2013年山东高考数学理科试题评分细则20131215

合集下载

2013年高考理科数学山东卷(含详细答案)

2013年高考理科数学山东卷(含详细答案)

数学试卷 第1页(共45页) 数学试卷 第2页(共45页) 数学试卷 第3页(共45页)绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B );如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则2(i)a b += ( )A .54i -B .54i +C .34i -D .34i + 2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =( ) A .[0,2] B .(1,3)C .[1,3)D .(1,4) 3.函数()f x( )A .1(0,)2B .(2,)+∞C .1(0,)(2,)2+∞D .1(0,][2,)2+∞4.用反证法证明命题“设a ,b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是( )A .方程30x ax b ++=没有实根B .方程30x ax b ++=至多有一个实根C .方程30x ax b ++=至多有两个实根D .方程30x ax b ++=恰好有两个实根5.已知实数x ,y 满足x y a a <(01a <<),则下列关系式恒成立的是( )A .221111x y >++ B .22ln(1)ln(1)x y +>+ C .sin sin x y >D .33x y >6.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A.B.C .2D .47.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 ( )A .6B .8C .12D .188.已知函数()|2|1f x x =-+,()g x kx =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,)+∞9.已知x ,y 满足约束条件10,230,x y x y --⎧⎨--⎩≤≥当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值时,22a b +的最小值为( )A .5B .4CD .210.已知>0a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的则2C 的渐近线方程为 ( )A.0x = B0y ±= C .20x y ±= D .20x y ±=第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为 .12.在ABC △中,已知t a n A B A C A = ,当π6A =时,ABC △的面积为 .13.三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . 14.若26()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .15.已知函数()()y f x x =∈R .对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为函数()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x是()g x =关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知向量a (,cos2)m x =,b (sin 2,)x n =,函数()f x =a b ,且()y f x =的图象过点π(12和点2π(,2)3-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0π)ϕ<<个单位后得到函数()y g x =的图象,若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.17.(本小题满分12分)姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共45页) 数学试卷 第5页(共45页) 数学试卷 第6页(共45页)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠= ,AB =22CD =,M 是线段AB 的中点.(Ⅰ)求证:1C M 平面11A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.18.(本小题满分12分)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数2e 2()(ln )x f x k x x x =-+(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.21.(本小题满分14分)已知抛物线C :22(0)y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF △为正三角形. (Ⅰ)求C 的方程;(Ⅱ)若直线1l l ,且1l 和C 有且只有一个公共点E . (ⅰ)证明:直线AE 过定点,并求出定点坐标;(ⅱ)ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.3 / 15数学试卷 第10页(共45页) 数学试卷 第11页(共45页) 数学试卷 第12页(共45页)5 / 15数学试卷第16页(共45页)数学试卷第17页(共45页)数学试卷第18页(共45页)7 / 15数学试卷第22页(共45页)数学试卷第23页(共45页)数学试卷第24页(共45页)59 / 15数学试卷第28页(共45页)数学试卷第29页(共45页)数学试卷第30页(共45页)。

2013年高考理科数学山东卷试题与答案word解析版

2013年高考理科数学山东卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013山东,理1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ).A .2+iB .2-IC .5+iD .5-i2.(2013山东,理2)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ).A .1B .3C .5D .9 3.(2013山东,理3)已知函数f (x )为奇函数,且当x >0时,f (x )=21x x+,则f (-1)=( ). A .-2 B .0 C .1 D .24.(2013山东,理4)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ).A .5π12B .π3C .π4D .π65.(2013山东,理5)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ).A .3π4B .π4C .0D .π4-6.(2013山东,理6)在平面直角坐标系xOy 中,M 为不等式组220,210,380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( ).A .2B .1C .13-D .12-7.(2013山东,理7)给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.(2013山东,理8)函数y =x cos x +sin x 的图象大致为( ).9.(2013山东,理9)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ).A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=010.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ).A .243B .252C .261D .27911.(2013山东,理11)抛物线C 1:y =212x p(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ).A. B. C. D.12.(2013山东,理12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,212x y z +-的最大值为( ).A .0B .1C .94 D .3第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2013山东,理13)执行右面的程序框图,若输入的ε的值为0.25,则输出的n 的值为__________.14.(2013山东,理14)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为__________.15.(2013山东,理15)已知向量AB 与AC 的夹角为120°,且|AB|=3,|AC |=2,若AP =λAB +AC ,且AP ⊥BC,则实数λ的值为__________.16.(2013山东,理16)定义“正对数”:ln +x =0,01,ln ,1,x x x <<⎧⎨≥⎩现有四个命题:①若a >0,b >0,则ln +(a b )=b ln +a ;②若a >0,b >0,则ln +(ab )=ln +a +ln +b ; ③若a >0,b >0,则ln +a b ⎛⎫⎪⎝⎭≥ln +a -ln +b ; ④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2. 其中的真命题有__________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.17.(2013山东,理17)(本小题满分12分)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79. (1)求a ,c 的值;(2)求sin(A -B )的值.18.(2013山东,理18)(本小题满分12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.19.(2013山东,理19)(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分,求乙队得分X的分布列及数学期望.20.(2013山东,理20)(本小题满分12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n,且12nn naTλ++=(λ为常数).令c n=b2n(n∈N*).求数列{c n}的前n项和R n.21.(2013山东,理21)(本小题满分13分)设函数f (x )=2e xx+c (e =2.718 28…是自然对数的底数,c ∈R ).(1)求f (x )的单调区间、最大值;(2)讨论关于x 的方程|ln x |=f (x )根的个数.22.(2013山东,理22)(本小题满分13分)椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别是F 1,F 2,离,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2.设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1211kk kk +为定值,并求出这个定值.2013年普通高等学校夏季招生全国统一考试数学理工农医类(山东卷) 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 答案:D解析:由题意得z -3=52i-=2+i ,所以z =5+i.故z =5-i ,应选D. 2. 答案:C解析:当x ,y 取相同的数时,x -y =0;当x =0,y =1时,x -y =-1;当x =0,y =2时,x -y =-2;当x =1,y =0时,x -y =1;当x =2,y =0时,x -y =2;其他则重复.故集合B 中有0,-1,-2,1,2,共5个元素,应选C. 3. 答案:A解析:因为f (x )是奇函数,故f (-1)=-f (1)=2111⎛⎫-+ ⎪⎝⎭=-2,应选A. 4. 答案:B解析:如图所示,由棱柱体积为94.设P 在平面ABC上射影为O ,则可求得AO 长为1,故AP 2=故∠PAO =π3,即PA 与平面ABC 所成的角为π3. 5. 答案:B解析:函数y =sin(2x +φ)的图象向左平移π8个单位后变为函数πsin 28y x ϕ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦=πsin 24x ϕ⎛⎫++ ⎪⎝⎭的图象,又πsin 24y x ϕ⎛⎫++ ⎪⎝⎭=为偶函数,故πππ42k ϕ+=+,k ∈Z ,∴ππ4k ϕ=+,k ∈Z .若k =0,则π4ϕ=.故选B. 6. 答案:C解析:不等式组表示的区域如图阴影部分所示,结合斜率变化规律,当M 位于C 点时OM 斜率最小,且为13-,故选C.7. 答案:A解析:由题意:q ⇒⌝p ,⌝pq ,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p 是⌝q 的充分而不必要条件.故选A. 8. 答案:D解析:因f (-x )=-x ·cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈π0,2⎛⎫⎪⎝⎭,y >0,排除C ,而x =π时,y =-π,排除A ,故选D. 9. 答案:A解析:该切线方程为y =k (x -3)+1,即kx -y -3k +1=0=1,得k =0或43,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),93,55⎛⎫- ⎪⎝⎭,故所求直线的方程为2x +y -3=0.故选A.10. 答案:B解析:构成所有的三位数的个数为11191010C C C =900,而无重复数字的三位数的个数为111998C C C =648,故所求个数为900-648=252,应选B. 11. 答案:D解析:设M 2001,2x x p ⎛⎫ ⎪⎝⎭,21''2x y x p p ⎛⎫== ⎪⎝⎭,故在M点处的切线的斜率为03x p =,故M 1,6p p ⎫⎪⎪⎝⎭.由题意又可知抛物线的焦点为0,2p ⎛⎫⎪⎝⎭,双曲线右焦点为(2,0),且1,36p p ⎛⎫ ⎪ ⎪⎝⎭,0,2p ⎛⎫ ⎪⎝⎭,(2,0)三点共线,可求得pD.12. 答案:B解析:由x 2-3xy +4y 2-z =0得2234x xy y z-+,即xy z≤1,当且仅当x 2=4y 2时成立,又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2,所以222121211+1x y z y y y ⎛⎫+-=-+=-- ⎪⎝⎭,当1=1y ,即y =1时,212x y z+-取得最大值为1,故选B. 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.答案:3解析:第1次运行将F 0+F 1赋值给F 1,即将3赋值给F 1,然后将F 1-F 0赋值给F 0,即将3-1=2赋值给F 0,n 增加1变成2,此时1113F =比ε大,故循环,新F 1为2+3=5,新F 0为5-2=3,n 增加1变成3,此时1115F =≤ε,故退出循环,输出n =3. 14.答案:13解析:设y =|x +1|-|x -2|=3,2,21,12,3,1,x x x x ≥⎧⎪--<<⎨⎪-≤-⎩利用函数图象(图略)可知|x +1|-|x -2|≥1的解集为[1,+∞).而在[-3,3]上满足不等式的x 的取值范围为[1,3],故所求概率为311333-=-(-).15.答案:712解析:∵AP =λAB +AC ,AP ⊥BC ,又BC =AC -AB ,∴(AC -AB )·(AC +λAB)=0.∴AC 2+λAB ·AC -AB ·AC -λAB 2=0,即4+(λ-1)×3×2×12⎛⎫- ⎪⎝⎭-9λ=0,即7-12λ=0,∴λ=712.16.答案:①③④三、解答题:本大题共6小题,共74分.17.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79, 所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B9=. 由正弦定理得sin A=sin 3a Bb =因为a =c ,所以A 为锐角. 所以cos A13=. 因此sin(A -B )=sin A cos B -cos A sin B=27. 18.(1)证明:因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点, 所以EF ∥AB ,DC ∥AB .所以EF ∥DC .又EF 平面PCD ,DC ⊂平面PCD , 所以EF ∥平面PCD .又EF ⊂平面EFQ ,平面EFQ ∩平面PCD =GH , 所以EF ∥GH .又EF ∥AB ,所以AB ∥GH .(2)解法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°,即AB ⊥BQ .因为PB ⊥平面ABQ , 所以AB ⊥PB.又BP ∩BQ =B , 所以AB ⊥平面PBQ .由(1)知AB ∥GH ,所以GH ⊥平面PBQ . 又FH ⊂平面PBQ ,所以GH ⊥FH . 同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角. 设BA =BQ =BP =2,连接FC ,在Rt △FBC 中,由勾股定理得FC在Rt △PBC 中,由勾股定理得PC又H 为△PBQ 的重心,所以HC=13PC =同理FH.在△FHC 中,由余弦定理得cos ∠FHC =5524995529+-=-⨯.故二面角D -GH -E 的余弦值为45-.解法二:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°.又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2).所以EQ =(-1,2,-1),FQ=(0,2,-1),DP=(-1,-1,2),CP =(0,-1,2).设平面EFQ 的一个法向量为m =(x 1,y 1,z 1),由m ·EQ =0,m ·FQ=0,得1111120,20,x y z y z -+-=⎧⎨-=⎩取y 1=1,得m =(0,1,2).设平面PDC 的一个法向量为n =(x 2,y 2,z 2),由n ·DP=0,n ·CP =0, 得2222220,20,x y z y z --+=⎧⎨-+=⎩取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=4||||5=·m n m n .因为二面角D -GH -E 为钝角, 所以二面角D -GH -E 的余弦值为45-. 19.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P (A 1)=328327⎛⎫= ⎪⎝⎭,P (A 2)=2232228C 133327⎛⎫⎛⎫-⨯=⎪⎪⎝⎭⎝⎭, P (A 3)=22242214C 133227⎛⎫⎛⎫-⨯=⎪⎪⎝⎭⎝⎭. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立,所以P (A 4)=22242214C 1133227⎛⎫⎛⎫⎛⎫-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, 又P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427, P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以EX =0×1627+1×427+2×27+3×27=9.20.解:(1)设等差数列{a n }的首项为a 1,公差为d , 由S 4=4S 2,a 2n =2a n +1得11114684,21221 1.a d a d a n d a n d +=+⎧⎨+(-)=+(-)+⎩ 解得a 1=1,d =2.因此a n =2n -1,n ∈N *. (2)由题意知,T n =12n nλ--, 所以n ≥2时,b n =T n -T n -1=12112222n n n n n n ------+=. 故c n =b 2n =21222n n --=11(1)4n n -⎛⎫- ⎪⎝⎭,n ∈N *.所以R n =0×14⎛⎫ ⎪⎝⎭0+1×14⎛⎫ ⎪⎝⎭1+2×14⎛⎫ ⎪⎝⎭2+3×14⎛⎫ ⎪⎝⎭3+…+(n -1)×14⎛⎫ ⎪⎝⎭n -1,则14R n =0×14⎛⎫ ⎪⎝⎭1+1×14⎛⎫ ⎪⎝⎭2+2×14⎛⎫ ⎪⎝⎭3+…+(n -2)×14⎛⎫ ⎪⎝⎭n -1+(n -1)×14⎛⎫ ⎪⎝⎭n , 两式相减得34R n =14⎛⎫ ⎪⎝⎭1+14⎛⎫ ⎪⎝⎭2+14⎛⎫ ⎪⎝⎭3+…+14⎛⎫ ⎪⎝⎭n -1-(n -1)×14⎛⎫ ⎪⎝⎭n =11144(1)1414nn n ⎛⎫- ⎪⎛⎫⎝⎭--⨯ ⎪⎝⎭-=1131334nn +⎛⎫- ⎪⎝⎭, 整理得R n =1131494n n -+⎛⎫- ⎪⎝⎭,所以数列{c n }的前n 项和R n =1131494n n -+⎛⎫- ⎪⎝⎭.21.解:(1)f ′(x )=(1-2x )e -2x, 由f ′(x )=0,解得x =12. 当x <12时,f ′(x )>0,f (x )单调递增; 当x >12时,f ′(x )<0,f (x )单调递减.所以,函数f (x )的单调递增区间是1,2⎛⎫-∞ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭,最大值为111e 22f c -⎛⎫=+ ⎪⎝⎭.(2)令g (x )=|ln x |-f (x )=|ln x |-x e -2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,ln x >0,则g (x )=ln x -x e -2x-c , 所以g ′(x )=22e e21x xx x -⎛⎫+- ⎪⎝⎭. 因为2x -1>0,2e xx>0,所以g ′(x )>0.因此g (x )在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x <0,则g (x )=-ln x -x e -2x-c . 所以g ′(x )=22e e21x xx x -⎛⎫-+- ⎪⎝⎭. 因为e 2x∈(1,e 2),e 2x>1>x >0,所以2e xx -<-1.又2x -1<1,所以2e xx-+2x -1<0,即g ′(x )<0.因此g (x )在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g (x )≥g (1)=-e -2-c .当g (1)=-e -2-c >0,即c <-e -2时,g (x )没有零点, 故关于x 的方程|ln x |=f (x )根的个数为0;当g (1)=-e -2-c =0,即c =-e -2时,g (x )只有一个零点, 故关于x 的方程|ln x |=f (x )根的个数为1;当g (1)=-e -2-c <0,即c >-e -2时, 当x ∈(1,+∞)时,由(1)知g (x )=ln x -x e -2x -c ≥11ln e 2x c -⎛⎫-+ ⎪⎝⎭>ln x -1-c ,要使g (x )>0,只需使ln x -1-c >0,即x ∈(e 1+c,+∞);当x ∈(0,1)时,由(1)知g (x )=-ln x -x e -2x -c ≥11ln e 2x c -⎛⎫--+ ⎪⎝⎭>-ln x -1-c ,要使g (x )>0,只需-ln x -1-c >0,即x ∈(0,e -1-c);所以c >-e -2时,g (x )有两个零点,故关于x 的方程|ln x |=f (x )根的个数为2. 综上所述,当c <-e -2时,关于x 的方程|ln x |=f (x )根的个数为0;当c =-e -2时,关于x 的方程|ln x |=f (x )根的个数为1;当c >-e -2时,关于x 的方程|ln x |=f (x )根的个数为2. 22.(1)解:由于c 2=a 2-b 2,将x =-c 代入椭圆方程2222=1x y a b+,得2b y a =±,由题意知22=1b a ,即a =2b 2.又2c e a ==,所以a =2,b =1.所以椭圆C 的方程为2214x y +=. (2)解法一:设P (x 0,y 0)(y 0≠0). 又F 1(0),F 2,0), 所以直线PF 1,PF 2的方程分别为lPF 1:y 0x -(x 0y0=0, lPF 2:y 0x -(x 0y0=0..由于点P 在椭圆上,所以220014x y +=,=.因为m2<x 0<2,=. 所以m =034x .因此3322m -<<.解法二:设P (x 0,y 0).当0≤x 0<2时,①当0x =时,直线PF 2的斜率不存在,易知P 12⎫⎪⎭或P 12⎫-⎪⎭.若P 12⎫⎪⎭,则直线PF 1的方程为0x -=.m =,因为m所以m =. 若P 12⎫-⎪⎭,同理可得m =.②当x 0时,设直线PF 1,PF 2的方程分别为y =k 1(x,y =k 2(x).=,2122111k k +=+.因为220014x y +=, 并且k 1k 2==,=.因为为m,0≤x 0<2且x 0=.整理得m =34x , 故0≤m <32且m≠4综合①②可得0≤m <32.当-2<x 0<0时,同理可得32-<m <0. 综上所述,m 的取值范围是33,22⎛⎫- ⎪⎝⎭.(3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立22001,4x y y y k x x ⎧+=⎪⎨⎪-=(-)⎩整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(20y -2kx 0y 0+220k x -1)=0. 由题意Δ=0,即220(4)x k -+2x 0y 0k +1-20y =0.又220014x y +=, 所以22016y k +8x 0y 0k +20x =0,故k =004xy -.由(2)知12000211x k k y +=+=, 所以121211111kk kk k k k ⎛⎫+=+ ⎪⎝⎭ =000042=8y xx y ⎛⎫-⋅- ⎪⎝⎭, 因此1211kk kk +为定值,这个定值为-8.。

2013年山东高考数学理科试题评分细则20131215

2013年山东高考数学理科试题评分细则20131215

绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立,那么P (AB )=P(A)*P(B) 第Ⅰ卷 (共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、复数z 满足i i z (5)2)(3(=--为虚数单位),则z 的共轭复数-z 为( ) (A )2+i (B )2-i (C )5+i (D )5-i 【解析】i i iz +=++=+-=532325,所以i z -=5,故选D. 2、已知集合}2,1,0{=A ,则集合},|{A y A x y x B ∈∈-=中元素的个数是( ) (A )1 (B )3 (C )5 (D )9【解析】{}2,1,0,2,1},|{--=∈∈-=A y A x y x B ,所以有5个元素,故选C. 3、已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则)1(-f =( ) (A )-2 (B )0 (C )1 (D )2 【解析】()()211-=-=-f f ,故选A 。

13山东高考数学理科试题及答案

13山东高考数学理科试题及答案

2013山东高考数学理科试题及答案2013年普通高等学校招生全国统一考试理科数学乐享玲珑,为中国数学增光添彩!,全开放的几何教学软件,功能强大,好用实用第I卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 满足(z?3)(2?i)?5(i为虚数单位),则z的共轭复数z为(A) 2?i(B) 2?i (C)5?i(D)5?i 2.已知集合A={0,1,2},则集合B?x?yx?A,y?A中元素的个数是(A) 1(B) 3 (C)5(D)9 23.已知函数f(x)为奇函数,且当x?0时,f(x)?x???1,则f(?1)? x(A) ?2(B) 0(C) 1(D) 2 4.已知三棱柱ABC?A1B1C1的侧棱与底面垂直,体积为9,底面是边长为3的正三角形.若P为底4面A1B1C1的中心,则PA与平面ABC所成角的大小为5????(B)(C)(D) 12346?5.将函数y?sin(2x??)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则?的一个8(A) 可能取值为3???(B)(C)0 (D) ? 444?2x?y?2?0,?6.在平面直角坐标系xoy中,M为不等式组?x?2y?1?0,所表示的区域上一动点,则直线OM 斜?3x?y?8?0,?(A) 率的最小值为11? 327.给定两个命题p,q.若?p是q的必要而不充分条件,则p 是?q的21?充分而不必要条件必要而不充分条件充要条件既不充分也不必要条件8.函数y?xcosx?sinx的图象大致为9.过点(3,1)作圆(x?1)2?y2?1的两条切线,切点分别为A,B,则直线AB的方程为2x?y?3?0 2x?y?3?0 4x?y?3?0 4x?y?3?0 10.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为243 252 261 279 212xx(p?0)的焦点与双曲线C2:?y2?1的右焦点的连线交C1于第11.已知抛物线C1:y?2p3一象限的点M。

2013年(山东卷)高考数学(理科)

2013年(山东卷)高考数学(理科)

绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( ) A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ( )(A)-2(B)0 (C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。

2013年山东省高考试题数学理科20评分标准

2013年山东省高考试题数学理科20评分标准

2013年山东高考理科数学20题评分标准(20)(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n T ,且λ=++nn n a T 21(λ为常数).令n n b c 2=(*N n ∈),求数列{}n c 的前n 项和为n R . 解:(Ⅰ)方法一设等差数列{}n a 的首项为1a ,公差为d . 由244S S =,122+=n n a a 得()()⎩⎨⎧+-+=-++=+.112212,48641111d n a d n a d a d a (对一个给2分,全对3分) ………………………………(3分)解得11=a , ………………………………(4分)2=d . ………………………………(5分)因此 *,12N n n a n ∈-=. ………………………………(6分) 方法二 (特殊值)设等差数列{}n a 的首项为1a ,公差为d .由244S S =得12a d =………………………………(2分) 又因为122+=n n a a ,所以1212+=a a 得11+=a d ………………………………(3分) 方法三()⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=⨯⎪⎭⎫⎝⎛+121244224122141a a a a a a a a 三式消去42,a a 得到11=a 得4分方法四由()23121432124a a a a a a a a a =++=+++得()214243a a a a +=+又⎩⎨⎧+=+=12122412a a a a 消去42,a a 得到11=a方法五设nb a a n +=,则由122+=n n a a 得()122122++=++=+nb a nb a nb a ,得到1-=a()()()()()()[]()234211444104131211243214-=+-++-==-=+-++-++-++-=+++=b b b S b b b b b a a a a S即()234410-=-b b ,由此得2=b ,故*,12N n n a n ∈-=注意:1.得分点①两个方程12a d =,11+=a d 对一个2分,全对3分 ②求对n a d a ,,1分别1分,不管中间过程有无 2.两个方程表达形式①仅列出等差一般项公式,前n 项和n S 公式不得分;②必须要用等差数列一般项公式,前n 项和n S 公式或等差数列性质代人已知条件得出两个方程才可给分.244S S =得224422141⨯⎪⎭⎫⎝⎛+⨯=⨯⎪⎭⎫ ⎝⎛+a a a a ,给一个方程分, 但仅用()2143214a a a a a a +=+++或()21433a a a a +=+没有进一步结果不给分; ③122+=n n a a 可用1212+=a a 或1224+=a a 其它特殊值表示,但是仅表示没有进一步结果不给分; ④⎩⎨⎧=+=⇒⎩⎨⎧+==da a d a a S S n n 1212211224得3分3.()121-+=n a n ,不扣分 (Ⅱ)由题意知:12--=n n n T λ,所以 2≥n 时,121122212-----=-+-=-=n n n n n n n n n T T b .………………………………(7分)故 ()1122411222--⎪⎭⎫ ⎝⎛-=-==n n nn n n b c ,*N n ∈.………………………………(8分)所以 +⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=321413412411410n R …(),4111-⎪⎭⎫⎝⎛-+n n………………………………(9分)则 =n R 41 +⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯321412411410…()(),4114121nn n n ⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+-………………………………(10分)()⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⨯+⨯+⨯=-22411413412114n n n R两式相减得+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=32141414143n R …()()n nn n n n ⎪⎭⎫ ⎝⎛⨯---⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-4114114141411411nn ⎪⎭⎫ ⎝⎛+-=4133131, 整理得⎪⎭⎫⎝⎛+-=-1413491n n n R . 所以 数列{}n c 的前n 项和为⎪⎭⎫⎝⎛+-=-1413491n n n R . ………………………………(12分)注意:1.得分点:求n n n n R R c b 41,,,分别1分,错位相减并求对最终结果2分; 2.没有2≥n ,*N n ∈,没有最后一句话,只需n R 对,不扣分; 3.若将211212----+-=-=n n n n n n nT T b和1222122222212-----=-==n n n n n n nn T T b c 不扣分 4.若用不完全归纳(猜想)得到n b ,求对n c 给1分,全对扣1分 如12--=n n n T λ,111-==λT b ,,41,032==b b ,163,4154==b b 816=b ,…… ()()11411212--⎪⎭⎫⎝⎛-=⇒⎪⎭⎫⎝⎛-=n n n n n c n b 得1分5.若没有n b 直接求n c 即1222122222212-----=-==n n n n n n n n T T b c ()112411222--⎪⎭⎫⎝⎛-=-=n n n n或直接求n R ,在n R 中显示n c ,不扣分,直接得2分 如++++=8642b b b b R n …n b 2++-+-+-+-=78563412T T T T T T T T …+122--n n T T ++++=8642(T T T T …)2n T +++++-7531(T T T T …)12-+n T6.列出+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=3210413412411410n R …(),4111-⎪⎭⎫⎝⎛-+n n 以后,若利用求导也可以.7.若n a 求错,将错就错,有错位相减思想(写出n R ,乘公比或公比倒数,相减得出完整的式子),给1分 若n a 求对,⑴n b 求对得1分,①n c 求对得1分,从n R 开始错了,不给思想分;②n c 求错,有错位相减思想再给1分⑵n b 求错,对n c 求错位相减思想给1分,对n b 有错位相减思想不给分. 8.1143141194--⋅--⎪⎭⎫ ⎝⎛-=n n n n R n n n 4134494941--⋅-=-1243149194--⋅--⋅-=n n n =⎪⎭⎫ ⎝⎛+-=n n 34944194⎪⎭⎫ ⎝⎛+--39141941n n ⎪⎭⎫ ⎝⎛+-=n n34944194 ()nn 4139494+⋅-=。

2013年 山东省 高考数学 试卷及解析(理科)

2013年 山东省 高考数学 试卷及解析(理科)

2013年山东省高考数学试卷(理科)一、选择题1.(5分)复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z 的共轭复数为()A.2+i B.2﹣i C.5+i D.5﹣i2.(5分)已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.93.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.24.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为()A .B .C .D .5.(5分)函数y=sin(2x+φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为()1A .B .C.0 D .6.(5分)在平面直角坐标系xOy中,M 为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2 B.1 C .D .7.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(5分)函数y=xcosx+sinx的图象大致为()A .B .C .D .9.(5分)过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y﹣3=0 B.2x﹣y﹣3=0 C.4x﹣y﹣3=0 D.4x+y﹣3=0210.(5分)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.27911.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A .B .C .D .12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C .D.3二、填空题13.(4分)执行右面的程序框图,若输入的ɛ值为0.25,则输出的n值为.314.(4分)在区间[﹣3,3]上随机取一个数x使得|x+1|﹣|x﹣2|≥1的概率为.15.(4分)已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;4④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三、解答题17.(12分)设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A﹣B)的值.18.(12分)如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D﹣GH﹣E的余弦值.519.(12分)甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.(1)分别求甲队3:0,3:1,3:2胜利的概率;(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.20.(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n 且(λ为常数).令c n=b2n(n∈N*)求数列{c n}的前n项和R n.21.(13分)设函数.(1)求f(x)的单调区间及最大值;(2)讨论关于x的方程|lnx|=f(x)根的个数.22.(13分)椭圆C :的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;6(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.72013年山东省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z 的共轭复数为()A.2+i B.2﹣i C.5+i D.5﹣i【分析】利用复数的运算法则求得z,即可求得z 的共轭复数.【解答】解:∵(z﹣3)(2﹣i)=5,∴z﹣3==2+i∴z=5+i,∴=5﹣i.故选:D.【点评】本题考查复数的基本概念与基本运算,求得复数z是关键,属于基础题.2.(5分)已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()8A.1 B.3 C.5 D.9【分析】依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.【解答】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选:C.【点评】本题考查集合中元素个数的最值,理解题意是关键,考查分析运算能力,属于中档题.3.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【分析】利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,9故选:A.【点评】本题考查奇函数的性质,考查函数的求值,属于基础题.4.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为()A .B .C .D .【分析】利用三棱柱ABC﹣A1B1C1的侧棱与底面垂直和线面角的定义可知,∠APA1为PA与平面A1B1C1所成角,即为∠APA1为PA与平面ABC所成角.利用三棱锥的体积计算公式可得AA1,再利用正三角形的性质可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.【解答】解:如图所示,∵AA1⊥底面A1B1C1,∴∠APA1为PA与平面A1B1C1所成角,∵平面ABC∥平面A1B1C1,∴∠APA1为PA与平面ABC所成角.∵==.==,解得.∴V三棱柱ABC﹣A1B1C1又P为底面正三角形A1B1C1的中心,∴==1,10在Rt△AA1P 中,,∴.故选:B.【点评】熟练掌握三棱柱的性质、体积计算公式、正三角形的性质、线面角的定义是解题的关键.5.(5分)函数y=sin(2x+φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为()A .B .C.0 D .【分析】利用函数y=Asin(ωx+φ)的图象变换可得函数y=sin(2x+φ)的图象沿x 轴向左平移个单位后的解析式,利用其为偶函数即可求得答案.11【解答】解:令y=f(x)=sin(2x+φ),则f(x +)=sin[2(x +)+φ]=sin(2x ++φ),∵f(x +)为偶函数,∴+φ=kπ+,∴φ=kπ+,k∈Z,∴当k=0时,φ=.故φ的一个可能的值为.故选:B.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,考查三角函数的奇偶性,属于中档题.6.(5分)在平面直角坐标系xOy中,M 为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2 B.1 C .D .【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的直线的斜率的最小值即可.12【解答】解:不等式组表示的区域如图,当M取得点A(3,﹣1)时,z直线OM斜率取得最小,最小值为k==﹣.故选:C.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.7.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件13C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选:A.【点评】本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键.8.(5分)函数y=xcosx+sinx的图象大致为()A .B .C .D .【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.14【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.9.(5分)过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y﹣3=0 B.2x﹣y﹣3=0 C.4x﹣y﹣3=0 D.4x+y﹣3=0【分析】由题意判断出切点(1,1)代入选项排除B、D,推出令一个切点判断切线斜率,得到选项即可.【解答】解:因为过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,所以圆的一条切线方程为y=1,切点之一为(1,1),显然B、D选项不过(1,1),B、D不满足题意;另一个切点的坐标在(1,﹣1)的右侧,所以切线的斜率为负,选项C不满足,A满足.故选:A.【点评】本题考查直线与圆的位置关系,圆的切线方程求法,可以直接解答,本15题的解答是间接法,值得同学学习.10.(5分)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279【分析】求出所有三位数的个数,减去没有重复数字的三位数个数即可.【解答】解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648,所以可以组成有重复数字的三位数的个数为:900﹣648=252.故选:B.【点评】本题考查排列组合以及简单计数原理的应用,利用间接法求解是解题的关键,考查计算能力.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A .B .C .D .【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点16的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.【解答】解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F ().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M (),则C1在点M 处的切线的斜率为.由题意可知,得,代入M点得M ()把M 点代入①得:.解得p=.故选:D.17【点评】本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C .D.3【分析】依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.18故选:B.【点评】本题考查基本不等式,由取得最大值时得到x=2y是关键,考查配方法求最值,属于中档题.二、填空题值为3.13.(4分)执行右面的程序框图,若输入的ɛ值为0.25,则输出的n【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出n的值.19【解答】解:循环前,F0=1,F1=2,n=1,第一次循环,F0=1,F1=3,n=2,第二次循环,F0=2,F1=4,n=3,此时,满足条件,退出循环,输出n=3,故答案为:3.【点评】本题主要考查了直到循环结构,根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.14.(4分)在区间[﹣3,3]上随机取一个数x使得|x+1|﹣|x﹣2|≥1的概率为.【分析】本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[﹣3,3]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.由不等式|x+1|﹣|x﹣2|≥1 可得①,或②,③.解①可得x∈∅,解②可得1≤x<2,解③可得x≥2.20故原不等式的解集为{x|x≥1},∴|在区间[﹣3,3]上随机取一个数x使得|x+1|﹣|x﹣2|≥1的概率为P==.故答案为:【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.15.(4分)已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为.【分析】利用,,表示向量,通过数量积为0,求出λ的值即可.【解答】解:由题意可知:,因为,所以,所以===﹣12λ+7=021解得λ=.故答案为:.【点评】本题考查向量的数量积的应用,向量的垂直,考查转化数学与计算能力.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;22(3)对于③,i .≥1时,此时≥0,当a≥b≥1时,ln+a﹣ln+b=lna﹣lnb=,此时则,命题成立;当a>1>b>0时,ln+a﹣ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a﹣ln+b=0,成立;ii .<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b﹣2ab=a﹣ab+b﹣ab=a(1﹣b)+b(1﹣a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b﹣2a=b﹣a≤0,∴a+b≤2a,23∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.【点评】本题考查新定义及对数的运算性质,理解定义所给的运算规则是解题的关键,本题考查了分类讨论的思想,逻辑判断的能力,综合性较强,探究性强.易因为理解不清定义及忘记分类讨论的方法解题导致无法入手致错.三、解答题17.(12分)设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A﹣B)的值.【分析】(1)利用余弦定理列出关系式,将b与cosB的值代入,利用完全平方公式变形,求出acb的值,与a+c的值联立即可求出a与c的值即可;(2)先由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由a,b及sinB的值,利用正弦定理求出sinA的值,进而求出cosA的值,所求式子利24用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.【解答】解:(1)∵a+c=6①,b=2,cosB=,∴由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac ﹣ac=36﹣ac=4,整理得:ac=9②,联立①②解得:a=c=3;(2)∵cosB=,B为三角形的内角,∴sinB==,∵b=2,a=3,sinB=,∴由正弦定理得:sinA===,∵a=c,即A=C,∴A为锐角,∴cosA==,则sin(A﹣B)=sinAcosB﹣cosAsinB=×﹣×=.【点评】此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.2518.(12分)如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D﹣GH﹣E的余弦值.【分析】(1)由给出的D,C,E,F分别是AQ,BQ,AP,BP的中点,利用三角形中位线知识及平行公理得到DC平行于EF,再利用线面平行的判定和性质得到DC平行于GH,从而得到AB∥GH;(2)由题意可知BA、BQ、BP两两相互垂直,以B为坐标原点建立空间直角坐标系,设出BA、BQ、BP的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D﹣GH﹣E的余弦值.【解答】(1)证明:如图,26∵C,D为AQ,BQ的中点,∴CD∥AB,又E,F分别AP,BP的中点,∴EF∥AB,则EF∥CD.又EF⊂平面EFQ,∴CD∥平面EFQ.又CD⊂平面PCD,且平面PCD∩平面EFQ=GH,∴CD∥GH.又AB∥CD,∴AB∥GH;(2)由AQ=2BD,D为AQ的中点可得,三角形ABQ为直角三角形,以B为坐标原点,分别以BA、BQ、BP所在直线为x、y、z轴建立空间直角坐标系,设AB=BP=BQ=2,则D(1,1,0),C(0,1,0),E(1,0,1),F(0,0,1),因为H为三角形PBQ的重心,所以H(0,,).则,27,.设平面GCD 的一个法向量为由,得,取z1=1,得y1=2.所以.设平面EFG 的一个法向量为由,得,取z2=2,得y2=1.所以.所以=.则二面角D﹣GH﹣E 的余弦值等于.【点评】本题考查了直线与平面平行的性质,考查了二面角的平面角及其求法,考查了学生的空间想象能力和思维能力,考查了计算能力,解答此题的关键是正确求出H点的坐标,是中档题.19.(12分)甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.28(1)分别求甲队3:0,3:1,3:2胜利的概率;(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.【分析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.【解答】解:(1)甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜①3:0,概率为P1=()3=;②3:1,概率为P2=C ()2×(1﹣)×=;③3:2,概率为P3=C ()2×(1﹣)2×=∴甲队3:0,3:1,3:2胜利的概率:.(2)乙队得分X,则X的取值可能为0,1,2,3.由(1)知P(X=0)=P1+P2=;P(X=1)=P3=;P(X=2)=C(1﹣)2×()2×=;29P(X=3)=(1﹣)3+C(1﹣)2×()×=;则X的分布列为X3210PE(X)=3×+2×+1×+0×=.【点评】本题主要考查了相互独立事件的概率乘法公式,以及离散型随机变量的期望与分布列,同时考查了分类讨论的数学思想,属于中档题.20.(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n 且(λ为常数).令c n=b2n(n∈N*)求数列{c n}的前n项和R n.【分析】(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{a n}的通项公式;(2)把{a n}的通项公式代入,求出当n≥2时的通项公式,然后由c n=b2n得数列{c n}的通项公式,最后利用错位相减法求其前n项和.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由a2n=2a n+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①30再由S4=4S2,得,即d=2a1②联立①、②得a1=1,d=2.所以a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)把a n=2n﹣1代入,得,则.所以b1=T1=λ﹣1,当n≥2时,=.所以,.R n=c1+c2+…+c n =③④③﹣④得:=所以;所以数列{c n}的前n 项和.【点评】本题考查了等差数列的通项公式,考查了数列的求和,训练了错位相减法,考查了学生的计算能力,属中档题.3121.(13分)设函数.(1)求f(x)的单调区间及最大值;(2)讨论关于x的方程|lnx|=f(x)根的个数.【分析】(1)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0即可得出单调区间及极值与最值;(2)分类讨论:①当0<x≤1时,令u(x)=﹣lnx ﹣﹣c,②当x≥1时,令v(x)=lnx ﹣.利用导数分别求出c的取值范围,即可得出结论.【解答】解:(1)∵=,解f′(x)>0,得;解f′(x)<0,得.∴函数f(x )的单调递增区间为;单调递减区间为.故f(x)在x=取得最大值,且.(2)函数y=|lnx|,当x>0时的值域为[0,+∞).如图所示:①当0<x≤1时,令u(x)=﹣lnx ﹣﹣c,c==g(x),32则=.令h(x)=e2x+x﹣2x2,则h′(x)=2e2x+1﹣4x>0,∴h(x)在x∈(0,1]单调递增,∴1=h(0)<h(x)≤h(1)=e2﹣1.∴g′(x)<0,∴g(x)在x∈(0,1]单调递减.∴c.②当x≥1时,令v(x)=lnx ﹣,得到c=lnx ﹣=m(x),则=>0,故m(x)在[1,+∞)上单调递增,∴c≥m(1)=.综上①②可知:当时,方程|lnx|=f(x)无实数根;当时,方程|lnx|=f(x)有一个实数根;当时,方程|lnx|=f(x)有两个实数根.33【点评】本题综合考查了利用导数研究函数的单调性、极值最值、数形结合的思想方法、分类讨论的思想方法等基础知识与基本技能,考查了推理能力和计算能力及其化归思想方法.22.(13分)椭圆C :的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.【分析】(1)把﹣c 代入椭圆方程得,解得,由已知过F1且垂直于x轴的直线被椭圆C截得的线段长为1,可得.再利用,及a2=b2+c2即可得出;34(2)设|PF1|=t,|PF2|=n ,由角平分线的性质可得,利用椭圆的定义可得t+n=2a=4,消去t 得到,化为,再根据a﹣c <n<a+c,即可得到m的取值范围;(3)设P(x0,y0),不妨设y0>0,由椭圆方程,取,利用导数即可得到切线的斜率,再利用斜率计算公式即可得到k1,k2,代入即可证明结论.【解答】解:(1)把﹣c 代入椭圆方程得,解得,∵过F1且垂直于x轴的直线被椭圆C截得的线段长为1,∴.又,联立得解得,∴椭圆C 的方程为.(2)如图所示,设|PF1|=t,|PF2|=n,由角平分线的性质可得,又t+n=2a=4,消去t 得到,化为,∵a﹣c<n<a+c ,即,也即,解得35.∴m 的取值范围;.(3)证明:设P(x0,y0),不妨设y0>0,由椭圆方程,取,则=,∴k==.∵,,∴=,∴==﹣8为定值.36【点评】本题综合考查了椭圆的定义、标准方程及其性质、角平分线的性质、利用导数的几何意义研究切线、斜率计算公式等基础知识,考查了推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.37。

2013年山东省高考理科数学试卷及参考答案与试题解析

2013年山东省高考理科数学试卷及参考答案与试题解析

2013年山东省高考理科数学试卷及参考答案与试题解析一、选择题1.(5分)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( ) A.2+i B.2-i C.5+i D.5-i2.(5分)已知集合A ={0,1,2},则集合B ={x -y|x ∈A,y ∈A}中元素的个数是( ) A.1 B.3 C.5 D.93.(5分)已知函数f(x)为奇函数,且当x >0时,,则f(-1)=( )A.-2B.0C.1D.24.(5分)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面A 1B 1C 1所成角的大小为( )A.B.C.D.5.(5分)函数y =sin(2x +φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为( )A.B.C.0D.6.(5分)在平面直角坐标系xOy 中,M 为不等式组所表示的区域上一动点,则直线OM 斜率的最小值为( )A.2B.1C.D.7.(5分)给定两个命题p,q.若¬p 是q 的必要而不充分条件,则p 是¬q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件8.(5分)函数y =xcosx +sinx 的图象大致为( )A. B. C. D.9.(5分)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A,B,则直线AB 的方程为( )A.2x +y -3=0B.2x -y -3=0C.4x -y -3=0D.4x +y -3=010.(5分)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.27911.(5分)抛物线C 1:的焦点与双曲线C 2:的右焦点的连线交C 1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=( )A. B. C. D.12.(5分)设正实数x,y,z满足x2-3xy+4y2-z=0.则当取得最大值时,的最大值为( )A.0B.1C.D.3二、填空题13.(4分)执行右面的程序框图,若输入的ɛ值为0.25,则输出的n值为.14.(4分)在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为.15.(4分)已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三、解答题17.(12分)设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A-B)的值.18.(12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.19.(12分)甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.(1)分别求甲队3:0,3:1,3:2胜利的概率;(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.20.(12分)设等差数列{an }的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn }的前n项和为Tn且(λ为常数).令cn=b2n(n∈N*)求数列{cn}的前n项和Rn.21.(13分)设函数.(1)求f(x)的单调区间及最大值;(2)讨论关于x的方程|lnx|=f(x)根的个数.22.(13分)椭圆C:的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.2013年山东省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A.2+iB.2-iC.5+iD.5-i【分析】利用复数的运算法则求得z,即可求得z的共轭复数.【解答】解:∵(z-3)(2-i)=5,∴z-3==2+i∴z=5+i,∴=5-i.故选:D.【点评】本题考查复数的基本概念与基本运算,求得复数z是关键,属于基础题.2.(5分)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1B.3C.5D.9【分析】依题意,可求得集合B={-2,-1,0,1,2},从而可得答案.【解答】解:∵A={0,1,2},B={x-y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x-y的值分别为0,-1,-2;当x=1,y分别取0,1,2时,x-y的值分别为1,0,-1;当x=2,y分别取0,1,2时,x-y的值分别为2,1,0;∴B={-2,-1,0,1,2},∴集合B={x-y|x∈A,y∈A}中元素的个数是5个.故选:C.【点评】本题考查集合中元素个数的最值,理解题意是关键,考查分析运算能力,属于中档题.3.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(-1)=( )A.-2B.0C.1D.2【分析】利用奇函数的性质,f(-1)=-f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(-1)=-f(1)=-2,故选:A.【点评】本题考查奇函数的性质,考查函数的求值,属于基础题.4.(5分)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为( )A. B. C. D.【分析】利用三棱柱ABC-A1B1C1的侧棱与底面垂直和线面角的定义可知,∠APA1为PA与平面A 1B1C1所成角,即为∠APA1为PA与平面ABC所成角.利用三棱锥的体积计算公式可得AA1,再利用正三角形的性质可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.【解答】解:如图所示,∵AA1⊥底面A1B1C1,∴∠APA1为PA与平面A1B1C1所成角,∵平面ABC∥平面A1B1C1,∴∠APA1为PA与平面ABC所成角.∵==.∴V三棱柱ABC-A1B1C1==,解得.又P为底面正三角形A1B1C1的中心,∴==1,在Rt△AA1P中,,∴.故选:B.【点评】熟练掌握三棱柱的性质、体积计算公式、正三角形的性质、线面角的定义是解题的关键.5.(5分)函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为( )A. B. C.0 D.【分析】利用函数y=Asin(ωx+φ)的图象变换可得函数y=sin(2x+φ)的图象沿x轴向左平移个单位后的解析式,利用其为偶函数即可求得答案.【解答】解:令y=f(x)=sin(2x+φ),则f(x+)=sin[2(x+)+φ]=sin(2x++φ),∵f(x+)为偶函数,∴+φ=kπ+,∴φ=kπ+,k∈Z,∴当k=0时,φ=.故φ的一个可能的值为.故选:B.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,考查三角函数的奇偶性,属于中档题.6.(5分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为( )A.2B.1C.D.【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的直线的斜率的最小值即可.【解答】解:不等式组表示的区域如图,当M取得点A(3,-1)时,z直线OM斜率取得最小,最小值为k==-.故选:C.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.7.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选:A.【点评】本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键.8.(5分)函数y=xcosx+sinx的图象大致为( )A. B. C. D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=-π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.9.(5分)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( )A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0【分析】由题意判断出切点(1,1)代入选项排除B、D,推出令一个切点判断切线斜率,得到选项即可.【解答】解:因为过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,所以圆的一条切线方程为y=1,切点之一为(1,1),显然B、D选项不过(1,1),B、D不满足题意;另一个切点的坐标在(1,-1)的右侧,所以切线的斜率为负,选项C不满足,A满足.故选:A.【点评】本题考查直线与圆的位置关系,圆的切线方程求法,可以直接解答,本题的解答是间接法,值得同学学习.10.(5分)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279【分析】求出所有三位数的个数,减去没有重复数字的三位数个数即可. 【解答】解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648, 所以可以组成有重复数字的三位数的个数为:900-648=252. 故选:B.【点评】本题考查排列组合以及简单计数原理的应用,利用间接法求解是解题的关键,考查计算能力.11.(5分)抛物线C 1:的焦点与双曲线C 2:的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.B.C.D.【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x 取直线与抛物线交点M 的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p 的关系,把M 点的坐标代入直线方程即可求得p 的值. 【解答】解:由,得x 2=2py(p >0), 所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C 1在点M 处的切线的斜率为.由题意可知,得,代入M 点得M()把M 点代入①得:.解得p =.故选:D.【点评】本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.(5分)设正实数x,y,z满足x2-3xy+4y2-z=0.则当取得最大值时,的最大值为( )A.0B.1C.D.3【分析】依题意,当取得最大值时x=2y,代入所求关系式f(y)=+-,利用配方法即可求得其最大值.【解答】解:∵x2-3xy+4y2-z=0,∴z=x2-3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2-3xy+4y2=(2y)2-3×2y×y+4y2=2y2,∴+-=+-=-+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选:B.【点评】本题考查基本不等式,由取得最大值时得到x=2y是关键,考查配方法求最值,属于中档题.二、填空题13.(4分)执行右面的程序框图,若输入的ɛ值为0.25,则输出的n值为 3 .【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出n的值.【解答】解:循环前,F0=1,F1=2,n=1,第一次循环,F0=1,F1=3,n=2,第二次循环,F0=2,F1=4,n=3,此时,满足条件,退出循环,输出n=3,故答案为:3.【点评】本题主要考查了直到循环结构,根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.14.(4分)在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为.【分析】本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[-3,3]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.由不等式|x+1|-|x-2|≥1 可得①,或②,③.解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2.故原不等式的解集为{x|x≥1},∴|在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为P==.故答案为:【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.15.(4分)已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为.【分析】利用,,表示向量,通过数量积为0,求出λ的值即可.【解答】解:由题意可知:,因为,所以,所以===-12λ+7=0解得λ=.故答案为:.【点评】本题考查向量的数量积的应用,向量的垂直,考查转化数学与计算能力.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i.≥1时,此时≥0,当a≥b≥1时,ln+a-ln+b=lna-lnb=,此时则,命题成立;当a>1>b>0时,ln+a-ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a-ln+b=0,成立;ii.<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b-2ab=a-ab+b-ab=a(1-b)+b(1-a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b-2a=b-a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.【点评】本题考查新定义及对数的运算性质,理解定义所给的运算规则是解题的关键,本题考查了分类讨论的思想,逻辑判断的能力,综合性较强,探究性强.易因为理解不清定义及忘记分类讨论的方法解题导致无法入手致错.三、解答题17.(12分)设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A-B)的值.【分析】(1)利用余弦定理列出关系式,将b与cosB的值代入,利用完全平方公式变形,求出acb的值,与a+c的值联立即可求出a与c的值即可;(2)先由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由a,b及sinB的值,利用正弦定理求出sinA的值,进而求出cosA的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.【解答】解:(1)∵a+c=6①,b=2,cosB=,∴由余弦定理得:b2=a2+c2-2accosB=(a+c)2-2ac-ac=36-ac=4,整理得:ac=9②,联立①②解得:a=c=3;(2)∵cosB=,B为三角形的内角,∴sinB==,∵b=2,a=3,sinB=,∴由正弦定理得:sinA===,∵a=c,即A=C,∴A为锐角,∴cosA==,则sin(A-B)=sinAcosB-cosAsinB=×-×=.【点评】此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.18.(12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.【分析】(1)由给出的D,C,E,F分别是AQ,BQ,AP,BP的中点,利用三角形中位线知识及平行公理得到DC平行于EF,再利用线面平行的判定和性质得到DC平行于GH,从而得到AB∥GH;(2)由题意可知BA、BQ、BP两两相互垂直,以B为坐标原点建立空间直角坐标系,设出BA、BQ、BP的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D-GH-E的余弦值.【解答】(1)证明:如图,∵C,D为AQ,BQ的中点,∴CD∥AB,又E,F分别AP,BP的中点,∴EF∥AB,则EF∥CD.又EF⊂平面EFQ,∴CD∥平面EFQ.又CD⊂平面PCD,且平面PCD∩平面EFQ=GH,∴CD∥GH.又AB∥CD,∴AB∥GH;(2)由AQ=2BD,D为AQ的中点可得,三角形ABQ为直角三角形,以B为坐标原点,分别以BA、BQ、BP所在直线为x、y、z轴建立空间直角坐标系, 设AB=BP=BQ=2,则D(1,1,0),C(0,1,0),E(1,0,1),F(0,0,1),因为H为三角形PBQ的重心,所以H(0,,).则,,.设平面GCD的一个法向量为由,得,取z1=1,得y1=2.所以.设平面EFG的一个法向量为由,得,取z2=2,得y2=1.所以.所以=.则二面角D-GH-E的余弦值等于.【点评】本题考查了直线与平面平行的性质,考查了二面角的平面角及其求法,考查了学生的空间想象能力和思维能力,考查了计算能力,解答此题的关键是正确求出H点的坐标,是中档题.19.(12分)甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.(1)分别求甲队3:0,3:1,3:2胜利的概率;(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.【分析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.【解答】解:(1)甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜①3:0,概率为P1=()3=;②3:1,概率为P2=C()2×(1-)×=;③3:2,概率为P3=C()2×(1-)2×=∴甲队3:0,3:1,3:2胜利的概率:.(2)乙队得分X,则X的取值可能为0,1,2,3.由(1)知P(X=0)=P1+P2=;P(X=1)=P3=;P(X=2)=C(1-)2×()2×=;P(X=3)=(1-)3+C(1-)2×()×=;E(X)=3×+2×+1×+0×=.【点评】本题主要考查了相互独立事件的概率乘法公式,以及离散型随机变量的期望与分布列,同时考查了分类讨论的数学思想,属于中档题.20.(12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n 且(λ为常数).令c n =b 2n (n ∈N *)求数列{c n }的前n 项和R n . 【分析】(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{a n }的通项公式;(2)把{a n }的通项公式代入,求出当n ≥2时的通项公式,然后由c n =b 2n 得数列{c n }的通项公式,最后利用错位相减法求其前n 项和.【解答】解:(1)设等差数列{a n }的首项为a 1,公差为d,由a 2n =2a n +1,取n =1,得a 2=2a 1+1,即a 1-d +1=0①再由S 4=4S 2,得,即d =2a 1② 联立①、②得a 1=1,d =2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1;(2)把a n =2n -1代入,得,则.所以b 1=T 1=λ-1, 当n ≥2时,=.所以,.R n =c 1+c 2+…+c n =③④③-④得:=所以;所以数列{c n }的前n 项和.【点评】本题考查了等差数列的通项公式,考查了数列的求和,训练了错位相减法,考查了学生的计算能力,属中档题.21.(13分)设函数.(1)求f(x)的单调区间及最大值;(2)讨论关于x的方程|lnx|=f(x)根的个数.【分析】(1)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0即可得出单调区间及极值与最值;(2)分类讨论:①当0<x≤1时,令u(x)=-lnx--c,②当x≥1时,令v(x)=lnx-.利用导数分别求出c的取值范围,即可得出结论.【解答】解:(1)∵=,解f′(x)>0,得;解f′(x)<0,得.∴函数f(x)的单调递增区间为;单调递减区间为.故f(x)在x=取得最大值,且.(2)函数y=|lnx|,当x>0时的值域为[0,+∞).如图所示:①当0<x≤1时,令u(x)=-lnx--c,c==g(x),则=.令h(x)=e2x+x-2x2,则h′(x)=2e2x+1-4x>0,∴h(x)在x∈(0,1]单调递增,∴1=h(0)<h(x)≤h(1)=e2-1.∴g′(x)<0,∴g(x)在x∈(0,1]单调递减.∴c.②当x≥1时,令v(x)=lnx-,得到c=lnx-=m(x),则=>0,故m(x)在[1,+∞)上单调递增,∴c≥m(1)=.综上①②可知:当时,方程|lnx|=f(x)无实数根;当时,方程|lnx|=f(x)有一个实数根;当时,方程|lnx|=f(x)有两个实数根.【点评】本题综合考查了利用导数研究函数的单调性、极值最值、数形结合的思想方法、分类讨论的思想方法等基础知识与基本技能,考查了推理能力和计算能力及其化归思想方法.22.(13分)椭圆C:的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.【分析】(1)把-c代入椭圆方程得,解得,由已知过F1且垂直于x轴的直线被椭圆C截得的线段长为1,可得.再利用,及a2=b2+c2即可得出;(2)设|PF1|=t,|PF2|=n,由角平分线的性质可得,利用椭圆的定义可得t+n=2a=4,消去t得到,化为,再根据a-c<n<a+c,即可得到m的取值范围;(3)设P(x0,y),不妨设y>0,由椭圆方程,取,利用导数即可得到切线的斜率,再利用斜率计算公式即可得到k1,k2,代入即可证明结论.【解答】解:(1)把-c代入椭圆方程得,解得,∵过F1且垂直于x轴的直线被椭圆C截得的线段长为1,∴.又,联立得解得,∴椭圆C的方程为.(2)如图所示,设|PF1|=t,|PF2|=n,由角平分线的性质可得,又t+n=2a=4,消去t得到,化为,∵a-c<n<a+c,即,也即,解得. ∴m的取值范围;.(3)证明:设P(x0,y),不妨设y>0,由椭圆方程,取,则=, ∴k==.∵,,∴=,.∴==-8为定值【点评】本题综合考查了椭圆的定义、标准方程及其性质、角平分线的性质、利用导数的几何意义研究切线、斜率计算公式等基础知识,考查了推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.第21页,共21页。

2013年普通高等学校招生全国统一考试(山东卷)理科数学精美word

2013年普通高等学校招生全国统一考试(山东卷)理科数学精美word

2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 若复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为 (A ) 2+i (B ) 2-i (C ) 5+i (D ) 5-i(2) 已知集合A ={0,1,2},则集合B={x-y|x ∈A, y ∈A}中元素的个数是 (A ) 1 (B ) 3 (C ) 5 (D ) 9(3)已知函数f(x) 为函数设且x >0时,21()f x x x=+,则f(-1)=(A ) -2 (B ) 0 (C ) 1 (D ) 2(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 (A )125π (B )3π (C )4π (D )6π(5)将函数y=sin(2x+Φ)的图象沿轴向左平移个单位后,得到一个偶函数的图象,则Φ的一个可能取值为 (A )43π (B )4π (C )0 (D )-4π(6)在平面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为(A )2(B )1(C )31-(D )21-(7)给定两个命题p,q. 若﹁p 是q 的必要而不充分条件,则p 是﹁q 的 (A )充分而不必要条件(B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 (8)函数y=xcosx+sinx 的图象大致为(9过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为A .032=-+y xB . 032=--y xC . 034=--y xD .034=-+y x(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A )243 (B)252 (C)261 (D)279 (11)抛物线C 1:212y xp=(p >0)的焦点与双曲线C 2:2213xy -=的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平等于C 2的一条渐近线,则p=(A )163 (B )83 (C )3(D )334(12)设正实数x ,y ,z 满足x 2-3xy+4y 2-z=0,则当zxy 取得最大值时,zyx212-+的最大值为(A )0 (B )1 (C )49 (D )3第Ⅱ卷(共90分)(D)二、填空题:本大题共4小题,每小题4分,共16分。

2013年普通高等学校招生全国统一考试(山东卷)理科数学

2013年普通高等学校招生全国统一考试(山东卷)理科数学

绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ()(A)-2(B)0 (C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。

【数学】2013年高考真题山东卷(理)解析版

【数学】2013年高考真题山东卷(理)解析版

2013年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( D )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y |x∈A, y∈A }中元素的个数是( C )A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时, f(x) =x2+1x,则f(-1)= ( A )(A)-2 (B)0 (C)1 (D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为94,底面积是边长为三角形,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( B )(A)512π(B)3π(C)4π(D)6π(5)将函数y=sin(2x +ϕ)的图像沿x轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为 B(A)34π(B)4π(C)0 (D)4π-(6)在平面直角坐标系xOy中,M为不等式组:2x y20 x2y10 3x y80 --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM斜率的最小值为 C(A)2 (B)1 (C)13-(D)12-(7)给定两个命题p、q,若﹁p是q的必要而不充分条件,则p是﹁q的 B(A )充分而不必条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件(8)函数y=xcosx + sinx 的图象大致为 D(A ) (B ) (C) (D) (9)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 A(A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 B(A )243 (B )252 (C )261 (D )279(11)抛物线C1:y= 12p x2(p >0)的焦点与双曲线C2: 2213x y -=的右焦点的连线交C1于第一象限的点M.若C1在点M 处的切线平行于C2的一条渐近线,则p=D(12)设正实数x,y,z 满足x2-3xy+4y2-z=0.则当xy z 取得最大值时,212x y z +-的最大值为 B(A )0 (B )1(C ) 94(D )3二、填空题:本大题共4小题,每小题4分,共16分 (13)执行右面的程序框图,若输入的ε的值为0.25,则输入的n 的值为 3(14)在区间[-3,3]上随机取一个数x ,使得 |x+1 |- |x-2 |≥1成立的概率为 13(15)已知向量AB 与AC 的夹角为120,且||3,||2,AB AC ==若,AP AB AC λ=+且AP BC⊥,则实数λ的值为7 12(16)定义“正对数”:0,01lnln,1xxx x+<<⎧=⎨≥⎩,现有四个命题:①若0,0a b>>,则ln()lnba b a++=②若0,0a b>>,则ln()ln lnab a b+++=+③若0,0a b>>,则ln()ln lnaa bb+++≥-④若0,0a b>>,则ln()ln ln ln2a b a b++++≤++其中的真命题有:①③④(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.(17)设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB= 7 9.(Ⅰ)求a,c的值;(Ⅱ)求sin(A-B)的值.解答:(1)由cosB= 79与余弦定理得,221449a c ac+-=,又a+c=6,解得3a c==(2)又a=3,b=2,sin B=与正弦定理可得,sin A=,1cos3A=,所以sin(A-B)(18)(本小题满分12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH。

2013年山东高考理科数学

2013年山东高考理科数学

2013年普通高等学校招生全国统一考试(山东卷)理 科 数 学第Ⅰ卷(共60分)一、选择题: 本大题共12个小题, 每小题5分, 共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数z 为 .A i +2 .B i -2 .C i +5 .D i -52. 已知集合}2,1,0{=A ,则集合},{A y A x y x B ∈∈-=中元素的个数是 .A 1 .B 3 .C 5 .D 93. 已知函数)(x f 为奇函数,当0>x 时,xx x f 1)(2+=,在=-)1(f .A 2- .B 0 .C 1 .D 24. 已知三棱柱111C B A ABC -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111C B A 的中心,则PA 与平面ABC 所成角的大小为 .A π125 .B 3π .C 4π .D 6π 5. 将函数)2sin(ϕ+=x y 的图像沿x 轴向左平移8π个单位后,得到一个偶函数,则ϕ的一个可能取值是 .A π43 .B 4π .C 0 .D 4π-6. 在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≤-+≥-+≥--083012022y x y x y x 所表示的平面区域上一动点,则OM 斜率的最小值为.A 2 .B 1 .C 31- .D 21- 7. 给定两个命题q p ,,若p ⌝是q 的必要而不充分条件,在p 是p ⌝的 .A 充分而不必要条件 .B 必要而不充分条件.C 充要条件 .D 既不充分也不必要条件8. 函数x x x y sin cos +=的图像大致为.A .B .C .D9. 过点)1,3(作圆1)1(22=+-y x 的两条切线,切点分别为B A ,,则直线AB 的方程为 .A 032=+-y x .B 032=--y x .C 034=--y x .D 034=-+y x10. 用0,1,2,……,9十个数字,可以组成有重复数字的三位数的个数为 .A 243 .B 252 .C 261 .D 27911. 抛物线:1C )0(212>=p x py 的焦点与双曲线:2C 1322=-y x 的右焦点的连线交2C 于第一象限的点M 。

2013山东高考数学试卷(理科)及答案详解

2013山东高考数学试卷(理科)及答案详解

2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=∙P AB P A P B 。

第Ⅰ卷(共60分)一、选择题:本大题共12小题。

每小题5分共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 2 4、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 (A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π (C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13- (D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为(A)(B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)(B)(C)(D)12、设正实数,,x y z 满足22340.-+-=x xy y z 则当xy z取得最大值时,212+-的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分。

2013年普通高等学校招生全国统一考试 山东理科数学试题

2013年普通高等学校招生全国统一考试 山东理科数学试题

2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立,那么P (AB )=P(A)*P(B)第Ⅰ卷 (共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数 为( )A. 2+iB.2-iC. 5+iD.5-i (2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9 (3)已知函数f(x)为奇函数,且当x>0时, xx x f 1)(2+= ,则)1(-f = ( ) (A )-2 (B )0 (C )1 (D )2 (4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为 49, 底面是边长为 3的正三角形, 若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( ) (A )5π (B )π (C ) π (D ) π(5)将函数y=sin (2x +φ)的图像沿x 轴向左平移 个单位后,得到一个偶函数的图像,则φ的一个可能取值为 (A ) 43π (B )4π (C )0 (D ) 4π-(6)在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≤-+≥-+≥--083012022y x y x y x 所表示的区域上一动点,则直线OM 斜率的最小值为(A )2 (B )1 (C ) 31- (D ) 21-(7)给定两个命题p ,q 。

2013年普通高等学校招生统一考试山东省数学(理)卷文档版

2013年普通高等学校招生统一考试山东省数学(理)卷文档版

绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ()(A)-2(B)0 (C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。

2013年高考试题——数学理(山东卷)

2013年高考试题——数学理(山东卷)

2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟,参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 若复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为 (A ) 2+i (B ) 2-i (C ) 5+i (D ) 5-i(2) 已知集合A ={0,1,2},则集合B={x-y|x ∈A, y ∈A}中元素的个数是 (A ) 1 (B ) 3 (C ) 5 (D ) 9(3)已知函数f(x) 为函数设且x >0时, f(x)= x 2+x1,则f(-1)= (A ) -2 (B ) 0 (C ) 1 (D ) 2(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 (A )125π (B )3π (C )4π (D )6π (5)将函数y=sin(2x+Φ)的图象沿轴向左平移个单位后,得到一个偶函数的图象,则Φ的一个可能取值为 (A )43π (B )4π (C )0 (D )-4π(6)在平面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为( ) (A )2(B )1(C )31-(D )21- (7)给定两个命题p,q.若﹃p 是q 的必要而不充分条件,则p 是﹃q 的(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(8)函数y=xcosx+sinx 的图象大致为(9过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为A .032=-+y xB . 032=--y xC .034=--y x D .034=-+y x(D)(A )243 (B)252 (C)261 (D)279(11)抛物线C1:221x py =(p >0)的焦点与双曲线C2:1322=-y x 的右焦点的连线交C1于第一象限的点M 。

2013年普通高等学校招生全国统一考试数学理试题(山东卷)

2013年普通高等学校招生全国统一考试数学理试题(山东卷)

2013年山东高考数学理试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( ) A. 2+i B.2-i C. 5+i D.5-i 【答案】D【解析】由(z-3)(2-i)=5,得55(2)5(2)3332352(2)(2)5i i z i i i i i ++=+=+=+=++=+--+,所以5z i =-,选D.(2)设集合A={0,1,2},则集合B={x-y |x ∈A, y ∈A }中元素的个数是( ) A. 1 B. 3 C. 5 D.9【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=--,即{2,1,0,1,2}B =--,有5个元素,选C.(3)已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+1x,则f(-1)= ( ) (A )-2 (B )0 (C )1 (D )2 【答案】A【解析】因为函数为奇函数,所以(1)(1)(11)2f f -=-=-+=-,选A. (4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( ) (A )512π (B )3π (C ) 4π (D ) 6π 【答案】B 【解析】取正三角形ABC 的中心,连结OP ,则PAO ∠是PA 与平面ABC 所成的角。

因为底面边长为3,所以33322AD =⨯=,2231332AO AD ==⨯=.三棱柱的体积为21139(3)224AA ⨯⨯=,解得13AA =,即13OP AA ==,所以tan 3OP PAO OA∠==,即3PAO π∠=,选B.(5)将函数y=sin (2x +ϕ)的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为 (A )34π (B ) 4π (C )0 (D ) 4π- 【答案】B【解析】将函数y=sin (2x +ϕ)的图像沿x 轴向左平移8π个单位,得到函数sin[2()]sin(2)84y x x ππϕϕ=++=++,因为此时函数为偶函数,所以,42k k Z ππϕπ+=+∈,即,4k k Z πϕπ=+∈,所以选B.(6)在平面直角坐标系xOy 中,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为 (A )2 (B )1 (C ) 13- (D ) 12- 【答案】 C【解析】作出可行域如图,由图象可知当M 位于点D 处时,OM 的斜率最小。

2013年高考理科数学山东卷试题与答案word解析版

2013年高考理科数学山东卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(山东卷) 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 答案:D解析:由题意得z -3=52i-=2+i ,所以z =5+i.故z =5-i ,应选D. 2. 答案:C解析:当x ,y 取相同的数时,x -y =0;当x =0,y =1时,x -y =-1;当x =0,y =2时,x -y =-2;当x =1,y =0时,x -y =1;当x =2,y =0时,x -y =2;其他则重复.故集合B 中有0,-1,-2,1,2,共5个元素,应选C. 3. 答案:A解析:因为f (x )是奇函数,故f (-1)=-f (1)=2111⎛⎫-+ ⎪⎝⎭=-2,应选A. 4. 答案:B解析:如图所示,由棱柱体积为94.设P 在平面ABC上射影为O ,则可求得AO 长为1,故AP 2=故∠PAO =π3,即PA 与平面ABC 所成的角为π3. 5. 答案:B解析:函数y =sin(2x +φ)的图象向左平移π8个单位后变为函数πsin 28y x ϕ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦=πsin 24x ϕ⎛⎫++ ⎪⎝⎭的图象,又πsin 24y x ϕ⎛⎫++ ⎪⎝⎭=为偶函数,故πππ42k ϕ+=+,k ∈Z ,∴ππ4k ϕ=+,k ∈Z .若k =0,则π4ϕ=.故选B. 6. 答案:C解析:不等式组表示的区域如图阴影部分所示,结合斜率变化规律,当M 位于C 点时OM 斜率最小,且为13-,故选C.7. 答案:A解析:由题意:q ⇒⌝p ,⌝pq ,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p 是⌝q 的充分而不必要条件.故选A. 8. 答案:D解析:因f (-x )=-x ·cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈π0,2⎛⎫⎪⎝⎭,y >0,排除C ,而x =π时,y =-π,排除A ,故选D. 9. 答案:A解析:该切线方程为y =k (x -3)+1,即kx -y -3k +1=0=1,得k =0或43,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),93,55⎛⎫- ⎪⎝⎭,故所求直线的方程为2x +y -3=0.故选A.10. 答案:B解析:构成所有的三位数的个数为11191010C C C =900,而无重复数字的三位数的个数为111998C C C =648,故所求个数为900-648=252,应选B. 11. 答案:D解析:设M 2001,2x x p ⎛⎫ ⎪⎝⎭,21''2x y x p p ⎛⎫== ⎪⎝⎭,故在M点处的切线的斜率为0x p =故M 1,36p p ⎛⎫ ⎪ ⎪⎝⎭.由题意又可知抛物线的焦点为0,2p ⎛⎫⎪⎝⎭,双曲线右焦点为(2,0),且1,36p p ⎛⎫ ⎪ ⎪⎝⎭,0,2p ⎛⎫ ⎪⎝⎭,(2,0)三点共线,可求得pD. 12. 答案:B解析:由x 2-3xy +4y 2-z =0得2234x xy y z -+即xy z≤1,当且仅当x 2=4y 2时成立,又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2,所以222121211+1x y z y y y ⎛⎫+-=-+=-- ⎪⎝⎭,当1=1y ,即y =1时,212x y z+-取得最大值为1,故选B. 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.答案:3解析:第1次运行将F 0+F 1赋值给F 1,即将3赋值给F 1,然后将F 1-F 0赋值给F 0,即将3-1=2赋值给F 0,n 增加1变成2,此时1113F =比ε大,故循环,新F 1为2+3=5,新F 0为5-2=3,n 增加1变成3,此时1115F =≤ε,故退出循环,输出n =3. 14.答案:13解析:设y =|x +1|-|x -2|=3,2,21,12,3,1,x x x x ≥⎧⎪--<<⎨⎪-≤-⎩利用函数图象(图略)可知|x +1|-|x -2|≥1的解集为[1,+∞).而在[-3,3]上满足不等式的x 的取值范围为[1,3],故所求概率为311333-=-(-).15.答案:712解析:∵AP =λAB +AC ,AP ⊥BC ,又BC =AC -AB ,∴(AC -AB )·(AC +λAB )=0.∴AC 2+λAB ·AC -AB ·AC -λAB 2=0,即4+(λ-1)×3×2×12⎛⎫- ⎪⎝⎭-9λ=0,即7-12λ=0,∴λ=712.16.答案:①③④三、解答题:本大题共6小题,共74分.17.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79, 所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B9=. 由正弦定理得sin A=sin 3a Bb =. 因为a =c ,所以A 为锐角. 所以cos A13=. 因此sin(A -B )=sin A cos B -cos A sin B=27. 18.(1)证明:因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点, 所以EF ∥AB ,DC ∥AB .所以EF ∥DC .又EF 平面PCD ,DC ⊂平面PCD , 所以EF ∥平面PCD .又EF ⊂平面EFQ ,平面EFQ ∩平面PCD =GH , 所以EF ∥GH .又EF ∥AB ,所以AB ∥GH .(2)解法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°,即AB ⊥BQ .因为PB ⊥平面ABQ , 所以AB ⊥PB.又BP ∩BQ =B , 所以AB ⊥平面PBQ .由(1)知AB ∥GH ,所以GH ⊥平面PBQ . 又FH ⊂平面PBQ ,所以GH ⊥FH . 同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角. 设BA =BQ =BP =2,连接FC ,在Rt △FBC 中,由勾股定理得FC, 在Rt △PBC 中,由勾股定理得PC又H 为△PBQ 的重心,所以HC=133PC =. 同理FH=3.在△FHC 中,由余弦定理得cos ∠FHC =5524995529+-=-⨯.故二面角D -GH -E 的余弦值为45-.解法二:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°.又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2). 所以EQ =(-1,2,-1),FQ =(0,2,-1),DP =(-1,-1,2),CP =(0,-1,2).设平面EFQ 的一个法向量为m =(x 1,y 1,z 1), 由m ·EQ =0,m ·FQ =0, 得1111120,20,x y z y z -+-=⎧⎨-=⎩取y 1=1,得m =(0,1,2).设平面PDC 的一个法向量为n =(x 2,y 2,z 2), 由n ·DP =0,n ·CP =0, 得2222220,20,x y z y z --+=⎧⎨-+=⎩取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=4||||5=·m n m n .因为二面角D -GH -E 为钝角, 所以二面角D -GH -E 的余弦值为45-. 19.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P (A 1)=328327⎛⎫= ⎪⎝⎭,P (A 2)=2232228C 133327⎛⎫⎛⎫-⨯=⎪ ⎪⎝⎭⎝⎭, P (A 3)=22242214C 133227⎛⎫⎛⎫-⨯=⎪⎪⎝⎭⎝⎭. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4,由题意,各局比赛结果相互独立,所以P (A 4)=22242214C 1133227⎛⎫⎛⎫⎛⎫-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, 又P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427, P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以EX =0×1627+1×427+2×27+3×27=9.20.解:(1)设等差数列{a n }的首项为a 1,公差为d , 由S 4=4S 2,a 2n =2a n +1得11114684,21221 1.a d a d a n d a n d +=+⎧⎨+(-)=+(-)+⎩ 解得a 1=1,d =2.因此a n =2n -1,n ∈N *. (2)由题意知,T n =12n nλ--, 所以n ≥2时,b n =T n -T n -1=12112222n n n n n n ------+=. 故c n =b 2n =21222n n --=11(1)4n n -⎛⎫- ⎪⎝⎭,n ∈N *.所以R n =0×14⎛⎫ ⎪⎝⎭0+1×14⎛⎫ ⎪⎝⎭1+2×14⎛⎫ ⎪⎝⎭2+3×14⎛⎫ ⎪⎝⎭3+…+(n -1)×14⎛⎫ ⎪⎝⎭n -1,则14R n =0×14⎛⎫ ⎪⎝⎭1+1×14⎛⎫ ⎪⎝⎭2+2×14⎛⎫ ⎪⎝⎭3+…+(n -2)×14⎛⎫ ⎪⎝⎭n -1+(n -1)×14⎛⎫ ⎪⎝⎭n , 两式相减得34R n =14⎛⎫ ⎪⎝⎭1+14⎛⎫ ⎪⎝⎭2+14⎛⎫ ⎪⎝⎭3+…+14⎛⎫ ⎪⎝⎭n -1-(n -1)×14⎛⎫ ⎪⎝⎭n =11144(1)1414nn n ⎛⎫- ⎪⎛⎫⎝⎭--⨯ ⎪⎝⎭- =1131334nn +⎛⎫- ⎪⎝⎭, 整理得R n =1131494n n -+⎛⎫- ⎪⎝⎭,所以数列{c n }的前n 项和R n =1131494n n -+⎛⎫- ⎪⎝⎭.21.解:(1)f ′(x )=(1-2x )e -2x, 由f ′(x )=0,解得x =12. 当x <12时,f ′(x )>0,f (x )单调递增; 当x >12时,f ′(x )<0,f (x )单调递减.所以,函数f (x )的单调递增区间是1,2⎛⎫-∞ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭,最大值为111e 22f c -⎛⎫=+ ⎪⎝⎭.(2)令g (x )=|ln x |-f (x )=|ln x |-x e -2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,ln x >0,则g (x )=ln x -x e -2x-c , 所以g ′(x )=22e e21x xx x -⎛⎫+- ⎪⎝⎭. 因为2x -1>0,2e xx>0,所以g ′(x )>0.因此g (x )在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x <0,则g (x )=-ln x -x e -2x-c . 所以g ′(x )=22e e21x xx x -⎛⎫-+- ⎪⎝⎭. 因为e 2x∈(1,e 2),e 2x>1>x >0,所以2e xx -<-1.又2x -1<1,所以2e xx-+2x -1<0,即g ′(x )<0.因此g (x )在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g (x )≥g (1)=-e -2-c .当g (1)=-e -2-c >0,即c <-e -2时,g (x )没有零点, 故关于x 的方程|ln x |=f (x )根的个数为0;当g (1)=-e -2-c =0,即c =-e -2时,g (x )只有一个零点, 故关于x 的方程|ln x |=f (x )根的个数为1;当g (1)=-e -2-c <0,即c >-e -2时, 当x ∈(1,+∞)时,由(1)知g (x )=ln x -x e -2x -c ≥11ln e 2x c -⎛⎫-+ ⎪⎝⎭>ln x -1-c ,要使g (x )>0,只需使ln x -1-c >0,即x ∈(e 1+c,+∞);当x ∈(0,1)时,由(1)知g (x )=-ln x -x e -2x -c ≥11ln e 2x c -⎛⎫--+ ⎪⎝⎭>-ln x -1-c ,要使g (x )>0,只需-ln x -1-c >0,即x ∈(0,e -1-c);所以c >-e -2时,g (x )有两个零点,故关于x 的方程|ln x |=f (x )根的个数为2. 综上所述,当c <-e -2时,关于x 的方程|ln x |=f (x )根的个数为0;当c =-e -2时,关于x 的方程|ln x |=f (x )根的个数为1;当c >-e -2时,关于x 的方程|ln x |=f (x )根的个数为2. 22.(1)解:由于c 2=a 2-b 2,将x =-c 代入椭圆方程2222=1x y a b+,得2b y a =±,由题意知22=1b a ,即a =2b 2.又c e a ==,所以a =2,b =1.所以椭圆C 的方程为2214x y +=. (2)解法一:设P (x 0,y 0)(y 0≠0). 又F 1(,0),F 2,0), 所以直线PF 1,PF 2的方程分别为lPF 1:y 0x -(x 0yy 0=0, lPF 2:y 0x -(x 0yy 0=0.由于点P 在椭圆上,所以220014x y +=,=.因为m2<x 0<2,=所以m =034x .因此3322m -<<.解法二:设P (x 0,y 0).当0≤x 0<2时,①当0x =时,直线PF 2的斜率不存在,易知P 12⎫⎪⎭或P 12⎫-⎪⎭. 若P 12⎫⎪⎭,则直线PF 1的方程为0x -=.m =,因为m所以m =若P 12⎫-⎪⎭,同理可得m =.②当x 0时,设直线PF 1,PF 2的方程分别为y =k 1(x),y =k 2(x).=,221221111k k +=+. 因为220014x y +=, 并且k 1,k 2,222=22==.因为为m,0≤x 0<2且x 0=.整理得m =34x , 故0≤m <32且m综合①②可得0≤m <32.当-2<x 0<0时,同理可得32-<m <0. 综上所述,m 的取值范围是33,22⎛⎫- ⎪⎝⎭.(3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立22001,4x y y y k x x ⎧+=⎪⎨⎪-=(-)⎩整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(20y -2kx 0y 0+220k x -1)=0.由题意Δ=0,即220(4)x k -+2x 0y 0k +1-20y =0.又220014x y +=, 所以22016y k +8x 0y 0k +20x =0,故k =004xy -.由(2)知00012000211x x x k k y y y +=+=, 所以121211111kk kk k k k ⎛⎫+=+ ⎪⎝⎭ =000042=8y xx y ⎛⎫-⋅- ⎪⎝⎭, 因此1211kk kk +为定值,这个定值为-8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。

共4页,满分150分。

考试用时150分钟.考试结束后,将本卷和答题卡一并交回。

注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立,那么P (AB )=P(A)*P(B) 第Ⅰ卷 (共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、复数z 满足i i z (5)2)(3(=--为虚数单位),则z 的共轭复数-z 为( ) (A )2+i (B )2-i (C )5+i (D )5-i 【解析】i i iz +=++=+-=532325,所以i z -=5,故选D. 2、已知集合}2,1,0{=A ,则集合},|{A y A x y x B ∈∈-=中元素的个数是( ) (A )1 (B )3 (C )5 (D )9【解析】{}2,1,0,2,1},|{--=∈∈-=A y A x y x B ,所以有5个元素,故选C. 3、已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则)1(-f =( ) (A )-2 (B )0 (C )1 (D )2 【解析】()()211-=-=-f f ,故选A 。

4、已知三棱柱111C B A ABC -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111C B A 的中心,则PA 与平面ABC 所成角的大小为( ) (A )125π (B )3π (C )4π (D )6π【解析】因为底面边长为3的正三角形,所以底面积为()4333432==S ,又体积为49433===h Sh V ,所以3=h ,即有3=PO , 1333=⨯=AO ,所以在直角三角形POA 中,∠PAO=3π,故选B.5、若函数)2sin()(ϕ+=x x f 的图像沿x 轴向左平移8π个单位,得到一个偶函数的图像,则ϕ的一个可能取值为( ) (A )43π (B )4π (C )0 (D )4π-【解析】()x f 向左平移8π个单位,得⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+ϕπϕππ42sin 82sin 8x x x f ,这个新函数是偶函数,则()z n n ∈+=+,2124πϕπ, 所以ππϕ41+=n ,故选B. 也可以直接把选择支代入验证。

6、在平面直角坐标系x O y 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线O M 斜率的最小值为()2A ()1B ()13C -()12D -【解析】点A(3,-1),B(2,2),所以直线O M 斜率的最小值为31-=OA k ,故选C 7、给定两个命题,、q p 若p ⌝是q 的必要而不充分条件,则p 是q ⌝的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件【解析】p ⌝是q 的必要而不充分条件 即,,q p q p ⇐⌝⇒/⌝也是q p q p ⌝⇒⌝⇐/,,故选A 8、函数x x x y sin cos +=的图象大致为xyπOxyπOxyπOxyy = f (x )πO(A) (B) (C) (D) 【解析】先判奇偶性,为奇函数,淘汰B.再取ππ,2=x 时,y 的值为1,π-,淘汰A,C,故选D9、过点(3,1)作圆1)1(22=+-y x 作圆的两条切线切点为A ,B ,则直线AB 的方程 (A )032=-+y x (B )032=--y x (C )034=--y x (D )034=-+y x【解析】切点弦方程为()()()()11131=+--y x ,即032=-+y x 。

故选A 。

10、用0,1,2,3, ,9十个数字可以组成有重复数字的三位数的个数为 (A )243 (B )252 (C )261 (D )279【解析】直接法:1.三位重复:9个;2.两位重复:2438299299=⨯⨯+⨯+⨯;故选B 间接法:三位数共900,无重复数字的三位数有648899=⨯⨯,相减得900-648=252.11、抛物线)0(21:21>=p x py C 的焦点与双曲线13:222=-y x C 的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则=pA.63 (B )83 (C )332 (D )334【解析】抛物线)0(21:21>=p x py C 的焦点F 坐标为(0,p/2),, 双曲线13:222=-y x C 的右焦点F 2(2,0),FF 2的方程为12/2=+p y x ,设点M ⎪⎪⎭⎫ ⎝⎛p x x 220,0,所以12/2220=+p p x x , 由题意得切点处的斜率为310=p x ,解得334=p ,故选D. 12、设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取最大值时,z y x 212-+的最大值为(A )0 (B )1 (C )49(D )3 【解析】把04322=-+-z y xy x 代入zxy得132********2=-⨯≤-+=+-=xy y x yxy x xy z xy 当且仅当y x xyy x 24=⇔=,此时222243y y xy x z =+-=, 所以11111222122212222≤+⎪⎪⎭⎫ ⎝⎛--=-=-+=-+y y y y y y z y x 当且仅当2,2,1===z x y 时,取等号,所以zy x 212-+的最大值为1.故选B. 二、填空题:本大题共4小题,每小题4分,共16分13、执行右面的程序框图,若输入的ε值为0.25,则输出的n 的值为_______3_______ 【解析】第一次执行循环框:ε>==+==-==+=311,211,213,321101F n F F 不满足要求,继续执行循环; 第二次执行循环框:ε<==+==-==+=511,312,325,532101F n F F 满足要求,跳出循环,输出n 的值为3。

【评分细则】等价形式3.0 如果写成3,26,13=n ,都不得分。

不可以写成表达式,如:2+1,9等等,都认定为错误,不得分。

14、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为_____31_____ 【解析】121x x +--≥1≥⇔x这是一个几何概型问题,样本空间的长度为6,事件“121x x +--≥成立”的长度为2,所以所求的概率为2/6=1/3,【评分细则】等价形式1/3;2/6;;3.0;3333.0;62;31⋅注意:其他写法都认为不正确,如3.0;31;3/1;124==p p ,都不得分。

15、已知向量−→−AB 与−→−AC 的夹角1200且|−→−AB |=3,|−→−AC |=2,若−→−−→−−→−+=AC AB AP λ,否是开始输入ε(ε>0)F 0=1,F 1=2,n=1F 1=F 0+F 1F 0=F 1-F 0n=n+11F 1≤ε输出n 结束且−→−−→−⊥BC AP ,则实数λ的值为___127_________. 【解析】因为−→−−→−−→−-=AB AC BC ,且−→−−→−⊥BC AP ,所以=⋅=−→−−→−BC AP 0()221−→−−→−−→−−→−−→−−→−−→−−→−+-⋅-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+AC AB AB AC AB AC AC AB λλλ()127,49212310=+-⎪⎭⎫⎝⎛-⨯⨯⨯-=λλλ【评分细则】等价形式7/12注意:其他写法都认定为不正确,如12/7;127==λλ,不得分。

16、定义“正对数”:0,01ln ,ln ,1x x x x +<<⎧=⎨≥⎩现有四个命题:①若0,0,a b >>()l n l n ;b a b a ++=②若0,0,a b >>()l n l n l n ;a b a b +++=+ ③若0,0,a b >>l n l n l n ;a a b b +++⎛⎫≥- ⎪⎝⎭④若0,0,a b >>()l n l n l n +l n 2;a b a b ++++≤+ 其中真命题有___①③④_________.(写出所有真命题的编号)【解析】本题是新定义型问题,解题时要严格按照所给定义对每一个选项逐一论证或排除。

①若0,0,a b >>()l n l n ;b a b a ++=当1>a 时,0>b ,1>ba ,所以()ab aa bbln ln ln==+,a b a b ln ln =+,所以有()l n l n ;b a ba ++=当10<<a 时,0>b ,10<<ba ,所以()0ln=+ba ,0ln =+a b ,所以有()l n l n ;b a ba ++=故①是真命题;②若0,0,a b >>()l n l n l n ;a b a b +++=+ 当21,2==b a 时,()2ln 02ln ln ln ,0ln =+=+=+++b a ab 所以②是假命题;③若0,0,a b >>l n l n l n ;a ab b +++⎛⎫≥- ⎪⎝⎭当,10,10≤<≤<b a 时,0ln ln =-++b a ,0ln ≥⎪⎭⎫ ⎝⎛+b a ,所以l n l n l n ;a a b b +++⎛⎫≥- ⎪⎝⎭当,10,1≤<>b a 时,,ln 0ln ln ln a a b a =-=-++a b a b a b a ln ln ln ln ln ≥-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+,所以l n l n l n ;a ab b +++⎛⎫≥- ⎪⎝⎭当,10,1≤<>a b 时,0ln ln 0ln ln <-=-=-++b b b a0ln ,1=⎪⎭⎫ ⎝⎛<+b a b a ,所以l n l n l n ;a a b b +++⎛⎫≥- ⎪⎝⎭当1,1>>b a 时,若b a >,则ba b a ln ln ln ln -=-++b a b a b a ln ln ln ln -==⎪⎭⎫⎝⎛+,若b a ≤,则0ln ln ln ln ≤-=-++b a b a0ln =⎪⎭⎫ ⎝⎛+b a ,所以总有l n l n l n ;a ab b +++⎛⎫≥- ⎪⎝⎭故③是真命题;④若0,0,a b >>()l n l n l n +l n 2;a b a b ++++≤+ 当10≤+<b a 时,()0ln =++b a ,02ln 002ln ln ln >++=++++b a ,当1>+b a 时,()()b a b a +=++ln ln,若1,1>>b a ,则()ab b a b a 2ln 2ln ln ln 2ln ln ln =++=++++,()()ab b a a b b a ab b a 2,0112<+∴<-+-=-+,所以()l n l n l n +l n 2;a b a b ++++≤+ 若10,1≤<>b a ,则()a a b a 2ln 2ln 0ln 2ln ln ln =++=++++,02<-=-+a b a b a ,所以()l n l n l n +l n 2;a b a b ++++≤+ 若10,1≤<>a b ,同样有()l n l n l n +l n 2;a b a b ++++≤+ 若10,10≤<≤<b a ,则2ln 2ln 002ln ln ln =++=++++b a ,2<+b a ,所以()l n l n l n +l n 2;a b a b ++++≤+故④是真命题.【评分细则】等价形式①,③,④;1,3,4;1 3 4(可任意顺序) 逗号“,”,分号“;”,顿号“、”,斜杠“/”等分隔符号等同使用。

相关文档
最新文档