灰铸铁五大元素的作用和对机械性能的影响
球墨铸铁五大元素对铸件的影响(一)2024
球墨铸铁五大元素对铸件的影响(一)引言概述:球墨铸铁是一种强度高、韧性好的铸铁材料,它由铸造过程中加入的五大元素组成。
这些元素对球墨铸铁的性能和性质产生了重要的影响。
本文将分析和讨论这五大元素对球墨铸铁铸件的影响。
正文:一、锰对球墨铸铁的影响1. 锰的加入可以提高球墨铸铁的强度和硬度。
2. 适量的锰可以提高球墨铸铁的韧性和塑性。
3. 锰能够抑制碳化物的形成,从而提高球墨铸铁的耐磨性。
4. 高锰含量会导致球墨铸铁易发生热龟裂。
5. 锰元素对球墨铸铁的影响需要控制在合适范围内,以保证铸件的性能。
二、硫对球墨铸铁的影响1. 硫的加入可以提高球墨铸铁的流动性和润滑性。
2. 适量的硫能够提高球墨铸铁的抗氧化性能。
3. 硫可以促进铁液与砂型的分离,避免铸件表面出现毛刺。
4. 过高的硫含量会降低球墨铸铁的机械性能和耐腐蚀性能。
5. 控制硫含量是确保球墨铸铁质量的重要因素。
三、铜对球墨铸铁的影响1. 铜的加入可以提高球墨铸铁的耐腐蚀性能和耐磨性。
2. 适量的铜能够提高球墨铸铁的强度和硬度。
3. 铜可以改善球墨铸铁的热导性和导电性。
4. 过高的铜含量会导致球墨铸铁易发生热裂缝和变质。
5. 控制铜含量是确保球墨铸铁质量的重要因素。
四、镍对球墨铸铁的影响1. 镍的加入可以提高球墨铸铁的耐磨性和抗腐蚀性。
2. 适量的镍能够提高球墨铸铁的强度和硬度。
3. 镍可以改善球墨铸铁的热稳定性和抗氧化性能。
4. 高镍含量会增加球墨铸铁的生产成本。
5. 镍元素的控制需要根据具体应用需求进行调整。
五、钒对球墨铸铁的影响1. 钒的加入可以提高球墨铸铁的强度和硬度。
2. 适量的钒能够提高球墨铸铁的耐磨性和韧性。
3. 钒可以改善球墨铸铁的热稳定性和耐热性能。
4. 过高的钒含量会导致球墨铸铁易出现热裂缝和变质。
5. 钒元素的控制需要根据具体应用需求和工艺要求进行调整。
总结:通过对球墨铸铁的五大元素(锰、硫、铜、镍、钒)对铸件的影响进行分析,可以得出结论:这些元素的合理控制和添加可以调整和改变球墨铸铁的性能和性质,从而满足不同应用领域的需求。
铸造中合金元素分析
1、铸铁的基本元素有哪些?各自的作用如何—对组织性能的影响?答:铸铁的基本元素为:碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)五大元素。
五大元素对铸铁组织性能的影响:(1)、碳本身就是构成石墨的元素,在铸铁中是促进石墨化元素。
但碳量过高,力学性能降低。
(2)、硅是强烈促进石墨化元素,但硅量过高,易使石墨粗大,力学性能降低,若含硅量过低;则易出现麻口或白口组织。
(3)、硫在铸铁中是有害元素,它以FeS的形式完全溶解于铁液中,并能降低碳在铁中的溶解度。
此外,硫在铸铁中还能恶化铸铁的铸造性能,当铁液中存在有大量硫化物时,就会降低铁液的流动性,补缩性能差,容易产生裂纹等缺陷。
因此,在灰铸铁中一般将含硫量限制在0.1-0.12%以下。
(4)、锰在铸铁中首先表现出抵消硫的一些有害作用上,因此铸铁中含有适量的锰是有益的。
通常锰的含量应控制在06-1.2%范围内。
(5)磷能增加铁水的流动性和提高铸铁的耐磨性,即铸铁的硬度随着含磷量的增加而增高,韧性则降低。
因此,普通灰铸铁中一般将含磷量限制在0.3%以下。
磷对铸铁的石墨化影响不大。
2、铸造碳钢的基本元素有哪些?各自的作用如何?答:碳钢的基本元素有:碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)五大元素。
铸造碳钢是熔模铸造生产中应用极为广泛的材料。
碳钢的主要元素是碳,其含量为0.12-0.62%。
改变含碳量可在很大程度上改变钢的机械性能。
此外,钢中含有硅、锰、磷、硫四大元素,硅、锰有脱氧和去硫作用,但且含量变化不大,对性能的影响也不大。
磷、硫在钢中均为有害元素,并在不同质量要求的钢中均有一定的限制。
磷和硫在钢中含量越少越好。
3、铸造合金钢常用的合金元素有哪些?加入的目的是什么?答:(1)含碳量越高,钢的硬度越高,耐磨性越好,但塑性及韧性越差。
(2)硫是钢中有害元素,含硫量较多的钢在热压力加工时容易脆裂,这种现象通常称为“热脆”。
(3)磷能提高钢的强度,但使钢的塑性及韧性明显下降,特别在低温时影响更为严重,这种现象通常称为“冷脆”。
铸铁的基本元素的作用及对组织性能的影响
铸铁的基本元素的作用及对组织性能的
影响
铸铁的基本元素为 碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)五大元素。
五大元素对铸铁组织性能的影响
(1)、碳本身就是构成石墨的元素 在铸铁中是促进石墨化元素。
但碳量过高 力学性能降低。
(2)、硅是强烈促进石墨化元素 但硅量过高 易使石墨粗大 力学性能降低 若含硅量过低;则易出现麻口或白口组织。
(3)、硫在铸铁中是有害元素 它以FeS的形式完全溶解于铁液中 并能降低碳在铁中的溶解度。
此外 硫在铸铁中还能恶化铸铁的铸造性能 当铁液中存在有大量硫化物时 就会降低铁液的流动性 补缩性能差 容易产生裂纹等缺陷。
因此 在灰铸铁中一般将含硫量限制在0.1-0.12%以下。
(4)、锰在铸铁中首先表现出抵消硫的一些有害作用上 因此铸铁中含有适量的锰是有益的。
通常锰的含量应控制在06-1.2%范围内。
(5)磷能增加铁水的流动性和提高铸铁的耐磨性 即铸铁的硬度随着含磷量的增加而增高 韧性则降低。
因此 普通灰铸铁中一般将含磷量限制在0.3%以下。
磷对铸铁的石墨化影响不大。
硅碳比:0.52—0.65
锰硫比:7—12。
不同合金元素对灰铸铁缸体组织和性能的影响中期报告
不同合金元素对灰铸铁缸体组织和性能的影响中期
报告
灰铸铁是一种广泛应用于机械制造领域的重要材料,其组织和性能
可以通过改变所含合金元素的类型和含量而得到显著的调节。
本文将针
对不同合金元素对灰铸铁的组织和性能的影响进行中期报告。
1. 镁元素的影响
镁是一种常见的合金元素,对于灰铸铁的组织和性能具有重要的影响。
在灰铸铁中加入适量的镁元素可以显著改善其机械性能,尤其是抗
拉强度和硬度。
这是因为镁可以促进灰铸铁中析出的碳化物和石墨的形
态和分布,并增强其在铸造过程中的形核效应,从而提高了其组织的致
密度和强度。
2. 铜元素的影响
铜在灰铸铁中常用作合金元素,其主要起到抗氧化和提高铸件表面
质量的作用。
在灰铸铁中加入适量的铜元素可以显著改善其耐蚀性和耐
磨性,同时可以提高其强度和硬度。
这是因为铜可以促进灰铸铁中的铁
素体和石墨的分离度,从而提高了其致密度和硬度。
3. 钼元素的影响
钼是一种重要的合金元素,可以显著改善灰铸铁的力学性能和热稳
定性。
在灰铸铁中加入适量的钼元素可以显著提高其强度、硬度和韧性,并降低其变形和疲劳性能的劣化。
4. 镍元素的影响
镍常被认为是一种提高灰铸铁强度和韧性的有力元素,可以显著降
低其碳化物的数量和尺寸,从而提高其材料致密度和节能性能。
在灰铸
铁中加入适量的镍元素可以显著提高其疲劳寿命,并降低其断裂韧性的
劣化。
综上所述,灰铸铁中的合金元素类型和含量对其组织和性能具有重
要的影响,在实际应用中需要针对不同的工作要求进行综合考虑和选择。
铸铁五大元素的标准
铸铁五大元素的标准
铸铁的五大元素是指碳、硅、锰、硫、磷。
这些元素在铸铁中起到不同的作用和影响铸铁的性能。
1. 碳:是铸铁中最重要的元素之一,对铸铁的硬度、强度和韧性起着至关重要的作用。
铸铁中碳含量在2%以下,碳含量越高,铸铁的硬度和脆性越大,但韧性降低。
2. 硅:硅含量对铸铁的组织和性能有着重要影响。
适当的硅含量能够提高铸铁的流动性和润湿性,有利于铸件的充型和表面质量。
同时,硅还能够提高铸铁的耐磨性和抗腐蚀性。
3. 锰:锰能够提高铸铁的硬度和韧性,同时还能够改善铸铁的晶界和组织结构,提高铸铁的强度和冲击韧性。
4. 硫:硫是铸铁中的杂质元素,其含量对铸铁性能影响较大。
过高的硫含量会导致铸铁脆性增加,降低铸件的强度和韧性。
5. 磷:磷含量对铸铁的机械性能影响较大。
磷能够提高铸铁的腐蚀性能和抗疲劳性能,但过高的磷含量会导致铸铁的脆性增加。
以上是五大元素在铸铁中的主要作用和影响,不同的铸铁材料和应用领域对这些元素的要求和限制也会有所不同。
影响灰铸铁性能的因素
提高灰铁铸件机械性能的方法一、灰铸铁定义灰铸铁是指具有片状石墨的铸铁,因断裂时断口呈暗灰色,故称为灰铸铁。
主要成分是铁、碳、硅、锰、硫、磷,是应用最广的铸铁,其产量占铸铁总产量80%以上。
二、影响灰铸铁机械性能的因素对灰铸铁铸件机械性能和金相组织的影响主要有化学成分、铁水的孕育、炉料配比、铁水过热处理、高温铁水在炉内保温时间、铁液的冷却速度、铸件的开箱时间等因素都会对灰铁铸件机械性能产生影响。
三、影响机械性能的机理1、化学成分:(1)五大常规元素C、Si、Mn、P、S的影响:a、C、Si都是促进石墨化元素,CE=C+1/3(Si+P),石墨的强度极低,相对与铁来说可以看作没有,加上灰铸铁中石墨以片状形态存在,对基体的割裂作用很明显,所以提高CE促进石墨变粗,石墨数量增加,铸件的强度和硬度会下降;CE降低,石墨数量减少,会增加铸件白口倾向,石墨片细化,由于增加初析奥氏体枝晶,从而提高铸件的力学性能,但铸件的铸造性能会下降,铸件的断面敏感性增加,硬度增加。
b、Mn、S都是稳定碳化物、阻碍石墨化元素,Mn是扩大奥氏体区元素,提高铁液中的Mn含量可以有效的降低奥氏体转变温度,有利于珠光体的形成和稳定珠光体的作用,并且奥氏体在较低温度下转化为珠光体,所以减小了珠光体之间的间距,有细化珠光体的作用,故Mn可以提高灰铁铸件的抗拉强度。
两者同事存在时会生成MnS及S的化合物,呈粒状分布在基体中,成为石墨非自发性晶核,促进石墨的形成,如果Mn、S过量不但对改善铸件性能没有帮助,还会增加铸件夹渣的机率,从而降低铸件的机械性能。
c、P可以使共晶点左移,少量的P可以增加铸件的硬度,但由于P熔点低,铁液凝固是偏析到晶界,形成磷共晶,增加铸件的脆性,降低铸件的致命性。
(2)其他合金元素和微量元素的影响:a、Mn、Cu、Mo等元素都可以促进珠光体生成,细化珠光体,稳定珠光体的作用,故Mn、Cu、Mo也能提高灰铁铸件的强度。
b、Pb:在灰铸铁中,Pb含量过高会形成魏氏石墨,严重影响铸件的性能。
五大元素对铸件有何具体影响?
五大元素对铸件有何具体影响?影响铸件品质的常规元素主要有五种,分别是碳、硅、锰、硫、磷,以上元素我们叫做基本元素或俗称五大元素。
它们是直接影响铸件物理性能的一个重要因素。
其主要作用如下:1、碳元素是铸铁中最基本的成分。
它不但是区分钢或铁的主要依据,含碳量大于1.7%是铁,低于1.7%的称为钢,而且,在铸造过程中,碳影响着铸件的力学性能。
在铸造中适当的碳促进石墨化,减小白口倾向,即减少渗碳体、珠光体、三元磷共晶,增加铁素体,因而降低硬度改善加工性能;碳促进镁吸收率的提高;改善球化,以达到预期效果;碳能改善流动性,增加凝固时的体积膨胀;碳提高吸振性,减摩性,导热性。
但碳含量过高引起石墨漂浮,恶化力学性能,过低又易产生缩孔松缩等缺陷。
所以,对不同质量要求的铸件,合理选配碳含量一般是提高铸件质量的一种途径,例如:灰铁含碳量大多在2.6%~3.6%,球墨铸铁在3.5%~3.9%。
碳对中锰球墨铸铁的力学性能影响不明显,一般碳量高于3.9%时易出现石墨漂浮,影响铸铁质量,碳低于3.0%时,不利于石墨化故一般控制碳量在3.0%~3.8%为宜。
2、硅元素是铸件中的有益元素,它和碳元素一样,能促进石墨化,以孕育剂的方式添加的硅作用更明显。
对于铸态球磨铸件,增加含硅量有双重作用,一方面它使渗碳体、珠光体、三元磷共晶减少,铁素体增加,因而降低强度和硬度,改善铸件塑性;另一方面硅固溶强化铁素体,使屈服点和硬度提高;硅改善铸造流动性,增大凝固时体积膨胀;硅能改善耐热、耐蚀性。
增加硅量,特别是孕育硅量,能够显著的控制碳化物的数量,因此,硅是抑制中锰球墨铸铁白口倾向的强力元素。
硅在一定范围内,有利于强度和韧性的提高,但使抗磨性能有所降低。
故要取合适的量。
一般情况下,灰铸件硅含量在1.2%~3.0%,球墨铸件中硅在2.0%~3.0%。
3、锰是铸件重要元素之一,适量的锰,有助于生成纹理结构,增加坚固性和强度及耐磨性。
锰和硫一样都是稳定的化合物,是阻碍石墨化的元素,当与硫共存时,锰与硫的亲和力较大,会结合成MnS等化合物,在适当温度时,不仅无阻碍石墨化作用,还能中和硫,起着除硫作用。
球墨铸铁中五元素对金相组织与机械性能的影响作用
球墨铸铁中五元素对金相组织与机械性能的影响作用一、碳元素——对金相组织与机械性能的影响1、当碳当量小于4.5~4.7%时,增加含碳量可提高镁的吸收率,有利于球化。
2、碳高铁水流动性好,凝固期间析出石墨最多,石墨化体积膨胀增加,补偿收缩增加铸件致密性,改善机械性能。
3、在共晶成分以上,增加含碳量易产生石墨漂浮,降低机械性能。
4、降低含碳量易产生游离渗碳体,使机械性能降低,脆性增加,同时增加缩孔,缩松等铸造缺陷。
二、硅元素——对金相组织与机械性能的影响1、硅是强烈的石墨元素,即使石墨结晶,又使渗碳体分解。
因此,提高含硅量,石墨球径减小,数量增加,形态圆整。
2、硅量增加,铁素体增加,珠光体减少,强度和硬度降低,塑性和韧性提高。
3、硅具有强化铁素体的作用,当含量大于3.3%时,脆性增加,塑性降低。
4、硅使共晶点向左上方移动,使凝固区间缩小,增加流动性,减少缩松。
三、锰元素——对金相组织与机械性能的影响1、锰降低共析转变温度,从而稳定并细化珠光体组织,在石墨化退回时,阻止珠光体的分解。
2、锰促使渗碳体形成,增加锰量可提高强度,降低塑性、韧性。
当组织中出现较多自由渗碳体时,除硬度外,其他性能均下降。
3、锰增加过冷奥氏体稳定性,使S曲线右移。
加入量为0.5%为宜。
四、磷元素——对金相组织与机械性能的影响1、磷在铁中具有一定的溶解度,超过此值在组织中出现二元或三元磷共晶,沿晶界分布,破坏了晶粒间的结合能力,因此使球铁的强度下降。
2、磷增加晶间缩松倾向,降低机械性能。
3、在热处理中,磷不阻碍共晶渗碳体的分解,而阻碍共析渗碳体的分解。
4、磷提高脆性转变温度范围,增大冷裂性。
5、随着磷含量增加,缩孔,缩松倾向增加。
五、硫元素——对金相组织与机械性能的影响1、硫与稀土、镁具有很强的结合能力,原铁液含硫高会消耗过多球化剂,而出现球化不良和球化衰退。
2、原铁水含硫量高,球化剂加入量大,处理后铁水温度低,铁水中夹杂物多,铁水表面氧化结膜温度高,铁水流动性差,容易使球铁产生夹渣、皮下气孔等缺陷。
影响灰铸铁性能的因素
提高灰铁铸件机械性能的方法一、灰铸铁定义灰铸铁是指具有片状石墨的铸铁,因断裂时断口呈暗灰色,故称为灰铸铁。
主要成分是铁、碳、硅、锰、硫、磷,是应用最广的铸铁,其产量占铸铁总产量80%以上。
二、影响灰铸铁机械性能的因素对灰铸铁铸件机械性能和金相组织的影响主要有化学成分、铁水的孕育、炉料配比、铁水过热处理、高温铁水在炉内保温时间、铁液的冷却速度、铸件的开箱时间等因素都会对灰铁铸件机械性能产生影响。
三、影响机械性能的机理1、化学成分:(1)五大常规元素C、Si、Mn、P、S的影响:a、C、Si都是促进石墨化元素,CE=C+1/3(Si+P),石墨的强度极低,相对与铁来说可以看作没有,加上灰铸铁中石墨以片状形态存在,对基体的割裂作用很明显,所以提高CE促进石墨变粗,石墨数量增加,铸件的强度和硬度会下降;CE降低,石墨数量减少,会增加铸件白口倾向,石墨片细化,由于增加初析奥氏体枝晶,从而提高铸件的力学性能,但铸件的铸造性能会下降,铸件的断面敏感性增加,硬度增加。
b、Mn、S都是稳定碳化物、阻碍石墨化元素,Mn是扩大奥氏体区元素,提高铁液中的Mn含量可以有效的降低奥氏体转变温度,有利于珠光体的形成和稳定珠光体的作用,并且奥氏体在较低温度下转化为珠光体,所以减小了珠光体之间的间距,有细化珠光体的作用,故Mn可以提高灰铁铸件的抗拉强度。
两者同事存在时会生成MnS及S的化合物,呈粒状分布在基体中,成为石墨非自发性晶核,促进石墨的形成,如果Mn、S过量不但对改善铸件性能没有帮助,还会增加铸件夹渣的机率,从而降低铸件的机械性能。
c、P可以使共晶点左移,少量的P可以增加铸件的硬度,但由于P熔点低,铁液凝固是偏析到晶界,形成磷共晶,增加铸件的脆性,降低铸件的致命性。
(2)其他合金元素和微量元素的影响:a、Mn、Cu、Mo等元素都可以促进珠光体生成,细化珠光体,稳定珠光体的作用,故Mn、Cu、Mo也能提高灰铁铸件的强度。
b、Pb:在灰铸铁中,Pb含量过高会形成魏氏石墨,严重影响铸件的性能。
灰铸铁组织中几种合金元素的应用与作用解析.
灰铸铁组织中几种合金元素的应用与作用解析生产高牌号孕育灰铸铁件,进行有效的孕育处理,是至关重要的,但是,正确地确定化学成分,必要时配加少量合金元素,也是不可忽视的条件。
如处理得当,合理选定化学成分和孕育处理方法可以有效的提高灰铸铁各个方面机械性能及其铸造成熟度。
这里,我们要讨论有关控制灰铸铁化学成分,及孕育处理的一些问题。
一.灰铸铁的组织和合金元素的影响灰铸铁的强度和综合质量,取决于其最终的显微组织,生产高牌号灰铸铁件,控制其显微组织的目标,大致有以下几方面:★极少量游离渗碳体和晶间渗碳体;★石墨形态为A型;★石长3——4 级。
★基体组织95%以上为珠光体,游离铁素体不多于5%;★晶粒细小均匀。
上述5项目标中,前3项要在铸铁共晶转变过程中建立基础,后2项则要通过控制铸铁共析转变来达到。
只有合理控制化学成分,有效地强化孕育才能满足上述五项条件。
1.铸铁的共晶过程要分析铸铁的共晶过程,不能不回顾一下铁-碳合金的相图。
铁-碳合金的相图是双重的,有稳定的铁-石墨系和介稳定的铁-渗碳体系。
制成高性能的灰铁件,当然不希望出现游离的渗碳体,所以要使铸铁按稳定的铁-石墨系凝固。
图1(借用李传栻的图)中简略地表示了铁-碳合金相图的共晶部分,并表示了一些合金元素对铁-石墨系和铁-渗碳体系共晶温度的影响。
图1 合金元素对铁-石墨系和铁-渗碳体系平衡共晶温度的影响铁-石墨系的共晶温度高于铁-渗碳体系的共晶温度,如果共晶成分的铁水冷却到铁-石墨共晶温度以下,同时又在铁-渗碳体的共晶温度以上,此时,对铁-石墨系而言铁水已经有了过冷度,可以进行石墨加奥氏体(γ)的共晶结晶,对铁-渗碳体系而言,则系统的自由能仍较高,没有进行渗碳体加奥氏体共晶结晶的可能。
这样,得到的是没有游离渗碳体的灰铸铁。
但是,对于只含碳而不含其他合金元素的铸铁,铁-石墨共晶结晶温度与铁-渗碳体共晶温度之间的间隔只有6℃,要实现上述凝固条件,实际上几乎是不可能的。
影响灰铸铁材料性能的因素有哪些
影响灰铸铁材料性能的因素有哪些1、碳当量对材料性能的影响决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。
当碳当量较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形态恶化。
这样的石墨使金属基体够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。
在材料中珠光体具有好的强度、硬度,而铁素体则质地较软而且强度较低。
当随着C、Si的量提高,会使珠光体量减少铁素体量增加。
因此,碳当量的提高将在石墨形态和基体组织两方面影响铸铁件的抗拉强度和硬度。
在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。
2、合金元素对材料性能的影响在灰铸铁中的合金元素主要指Mn、Cr、Cr、Sn、Mo等促进珠光体生成元素这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。
在熔炼过程控制中,对合金元素的控制同样是重要的手段。
3、炉料配比对材料的影响过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。
如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料种钛的含量,对材料机械性能产生很大的影响。
同样,废钢是许多合金元素的来源,因此废钢用量对铸件机械性能的影响是非常直接的。
4、微量元素对材料性能的影响近年来,电炉已经基本取代了冲天炉,但是电炉熔炼丧失了冲天炉熔炼的一些优点,这样一些微量元素对铸铁的影响也就反映了出来。
由于冲天炉内的冶金反映非常强烈,炉料是处于氧化性很强的气氛中,有害微量元素绝大部分都被氧化,随炉渣一起排出,只有一少部分会残留在铁水中,一般不会对铸铁形成不利影响。
在冲天炉的熔炼过程中,焦炭中的氮和空气中的氮气在高温下,一部分分解后会以原子的形式融入铁水中,使得铁水中的氮含量相对很高。
灰铸铁中各元素作用
灰铸铁中各元素作用灰铸铁中各元素作用1、碳、硅碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。
提高碳当量促使石墨片变粗、数量增加,强度硬度下降。
相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。
但是降低碳当量会导致铸造性能下降。
2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有稳定和细化珠光体作用,在Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。
3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。
磷在奥氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。
共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。
此液相约在955℃凝固。
铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。
铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。
磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。
4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。
很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰退的很快,常常在铸件中产生白口。
5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。
但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。
6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口倾向增大,铸件易收缩,产生废品。
铸件5元素的影响及作用
文章摘要:灰铸铁通常含有wP=0·02%-1·3%,含磷量越高则铸件孔洞类缺陷(缩松、缩孔)越多,即铸件断面上出现分散而细小的缩孔,有时借助放大镜才可发现。
缩松影响铸件致密性,铸件试压可能产生渗漏;但含磷量太低又会导致金属渗透(机械粘砂)和飞翅(飞边), 文章关键词:金属渗透铸件缩松磷含量灰铸铁孔洞类缺陷机械粘砂含磷量文章快照:松、缩孔)越多,即铸件断面上出现分散而细小的缩孔,有时借助放大镜才可发现。
缩松影响铸件致密性,铸件试压可能产生渗漏;但含磷量太低又会导致金属渗透(机械粘砂)和飞翅(飞边),即铸件表面粘附一层砂粒和金属的机械}昆合物。
铸件表面产生厚薄不均的金属薄片,多出现在铸型分型面和芯头与芯座接合处,影响铸件外观质量及表面粗糙度,增加铸件清理工作量。
对于技术条件要求较高的铸件,含磷量的控制是很重要的,因含磷量的变化对铸件致密性、外观质量起到举足轻重的作用,故对灰铸铁中含磷量的控制是必要的。
下面谈谈我们在这方面的若干生产实践。
1.低磷含量促进铸件致密-陛当W。
>0.02%时,会形成一种低熔点二元或三元磷共晶组织存在于晶界,非常细小且分散,在共晶团周围及铸件热节处,会导致细小孔洞的产生,即铸件缩松或不致密。
生产统计数据表明,铸件不致密的概率随铸件含磷量的增加而增加。
为了获得高的、稳定的铸件致密性,一般控制W:0.04%~0.06%。
若W增加到约0.1%时,会使铸件缩松、不致密性明显增加。
2.低磷含量促使金属渗透和飞翅产生低磷含量促进铸件致密性,但同时也促使金属渗透和铸件飞翅的产生,这会增加铸件清理工作量和铸件成本。
由全废钢或大部分废钢生产的灰铸铁,其W:0.02%~0.04%时,就经常发现这类缺陷。
增加磷含量则可消除或减轻这类缺陷。
3.控制磷含量的实际意义和措施(1)较低的磷含量对生产某些致密性要求较高的铸件是至关重要的,例如缸盖、液压件等。
当W。
从0.06%增至0.1%左右,会使铸件产生缩松的几率增加。
灰铸铁五大元素的作用和对机械性能的影响
灰铸铁五大元素的作用和对机械性能的影响产品机械性能是各国检验产品质量的重要指标,同时也是产品使用性能直接相关,为提高灰铸铁的性能,常采用的措施:选择合理的化学成分,改变炉料组成,孕育处理,铁液合金化等措施或几种措施结合,但是化学成分一般作为生产行为,标准中一般不做强制要求,要想得到一定的性能有多种配料方法。
灰铸铁中主要有五大元素碳、硅、锰、硫、磷,化学成分合理的选配是上述措施最重要和最经济的方法。
碳、硅及碳当量:碳、硅是铸铁的主要组成元素,又都是强烈促进石墨化的元素,一般情况下碳和硅含量越高,越有利于石墨化。
为了简化和避免使用多元合金相图,可以将碳、硅等元素,按照其对共晶点实际碳量的影响,将这些元素的量折算成对碳量的增减,谓之碳当量,以CE表示,为简化计算一般只考虑硅、磷的影响,因此简化公式:CE%=C%+1/3(Si+P)%。
因此碳当量的变化对机械性能有最直接影响,碳当量提高,促使石墨片变粗,数量增多,强度和硬度下降,碳当量降低,石墨数量减少,石墨片细化,由于增加初析奥氏体枝晶量,从而是提高铸件力学性能的措施,但同时导致铸件铸造性能降低,铸件断面敏感性增大,铸件内应力增加,硬度上升增加加工困难。
一般碳的质量分数大多2.6%-3.6%,硅的质量分数大多1.2%-3.0%。
锰、硫本身是稳定碳化物、阻碍石墨化的元素。
但两者共同存在时,会结合成MnS 及S化合物,以颗粒状分布于基体中,这些化合物的熔点在1600°C以上,不仅无阻碍石墨化的元素,而且还可作为石墨化的非自发性晶核。
一般硫的质量分数大多0.06%-0.15%,锰的质量分数大多0.4%-1.2%。
磷使铸铁的共晶点左移,作用程度与硅相似,但磷在铸铁中形成低熔点二元、三元磷共晶,虽然提高耐磨性,但随磷量增加铸件脆性增加致密性降低,磷的质量分数大多小于0.2%。
铁的五大元素及性能影响
铁的五大元素及性能影响
铸件五大元素及性能影响
灰铸铁中含有碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、等5元素,这些元素对铸件的性能均有一定的影响。
碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,责难于削切加工,这就是炼钢生铁切削性能差的原因。
石墨强度低,它的存在能增加生铁的铸造性能。
硅(Si):能促使生铁中所含的碳分离为石磨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。
锰(Mn):能溶于铁素体和渗(shen)碳体,在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。
磷(P):属于有害元素,但磷减低了生铁熔点可使铁水的流动性增加,所以在有的制品内往往含磷量较高。
然而磷又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。
硫(S):在生铁中时有害元素,它促使铁与碳结合使铁硬脆,并与铁化合成低熔点的硫化铁,是生铁产生热脆性并减低铁液的流动性,故含硫高的生铁不适于铸造细件,铸造中硫的含量最多不得超过0.06%.(车轮生铁除外)。
制动钳属于灰铸铁,五大元素的成分比例为:C:2.9%-3.2% S≤0.12% Mn:
0.8%-1.1% Si:1.4%-1.7% P≤0.15%.。
灰铸铁件常用合金元素及其作用
渗碳体不易受硝酸酒精溶液的腐蚀,在显微 镜下呈白亮色。渗碳体的显微组织形态很多, 在钢和铸铁中与其他相共存时呈片状、粒状、 网状或板状。 渗碳体硬度很高而塑性和冲击 韧性几乎为零,脆性极大,是铸铁件的强化 相。
灰铸铁中碳含量越高,强度越低。增加含碳 量,可使铸铁的石墨化程度增加,石墨变得 粗大,基体中珠光体含量减少,铁素体增加。
S
硫在铸铁中是有害元素。硫能完全溶于铁液, 并增强Fe-C原子间的结合力,因此是阻碍石 墨化的元素。此外硫还恶化铸铁的铸造性能, 降低流动性,增大裂纹倾向等。但是少量的 硫可以促进石墨生核并细化晶粒。因此灰铁 件中硫的含量最好控制在0.06%-0.08%。
以上五种元素广泛应用于所有灰铸铁件,除 某些特种用途的铸铁件外,硫、磷均被视为 有害元素,需要严格控制含量。
总之,锰在灰铸铁中的作用主要是中和硫的 影响,含量不宜过高。
P
磷能完全溶于铁液中。当铁液中磷含量超过 0.2%就可能出现磷共晶。磷共晶硬而脆,可 提高铸铁耐磨性,某些耐磨高磷铸铁磷含量 可达0.6 %。合金元素会在磷共晶附近偏析, 而削弱合金的作用。同时,磷共晶附近为糊 状凝固,会增大铸件缩松倾向。
Cu
铜可以促进石墨化(作用相当于硅的1/5); 减小白口倾向;促进珠光体形成并细化晶粒; 有微弱的细化石墨的作用并能稳定铁素体。 对于高碳、低硅铸铁,加铜后提高强度和硬 度的作用可靠且明显。通常加入量小于1%。
Ni
镍的作用与铜相似,既能促进石墨化,减轻 白口倾向,又可以促进珠光体形成,细化晶 粒。加镍可以提高铸铁的强度以及耐磨性, 高镍铸铁通常用作耐磨材料。
合金元素对铸件的影响
常见合金元素对铸件的影响主要体现在: 1.对共晶凝固时石墨化的影响; 2.对临界转变温度的影响; 3.稳定奥氏体; 4.能否细化珠光体; 5.能否形成其他组织等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰铸铁五大元素的作用和对机械性能的影响
产品机械性能是各国检验产品质量的重要指标,同时也是产品使用性能直接相关,为提高灰铸铁的性能,常采用的措施:选择合理的化学成分,改变炉料组成,孕育处理,铁液合金化等措施或几种措施结合,但是化学成分一般作为生产行为,标准中一般不做强制要求,要想得到一定的性能有多种配料方法。
灰铸铁中主要有五大元素碳、硅、锰、硫、磷,化学成分合理的选配是上述措施最重要和最经济的方法。
碳、硅及碳当量:碳、硅是铸铁的主要组成元素,又都是强烈促进石墨化的元素,一般情况下碳和硅含量越高,越有利于石墨化。
为了简化和避免使用多元合金相图,可以将碳、硅等元素,按照其对共晶点实际碳量的影响,将这些元素的量折算成对碳量的增减,谓之碳当量,以CE表示,为简化计算一般只考虑硅、磷的影响,因此简化公式:CE%=C%+1/3(Si+P)%。
因此碳当量的变化对机械性能有最直接影响,碳当量提高,促使石墨片变粗,数量增多,强度和硬度下降,碳当量降低,石墨数量减少,石墨片细化,由于增加初析奥氏体枝晶量,从而是提高铸件力学性能的措施,但同时导致铸件铸造性能降低,铸件断面敏感性增大,铸件内应力增加,硬度上升增加加工困难。
一般碳的质量分数大多2.6%-3.6%,硅的质量分数大多1.2%-3.0%。
锰、硫本身是稳定碳化物、阻碍石墨化的元素。
但两者共同存在时,会结合成MnS 及S化合物,以颗粒状分布于基体中,这些化合物的熔点在1600°C以上,不仅无阻碍石墨化的元素,而且还可作为石墨化的非自
发性晶核。
一般硫的质量分数大多0.06%-0.15%,锰的质量分数大多0.4%-1.2%。
磷使铸铁的共晶点左移,作用程度与硅相似,但磷在铸铁中形成低熔点二元、三元磷共晶,虽然提高耐磨性,但随磷量增加铸件脆性增加致密性降低,磷的质量分数大多小于0.2%。