后支腿总装、液压系统及电控部分组成,可完成架桥机的过孔,架梁功能,架桥机的高度可由安装于前支腿、后托的液压系统调节,整个架桥机的所有功能可由电控系统控制完成。

2、架桥机的结构计算2.1、架桥机主梁的承载力计算计算架桥机主梁承载力,要分别考虑架桥机的三个情况。

a过孔过孔时计算主梁上、下弦的强度,此工况,梁中的弯矩,可能是主梁所承担的最大弯矩,所以校核此状态时可计算主梁的强度。

b架中梁此工况时,前提升小车位于主梁41米的跨中,弯矩可能出现最大值c架边梁当提升小车偏移架桥机主梁一侧时,此侧主梁中的剪力最大,所以应校核主梁腹杆的强度及稳定性。

=717t·mMm ax架中梁时,当提升小车位于主梁41米的跨中时,梁中的最大弯矩(如图) Mm ax=477t·m此较两处的弯矩可知过孔时的弯矩是主梁承受的最大弯矩,也是控制弯矩,按此弯矩来校核主梁上、下弦的强度Mm ax =717t·m主梁截面如图:上弦是两根工字钢32b,中间加焊10mm芯板。

下弦是四根槽钢25a,中间加焊8mm芯板。

截面几何参数如表所示:主梁的正应力:σmax=Mm ax/W X=717×104×10-9=153MPa<[σ]=170Mpa主梁上、下弦采用Q235B钢材其许用应力为170Mpa所以过孔时主梁是安全的。

梁中的最大弯矩Mm ax=477t·m主梁的正应力:σmax=Mm ax/W X=477×104×10-9=102MPa<[σ]=170Mpa主梁上、下弦采用Q235B钢材其许用应力为170Mpa工作应力小于Q235B的许用应力,满足强度条件,所以架中梁时,弦杆是安全的。

2.1.2 弦杆的接头销板及销轴的强度计算过孔时的悬臂端的根部,尺寸如图所示,材质Q235。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GCJQ120t-30m架桥机计算书编制:_______校对:_______审核:_______批准:_______开封市共创起重科技有限公司一 主要性能参数1.1额定起重量 120t1.2架设梁跨 30m1.3卷扬机起落速度 0.8m/min1.4龙门行走速度2.9m/min1.5 卷扬机横移速度 1.8m/min1.6适应纵坡 ±3%1.7适应斜桥 45°1.8 整机功率 73.4KW二 架桥机组成2.1 吊梁天车总成 两套2.2 天车龙门 两套2.3 主梁 一套2.4 前框架总成 一套2.5 前支腿总成 一套 (含油泵液压千斤顶)2.6 前支横移轨道 一套2.7 中支腿总成 一套2.8 中支横移轨道 一套2.9 反托总成 一套 (含油泵液压千斤顶)2.10 后支腿总成 一套2.11 后横梁总成 一套2.12 电气系统 一套三 方案设计注: 总体方案见图 JQ30120.003.1 吊梁行车3.1.1 主要性能参数额定起重量 120t运行轨距 1200mm轴距 1100mm卷扬起落速度 0.8m/min运行速度 1.8m/min驱动方式 4×2自重 11.4 t卷筒直径: φ377mm卷筒容绳量: 250m3.1.2 起升机构已知:起重能力Q 静=Q+W 吊具=60+1.1=61.1t粗选:单卷扬,倍率m=12,滚动轴承滑轮组,效率η=0.9, 见《起重机设计手册》表3-2-11,P223,则钢丝绳自由端静拉力S:S=Q 静/(η× m)=61.1/(0.9×12)=5.6t ,选择JM6t 卷扬机, 平均出绳速度9.5m/min ;钢丝绳破断拉力总和∑t :∑t=S ×n/k=5.6×5/0.82=34.2t ,选择钢丝绳: 6×37-21.5-1850-特-光-右交,GB1102-74,《起重机设计手册》P199。

3.1.3 运行机构3.1.3.1 车轮直径 《起重机设计手册》P355已知 Q=60t 、G 小=5t 、4×2驱动则P c = P max =(Q+G 小)/4=16.25t ,车轮和轨道线接触,L=60mm,轨道方钢30×60,车轮材料ZG45,则由公式:D ≥211C C L K Pc ⨯⨯⨯=25.117.1602.71000025.16⨯⨯⨯⨯=257mm 式中 K 1—常数 7.2N/mm 2,δb ≥800MPaL —踏面宽 60mmC 1—转速系数 1.17,Vo=1.1m/min ,n=32.014.38.1⨯=1.8rpm C 2—工作级别系数 1.25选择 φ360mm 轮组3.1.3.2 运行静阻力(重载运行)摩擦阻力 F m =(Q+G 小)×w=(60+5)×0.015=0.975t坡道阻力 F P =(Q+G 小)×i =(60+5)×0.004=0.26t风阻力 F W =C ×K h ×q ×A=1.6×1.00×(0.6×150)×65/10000=0.94t 式中C —风力系数 1.6 表1—3—11K h —高度系数 1.00 表1—3—10q —计算风压 0.6×150N/m 2 表1—3—9A —迎风面积 65m 2运行静阻力F j =F m +F p +F w =0.975+0.26+0.94=2.175t=21750N3.1.3.3 电机选择静功率 Pj=m Vo Fj ⨯⨯⨯⨯η100060=29.01000608.121750⨯⨯⨯⨯=0.36kw 式中Vo —运行速度 1.8m/minm —电机个数 2个粗选 P=Kd ×Pj=(1.1~1.3)×0.22=0.396~0.0.468 kw双驱动 m=2, ZDY1 22-4-1.5KW n 电=1380rpm《机械零件设计手册》下册、冶金版、P8303.1.3.4选取天车横移减速机:⑴ 已知: d=φ320 mm ,v=1.8 m/min ,n 电=1380 rpm⑵ 车轮转速: n 轮=dv π =1.8 rpm ⑶ 整机传动比: i=轮电n n =8.11380=766 ⑷ 齿轮传动比: i 齿=!Z Z 2=1641=2.56 ⑸ 减速机传动比: i 减=i/ i 齿=299⑹ 选取减速机传动比: i 减选取289⑺ 选取减速机型号: BLEN31-289-1.5kw Tp=1250N.m⑻ 车轮实际转速: n 轮=减齿电i i n =28956.21380⨯=1.86rpm ⑼ 龙门吊实际走行速度:V= n 轮πd=1.86×3.14×0.36=1.8m/min注:减速机校核计算:1.1.已知:n 电=1380rpm ,n 1=1500rpm ,T p =1250 N.M输出轴实际工作转矩计算:(按实际车轮踏面扭矩计算)已知:F j =21750N ,r=0.18m ,η齿=0.9,i 齿=41/16=2.56,m =2计算:T 轮=mr F j ⨯=218.021750⨯ =1957.5 N.m T 减出=齿齿轮η⨯i T =9.056.25.1957⨯=850 N.m 1.2.计算工作转矩: T C =ε/11⎪⎪⎭⎫ ⎝⎛n n 电×T 减出=3.015001380⎪⎭⎫ ⎝⎛×850=825 N.m <T p =1250 N.M 公式中: T C ——计算工作转矩N.Mn 电——输入实际转速N.Mε——转臂轴承寿命指数,球轴承ε=3,滚子轴承ε=10/3T p ——减速机在额定转速时的输出轴许用转矩 N.MT 减出——输出轴实际工作转矩N.M选取摆针减速机:BLEN31-289-1.5KW Tp=1250 N.M选取驱动电机: ZDY1 22-4-1.5KW n=1380rpm3.1.4结构方案选择上5定滑轮组,下6动滑轮组,采用JM6t 卷扬机见图JQ30120.003.2天车纵移主从动轮组计算:3.2.1.大车车轮踏面计算: 《起重机设计手册》P3553.2.1.1.已知:Q=60t ,G=11.4t (龙门吊整机重量),G 1=5t 3.2.1.2载荷计算:P max =27/6)560(⨯++454.11-=29.5t p min =27/15⨯+454.11-=2t p c =32min max P P +=20.3t 3.2.1.3 车轮踏面接触强度计算:P C ≤K 1DLC 1C 2车轮和轨道线接触,L=60mm ,轨道方钢30*60,车轮材料ZG45则由公式:∴D ≥211C LC K Pc =25.117.1602.7103.204⨯⨯⨯⨯=321mm 式中 K 1—常数 7.2N/mm 2,δb ≥800MPaL —踏面宽 60mmC 1—转速系数 1.17C 2—工作级别系数 1.253.2.1.4 天车纵移轮箱车轮选取: φ360mm 轮组3.2.2. 大车驱动功率计算:3.2.2.1 已知:d=φ320 mm v=2.9 m/min3.2.2.2 摩阻:F m =(Q+G)ω=(60+11.4)×0.015=1.071t3.2.2.3 坡阻:F p =(Q+G)i=(60+11.4)×0.01=0.714t3.2.2.4 风阻:F ω=CK h qA=1.6×1×(0.6×150)×65/10000=1t3.2.2.5 运行静阻力:F j =F m +F p +F ω=1.07+0.714+1=2.784t3.2.2.6 电机驱动功率:P j =m F j η1000v =6029.010009.210784.24⨯⨯⨯⨯⨯=0.74kw 3.2.2.7 确定实际功率:P=K d P j =(1.1~1.3)P j =0.814~0.1.11kw3.2.2.8 确定驱动电机:ZDY 1 22-4-2.2KW n=1380rpm3.2.2.9 龙门行走减速机n 轮=Vo/(π×d )=2.9/(π×0.32)=2.88rpmn 电=1380 rpmi 总=n 电/n 轮=1380/2.88=479i 齿=Z 2/Z 1=41/16=2.56,i 减= i 总/ i 齿=187选择减速机:BLEN31-187-1.5kw Tp=1250N.m车轮实际转速: n 轮=减齿电i i n =18756.21380⨯=2.88rpm 实际走行速度: V= n 轮πd=2.88×3.14×0.32=2.8m/min注:减速机校核计算:1.1.已知:n 电=1380rpm ,n 1=1500rpm ,T p =1250 N.M输出轴实际工作转矩计算:(按实际车轮踏面扭矩计算)已知:F j =15050N ,r=0.18m ,η齿=0.9,i 齿=41/16=2.875,m =2(电机个数)计算:T 轮=mr F j ⨯=218.015050⨯=1354.5 N.m T 减出=齿齿轮η⨯i T =9.0875.25.1354⨯=523.5N.m 1.2.计算工作转矩: T C =ε/11⎪⎪⎭⎫ ⎝⎛n n 电×T 减出=3.015001380⎪⎭⎫ ⎝⎛×523.5=509.2 N.m <T p =1250 N.M 公式中:T C ——计算工作转矩N.Mn 电——输入实际转速N.Mε——转臂轴承寿命指数,球轴承ε=3,滚子轴承ε=10/3T p ——减速机在额定转速时的输出轴许用转矩 N.MT 减出——输出轴实际工作转矩N.M3.2.3.选取摆针减速机:BLEN41-187-1.5kw Tp=1250N.m选取驱动电机: ZDY1 22-4-1.5KW n=1380rpm3.3.主横梁综合性能计算3.3.1.已知: 额定起重量: Q=120t小龙门吊整机重量: G=11.4t吊梁小行车重量: G 1=5t跨度: L=30m3.3.2.主横梁主要参数的选取:桁高:h=2 m桁宽:H=1.1 m3.3.3.主横梁截面计算和选取:(按单横梁计算)3.3.3.1.上弦杆计算和选取:(按压杆)3.3.3.1.1.已知: Q=120 t G 小=11.4 t q=0.34t/m L=30m计算主横梁最大弯矩:M max =88)1.1(2qL L G Q ++小 =83034.0830)4.11601.1(2⨯+⨯+⨯=328.5t.m 3.3.3.1.2计算轴向力:N 上=N 下=h M max =25.328=164.25t 3.3.3.1.3计算上弦杆所需最小截面积:A ≥][σφ上N =12077mm 2 3.3.3.1.4初选上弦杆截面:(双工钢夹板)2工25a+ 60×30+8×245 材料Q235BA=13502mm2 3.3.3.1.5计算上弦杆截面性能参数:节间有效长度:L x =L r =1.45 m⑴ 计算X 向性能参数:截面惯性矩: I x =141475083 mm 4截面抗压抗弯模量: W x 上=上x x y I =4.136141475083=1037207 mm 3 W x 下=下x x y I =7.143141475083=984517mm 3 压杆截面的惯性半径: r x =A I x =13502141475083=102mm 压杆的柔度(长细比):λx =x x r L =1021450=14 压杆的折减系数: φx =0.985查《机械设计手册》第一卷P1-174表1-1-122⑵ 计算Y 向性能参数:截面惯性矩: I y =43455755m 4截面抗弯模量: W y =y yy I =12043455755=362131mm 3 压杆截面的惯性半径: r y =A I y =1350243455755=56.7 mm压杆的柔度(长细比):λy =y yr =7.56=25.5 压杆的折减系数: φy =0.95查《机械设计手册》第一卷P1-174表1-1-122⑶ 间力学计算:已知:Q=120t ,G 1=11.4t ,m=4,轮压:P 轮=mG Q 小+=44.1160+=17.85t 节间弯距:M j =6j L P 轮=645.185.17⨯=4.32t.m ,L j =1.45 m 3.3.3.1.6上弦杆性能校核计算:⑴强度校核:σ=xj W M A N +上=9845171032.4135021025.16444⨯+⨯=121.6+0.04=121.64Mpa σ<[σ]=170 Mpa 通过检算⑵刚度校核:λ=m in γL =8.561450=25.5<[λ]=100 通过检算 ⑶稳定性校核:σ=x j W M A N +φ上=9845171032.4135020.9851025.16444⨯+⨯⨯=124MPa σx = [σ]=170 Mpa 通过检算3.3.3.2.下弦杆计算和选取:(按压杆)3.3.3.2.1计算单根下弦杆轴向力:(由上知)N 上=N 下=h M max =25.328=164.25 t N 下单=82.13t3.3.3.2.2计算单根下弦杆所需最小截面积:A ≥][σ下N =1701013.824⨯=4831 mm 2 3.3.3.2.3初选下弦杆2[18b+8×120 材料Q235BA=6818mm2 3.3.3.2.4计算下弦杆截面性能参数:⑴ 计算X 向性能参数:截面惯性矩: I x =34694439mm 4截面抗拉压弯模量: W x =x xy I =10334694439=336839mm 3 压杆截面的惯性半径: r x =AI x =681834694439=71.3mm压杆的柔度(长细比):λx =x x r =3.71=20.3 压杆的折减系数: φx =0.967查《机械设计手册》第一卷P1-174表1-1-122⑵ 计算Y 向性能参数:截面惯性矩: I y =18973100mm 4截面抗弯模量: W y =yy y I =7018973100=27104mm 3 压杆截面的惯性半径: r y =A Iy =681818973100=52.7m 压杆的柔度(长细比):λy = y yr L =7.521450=27.5 压杆的折减系数: φy =0.943查《机械设计手册》第一卷P1-174表1-1-1223.3.3.2.5下弦杆性能校核计算:⑴强度校核:σ=jA N 下=68181013.824⨯=120 Mpa σ<[σ]=170 Mpa 材料Q235B 通过检算 ⑵刚度校核:λ=m in γL =7.521450=27.5<[λ]=100 通过检算 ⑶稳定性校核:σx =j A N φ下=6818967.01013.824⨯⨯=125MPa σx <[σ]=170 Mpa 材料Q235B 通过检算3.3.3.3腹杆计算和选取(压杆)3.3.3.3.1.计算腹杆集中载荷:已知:已知: Q=60 t G 小=11.4 t q=0.34 t/m L=30m N=221.1L q G Q ⨯++小=43.8 t 3.3.3.3.2 计算轴向力:斜腹杆:N 1=αcos 2N =29.15cos 28.43⨯=22.7t 水平杆: N 2=27.182cos 1N =11.9t 3.3.3.3.3计算腹杆所需最小截面积A ≥][2σϕN =1709.0109.114⨯⨯=777mm 23.3.3.3.4 初选腹杆截面:材料 Q235B (对扣)80*80*6 (A=1714 mm 2 )A=1714mm 23.3.3.3.5 计算腹杆截面性能参数:节间有效长度:L x =L y = 1948mm⑴ 计算性能参数:截面惯性矩: I=1539590mm 4截面抗拉压弯模量: W=y I =401539590=38489mm 3 压杆截面的惯性半径: r=A I =17141539590=30mm 压杆的柔度(长细比):λx =r L =301948=65 压杆的折减系数: φx =0.78 查《机械设计手册》第一卷P1-174表1-1-1223.3.3.3.6 腹杆性能校核计算:(1)强度校核:σ=j A N 1=1714109.114⨯=70 Mpa σ<[σ]=170 Mpa 通过检算(2)刚度校核:λ=m in γL=65<[λ]=100 通过检算(3)稳定性校核:σ=j X A N φ1=171478.0109.114⨯⨯=89MPaσx <[σ]=170 Mpa 材质:Q235B 通过检算3.3.3.5 主横梁整体性能验算:3.3.3.5.1 主横梁整体截面性能参数:① 主横梁截面参数:桁宽H=1.1m ,桁高h=2m ,节间L j =1.45m ,跨度L=3m② 主横梁整体截面惯性矩: I =28222134859m m 4③ 主横梁整体截面抗弯模量:W 上=上y I =115792822213485=24392510 mm 3 W 下=下y I =109592822213485=25773639mm 3 3.3.3.5.2 主横梁整体载荷分析计算:(单根)① 主横梁最大计算弯矩: (见主横梁计算)M max =88)1.1(2qL LG Q ++小 =83034.0830)4.11601.1(2⨯+⨯+⨯=328.5t.m ② 主横梁最大剪力:Q max =221.1qL G Q ++小=23034.024.11601.1⨯++⨯=43.8 t 3.3.3.5.3 主横梁整体性能校核验算:(单根) ① 主横梁整体强度验算:σ上=WM max =24392510105.3287⨯=135Mpa <[σ]=170Mpa 上弦材料Q235B σ下=WM max =25773639105.3287⨯=127Mpa <[σ]=170 Mpa 下弦材料Q235B ② 主横梁整体刚度验算:主横梁跨中集中载荷下挠计算: f=EIPL 483=38 主横梁整体刚度:f=44.1<[f ]=500L=60 主横梁跨中均布载荷下挠计算: f=EI qL 38454=592822.213481.238410003034.054⨯⨯⨯⨯⨯=6.3mm 主横梁整体性能参数通过计算3.3.3.6联接销轴与联接耳板的计算选取:3.3.3.6.1联接销轴计算拉力F=N=164.25t=1.64×106N上弦双销板,3个φ50销轴销轴材质45 [τ]=34.14308.0⨯=257MPa 上弦销轴直径τ=A F 12= 69MPa ≤257MPa 下弦初定为单销双剪切2个φ50销轴下弦销轴τ=AF 8=104≤257MPa 3.4 支腿综合性能计算:3.4.1支腿拉压杆强度计算:3.4.1.1支腿最大载荷分析:轴距B=5~6m ,支腿高度h 支=2.5m q=0.32t F ×32-32q ×16+16q ×8=0 F=3.9tP=1.1Q+G 小+F=1.1×50+10.7/2+4.8=64.3t(吊梁行车移至支腿极限位置时)3.4.1.2 计算支腿所需最小截面积:材料Q235BA ≥][σφP =1706.0103.644⨯⨯=6304mm 2 3.4.1.3 初选支腿型材:材料Q235B支腿:φ299×10 A=9079mm 2,q=90.5kg/m 材料许用应力:[σ]=170Mpa3.4.1.4 支腿截面性能参数计算:节间有效长度: L x =L y =2845mm(1)计算X 向性能参数:截面惯性矩: I x =194258666 mm 4压杆截面的惯性半径: r x =129.8mm压杆的柔度(长细比):λx =x x r L =8.1292845=21.9 压杆的折减系数: φx =0.963查《机械设计手册》第一卷P1-174表1-1-122(2)计算Y 向性能参数:(与X 向相同)3.4.1.5 支腿性能校核计算:(1)强度校核:σ=支A P = 11530102.1174⨯=102Mpa σ<[σ]=170 Mpa 通过检算(2)刚度校核:λ=m inγL=8.1292845=21.2<[λ]=120 通过检算 (3)定性校核:σ=支A P φ=11530963.0102.1174⨯⨯=106MPa σ <[σ]=170 Mpa 材质:Q235B 通过检算4 载荷计算4.1 水平载荷提升小车在主梁上横移速度为0.02m/s,加速度α=0.12m/。

相关文档
最新文档