河南高考数学考点分析

合集下载

高考数学试卷考点模块

高考数学试卷考点模块

一、集合与函数1. 集合的概念、运算和性质;2. 函数的概念、性质和图像;3. 反函数、复合函数和复合函数的图像;4. 函数的单调性、奇偶性和周期性。

二、三角函数1. 三角函数的定义、性质和图像;2. 三角恒等变换;3. 解三角方程;4. 三角不等式。

三、平面向量1. 向量的概念、运算和性质;2. 向量与数乘;3. 向量的坐标表示;4. 向量共线、垂直和数量积。

四、解析几何1. 直线的方程和性质;2. 圆的方程和性质;3. 点、直线、圆的位置关系;4. 圆锥曲线(椭圆、双曲线、抛物线)的方程、性质和图像。

五、立体几何1. 空间几何体的概念和性质;2. 空间直线、平面和几何体的位置关系;3. 空间几何体的体积和表面积;4. 空间向量在立体几何中的应用。

六、数列1. 数列的概念、性质和运算;2. 等差数列、等比数列的通项公式、求和公式;3. 数列的极限和极限运算。

七、概率与统计1. 随机事件、概率和条件概率;2. 古典概型、几何概型和伯努利概型;3. 离散型随机变量的分布律和期望;4. 假设检验、方差分析等统计方法。

八、复数1. 复数的概念、运算和性质;2. 复数的模和幅角;3. 复数的三角表示法;4. 解复数方程。

九、不等式与不等式组1. 不等式的基本性质;2. 不等式的解法;3. 不等式组的应用。

十、线性规划1. 线性规划的概念和模型;2. 线性规划的基本理论和方法;3. 线性规划的应用。

这些考点模块是高考数学试卷的基础,考生在备考过程中应全面掌握,并结合历年高考真题进行练习,提高解题能力。

同时,考生还需关注以下方面:1. 提高数学思维能力,学会从不同角度分析问题;2. 培养良好的数学语言表达能力,提高解题速度;3. 注重解题方法的总结和归纳,形成自己的解题技巧;4. 保持良好的心态,克服考试压力。

高考数学考点解析及分值分布

高考数学考点解析及分值分布

高考数学考点解析1.集合与简易逻辑:10-18分主要章节:必修1第一章《集合》、第三章《函数的应用》选修1-1(文)2-1(理)《常用逻辑用语》考查的重点是抽象思维实力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。

简易逻辑多为考查“充分与必要条件”及命题真伪的判别。

2.函数与导数:30分+主要章节:必修1其次章《基本初等函数》、第三章《函数的应用》必修4第一章《三角函数》必修2第三章《直线与方程》、第四章《园与方程》选修1-1(文)2-1(理)《圆锥曲线与方程》、《导数》选修4-4《极坐标方程》《参数方程》函数是中学数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。

以指数函数、对数函数、复合函数为载体,结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。

函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键。

3.不等式:5-12分主要章节:必修5第三章《不等式》选修4-5全书一般不会单独命题,会在其他题型中“隐藏”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等学问的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。

选择题和填空题主要考查不等式性质、解法及均值不等式。

解答题会与其它学问的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。

4.数列:20-28分主要章节:必修5其次章《数列》数列是中学数学的重要内容,是初等数学与高等数学的重要连接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它学问的综合题。

高考数学259个核心考点(一)

高考数学259个核心考点(一)

高考数学259个核心考点(一)高考数学259个核心考点详解1. 数与式的基本概念与计算自然数、整数、有理数、实数的概念实数的比较大小分数的概念与四则运算百分数与数的运算幂的概念与运算等价与不等价的数2. 数据的收集与处理数据的搜集与整理数据的统计与分析极差、中程数与频数算术平均数、加权算术平均数与众数中位数、分位数与四分位数3. 二次函数与一元二次方程二次函数的图像与性质一元二次方程的解与判别式一元二次方程的应用二次函数与一元二次方程的关系4. 函数与导数函数与函数图像函数的性质与表示方法三角函数与图像的变化导函数与导数的应用函数的极值与最值5. 数列与数学归纳法数列的概念与表示数列的通项公式等差数列与等比数列数列的前n项和与末项数列的应用问题6. 平面向量与坐标系平面向量的概念与表示平面向量的运算与性质向量共线与向量共面平面直角坐标系与参数方程直线的方程7. 空间几何体的性质与计算点、线与面的定义与性质空间几何图形的投影空间几何体的体积与表面积空间几何体的平移与旋转空间几何体的应用问题8. 三角函数与解三角形任意角与弧度制三角函数的概念与性质几何意义与基本公式解三角形的定理与公式三角函数的应用问题9. 概率与统计随机事件与概率的概念概率的加法与乘法定理全概率公式与贝叶斯公式离散型随机变量与概率分布正态分布与标准正态分布以上是高考数学259个核心考点的详细解释与分类。

通过系统地学习这些考点,有助于提高数学水平,准备高考。

希望对你的学习有所帮助!。

高考数学考点归纳之 解析几何计算处理技巧

高考数学考点归纳之 解析几何计算处理技巧

高考数学考点归纳之 解析几何计算处理技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.考点一 回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.答案:22考点二 设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;①“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ), 分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka , 由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c, 整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22考点三 巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直, 即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4. 故r 的取值范围为(2,4).考点四 数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.[典例] 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.[解题观摩] 设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|, 则△APF 的周长为|P A |+|PF |+|AF |=|P A |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a , 由于|AF |+2a 是定值,要使△APF 的周长最小, 则|P A |+|PF 1|最小,即P ,A ,F 1共线, 由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得 y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26, 所以=12×6×66-12×6×26=12 6. [答案] 126 [关键点拨]要求①APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4 B.5 C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.考点五 妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 而F (c,0), 则FB =⎝⎛⎭⎫-32a -c ,b 2,FC =⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°, 故有FB ·FC =⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.[答案]63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练] 设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为( )A .90° B.60° C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.由⎩⎪⎨⎪⎧x 2-y 22=1,x 0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 20x 1x 2]=8-2x 203x 20-4+12-x 20⎣⎢⎡⎦⎥⎤4-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°. 考点六 巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .25D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0), 则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).故直线OM 的斜率的最大值为22. 3.(2019·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5 B.4 C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.4.(2019·兰州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3] B.[3,+∞) C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca ≤3,又e >1,∴1<e ≤3,即双曲线C的离心率的取值范围为(1,3].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5 B.4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.已知椭圆C :x 24+y 2=1,过椭圆上一点A (0,1)作直线l 交椭圆于另一点B ,P 为线段AB 的中点,若直线AB ,OP 的斜率存在且不为零,则k AB k OP =________.解析:法一:(特殊值法)取B ⎝⎛⎭⎫1,32,则P ⎝ ⎛⎭⎪⎫12,2+34,则k AB =3-22,k OP =2+32, 故k AB ·k OP =3-22×2+32=-14. 法二:由题意,设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,消去y 得,(1+4k 2)x 2+8kx =0, 得x B =-8k 1+4k 2,即B ⎝ ⎛⎭⎪⎫-8k 1+4k 2,1-4k 21+4k 2.则P ⎝⎛⎭⎪⎫-4k 1+4k 2,11+4k 2,∴k AB =k ,k OP =-14k ,∴k AB ·k OP =-14.法三:(点差法)设A (x A ,y A ),B (x B ,y B ),P (x 0,y 0),则⎩⎨⎧x 2A4+y 2A =1,x2B4+y 2B=1,两式相减得x 2A -x 2B 4+y 2A -y 2B =0, 化简得y A +y B x A +x B ·y A -y B x A -x B =-14,即y A -y B x A -x B ·y 0x 0=-14,∴k AB ·k OP =-14.答案:-147.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴P A ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2)=x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B .设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:由题意知,A (2,0),B (0,1),设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,所以直线P A 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2,直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1,所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2 =(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。

高考数学的必考点分析

高考数学的必考点分析

高考数学的必考点分析在高考的数学考试中,我们也从很多的资料中了解到,很多的东西其实有它自己的规律,然而,关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

还有一个重要的知识内容就是我们考试大纲里边提到的五大能力,两个意思。

这说的是课程里面的提法,五个能力,两个意思。

我们碰到这样说的抽象概括能力,推理论证能力,空间想象能力,运算求解能力,数据处理能力。

我们在大纲里不一样,大纲版里边讲了四个能力一个意思。

思维能力,运算能力,空间想象能力,实践能力,应用能力。

现在离高考还有将近40多天的时间,在这个时间,我我们回想我们高考的时候就是在积极备战,不断的做题。

有的时候有一些盲从性。

一个目的也是希望在自己经常错误的题的方面纠正它,把不该丢得分数挤出来。

相对平时一些题目还会把它做得更顺畅一点,使我们得分数能够保持稳定基础上能够挤出一定得分数来,最后分数能够更高一点。

为了实现这个目标,有几个要领还是需要把握的。

首先应该考虑到要瞄准得分点,我觉得瞄准得分点是我们提高得分的一种前提。

你希望得分,考什么东西你也不知道,你为了使自己多得分,少丢分,首先应该弄清楚,高考究竟应该考哪些知识点,这些必须清楚。

在这里,最主要应该弄明白,哪些知识内容是容易得分的,从目前来看,看看历年的高考试题,几何,一个小题5分题,稍微注意一下,这5分题就弄上了。

复数也是小题,几乎控制在复数的代数形式的运算上,这个也是容易得分的。

认真审题可提高得分审题包括哪些方面,首要把握审题的基本点,基本的东西你得弄清楚,条件是什么,结论是什么。

这个必须清楚。

审题当中还有一个方面是要紧扣我们审题的关键点,条件知道了,结论知道了,条件和条件什么关系,条件和结论什么关系,关联的地方应该弄明白。

再一个方面就是你得分析一下我们题目的异同点,可能你拿到这道题,这道题以前我做过,但是有没有差异呢?一定要关注一下,这道题目拿到手先想一想以前见过没有,在哪儿见过,我现在见到这个题目和以前有没有差异,哪些方面有差异,认真审视一下。

近三年高考数学试卷分析

近三年高考数学试卷分析

近三年高考数学试卷分析
近三年高考数学试卷难度整体呈现逐年上升的趋势,试题设计更加注重考查学生的综合运用能力和解决问题的能力。

以下对近三年高考数学试卷的题型和考点进行详细分析:
一、选择题部分
近三年高考数学试卷的选择题部分侧重于考查学生对基础知识的掌握和运用能力。

其中,涉及概率、统计和函数的题目较多,要求学生对基本概念和理论有清晰的认识和运用。

二、填空题部分
近三年高考数学试卷的填空题部分主要考查学生解决问题的能力和思维逻辑。

题目设计灵活多样,有的题目涉及常见数学定理和性质,有的题目需要学生具备较强的计算能力和分析能力。

三、解答题部分
近三年高考数学试卷的解答题部分设置较多的证明和实际问题,要求学生运用所学的知识解决实际问题并进行推理和论证。

这部分题目考查学生的分析和综合能力,要求学生能够灵活运用所学知识解决复杂问题。

综上所述,近三年高考数学试卷的整体难度逐年增加,对学生的综合能力提出了更高的要求。

建议考生在备考过程中,注重对基础知识的扎实掌握,注重解题方法的灵活运用,注重实际问题的解决能力培
养。

通过系统学习和不断练习,相信每位考生都能应对高考数学试卷的挑战,取得理想的成绩。

高考真题考点分布数学

高考真题考点分布数学

高考真题考点分布数学近年来,随着高考考试趋势的变化,数学作为高考的一门重要科目,考查的内容也逐渐有了一些变化。

了解高考数学真题的考点分布,可以帮助考生更有针对性地进行复习和备考。

下面将对高考数学真题的考点分布进行分析,帮助考生更好地应对高考。

一、选择题选择题在高考数学试卷中占有相当大的比重,考查的范围比较广。

在选择题考点的分布中,通常包括代数、几何、概率与统计、函数、三角等方面的内容。

在代数中,常考的内容包括方程与不等式、函数、数列等方面;在几何中,常考的内容包括平面几何、立体几何、向量等方面;在概率与统计中,通常考查的是概率、统计等基本概念;在函数中,常考的内容包括函数的性质、图像等方面;在三角中,通常考查的是三角函数的性质、三角函数的应用等方面。

二、填空题填空题在高考数学试卷中也占有一定比重,主要考察考生对基本概念和运算方法的掌握。

填空题考点的分布较为广泛,包括代数、几何、函数、三角、概率与统计等方面。

填空题往往是考查考生对知识点的熟练掌握和灵活运用,因此在备考时应该注重基础知识的积累和运算方法的训练。

三、解答题解答题在高考数学试卷中通常占有一定的比重,主要考查考生的综合运用能力和解决问题的能力。

解答题考点的分布较为灵活,包括代数、几何、函数、三角、概率与统计等方面。

解答题往往是考查考生的综合运用能力和解决问题的能力,因此在备考时应该注重综合能力的培养和问题解决能力的训练。

总的来说,高考数学试卷考点的分布比较广泛,涉及到代数、几何、函数、三角、概率与统计等多个方面的内容。

在备考时,考生应该全面复习,注重基础知识的积累和运算方法的训练,同时注重综合能力的培养和问题解决能力的训练,这样才能更好地应对高考数学试卷。

希望广大考生在备考过程中认真总结高考数学真题的考点分布,做到有的放矢,取得更好的成绩。

祝愿所有考生在高考中取得优异的成绩,实现自己的理想和目标!。

高考数学复习考点讲解与真题分析08---同角三角函数的基本关系及诱导公式

高考数学复习考点讲解与真题分析08---同角三角函数的基本关系及诱导公式

.A sin110 < cos100 < sin1680
.B sin1680 < sin110 < cos100
.C sin110 < sin1680 < cos100
.D
sin1680
<
cos100
<
sin 110 [来源:学科网 ZXXK]
解 为 , 由 于 正 弦 函 数 【 析 】 因 sin160° = sin(180° −12° ) = sin12°, cos10° = cos(90° − 80° ) = sin 80°
之间转化的依据,是三角函数化简、求值、证明的重要工具,主要用于化任意角的三角函数为0o ~ 90o 角
的三角函数或给定区间内角的三角函数.应用诱导公式,既可以直接从九组诱导公式中合理选用,也可以 直接运用十字诀:“奇变偶不变,符号看象限”,一般来说用后一方法记忆负担较轻.应用诱导公式时需 要特别注意符号问题. ◎方法归纳 同角三角恒等变形是三角恒等变形的基础,主要是变名、变式. 1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行 开方时要根据角的象限或范围,判断符号后,正确取舍. 2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:
( 高三 ) 知 , ( 母题变式 1-2-3 2018 江苏徐州
模拟 已 sin(π − x) = 3 则 cos(5π − x) =
在区间 为 函数, , 。 y = sin x
[0° , 90° ] 上 递增
因此 sin11° < sin12° < sin 80° 即 sin11° < sin160° < cos10°

高考数学复习点拨 直线方程的考点分析

高考数学复习点拨 直线方程的考点分析

直线方程的考点分析两条直线的位置关系、点到平面的距离,在高考中经常考查,多以选择题、填空题的形式出现,有时也与其它知识进行综合考查,因此我们要掌握住这部分知识并且达到熟练应用,下面对直线方程的几个考点进行具体分析,以供同学们参考。

一、两条直线平行关系的考查例1:已知(()(()2,2,2,2,0,2,4,2A B C D +--四个点,顺次连接这四个点,试判断四边形ABCD 的形状。

分析:解答本题可先计算四边形ABCD 四条边所在直线的斜率,再根据斜率是否相等或斜率之积是否等于-1,来判断四边形ABCD 的形状。

解:四边形ABCD 是矩形。

由题意可知222(2)2AB k +==--,BC AD CD k k k ======。

所以,AB CD BC AD k k k k ==,所以//,//AB CD BC AD ,所以四边形ABCD 是平行四边形。

又因为1AB BC k k •=-。

所以四边形ABCD 为矩形。

点评:针对这个类型的题目,通常先计算四边形的对边的斜率是否相等来确定对边是否平行,然后验证邻边所在的直线斜率之积是否等于-1来确定是否有一内角为直角,这种方法体现了用代数法解决几何问题的基本思想,这不同于初中平面几何的方法和思想。

二、两条直线垂直问题的考查例2:已知ABC 的三个顶点的坐标分别为()()()1,0,2,0,2,3A B C -,试分别求此三角形三条边的高所在直线的斜率。

分析:解答本题可先结合图形,再根据ABC 三边所在直线斜率情况确定三条边的高所在直线的斜率。

为直角三角形,且AB 边在x 轴上,所以BC 边所在的直线斜率边上的高的斜率为k ,3012(1)AC k -==--。

由1AC k k •=-,得1k =-。

综上可知,BC 边上的高所在的直线的斜率为0;AB 边上的高所在的直线的斜率不存在;AC 边上的高所在的直线的斜率为-1.点评:本题可借助所在直线的斜率关系来解决,使几何问题代数化。

高考数学复习考点讲解与真题分析02---平面的基本性质与推论

高考数学复习考点讲解与真题分析02---平面的基本性质与推论

) 来源 [ :]
.A 0
.B 2
.C 4
D.无穷多个
2.D 解析:作一个与 l 平行且距离为 π 的平面 α,在 α 内作一条直线 m 与 l 的夹角为π3,则 α 上与 m 平行的 直线均同时满足三个条件.故选 D. 【失分点分析】本题借助于异面直线的夹角、距离等概念考查空间想象能力.在空间中 ,当两条异面直线
c 与 ,a b 分别交于 ,A B 两点,因为 a ⊂ α,b ⊂ α , A∈ a, B ∈ b ,则 A∈α,C ∈α , 所以c ⊂ α ,同理可证d ⊂ α ,所以 a,b,c,d 四线共面。
(2)三线共点情况,设 a, ,b c 三线相交于点 ,H d 与 a,b,c 分别交于 E,F,G 三点,因为 a,c, ,c d 两两相交且不共点,所以 H ∉d ,所以点 H 与直线 d 可确定一平面 β , 由 E ∈ d ,得 E ∈ β ,又由 H ∈ β , E ∈ β 得 a ⊂ β ,同理可证b ⊂ β , c ⊂ β ,所以 a,b,c,c 四线 共面。
2/9
M、N、P、Q 四点共面。
解:如图,连结 并延长交 延长线于 , MN
DC
O
[来源:学,科,网]
则 ∆MBN ≅ ∆OCN ,所以 CO=MB,连结 PQ 并延长交 DC 延长线于O1 ,则 ∆PC1Q ≅ ∆O1CQ ,所 以CO1 = PC1 ,又因为CO = CO1,所以 O 与O1 重合,所以 、 PQ MN 相交于一点, 所以 M、N、P、Q 四点共面。
形的存在性,又保证了图形的唯一性.性质 3 符号语言:P∈α,且 ∈P β⇒ α I β =l,且P∈l..揭示了两个平
面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.今后所说的两个平面(或 两条直线),如无特殊说明,均指不同的平面(直线)王奎新新屯疆敞,性质 3 的应用:确定两相交平面的交线位置;判定点在直 线上

河南高考数学考点分析

河南高考数学考点分析

说明:河南省于2011年开始使用新课标卷高考,同一份试题的还有新疆、宁夏、 吉林、黑龙江、云南、河北、内蒙古1、试卷分为I卷(选择题)和II卷(非选择题)两部分。

第I卷1至3页,第II卷3至5页。

全卷满分150分。

考试时间120分。

6月7号下午3:00-5:00。

2、选择题共计12小题,每小题5分,共60分,只有一项是符合题目要求;(1-12)填空题共计4小题,每小题5分,共20分;(13-16)解答题17-21题为必做题,每小题12分,22-24题为选做题,每小题10分,共70分。

(17-24)选考题内容分别为选修4-1(几何选讲)、选修4-4(坐标系与参数方程)、4-5(不等式选讲)3、文理有9道同题不同号试题和5道姊妹试题。

选考内容及要求必做题为:数列(三角函数)、概率统计、立体几何、解析几何、函数和导数;3选1是:平面几何证明、坐标系与参数方程、不等式文科2011第1题集合集合第2题复数复数第3题函数统计概率第4题圆锥曲线解析几何第5题程序框图线性规划命题第6题概率算法框图数列第7题三角函数立体几何算法第8题三视图立体几何解析几何第9题圆锥曲线三角函数图像的判定第10题函数解析几何解三角形第11题三角函数集合函数统计概率第12题函数数列推理函数数形结合的能力第13题平面向量导数应用向量第14题线性规划数列推理函数第15题解三角形向量运算解析几何第16题立体几何集合函数三角函数第17题数列解三角形数列第18题立体几何统计概率统计概率第19题概率立体几何立体几何第20题解析几何解析几何导数第21题导数应用导数应用解析几何第22题几何证明平几选讲平几选讲第23题参数坐标参数坐标参数坐标第24题不等选讲不等选讲不等选讲理科20112013第1题复数集合集合第2题函数性质排列组合复数第3题程序框图复数统计、概率第4题概率解析几何解析几何第5题三角函数等比数列算法第6题三视图程序框图立体几何第7题圆锥曲线立体几何数列、推理解析几何双曲线20122013年主干知识中函数约22分,立体几何约22分,圆锥曲线约22分,三角约2012年集合与常用逻辑用语5-10分,函数10-15分,导数及其应用5-10分,三角函数、解三角形10-20分,平面向量、复数15分左右,数列20分左右,不等式5-10分,立体几何初步17分左右,解析几何20分左右,概率与统计、统计案例20分左右,算法初步、推理与证明5-10分2011年函数知识占有比重为53%,几何知识占比重为29%,概率统计知识占比重为11%,选做题占比重为7%。

2025届河南省辉县市第一中学高考数学必刷试卷含解析

2025届河南省辉县市第一中学高考数学必刷试卷含解析

2025届河南省辉县市第一中学高考数学必刷试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线()220y px p =>与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且125cos 7PF F ∠=,则双曲线C 的离心率为( ) A .2或3B .2或3C .2或3D .2或32.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .43.i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是( ) A .-15B .-3C .3D .154.如图网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )A .2B .22C .3D .15.已知焦点为F 的抛物线2:4C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为( ) A .1y x =+或1y x =-- B .1122y x =+或1122y x =-- C .22y x =+或22y x =--D .22y x =-+6.在满足04i i x y <<≤,i i y xi i x y =的实数对(),i i x y (1,2,,,)i n =⋅⋅⋅⋅⋅⋅中,使得1213n n x x x x -++⋅⋅⋅+<成立的正整数n 的最大值为( ) A .5B .6C .7D .97.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=-⎪⎝⎭,则sin C =( )A .7B .7C .12D .198.设m ,n 是空间两条不同的直线,α,β是空间两个不同的平面,给出下列四个命题: ①若//m α,//n β,//αβ,则//m n ; ②若αβ⊥,m β⊥,m α⊄,则//m α; ③若m n ⊥,m α⊥,//αβ,则//n β; ④若αβ⊥,l αβ=,//m α,m l ⊥,则m β⊥.其中正确的是( )A .①②B .②③C .②④D .③④9.已知O 为坐标原点,角α的终边经过点(3,)(0)P m m <且sin α=,则sin 2α=( ) A .45B .35C .35D .45-10.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .2512.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.)A .4.56%B .13.59%C .27.18%D .31.74%二、填空题:本题共4小题,每小题5分,共20分。

高考数学复习考点讲解与真题分析04---指数函数

高考数学复习考点讲解与真题分析04---指数函数

例 2、已知函数 f (x) = 2x − 2,则函数 y =| f (x) | 的图像可能是( )
分析:首先确定函数 f (x) = 2x − 2的图像,然后把函数 f(x)的图像中位于 x 轴下方的部分翻折到 x 轴上方即可。学科*网
2/9

3、已知函数
f
(
x)
=
ax2 + 1, x ≥ 0 (a + 2)eax , x <
是[−1,0) ,故选 A.
点评:在判断、求分段函数的单调区间时,应进行分段求解,若不是连续的单调区间,要分开表达,不 能将它们用并集的形式表述。 四指数函数综合性问题求解策略 1.等价转化
例 ( 斗门一中高三)已知定义域为 的函数 是奇函数 1 2018
R
f
(x)
=
−2x 2 x +1
+ +
b a
2.指数函数的图像:指数函数图像都在 x 轴上方,印证值域是(0,+ ∞) ,需要记住图像方便解题。当a > 1时,
a 的值越大,图像越靠近 y 轴,递增的速度越快;当0 < a <1时,a 的值越小,图像越靠近 y 轴,递减的速 度越快。多个指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系:在 y 轴的右侧,图像从 下到上相应的底数由小变大;在 y 轴的左侧,图像从上到下相应的底数由小变大;即在 y 轴的左侧或右侧, 底数按逆时针方向变大。
高考数学复习考点讲解与真题分析
04---指数函数一重难点:
1、指数幂的运算性质:特别注意式中a > 0,b > 0这一重要条件,显然,对 x ∈ R ,下面的运算就是错误的:
,这是因为, 1

2024年高考数学高频考点题型总结一轮复习 对数与对数函数(精练:基础+重难点)

2024年高考数学高频考点题型总结一轮复习 对数与对数函数(精练:基础+重难点)

2024年高考数学高频考点题型归纳与方法总结第11练对数与对数函数(精练)【A组在基础中考查功底】一、单选题⎝⎭....【答案】A【分析】根据函数的奇偶性和函数值等知识确定正确答案.【详解】依题意ππ),,22y x x⎛⎫=∈- ⎪⎝⎭,cos x为偶函数,则ln(cos)x为偶函数,cos1x<<,则ln(cos)0x<.故选A.(2023春·黑龙江哈尔滨·高三哈尔滨市第十三中学校校考开学考试)已知函数()|f x=令1()44g b a b b b=+=+,根据对勾函数的图像与性质易得所以()(1)5g b g >=.故4a b +>故选:C.7.(2023·全国·高三专题练习)已知函数与坐标轴的正半轴相交,则mn 的最大值为(A .12B .14【答案】C【分析】求出A ,代入直线方程,再根据基本不等式可求出结果【详解】令11x -=,即2x =,得则21m n +=且0m >,0n >,由222122m n mn mn +≥⇒≥当且仅当14m =,12n =时,等号成立,故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最41+....【答案】A【分析】先求出定义域,由)x 为偶函数,结合函数在结合函数图象的走势,排除【详解】()22ln 41x x x f x =+变形为,定义域为()(,00,∞-U )()22ln ln 2222x x x x x x ----==++为偶函数,关于y 轴对称.1x <<时,()0f x <,,排除BC ,→+∞时,()0f x →,故排除故选:A .(2023·河南周口·统考模拟预测)若,21log 62b =,12c ⎛⎫= ⎪⎝⎭.b a c >>B .c b a >>D .【答案】A二、多选题当01a <<时,函数()lg f x x =在函数()πsin2x g x =在[]0,a 上单调递增,所以所以π1sin22a a a M m -==,解得当1a ≥时,函数()lg f x x =在[a 由图可知,函数()πsin2x g x =在所以11lg 2a a M m a -=-=,解得结合选项,实数a 可以是13和10故选:BD.三、填空题15.(2023·上海·高三专题练习)若实数x 、y 满足lg x m =、110m y -=,则xy =______________.【答案】10【分析】根据指数式与对数式的关系,将lg x m =转化为指数式,再根据指数运算公式求值.【详解】由lg x m =,得10m x =,所以1110101010m m m m xy -+-=⋅==,故答案为:10.16.(2023·全国·高三专题练习)已知函数()1log 2(0a y x a =+->且1)a ≠的图像恒过定点P ,且点P 在圆220x y mx m +++=外,则符合条件的整数m 的取值可以为__________.(写出一个值即可)【答案】5(不唯一,取4m >的整数即可)【分析】先求定点P 的坐标,结合点在圆外以及圆的限制条件可得m 的取值.【详解】因为函数()1log 2a y x =+-的图像恒过定点()1,1,所以()1,1P ;因为点P 在圆220x y mx m +++=外,所以22110m m +++>且240m m ->,解得10m -<<或4m >;又m 为整数,所以m 的取值可以为5,6,7, .故答案为:5(不唯一,取4m >的整数即可).【B组在综合中考查能力】一、单选题A .14B .15C .16D .【答案】D【分析】根据题意可得()10145n-%≤,两边取对数能求出冷轧机至少需要安装轧辊的对数【详解】厚度为10α=mm 的带钢从一端输入经过减薄率为4%的n 对轧辊后厚度为二、多选题三、填空题四、解答题【C组在创新中考查思维】一、解答题二、单选题则函数()y f x =的图象关于直线令()t f x =因为函数()()()2g x f x af x =+故当()1f x =时,方程()g x =所以,要使函数()()2g x f x =+所以,关于t 方程22t at b ++=所以,由韦达定理得1,a b =-=故选:B【点睛】本题解题的关键点在于数形结合,将问题转化为关于1,0a b =-=.三、多选题5.(2023春·辽宁·高三朝阳市第一高级中学校联考阶段练习)已知函数列说法正确的是()四、填空题由题意可知,4cos 25θ=,所以22tan 3tan 2,1tan 4θθθ==-解得tan 因为θ为锐角,所以tan 3,1θ=由对称性,不妨取直线AD 进行研究,则直线π1tan tan tan()41tan k θαθθ+==+=-设切点A 的横坐标为1x ,切点e mx y m '=,所以1e 2mx AD k m ==。

2023年高考数学命题重点及高频考点

2023年高考数学命题重点及高频考点

2023年高考数学命题重点及高频考点命题重点自2020年开始,高考数学试题的命题方向逐渐变化,越来越注重学生的实际应用能力。

因此,考生在备考过程中如果仅仅死记硬背公式,是很难拿到高分的。

下面是2023年高考数学的命题重点:1. 序列与数列序列是指一堆数的排列顺序,特别地,当一个序列中每一项与前一项之间存在相应关系,则称该序列为数列。

在高考中,数列几乎是必考题型,因此,考生必须熟练掌握各种数列的性质,能够应用数列的知识点解决相关问题。

2. 函数与极值函数是数学中基本的概念,极值是函数图像上的最值点。

求解函数极值需要通过函数的一、二阶导数来进行判断,中间过程需要用到导数的运算法则。

因此,考生需要熟悉常用函数的导数公式,理解导数的概念,能够运用导数的知识解决函数的极值问题。

3. 平面向量向量是高考数学中比较重要的一个章节,包括向量的基本概念、运算法则、数量积、向量积以及向量应用等。

在高考中,平面向量一般会与三角函数、坐标系、面积等知识点联系起来,形成综合性问题,考生需要具备较强的思维综合能力。

4. 三角函数三角函数是高中数学中最难的一个知识点之一,涉及到三角函数的基本概念、图像特征、周期与相位、反三角函数、三角函数应用等方面。

在高考中,三角函数是一个比较重要的知识点,题目难度较大。

5. 解析几何解析几何是高考数学的必考题型之一,具体包括平面直角坐标系、空间直角坐标系、曲线方程、空间直线和平面与直线的位置关系等方面。

这些题型往往需要考生具备比较高的抽象思维能力和数学分析能力,因此,考生在进行解析几何的备考时要注重扎实基础。

高频考点高考数学试题中,有一些经典考点经常会被采用,因为它们的重要性和普遍性比较大。

下面是2023年高考数学的高频考点:1. 各类函数的图像和性质各类函数的图像和性质是高考数学试题中的常见考点。

针对于这类考点,考生需要掌握函数的基本性质,了解函数图像的大小、形态及其运动规律。

2. 不等式在高考数学中,不等式的出现率较高,其实现形式也比较多样化,如一元一次不等式、二次不等式、绝对值不等式等。

新高考数学试卷考点分布

新高考数学试卷考点分布

新高考改革以来,我国高考数学试卷的考点分布发生了很大的变化。

本文将针对新高考数学试卷的考点分布进行详细分析,以帮助考生更好地备考。

一、基础考点1. 集合与常用逻辑用语:这一部分主要考查集合的概念、运算、关系,以及逻辑用语的基本用法。

在历年高考中,这一部分的考题占比约为25%。

2. 函数:函数是高考数学的核心考点,包括函数的概念、性质、图像、运算等。

在历年高考中,这一部分的考题占比约为35%。

3. 三角函数与解三角形:这一部分主要考查三角函数的概念、性质、图像、运算,以及解三角形的相关知识。

在历年高考中,这一部分的考题占比约为20%。

4. 导数及其应用:这一部分主要考查导数的概念、性质、运算,以及导数在解决实际问题中的应用。

在历年高考中,这一部分的考题占比约为20%。

5. 不等式:这一部分主要考查不等式的概念、性质、解法,以及不等式在实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

二、提高考点1. 平面向量:这一部分主要考查向量的概念、运算、性质,以及向量在解决实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

2. 平面解析几何:这一部分主要考查直线、圆、圆锥曲线等图形的性质、方程、运算,以及解析几何在实际问题中的应用。

在历年高考中,这一部分的考题占比约为15%。

3. 立体几何:这一部分主要考查空间几何体的性质、方程、运算,以及立体几何在实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

4. 数列:这一部分主要考查数列的概念、性质、运算,以及数列在实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

5. 统计与概率:这一部分主要考查统计的基本概念、方法,以及概率的计算。

在历年高考中,这一部分的考题占比约为5%。

三、综合考点1. 实际应用问题:新高考数学试卷越来越注重考查考生解决实际问题的能力。

这类题目往往涉及多个知识点的综合运用,要求考生具备较强的逻辑思维能力和分析能力。

高考数学专题突破学生版-几何体的体积、面积和三视图与直观图(考点讲析)

高考数学专题突破学生版-几何体的体积、面积和三视图与直观图(考点讲析)

专题7.1几何体的体积、面积和三视图与直观图(考点讲析)提纲挈领A.4B.8C.12D.16 【典例2】(2018年全国卷II 文)在正方体中,的中点,则异面直线所成角的正切值为( )A.C.【方法技巧】解决与空间几何体结构特征有关问题的技巧 (1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略. 热门考点02 空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=4S 原图形,S 原图形=直观图. 【典例3】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ B. 12 C. 22D .1+ 【典例4】在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在xOy 坐标系中,四边形ABCO 为________,面积为________ cm 2.【特别提醒】解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.热门考点03 空间几何体的三视图三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.【典例5】(2018·全国高考真题(文))中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【典例6】(2018年理新课标I卷)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在左视图上的对应点为设A.D. 2【典例7】(2018年文北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A. 1B. 2C. 3D. 4【总结提升】1.三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.2.三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”. 简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.3.命题的角度一般有:(1)已知几何体,识别三视图;(2)已知三视图,判断几何体;(3)已知几何体三视图中的某两个视图,确定另外一个视图热门考点04 空间几何体的表面积圆柱的侧面积 rl S π2=圆柱的表面积 )(2l r r S +=π圆锥的侧面积 rl S π=圆锥的表面积 )(l r r S +=π圆台的侧面积 l r r S )(+'=π圆台的表面积 )(22rl l r r r S +'++'=π球体的表面积 24R S π=柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.【典例8】(2018届湖北省华师一附中高三9月调研)已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A. 22R πB. 294R πC. 283R πD. 232R π 【典例9】(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB ∆的面积为,则该圆锥的侧面积为__________.【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.热门考点05 空间几何体的体积圆柱的体积 h r V 2π=圆锥的体积 h r V 231π=圆台的体积 )(3122r r r r h V '++'=π 球体的体积 334R V π= 正方体的体积 3a V =正方体的体积 abc V =【典例10】(2019年高考全国Ⅲ卷理)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【典例11】(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若SAB 的面积为8,则该圆锥的体积为__________.【总结提升】求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.热门考点06 三视图与几何体的面积、体积若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【典例12】(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .32【典例13】(2019·浙江高三月考)已知某几何体的三视图(单位:cm )如图所示则该几何体的体积为____3cm ,表面积为_____2cm .【总结提升】求空间几何体体积的常见类型及思路规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.热门考点07 几何体的展开、折叠、切、截、接问题解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【典例14】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形ABCD 中, 483AB BC ==,现沿AC 折起,使得平面ABC ⊥平面ADC ,连接BD ,得到三棱锥B ACD -,则其外接球的体积为( )A. 5009πB. 2503πC. 10003πD. 5003π【典例15】(2019年高考天津卷理)已知四棱锥的底面是边长的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【典例16】(广东省深圳市高级中学2019届高三(6月)适应)在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.【典例17】(2019·福建高三月考)已知四面体ABCD 内接于球O ,且2AB BC AC ===,若四面体ABCD 的体积为3,球心O 恰好在棱DA 上,则球O 的表面积是_____. 【总结提升】 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.巩固提升1.(2018·上海市七宝中学高二期中)一个棱柱是正四棱柱的一个充要条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形的平行六面体C.底面是正方形且两个相邻侧面是矩形D.每个侧面都是全等的矩形2.(2019·江西省大余县新城中学高二月考)如图所示的直观图的平面图形ABCD 中,2AB =,24AD BC ==,则原四边形的面积( )A. B. C.12 D.103.(2019·浙江诸暨中学高二月考)若一个正方体截去一个三棱锥后所得的几何体如图所示.则该几何体的正视图是( )A. B. C. D.4.(2019·安徽高二月考)在四面体PABC 中,PC PA ⊥,PC PB ⊥,22AP BP AB PC ====,则四面体PABC 外接球的表面积是( ) A.193π B.1912π C.1712π D.173π 5.(2019·江西省大余县新城中学高二月考)已知某几何体的三视图如图所示,则该几何体最长的棱的长是( )A.4B.6C.D.6.(2019·上海高二期末)已知某圆柱是将边长为2的正方形(及其内部)绕其一条边所在的直线旋转一周形成的,则该圆柱的体积为_______.7.(2019·上海市复兴高级中学高二期末)某几何体由一个半圆锥和一个三棱锥组合而成,其三视图如图所示(单位:厘米),则该几何体的体积(单位:立方厘米)是________.8.(2019·上海市民办市北高级中学高二期中)在ABC ∆中,3cm AC =,4cm BC =,5cm AB =,现以BC 边所在的直线为轴把ABC ∆(及其内部)旋转一周后,所得几何体的全面积是________2cm .9.(2019·上海高二期末)底面是直角三角形的直棱柱的三视图如图格中的每个小正方形的边长为1,则该棱柱的表面积是________10.(2018·上海市行知实验中学高二期中)若三棱锥P ABC -中,PA x =,其余各棱长均为2,则三棱锥P ABC -体积的最大值为______.11.(2019·上海市向明中学高二月考)一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:①三角形;②菱形;③矩形;④正方形;⑤正六边形,11 则其中判断正确的个数是_________.12.(2018·上海市南洋模范中学高三开学考试)一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体体积为________.13.(2019·上海曹杨二中高二期末)如图,边长为a 的正方形纸片ABCD,沿对角线AC 对折,使点D 在平面ABC 外,若BD=,a 则三棱锥D ABC -的体积是________.14.(2019·上海曹杨二中高二期末)正ABC △的三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点D 是线段BC 的中点,过D 作球O 的截面,则截面面积的最小值为_________.15.(2018·上海市七宝中学高二期中)如图,边长为2的正方形ABCD 中,点E 、F 分别是边AB 、BC 的中点,AED ∆、EBF ∆、FCD ∆分别沿DE 、EF 、FD 折起,使A 、B 、C 三点重合于点A ',若四面体A EFD '的四个顶点在同一个球面上,则该球的表面积为________.16.(2017·上海交大附中高二期中)如图所示,正方体1111ABCD A B C D -的棱长为1,延长1D D 至P ,使得1DD DP =.A C P作正方体的截面图形;(1)经过11(2)求出截面为底面D为顶点的多面体的表面积.12。

高考数学复习考点题型归类解析46排列与组合(解析版)

高考数学复习考点题型归类解析46排列与组合(解析版)

高考数学复习考点题型归类解析专题46排列组合一、关键能力1. 理解排列、组合的概念,掌握排列数公式、组合数公式,并能解决简单的实际问题. (1)考查两个计数原理;(2)考查排列组合问题、概率计算中两个计数原理的应用.(3)两个计数原理是解决排列、组合问题的基本方法,同时又能独立地解决一些简单的计数问题,通常与排列组合问题或概率计算问题综合考查. 二、必备知识1. 排列的相关概念及排列数公式(1)排列的定义:从个不同元素中取出 ()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.(2)排列数的定义:从个不同元素中取出 ()个元素的所有不同排列的个数叫做从个不同元素中取出个元素的排列数,用表示.(3)排列数公式:这里并且(4)全排列:个不同元素全部取出的一个排列,叫做个元素的一个全排列,(叫做n 的阶乘).排列数公式写成阶乘的形式为,这里规定.2.组合的相关概念及组合数公式n m m n ≤n m n m m n ≤n m m n A ()()()121mn A n n n n m =---+,n m N∈m n ≤n n ()()1221!n n A n n n n =--⋅⋅=()!!m n n A n m =-0!1=(1)组合的定义:从个不同元素中取出 ()个元素合成一组,叫做从个不同元素中取出个元素的一个组合.(2)组合数的定义:从个不同元素中取出 ()个元素的所有不同组合的个数,叫做从个不同元素中取出个元素的组合数,用表示.[来源:学.科.网](3)组合数的计算公式:,由于,所以.(4)组合数的性质:①;②;③.三、高频考点+重点题型 考点一 、排列问题例1-1、有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,则不同的站法共有( )A .66种B .60种C .36种D .24种 【答案】B 【分析】首先利用全排列并结合已知条件即可求解. 【详解】首先对五名学生全排列,则共有55120A =种情况,又因为只有甲在乙的左边或右边两种情况, 所以甲不排在乙的左边的不同的站法共有55602A =种情况. 故选:Bn m m n ≤n m n m m n ≤n m m n C ()()()()121!!!!mmnnmm n n n n m A n C A m m n m ---+===-0!1=01n C =m n m n n C C -=11m m m n n n C C C -+=+11r r n n rC nC --=例1-2、男生甲和女生乙及另外2男2女共6位同学排成一排拍照,要求男女生相间且甲和乙相邻,共( )种不同排法. 【答案】40 【分析】给6个人编号,在进行分类讨论,即可求解 【详解】不妨给6人从左至右依次编号为:123456,先讨论男女男女男女的排法, 若甲排1号位,则乙只能排二号位,剩下两男两女全排列,共有222214A A ⋅⋅=种;若甲排3号位,则乙可以选择2号位或4号位,剩下两男两女全排列,共有222228A A ⋅⋅=种; 若甲排5号位,则乙可以选择4号位或6号位,剩下两男两女全排列,共有222228A A ⋅⋅=种; 合计20种排法,若再将男女调换位置,则符合条件的总排法有20240⨯=种, 故答案为:40例1-3、名男同学、名女学生和位老师站成一排拍照合影,要求位老师必须站正中间,队伍左右两端不能同时是一男学生与一女学生,则总共有__________种排法. 【答案】 【解析】当两端都是男生时:当两端都是女生时:共有种排法 故答案为例2-1、用1,2,3,4,5这五个数字,可以组成比20 000大,并且百位数不是数字3的没有重复数字的五位数,共有( )3322576242342288A A A ⨯⨯=242342288A A A ⨯⨯=576576A .96个B .78个C .72个D .64个 答案 B解析 根据题意知,要求这个五位数比20 000大,则万位数必须是2,3,4,5这4个数字中的一个,当万位数是3时,百位数不是数字3,符合要求的五位数有A 44=24(个);当万位数是2,4,5时,由于百位数不能是数字3,则符合要求的五位数有3×(A 44-A 33)=54(个),因此共有54+24=78(个)这样的五位数符合要求.故选B. 例2-2、用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数的四位偶数?(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)? (1)156 (2)132(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,首位从1,3,4,5中选定1个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个;第三类:4在个位时,与第二类同理,也有A 14·A 24个.由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2) 先排0,2,4,再让1,3,5插空,总的排法共A 33A 34=144(种),其中0在排头,将1,3,5插在后3个空的排法共A 22·A 33=12(种),此时构不成六位数,故总的六位数的个数为A 33A 34-A 22A 33=144-12=132(种).对点练1.(2021·浙江高二期中)将编号为、、、、的个小球全部放入、、三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有()123455A B CA .B .C .D . 【答案】A 【解析】将编号为、、、、的个小球,根据小球的个数可分为、、或、、两组. ①当三个盒子中的小球个数分别为、、时,由于放在同一个盒子里的小球编号互不相连,故个小球的编号只能是、、的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有种分配方法;②当三个盒子中的小球个数分别为、、时,由于放在同一个盒子里的小球编号互不相连,此时放个小球的盒子中小球的编号分别为、或、或、或、或、或、,共种,再分配到三个盒子中,此时,共有种.综上所述,不同的放法种数为种. 故选:A.对点练2.(2021·江西·横峰中学高二期中(理))现从8名学生干部中选出3名同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,则不同的选派方案的种数是________.(用数字作答) 【答案】336 【分析】根据排列定义及公式即可求解. 【详解】423648601234551131221133135336A =1222()1,3()2,4()1,3()2,5()1,4()2,5()1,4()3,5()1,5()2,4()2,4()3,5633636A =64362+=从8名学生干部中选出3名同学排列的种数为38876336A=⨯⨯=,故共有336种不同的选派方案.故答案为:336考点二.组合问题例3-1、(2018·全国Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有______种.(用数字填写答案)答案16解析方法一按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故所求选法共有C12C24+C22C14=2×6+4=16(种).方法二间接法:从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故所求选法共有C36-C34=20-4=16(种).例3-2.从7名男生,5名女生中选取5人,至少有2名女生入选的种数为________.答案596解析“至少有2名女生”的反面是“只有一名女生或没有女生”,故可用间接法,所以有C512-C1515C47-C57=596(种).例4-1.(2021·衡水中学调研)为了应对美欧等国的经济制裁,俄罗斯天然气公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________.答案182解析甲、乙中裁一人的方案有C12C38种,甲、乙都不裁的方案有C48种,故不同的裁员方案共有C12C38+C48=182(种).例4-2.(2021·河南高考模拟(理))安排,,,,,,共6名义工照顾A B C D E F甲,乙,丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工不安排照顾老人甲,义工不安排照顾老人乙,则安排方法共有( ) A.30种B.40种C.42种D.48种 【答案】C 【解析】名义工照顾三位老人,每两位义工照顾一位老人共有:种安排方法其中照顾老人甲的情况有:种照顾老人乙的情况有:种照顾老人甲,同时照顾老人乙的情况有:种符合题意的安排方法有:种本题正确选项:对点练1、甲、乙两人从4门课程中各选修2门.求:(1)甲、乙所选的课程中恰有1门相同的选法有多少种? (2)甲、乙所选的课程中至少有一门不相同的选法有多少种? (1)24 (2)30(1)解法1:甲或乙中一人先选,方法有C 24,另一人再选,有C 12C 12种,则选法种数共有C 24C 12C 12=24(种).解法2:先确定相同的那一门,有C 14种,再甲、乙各选一本不同的,有A 23种,则选法种数共有C 14·A 23=24(种).(2)甲、乙两人从4门课程中各选两门不同的选法种数为C 24C 24,又甲、乙两人所选的两门课程都相同的选法种数为C 24种,因此满足条件的不同选法种数为C 24C 24-C 24=30(种).对点练2、.(湖南高考真题)在某种信息传输过程中,用4个数字的一个排列(数字允A B 62264C C 90=A 1254C C 30=B 1254C C 30=A B 1143C C 12=∴9030301242--+=C许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A.10B.11C.12D.15 【答案】B 【解析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C 42=6个;第二类:与信息0110有一个对应位置上的数字相同有C 41=4个;第三类:与信息0110有没有两个对应位置上的数字相同有C 40=1个,由分类计数原理与信息0110至多有两个数字对应位置相同的共有6+4+1=11个,故选B .对点练3.(2021·浙江温州·高三月考)一个盒子里装有7个大小、形状完成相同的小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为1,2,3,从盒子中任取4个小球,其中含有编号为3的不同取法有________种. 【答案】30 【解析】从反面考虑,总数为,不含有编号为3的总数为,即得解. 【详解】从反面考虑,总数为,不含有编号为3的总数为,所以含有编号为3的总数为.故答案为:30.47C 45C 47C 45C 447530C C -=变式4.(2021·杭州二模)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种 D共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C 45+C 44+C 25C 24=66(种),故选D .考点三、排列与组合的综合问题例5、(多选题)2021年3月,为促进疫情后复工复产期间安全生产,滨州市某医院派出甲、乙、丙、丁4名医生到,,三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是() A .若企业最多派1名医生,则所有不同分派方案共48种 B .若每家企业至少分派1名医生,则所有不同分派方案共36种C .若每家企业至少分派1名医生,且医生甲必须到企业,则所有不同分派方案共12种D .所有不同分派方案共种 【答案】ABC 【解析】对于选项A :若企业没有派医生去,每名医生有种选择,则共用种,若企业派1名医生则有种,所以共有种.对于选项B :若每家企业至少分派1名医生,则有种, A B C C A 34C 24216=C 134232C ⋅=163248+=211342132236C C C A A ⋅=对于选项C :若每家企业至少分派1名医生,且医生甲必须到企业,若甲企业分人,则有种;若甲企业分 人,则有种,所以共有种.对于选项D :所有不同分派方案共有种. 故选:例6、(2017·浙江高考真题)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 【答案】660 【解析】第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.对点练1.(2021·浙江·诸暨市教育研究中心高二期末)用红、黄、蓝三种颜色填涂如图所示的六个方格,要求有公共边的两个方格不同色,则不同的填涂方法有( )A .96种B .48种C .144种D .72种 【答案】D 【分析】A 2336A =12123126C C A =6612+=43ABC 13316240C C =422412A =4012480⨯=22226215C C =422412A =1512180⨯=480180660+=660将涂色方法分为两类,即,,,A B D F 用三种颜色涂和用两种颜色涂,分别计算出两种情况下涂色方案的种数,根据分类加法计数原理即可求得结果.【详解】将六个方格标注为,,,,,A B C D E F ,如下图所示,①若,,,A B D F 用三种颜色涂,则,D F 同色或AF 同色或AD 同色,当,D F 同色时,六个方格的涂色方法有313212A C =种;当AF 同色时,六个方格的涂色方法有313212A C =种;当AD 同色时,六个方格的涂色方法有31132224A C C =种;②若,,,A B D F 用两种颜色涂,则,,A D F 同色,此时六个方格的涂色方法有21132224A C C =种; 综上所述:不同的填涂方法有1212242472+++=种.故选:D.对点练2.(2021·福建福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有 ()A .90种B .180种C .270种D .360种【答案】B【解析】根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有166C =种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有C 15=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有种情况,则一共有6×5×6=180种不同的安排方案,故选B.巩固训练一. 单选题1.三名学生报名参加校园文化活动,活动共有三个项目,每人限报其中一项,则恰有两名学生报同一项目的报名方法种数有( )A .6种B .9种C .18种D .36种【答案】C【分析】根据题意首先从三名学生中选2名选报同一项目,再从三个项目中选2项项目,全排即可.【详解】由题意可得22233233218C C A ⋅⋅=⨯⨯=,故选:C2.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”,对乙说:“你不会是最差的”,从这两个回答分析,这5人的名次排列所有可能的情况共有( )A .18种B .36种C .54种D .72种【答案】C【分析】222422226C C A A ⨯=甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理即可得到结果.【详解】由题意得:甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下3人有33A 种排法.故共有33333332154A ⨯⨯=⨯⨯⨯⨯=种不同的情况.故选:C.3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168答案 B解析 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A 22C 13A 23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A 22A 34=48(种)安排方法,故共有36+36+48=120(种)安排方法.4.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A ,B ,C ,D 四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A 家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有( )A.18种B.24种C.36种D.48种答案 B解析根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式,故选B.5.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.32答案 C解析将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.6.互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法() A.A55种B.A22种C.A24A22种D.C12C12A22A22种答案 D解析红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法.7.十三届全国人大二次会议于2021年3月5日至15日在北京召开,会议期间工作人员将其中的5个代表团人员(含A,B两市代表团)安排至a,b,c三家宾馆入住,规定同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住,若A,B两市代表团必须安排在a宾馆入住,则不同的安排种数为()A.6 B.12 C.16 D.18答案 B解析如果仅有A,B入住a宾馆,则余下三个代表团必有2个入住同一个宾馆,此时共有C23A22=6(种)安排数,如果有A,B及其余一个代表团入住a宾馆,则余下两个代表团入住b,c,此时共有C13A22=6(种)安排数,综上,共有不同的安排种数为12.8.马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有()A.60种B.20种C.10种D.8种答案 C解析根据题意,可分为两步:第一步,先安排四盏不亮的路灯,有1种情况;第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C35=10(种)情况.故不同的开灯方案共有10×1=10(种).9.有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为()A.56 B.63 C.72 D.78答案 D解析若没有限制,5列火车可以随便停,则有A55种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A44种;货车B停在第1道上,则5列火车不同的停靠方法为A44种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A33种,故符合要求的5列火车不同的停靠方法数为A55-2A44+A33=120-48+6=78.10.身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数共有()A.24种B.28种C.36种D.48种答案 D解析分类计数原理,按红红之间有蓝无蓝两类来分.(1)当红红之间有蓝时,则有A22A24=24(种).(2)当红红之间无蓝时,则有C12A22C12C13=24(种);因此,这五个人排成一行,穿相同颜色衣服的人不能相邻,则有48种排法.11.(2017·全国Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种答案 D解析由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种).12.若一个四位数的各位数字之和为10,则称该数为“完美四位数”,如数字“2 017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2 017的“完美四位数”的个数为( )A .55B .59C .66D .71答案 D解析 记千位为首位,百位为第二位,十位为第三位,由题设中提供的信息可知,和为10的无重复的四个数字有(0,1,2,7),(0,1,3,6),(0,1,4,5),(0,2,3,5),(1,2,3,4),共五组.其中第一组(0,1,2,7)中,7排在首位有A 33=6(种)情形,2排在首位,1或7排在第二位上时,有2A 22=4(种)情形,2排在首位,0排在第二位,7排在第三位有1种情形,共有6+4+1=11(种)情形符合题设;第二组中3,6分别排在首位共有2A 33=12(种)情形;第三组中4,5分别排在首位共有2A 33=12(种)情形;第四组中2,3,5分别排在首位共有3A 33=18(种)情形;第五组中2,3,4分别排在首位共有3A 33=18(种)情形.依据分类计数原理可知符合题设条件的“完美四位数”共有11+12+12+18+18=71(个)二. 填空题13.(2018·浙江高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260.【解析】若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数. 14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】1080【解析】41345454A C C A 1080+=15.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】①1男4女,1436C C 45=种;②2男3女,2336C C 60=种;③3男2女,3236C C 15=种;∴一共有456015120++=种.故答案为:120.16.(2021·全国高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.17.用数字1,2,3,4,5,6组成没有重复数字的6位数,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是________.答案40解析第一步将3,4,5,6按奇偶相间排成一列,共有2×A22×A22=8(种)排法;第二步再将1,2捆绑插入4个数字产生的5个空位中,共有A15=5(种)插法,插入时需满足条件相邻数字的奇偶性不同,1,2的排法由已排4个数的奇偶性确定.∴不同的排法有8×5=40(种),即这样的六位数有40个.18.某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________.答案180解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,这时共有C14C24A33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;综合(1)(2),共有C14C24A33+C24A33=180(种)参加方法.19.从4名男生和3名女生中选出4名去参加一项活动,要求男生甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为________.(用数字作答) 答案 23解析 ①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 35-C 33=9,②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 35-C 33=9,③设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 45=5, 综合①②③得,不同的选法种数为9+9+5=23.20.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则共有________种不同的安排方法.(用数字作答)答案 114解析 5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35·A 33=60(种),A ,B 住同一房间有C 13·A 33=18(种),故有60-18=42(种),当为(2,2,1)时,有C 25·C 23A 22·A 33=90(种),A ,B 住同一房间有C 23·A 33=18(种), 故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).三. 解答题21.求下列各式中的正整数n :(1)33210n n A A =;(2)101098765n A =⨯⨯⨯⨯⨯.21 / 21 【答案】(1)8n =(2)6【分析】(1)根据排列数公式列出方程即可求解;(2)根据排列数公式列出方程即可求解; (1)解:因为33210n n A A =,所以()()()()221221012n n n n n n ⨯-⨯-=⨯⨯-⨯-,解得8n =; (2)解:因为101098765n A =⨯⨯⨯⨯⨯,又()10109101n A n =⨯⨯⨯-+,所以1015n -+=,解得6n =.22.利用组合数公式证明111m m m n n n C C C ++++=.【答案】证明见解析【分析】利用组合数公式分别计算等式左右两边即可证明.【详解】证明:因为()11(1)!1!()!m n n C m n m +++=+-,()()()1!11!!!(1)!(1)!!()!(1)!()!(1)!()!m m n n n n m m n n n C C n m m m n m m n m m n m +⎡⎤-+++⎣⎦++==--+-+--=+, 所以111m m m n n n C C C ++++=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年河南高考数学考点分析数学高考试题的命制按照“考查基础知识的同时,注重考查能力”的原则,将知识、能力和素质融为一体,全面检测考生的数学素养。

在能力要求上,着重对考生的五种能力(空间想象能力,抽象概括能力,推理论证能力,运算求解能力,数据处理能力)和两种意识(应用意识,创新意识)进行考查。

试题基本保持大稳定小创新。

下面针对近6年课改区试题按模块进行分析:模块一不等式(不含选考)2008年 6. 不等式(恒成立)2009年 6.线性规划(目标函数为线性);2010年 8.解不等式2011年 13.线性规划(线性区域为四边形内部,目标函数为线性)2012年14.线性规划线性规划(目标函数为线性);2013年 1.一元二次不等式解法,11分段函数恒成立求参数范围该部分很少考查纯粹的题目,一般会和其他知识结合考查。

单纯考查一般较简单,主要考查不等式性质、解法等和线性规划,最值。

学生易忽视不等式性质,线性规划试题很常规,不易过难训练.模块二函数与导数2008年 10.定积分21.导数(切线,对称)2009年12.由指数函数和两个一次函数构成的最小值函数的最值(作图解决); 21.导数(涉及指数和积的导数,求单调区间,证明不等式)2010年 3.一次分式函数的导数;8.函数(偶函数、不等式);11.分段函数(考查图像);21.指数函数导数(求单调求单调、参数范围)2011年 2.函数性质判断(奇偶性、单调性);9.求积分;12.函数性质的运用(反比例函数与三角函数的交点问题);21函数解析式为包含对数的分式(根据某点处切线方程求参数,根据不等式求参数)2012年10.函数图象及性质(涉及对数);12.函数综合(涉及指数和对数);21.导数综合(涉求单调求单调及指数)2013年 16函数求最值,21函数求解析式,恒成立求参数范围大题一般考查导数有关的综合问题,注意把导数与不等式证明联系起来,导数题目的难度是相当大的,函数类型涉及有对数型、指数型、三次函数、分式函数。

三个二次间的关系,分段函数,三角函数型的要引起重视.学生易在起步求导出错.求导与求定积分要分清。

模块三三角函数与平面向量2008年 1. 三角函数(周期)3. 三角形(余弦定理)7. 三角求值13. 向量(坐标运算)2009年 9.根据向量关系式判断点在三角形中的位置); 14. 三角(知图像求表达式);17.三角(正余弦定理进行实际测量的步骤)2010年 4.三角函数的实际应用;9.三角(涉及二倍角的化简求值);16.解三角形(三角形面积,三角变换)2011年 5.三角化简求值(二倍角、基本关系式);10.求向量夹角的范围;11.三角函数化简及性质研究;2012年9.三角函数的性质;13.向量运算;17.解三角2013年 13.向量数量积运算17解三角形小题一般主要考查三角函数的图像与性质、利用诱导公式与和差角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质. 向量也经常作为工具在其他知识中渗透考查。

(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质. 向量也经常作为工具在其他知识中渗透考查。

要注意三角函数的性质,比如周期、对称性、最值。

大题1个,一般是两个方向命题:一是三角函数的图象与性质的问题,二是解三角形问题,并且是数列与三角函数大题交替出现。

学生易在半角及辅助角公式上出错. 尤其三角恒等变换教材占的篇幅大,近几年试题分量小,要特别注意.模块四数列2008年 4. 等比数列前n项和17. 等差数列(通项,前n项和最大值)2009年 7.等比和等差小综合求基本量; 16.等差数列(通项与前n项和)2010年 17.求通项和前n项和(叠加求通项,错位相消求和);2011年 17.等比数列求通项以及等比转化为等差求前n项和,求前n项和倒数的前n项和.2012年 5.等比数列(基本元素计算);16.数列综合2013年 7等差数列的前n项和12数列的单调性14已知和求通项小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等差(比)数列通项公式、求和公式,错位相减求和、简单递推数列为主.注意等差、等比数列定义、性质的应用。

大题要关注裂项相消法、错位相减法的应用,难度比较小,新课标考纲对数列的要求有所降低(特别是递推式不会太难),保持原有的命题风格。

数列是一种特殊的函数,利用函数解决数列中的最值问题.学生对错位相减法掌握较差.模块五解析几何2008年 11. 抛物线(距离和最值)14. 双曲线渐近线面积20. 椭圆(抛物线,向量)2009年 4.双曲线性质(焦点到渐近线的距离为b);13.抛物线(由弦的中点求弦斜率,进而求出弦的方程);20. 椭圆方程(根据条件求方程、探求轨迹(涉及线段、双曲线、椭圆)2010年 12.双曲线(直线与双曲线综合,求双曲线方程);15.直线与圆(根据直线与圆相切,求圆的方程);20.直线、椭圆、数列综合;2011年 7.双曲线(根据通经与实轴长的关系求离心率)14.求椭圆方程(已知离心率和焦点三角形周长);20.以抛物线为背景(由条件求方程,探求原点O到曲线上动点处切线距离的最小值)2012年4.椭圆(给定条件求离心率);8.双曲线与抛物线综合;20.直线、抛物线与圆综合2013年 4求双曲线渐近线方程10求椭圆弦中点轨迹20求椭圆方程,求弦长小题难度是中等以上题。

涉及直线与圆有关性质和圆锥曲线的性质应用,大题,一般以椭圆或抛物线为背景来命题,注意抛物线一般与圆综合考查。

直线与圆锥曲线相交时涉及到参数取值范围,最值,存在性等问题易忽视相交的条件.模块六立体几何2008年 12. 三视图(不等式)15. 球(内接六棱柱,体积)18. 正方体(线线角,线面角)2009年 8.正方体(动点运动判断位置关系);11.三视图(根据三棱锥的三视图求其全面积);19. 正四棱锥(证线线垂直,求二面角)2010年 10.组合体(三棱柱内接球,求球的半径);14.三视图(根据正视图判断几何体形状);18.四棱锥(证明线线垂直、求线面角的正弦值)2011年 6.三视图(根据圆锥和三棱锥组成的几何体的正视图和俯视图,判断侧视图);15.求球内四棱锥的体积;18. 有一条侧棱垂直于底面的四棱锥(求证一侧棱与底面对角线垂直;相邻侧面构成的二面角的余弦2012年7.三视图(识图,计算几何体体积);11.三棱锥和球综合;19.三棱柱(涉及线线垂直和二面角)2013年 6求球体积8已知三视图求体积18证明线线垂直,证明面面垂直小题首先关注三视图的问题,其次是球的有关问题,然后才是平行垂直的判断。

立体几何大题,理科高考题一直注重平行与垂直的证明,线面角、二面角轮流考查,几何体的背景是四棱锥和柱体,很少涉及多面体。

利用空间向量解题学生在线面角正余弦易搞反.、二面角不注意观察锐钝角.模块七排列组合、二项式定理、概率与统计2008年 16. 茎叶图19. 分布列(期望,最值)2009年 3.统计案例(根据散点图判断相关关系);15. 排列组合; 18. 统计(求频率分布直方图和概率、根据平均数求均值)2010年 6.期望(发芽种子数);13.几何概型(以积分为背景);19.独立性检验(调查老年人是否需要志愿者帮助)2011年 4.古典概率计算;8.二项展开式求常数项;19.以频率分布表为背景探求产品的优质品率及利润的分布列及期望;2012年2.排列(分组分配问题);15.相互对立事件的概率(有关电子元件的寿命);18.利润的分布列、期望与方差及购进货物多少的判断)2013年 3抽样方法9二项式系数19互斥事件的概率,分布列,期望小题一般主要考查:频率分布直方图、茎叶图、样本的数字特征、独立性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理、几个重要的分布等.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方差. 2010年较特殊,考查的是独立性检验。

尤其对新课标标志性的几何概型,条件概率,变量间的关系,正态分布,独立性检验要引起注意.学生易审不清题意判不准概率类型就下笔.模块八算法与推理2008年 5. 程序框图2009年 10.程序框图(分段函数)2010年 7.程序框图(数列裂项求和)2011年 3.程序框图(阶乘)2012年 6.程序框图(程序执行结果识别)2013年 5.程序框图(程序执行结果识别)每年必考,主要是与数列和函数综合,注意输出的字母,循环结构最好一一列出.模块九集合与简易逻辑、复数2008年 2. 复数8. 充要条件(向量)2009年 1.数集(交、补)2. 复数(提取i可化简的分式复数); 5.命题(特称命题真假判断);2010年 1.集合(简单绝对值不等式、根式不等式);2.复数(提取i可化简的分式复数,共轭复数化简);5. 命题(或且非);2011年 1.复数(提取i可化简的分式复数,求化简后复数的共轭);2012年1.集合(求满足条件的元素);3.复数(有关其概念及运算的命题2013年 1.集合运算2复数虚部复数每年都考,主要考查化简能力,特别是09,10,11,三年都考了提取i可很快化简的技巧。

集合也几乎每年都考,主要考查集合的运算。

简易逻辑主要考查命题真假的判断,特称和存在命题以及充要条件;命题的否定只考特称和全称命题的否定。

模块十选考部分22.平面几何23.参数方程和极坐标24.含绝对值的不等式试题稳定,难度不大,但由于投入时间少,得分率低。

备考复习的一些想法夯实"三基"与能力的培养离不开解题训练,因此我们老师要做大量的题,沙里淘金,根据考纲;学生的薄弱点;教材体系中的重点;近几年考题的高频点; 解题应试技巧;解题中的数学思想数学能力等内容精选题,集体编制习题,不能见题就印发,狂轰乱炸.通过专项训练(模块)构建知识体系; 通过综合训练(周考,模拟考)提高实战能力;通过限时训练(填选,解答)提高答题速度; 通过经典训练提高规范意识。

重点问题反复练; 易混问题对照练; 易错问题纠正练.做后及时批改,利用双向分析表统计分析答题情况切实了解学情.对希望生面批面改,建立问题档案,依据标高分层分类指导,使不同层次学生都受益.帮助学生搜集、整理易错、易混的知识点,搜集相关信息,挖掘热点,大胆预测今年高考的命题点;有针对性的评讲,引导学生反思总结解题规律方法,尤其是通性通法.围绕考点,整合各种题型,做到抽象知识题型化; 整合各种知识,做到零散知识集团化; 整合各种思路,做到解题思路最优化, 解决学生审题不清, 提取信息及知识能力不强,计算过程不优化结果错误,过程不规范,时间分配不当,答题顺序不妥等造成的"会儿不对,对而不全”的老大难问题,确保会做的得满分,不会做的多得分.一轮复习,采用20+20课堂理念进行分层教学。

相关文档
最新文档