《泛函分析》课程标准

合集下载

泛函分析解读课程设计

泛函分析解读课程设计

泛函分析解读课程设计一、课程目标知识目标:1. 理解泛函分析的基本概念,如赋范线性空间、内积空间、有界线性算子等;2. 掌握泛函分析中的重要性质和定理,如开映射定理、闭图像定理、Hahn-Banach定理等;3. 学会运用泛函分析方法解决实际问题,如优化问题、微分方程等。

技能目标:1. 能够运用泛函分析的知识对实际问题进行建模和求解;2. 能够运用数学软件(如MATLAB)进行泛函分析的计算;3. 能够运用逻辑推理和证明方法,阐述泛函分析中的性质和定理。

情感态度价值观目标:1. 培养学生严谨、科学的思维方式和探究精神,增强对数学美的感悟;2. 培养学生团队协作和沟通交流的能力,学会倾听、尊重他人观点;3. 激发学生对数学学科的兴趣和热情,提高学生的学术素养。

课程性质:本课程为高年级数学专业或相关专业的学科基础课程,旨在帮助学生掌握泛函分析的基本概念、性质和定理,培养其运用泛函分析方法解决实际问题的能力。

学生特点:学生具备一定的数学基础和分析能力,具有较强的逻辑思维和抽象思维能力。

教学要求:结合学生特点,注重理论与实践相结合,强调知识的应用性和实践性。

通过案例分析、讨论交流等教学方式,引导学生掌握泛函分析的核心内容,提高其分析问题和解决问题的能力。

同时,注重培养学生的学术素养和团队协作精神。

在教学过程中,将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 引言与背景:介绍泛函分析的发展历程、应用领域及与其它数学分支的联系。

2. 赋范线性空间:涵盖赋范线性空间的定义、性质、例证,以及范数的性质和运算。

- 教材章节:第2章 赋范线性空间- 内容列举:范数的定义与性质、Cauchy序列与完备性、赋范线性空间的例子。

3. 内积空间:探讨内积的定义、性质、希尔伯特空间及其几何意义。

- 教材章节:第3章 内积空间- 内容列举:内积的定义与性质、Cauchy-Schwarz不等式、内积空间的例子、希尔伯特空间。

泛函分析(科) 教学大纲

泛函分析(科)   教学大纲

泛函分析(科)一、课程说明课程编号:130911Z10课程名称(中/英文):泛函分析(科)/Functional Analysis课程类别:专业核心课学时/学分:88/5.5先修课程:数学分析、高等代数、实变函数适用专业:数学科学班教材、教学参考书:《泛函分析》江泽坚孙善利,高等教育出版社,2005;《泛函分析讲义》(上册)张恭庆林源渠,北京大学出版社,1995.二、课程设置的目的意义泛函分析是研究拓扑线性空间到拓扑线性空间满足各种代数和拓扑条件的映射的分支学科。

它是从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。

它已成为现代纯粹数学和应用数学研究和应用的基础,在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用。

这门课程旨在引导相关专业的学生初步进入这一领域;培养学生对数学分析、拓扑学、代数等知识的综合运用能力;为进一步学习研究现代数学打下良好基础.三、课程的基本要求泛函分析是数学各专业的核心课程之一。

通过本课程的学习,学生应该理解泛函分析的基本思想;掌握度量空间、赋范线性空间、有界线性算子,内积空间,算子的谱等基本概念;掌握Hilbert空间和Banach空间的基本理论。

四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求共计安排24学时的习题课,用以讲解与讨论每一章节课后的练习题。

其中,一部分为基础练习题,目的是加深对于基本概念的理解,促使掌握基本原理的典型运用;一部分为拓展练习题,目的是对课堂讲解内容作适度的补充以及延伸。

六、考核方式及成绩评定七、大纲主撰人:大纲审核人:。

泛函分析教学大纲

泛函分析教学大纲

泛函分析教学大纲一、泛函分析课程说明(一) 课程代码 08130013(二) 课程英文名称:Functional Analysis(三) 开课对象: 数学与应用数学专业本科生(四) 课程性质:泛函分析是数学学科的一门基础理论课程。

本课程的目的在于运用泛函分析的理论和方法进一步研究无限维空间的结构。

通过教学,使学生了解和掌握这一学科的基本概念,理论,培养学生的理论思维能力,为从事数学学科的教学和研究打下一定的理论基础。

前期课程:《数学分析》《高等代数》《实变函数》(五) 教学目的通过泛函分析的教学,使学生了解和掌握赋泛线性空间,有界线性算子,Hilbert空间,Banach空间的基本概念和基本理论,培养学生理论思维能力,为进一步学习数学的有关学科打下扎实的理论基础(六) 教学内容本课程主要包括度量空间和赋范线性空间,有界线性算子和连续线性泛函,内积空间和Hilbert空间,Banach空间中的基本定理,线性算子的谱等几个部分。

通过教学的各个环节使学生达到各章的基本要求。

习题是重要的教学环节,教师必须高度重视。

(七) 学时、学分数及学时数具体分配教学时数:72学时学分数: 4 学分教学时数具体分配(八) 教学方式以教师讲解为主的课堂教学方式(九) 考核方式和成绩记载说明考核方式为考试。

严格考核学生的出勤情况,达到学籍管理规定的旷课量取消考试资格。

综合成绩根据平时成绩和期末成绩评定。

平时成绩占30%,期末成绩占70%。

二、讲授大纲与各章的基本要求第一章度量空间和赋范线性空间教学要点:1 泛函分析研究的对象是定义在度量空间之间的映射2 度量空间X的子集Y在X中稠密的充分必要条件是Y的闭包等于X3 有理点集是可数稠密集4 任何度量空间X,都存在完备的度量空间教学时数:12学时教学内容第一节度量空间第二节度量空间的极限,稠密集,可分空间第三节连续影射第四节柯西点列和完备度量空间第五节度量空间的完备化第六节压缩映射原理及其应用第七节线性空间第八节赋范线性空间和Banach空间考核要求:第一节度量空间(识记)第二节度量空间的极限,稠密集,可分空间(领会与应用)第三节连续影射(领会与应用)第四节柯西点列和完备度量空间(领会与应用)第五节度量空间的完备化(领会)第六节压缩映射原理及其应用(领会与应用)第七节线性空间(领会与应用)第八节赋范线性空间和Banach空间(领会与应用)第二章有界线性算子和连续线性泛函教学要点:1 掌握赋范线性空间的有界线性映射的概念2 掌握赋范线性空间X到赋范线性空间Y上的线性映射的全体也是一个赋范线性空间3 掌握线性同构的概念教学时数:16学时教学内容第一节有界线性算子和连续线性泛函第二节有界线性算子空间和共轭空间第三节广义函数考核要求:第一节有界线性算子和连续线性泛函(识记、领会、应用)第二节有界线性算子空间和共轭空间(识记、领会、应用)第三节广义函数(领会)第三章内积空间和Hilbert空间教学要点:1 掌握内积与西尔百特空间中的范数之间的关系2 每个Hilbert空间X都有完全规范正交系3 Hilbert空间X可分的充要条件是X存在一个可数的完全规范正交系教学时数:20学时教学内容:第一节内积空间的基本概念第二节投影定理第三节 Hilbert空间中的规范正交系第四节 Hilbert空间上的连续线性泛函第五节自伴算子,酉算子和正常算子考核要求:第一节内积空间的基本概念(识记,领会,应用)第二节投影定理(领会,应用)第三节 Hilbert空间中的规范正交系(领会,应用)第四节 Hilbert空间上的连续线性泛函(领会,应用)第五节自伴算子,酉算子和正常算子(识记,领会,应用)第四章Banach空间中的基本定理教学要点:1理解Banach空间三大基本定理(1)泛函延拓定理(2)一致有界定理(3)逆算子定理2 掌握弱收敛和强收敛的概念3 理解Baie纲定理教学时数:16学时教学内容第一节泛函延拓定理第二节 C[a,b]的共轭空间第三节共轭算子第四节纲定理和一致有界定理第五节强收敛,弱收敛和一致收敛第六节逆算子定理第七节闭图象定理考核要求:第一节泛函延拓定理(领会,应用)第二节 C[a,b]的共轭空间(领会,应用)第三节共轭算子(识记,领会,应用)第四节纲定理和一致有界定理(领会,应用)第五节强收敛,弱收敛和一致收敛(识记,领会,应用)第六节逆算子定理(领会,应用)第七节闭图象定理(领会,应用)第五章线性算子的谱教学要点:1 理解赋范线性空间上的有界线性算子T的谱是有限维线性空间中线性变换的特征值的推广2 赋范线性空间上的有界线性算子T的谱是复平面上的非空有界闭集3 用全连续算自谱分解理论,可解一类具有对称核的积分算子的积分方程教学时数:8学时教学内容第一节谱的概念第二节有界线性算子谱的基本性质第三节紧集和全连续算子第四节自伴全连续算子的谱论第五节具对称核的积分方程考核要求:第一节谱的概念(识记,领会)第二节有界线性算子谱的基本性质(领会,应用)第三节紧集和全连续算子(领会,应用)第四节自伴全连续算子的谱论(领会,应用)第五节具对称核的积分方程(领会,应用)三、推荐教材和参考书目《实变函数与泛函分析》,程其襄等,第二版,高等教育出版社《泛函分析基础》,刘培德,第一版,武汉大学出版社《泛函分析讲义》,张恭庆,第一版,北京大学出版社《实变函数论与泛函分析》,夏道行等,人民教育出版社《实变函数论与泛函分析概要》,王声望, 第二版,高等教育出版社《实变函数论》,江泽坚,吴智泉,第二版,人民教育出版社Introduction to Functioal Analysis,A.B.Tayor,New york Functional Analysis.Walter Rudin,New York:Mcgraw-Hill Book Com。

《泛函分析》课程标准

《泛函分析》课程标准

《泛函分析》课程标准英文名称:Functional Analysis 课程编号:407012010适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。

二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。

《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。

它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。

该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。

2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。

学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。

《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。

需要师生共同努力去正确面对才能顺利完成本门课的教学任务。

为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。

3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。

首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。

然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。

在赋范空间上定义线性算子及线性泛函,并讨论相关性质。

泛函分析教学大纲

泛函分析教学大纲

泛函分析教学大纲一、课程概述泛函分析是数学的一个重要分支,它集合了线性代数、函数分析和拓扑学的方法和理论,用于研究无限维空间中的函数类和算子。

本课程旨在介绍泛函分析的基本概念、理论和应用,培养学生的抽象思维和数学推理能力。

二、教材主教材:《泛函分析导论》(第三版)- Walter Rudin辅助教材:《实变函数与泛函分析》- 杨维明、李荣华三、教学目标1. 了解泛函空间的基本概念和性质,如:范数、完备性、可分性等。

2. 掌握泛函分析中的重要定理和结论,如:泛函的极值问题、开映射定理、闭图像定理等。

3. 理解并应用泛函分析在数学及其他学科中的实际应用,如:泊松方程、最小二乘法等。

4. 培养学生的抽象思维和数学推理能力,培养学生对数学问题的分析和解决能力。

四、教学内容及安排1. 范数空间- 定义和基本性质- 例子:赋范空间、Banach空间、Hilbert空间等 2. 泛函空间- 定义和基本性质- 例子:连续函数空间、L^p空间、Sobolev空间等 3. 算子理论- 线性算子和有界算子- 特征值和特征向量- 正规算子和紧算子4. 泛函分析中的重要定理- Hahn-Banach定理及其几何意义- 开映射定理和闭图像定理- 范数空间上的Riesz表示定理5. 实际应用- 泊松方程及其解的存在性和唯一性- 最小二乘法及其在数据拟合中的应用五、教学方法1. 理论讲授:通过讲解、演示和示例分析,系统介绍各个概念、定理和方法。

2. 习题训练:针对不同内容和难度的习题,培养学生的问题解决能力和思维灵活性。

3. 实例分析:引入相关的实际问题和案例,让学生将抽象的概念和理论与实际问题联系起来,提高应用能力。

六、学时安排本课程总共授课48学时,其中包括理论课、实践课和讨论课等形式。

- 范数空间和泛函空间:6学时- 算子理论:6学时- 泛函分析中的重要定理:8学时- 实际应用:8学时- 综合练习和讨论:12学时- 期末复习和考试:8学时七、教学评价1. 平时成绩:包括课堂表现、作业完成情况和小测验成绩等。

大学泛函分析课程设计

大学泛函分析课程设计

大学泛函分析课程设计一、课程目标知识目标:1. 理解泛函分析的基本概念,掌握Hilbert空间和Banach空间的定义及其性质;2. 学会运用泛函分析的方法解决实际问题,如对函数序列的收敛性进行分析;3. 掌握泛函分析中的重要定理,如开映射定理、闭图像定理等,并了解其在数学各分支中的应用。

技能目标:1. 培养学生运用泛函分析知识分析和解决问题的能力,提高数学逻辑思维能力;2. 培养学生熟练运用数学符号和数学语言进行表达和交流的能力;3. 提高学生运用计算机软件(如MATLAB)进行数学建模和计算的能力。

情感态度价值观目标:1. 激发学生对泛函分析学科的兴趣,培养其探索精神和创新意识;2. 培养学生严谨、求实的学术态度,提高其学术诚信意识;3. 增强学生的团队合作意识,使其在合作学习中提升自己,帮助他人。

课程性质:本课程为大学数学专业高年级的专业选修课,具有较强的理论性和应用性。

学生特点:学生已具备一定的数学基础和分析能力,对抽象概念和理论有一定的接受能力。

教学要求:结合课程性质和学生特点,注重理论与实践相结合,强化知识点的内在联系,培养学生运用泛函分析知识解决实际问题的能力。

在教学过程中,注重启发式教学,引导学生积极参与课堂讨论,提高其自主学习能力。

通过本课程的学习,使学生在知识、技能和情感态度价值观方面取得具体的学习成果,为后续深造和从事相关领域工作打下坚实基础。

二、教学内容本课程教学内容主要包括以下五个方面:1. 泛函分析基础概念:包括赋范线性空间、内积空间、Hilbert空间和Banach 空间的定义及性质,以及线性算子及其谱理论的基本概念。

教材章节:第一章至第三章。

2. 泛函分析中的重要定理:学习开映射定理、闭图像定理、Hahn-Banach定理、一致有界原理等,并探讨其在数学分析中的应用。

教材章节:第四章至第五章。

3. 函数序列与函数项级数的收敛性:研究在赋范线性空间中函数序列与函数项级数的收敛性问题,包括基本收敛定理及各种收敛性质。

《泛函分析》教学大纲

《泛函分析》教学大纲

《泛函分析》教学大纲一、课程概述《泛函分析》是数学专业的研究生核心课程之一,主要介绍泛函空间中线性算子、拓扑空间、紧算子、测度及积分、特征值问题等内容。

本课程的学习目标是让学生掌握泛函分析的基本理论和方法,培养学生独立分析和解决问题的能力。

二、教学目标1.掌握泛函空间的基本概念及性质;2.熟悉线性算子的定义、性质和范数;3.熟练运用拓扑空间的知识进行分析;4.理解紧算子的定义、性质和应用;5.熟悉测度及积分的基本概念和性质;6.能够解决特征值问题并应用于实际问题。

三、教学内容及课时安排1.泛函空间的基本概念与性质(3课时)1.1线性空间的定义和基本性质1.2赋范线性空间的定义和范数1.3内积空间的定义和内积2.线性算子的定义、性质和范数(3课时)2.1线性算子的定义和性质2.2算子的闭图像定理2.3范数的定义和性质3.拓扑空间及其性质(4课时)3.1拓扑空间的概念和性质3.2开集、闭集和邻域的定义3.3连通性、紧性与局部紧性4.紧算子的定义、性质和应用(4课时)4.1紧算子的定义和性质4.2 Arzelà-Ascoli定理4.3 Fredholm算子的性质和应用5.测度及积分的基本概念和性质(4课时)5.1测度的定义和性质5.2积分的定义和性质5.3可测函数的性质和分解6.特征值问题及其应用(4课时)6.1特征值问题的定义和基本性质6.2特征值问题的解法6.3特征值问题在物理和工程学中的应用四、教学方法1.讲授与讨论相结合,理论和实例相结合,拓展学生的思维;2.通过实例分析和讲解提高学生的应用能力;3.鼓励学生进行课外阅读和综合研究,提高学生的自主学习能力;4.组织学生进行小组讨论和展示,提高学生的合作和表达能力。

五、考核方式1.平时表现(10%):包括课堂参与、作业完成情况等;2.课程论文(30%):要求学生选择一个泛函分析领域的研究课题进行深入阅读和分析,并撰写一篇学术论文;3.期末考试(60%):考核学生对泛函分析的理论知识和应用能力。

《泛函分析》教学大纲

《泛函分析》教学大纲

《泛函分析》教学大纲一、课程概述1.1课程名称:泛函分析1.2学分:3学分1.3总学时:54学时(每周3学时,共18周)1.4先修课程:数学分析、线性代数1.5课程性质:必修课程1.6课程教材:《泛函分析导论》(杨宗胜著)、《泛函分析》(顾兆麟著)二、教学目标2.1知识目标掌握泛函空间的基本概念、性质和结构;熟悉泛函的连续性、可分性和完备性的相关理论;学习泛函的一些常用技巧和方法。

2.2能力目标能够利用泛函分析的基本理论解决实际问题;能够运用泛函分析的方法进行数学建模和分析。

三、教学内容3.1泛函空间3.1.1基本概念:范数、内积、赋范线性空间、希尔伯特空间3.1.2基本算子:线性算子、有界线性算子、伴随算子、幂零算子3.1.3 例子和常见空间:有限维空间、无穷维空间、连续函数空间、$L^p$空间、Sobolev空间等3.2连续性与收敛性3.2.1等价范和等度量空间3.2.2函数序列的一致收敛与逐点收敛3.2.3一致收敛对收敛性的影响3.2.4可分性的等价定义3.3完备性与紧性3.3.1 Cauchy序列与完备性3.3.2 Baire范胞定理3.3.3可列并的完备性和范数完备性3.3.4紧性的等价定义3.4泛函空间的结构3.4.1赋范线性空间的线性性质3.4.2收敛序列的性质与特征3.4.3线性算子的开集定理3.4.4可分空间的稠密性3.5一些重要的泛函3.5.1 凸泛函与Legendre-Fenchel变换3.5.2泛函的连续可微性3.5.3范数空间的双共轭空间3.5.4双线性泛函和正交分解四、教学方法4.1讲授教学法:通过教师的讲授和示范,介绍泛函分析的基本概念、理论和技巧。

4.2引导教学法:通过引导学生解决实际问题和讨论习题,培养学生的分析和解决问题的能力。

4.3实践教学法:通过课堂练习、实例分析和泛函分析的应用实例,让学生对泛函分析的方法和技巧有更深入的认识。

五、教学评价方法5.1平时成绩:包括课堂表现、课后作业和小测验成绩等,占总评成绩的40%。

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲一、课程的适用专业、学时及学分本课程的适用专业为:数学与应用数学专业,72学时,4学分。

二、课程的性质、目的和任务泛函分析是数学专业一门重要的指定选修课,它是以集合论为基础的近代分析数学的一个重要组成部分。

通过课程的学习,使学生了解并进而掌握近代抽象分析的基本内容,扩大学生们通常的三维欧氏空间的视野,加深对数学分析和中学数学的认识和了解。

三、课程教学的基本要求在概要讲述和掌握实变函数中的集合论和欧氏空间中的点集等预备知识的基础上,理解和掌握度量空间的定义,性质及其上度量的特征,熟练掌握度量空间的典型例子;线性赋范空间的定义和性质及典型的Banach空间例子;内积空间的定义和性质;Hilbert空间及其特征;理解线性有界算子(线性连续泛函) 的概念,性质,了解线性算子空间和共朝空间的理论;初步理解和掌握空间中的四大基本定理;泛函延拓定理;一致有界性定理;逆算自定理和闭图象定理;理解线性算子的谱理论初步等。

四、课程的教学内容,重点和难点(-)预备知识1.集合的概念,运算,基数,可数集与不可数集。

2.欧氏空间中的聚点,内点,界点,开集,闭集和完备集等概念和性质。

(-)度量空间1.度量空间的定义及典型例子2.度量空间中的极限,连续映照3. Cauchy点列和完备度量空间4.压缩映照原理及其应用(三)赋范线性空间1.线性空间的定义2.赋范线性空间的定义性质和典型例子3. Banach空间及例子4.有限维赋范线性空间及性质(四)线性有界算子和线性连续泛函1.线性有界算子和线性连续泛函2.线性算子空间和共朝空间(五)内积空间1.内积空间的基本概念,性质,Herbert空间2.投影定理3. Herbert空间上的赋范直交系4. Herberl空间上的线性连续泛函5.自伴算子,酉算子和正常算子(六)Banach空间中的基本定理1.泛函延拓定理,C[a,b]的共舸空间2. 一致有界性定理3.强收敛,弱收敛和一致收敛4.逆算子定理5.闭图象定理(七)线性算子的谱论初步1.谱的概念2.有界线性算子谱的基本性质3.自伴全连续算子的谱论五、课程各教学环节的要求由于本课程概念较多,理论性强,比较抽象,学习时会感到困难,所以在教学过程中的各环节上要注意方法,尽量的多讲一些例子,以帮助学生理解。

《泛函分析》教学大纲

《泛函分析》教学大纲

《泛函分析》教学大纲课程编码:110819课程名称:泛函分析学时/学分:54/3先修课程:《数学分析》、《实变函数》适用专业:数学与应用数学开课教研室:分析与方程教研室一、课程性质与任务1.课程性质:本课程是数学与应用数学专业的一门专业选修课,是现代数学中的一个较新的重要分支,它综合地运用分析、代数和几何的观点与方法,研究分析数学,现代物理和现代工程技术提出的许多问题。

2.课程任务:通过该课程的学习,使学生掌握泛函分析中的基本概念、基本方法。

初步了解其思想方法对现代纯粹数学与应用数学、理论物理及现代工程技术理论等问题的渗透,为今后更进一步的数学研究工作打下坚实的基础。

二、课程教学基本要求在概要讲述和掌握实变函数中的集合论和欧氏空间中的点集等预备知识的基础上,理解和掌握度量空间的定义、性质及其上度量的特征,熟练掌握度量空间的典型例子;线性赋范空间的定义和性质及典型的Banach空间例子;内积空间的定义和性质;Hilbert空间及其特征;理解线性有界算子(线性连续泛函)的概念、性质,了解线性算子空间和共轭空间的理论;初步理解和掌握空间中的四大基本定理;泛函延拓定理;一致有界性定理;逆算自定理和闭图象定理;理解线性算子的谱理论初步等。

成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。

成绩评定采用百分制,60分为及格。

三、课程教学内容第一章距离空间与赋范空间1.教学基本要求通过本章学习使学生理解空间的线性结构和度量结构以及两者的结合,其中包括度量空间、赋范线性空间和内积空间,以及它们的拓扑结构和空间结构等。

2.要求学生掌握的基本概念、理论、技能通过本章教学使学生理解泛函分析研究的对象,掌握度量空间的定义及度量空间中极限、稠密集、可分空间的概念,能够对具体的问题进行判断;进一步了解连续映射的概念;掌握完备的度量空间;理解压缩映射原理,掌握压缩映射原理,能够应用压缩映射原理证明实际问题;掌握线性空间、赋范线性空间和Banach空间。

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲《泛函分析》课程教学大纲一、课程基本信息课程代码:课程名称:泛函分析英文名称:Functional analysis课程类别:选修课学时:54学分:3适用对象: 数学类本科生考核方式:考察先修课程:数学分析,高等代数,实变函数二、课程简介《泛函分析》是现代教学中的一门较新的数学分支,是高等师范院校数学专业的一门重要专业课,它是在学生掌握了数学分析、高等代数的理论知识的基础上,继实变函数之后开设的。

本课程主要内容包括:⑴度量空间和赋范线性空间;⑵有界线性算子和连续线性泛函;⑶内积空间和希尔伯特(Hilbert)空间;(4)巴拿赫空间中的基本定理;(5) 线性算子的谱等。

通过该课程的学习,学生不仅能学到泛函分析的基本理论和方法,而且对学习其他数学分支以及把他应用到数理经济,现代控制论,量子场论,工程技术等领域有很大帮助。

三、课程性质与教学目的1、本课程是数学基础之一,授课对象为数学专业学生。

在讲授和学习时,应注重提高学生分析问题和解决问题的能力,培养学生良好的逻辑思维习惯,让学生掌握全面考虑问题的思维方法,这将有助于学生们顺利地学习其他现代专业数学理论课。

2、本课程主要内容包括:⑴度量空间和赋范线性空间;⑵有界线性算子和连续线性泛函;⑶内积空间和希尔伯特(Hilbert)空间;(4)巴拿赫空间中的基本定理;(5) 线性算子的谱等内容。

3、本大纲的教学总时数为54学时(含习题课),各章节教学时数的具体分配,请参考附表。

4、本课程以课堂讲授为主,讨论辅导为辅,课堂练习与课外作业相结合。

5、在制定本教学大纲时,为了明确对教学大纲中所列具体内容的要求程度,将本要求分为由低到高的三个等级,即对概念和理论性的知识,由低到高分别用“知道”、“了解”、“理解”三级区分,对运算、方法和应用方面的知识,由低到高分别用“会或能”、“掌握”、“熟练掌握”三级区分。

四、理论教学内容与教学基本要求1、第一章度量空间和赋范线性空间(14学时)(1) 度量空间的进一步例子(2) 度量空间中的极限,稠密集,可分空间(几类特殊的点集,稠密性与可分性)(3) 连续映射(度量空间上的连续映射)(4) 柯西(Cauchy)点列和完备度量空间(5) 度量空间的完备化(完备的距离空间,第一第二类型集,距离空间的完备化)(6) 压缩映射原理及其应用(7) 线性空间(8) 赋范线性空间和巴拿赫(Banach)空间教学目的及要求:要求学生掌握距离空间的一些基本概念,为后面学习打下基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《泛函分析》课程标准英文名称:Functional Analysis 课程编号:407012010适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。

二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。

《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。

它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。

该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。

2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。

学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。

《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。

需要师生共同努力去正确面对才能顺利完成本门课的教学任务。

为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。

3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。

首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。

然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。

在赋范空间上定义线性算子及线性泛函,并讨论相关性质。

第三步,在线性赋范空间上定义内积,可以得到内积空间和希尔伯特空间的定义,在内积空间上引入正交以及投影的概念,并建立起相应的几何学,还要讨论希尔伯特空间上的算子,特别是自伴算子、酉算子、正常算子的一些初步性质。

最后,介绍巴拿赫空间中的四个著名定理:Hahn-Banach泛函延拓定理,一致有界性定理,逆算子定理和闭图像定理,这些定理充分显示了泛函分析的威力及其广泛应用。

4、理论联系实际,拓展学生知识面在教学过程中,主要把握以下几点:将先进的教学思想和教学理念贯穿到课程的内容和体系;强化数学思想方法、加强学生分析解决问题能力和数学素养的培养,让学生接受现代的、新的观念,以启迪学生的创新思维;准确把握课程定位,培养学生掌握扎实的数学基础知识、严密的逻辑思维能力以及应用数学知识解决实际问题的能力,同时为学生向科研型理论型人才发展留下充足的空间。

课堂教学提倡启发式,采用各种现代化的教学手段,有些内容举一些数学分析中的例子使学生容易理解泛函分析的抽象理论等。

教师通过应用信息技术手段,可以使得授课内容信息量大,学生更能深入泛函分析的内容。

要求学生做到:将书上的基本知识点吃透,注意咬文嚼字;注意抽象思维能力和逻辑思维能力,要求会做一些理论证明;要求在上课时认真听讲,完成课上训练和课堂作业.课下能够查阅相关文献,了解相关结论。

5、深化考核方式的改进,确保教学质量本课程主要采用课内外结合的学习方式,即课堂上以教师讲授为主,课下以学生实践为主,通过学习使学生掌握泛函分析基本思想,加深对数学知识的理解,达到学生能力培养的目标,同时为今后学习提供必要的理论基础。

通过本课程的考核,使学生比较系统地了解与掌握度量空间和线性赋范空间、有界线性算子和线性连续泛函、内积空间和巴拿赫空间、巴拿赫空间中的基本定理的基本概念、基本性质,提高抽象思维能力,为今后学习打下必要的基础,并能在较高的理论水平的基础上处理数学分析等课程的有关内容。

在教学过程中应要求学注意联系数学与应用数学专业的基础课程;要充分利用泛函分析的方法进行证明;注意培养学生应用泛函分析能力,提高证明的能力。

三、课程目标本课程既要注重讲授基本的理论和知识,更要重视对学生的逻辑思维能力的培养和提高。

1、总目标通过介绍本课程,使学生了解本课程的性质、地位及研究的主要范围、研究方法与该学科的进展;引导学生自觉、主动学习,改变被动式学校的方式,使学生掌握泛函分析的基本知识和基本理论;通过训练学生对一些结论的证明,使学生具备较强的抽象思维能力、逻辑推理能力,从而形成严格而精确的数学素养。

2、分目标四、课程内容根据课程特点,本课程内容划分为四个教学单元,每一单元的内容进一步划分为基础性内容、提高性内容、拓展性内容三部分。

第一单元度量空间和线性赋范空间1、基础性内容度量空间的概念和常见例子、度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间、度量空间的完备化定理、压缩映照原理、线性空间、线性赋范空间和巴拿赫空间的基本概念。

2、提高性内容在具体空间上定义度量,应用压缩映照原理解决具体问题。

3、拓展性内容文化素质拓展:泛函分析发展简史。

知识拓展:把具体度量空间完备化。

第二单元有界线性算子和线性连续泛函1、基础性内容有界线性算子、线性连续泛函、线性算子空间、共轭空间。

2、提高性内容广义函数大意。

3、拓展性内容文化素质拓展:巴拿赫代数简单知识。

知识拓展:简单度量空间的共轭空间。

第三单元内积空间和巴拿赫空间1、基础性内容内积空间的基本概念、投影定理、Bessel不等式及相关定理、Riesz定理、自伴算子、酉算子、正常算子。

2、提高性内容重要定理的证明方法。

3、拓展性内容文化素质拓展:泛函分析中著名数学家简介。

知识拓展:应用本章定理证明一些相关结论。

第四单元巴拿赫空间中的基本定理1、基础性内容Hahn-Banach泛函延拓定理、C[a,b]的共轭空间、共轭算子、纲定理、一致有界性定理、强收敛、弱收敛、一致收敛、逆算子定理和闭图像定理2、提高性内容四个著名定理的证明方法。

3、拓展性内容文化素质拓展:专业方向最新动态介绍。

知识拓展:四个著名定理的具体应用。

五、课程实施1、学时安排泛函分析是数学与应用数学专业课。

每周安排4课时,共11周44课时,一个学期完成,根据教学要求,安排4-6节课时的讨论教学及习题课,其他以集中讲授为主。

为使教学效果达到比较理想的水平,让学生进行有目的的课外学习。

教师的实践性内容安排有作业、小论文、课外阅读资料等。

具体安排如下:2、教学建议(1)教学组织与形式教学班是主要教学组织,班级授课是教学的主要组织形式。

根据泛函分析课程的特点,尽可能多讲些习题的证明;另外充分利用习题课课时,灵活组织学生进行有利于培养学生发现问题、分析问题与解决问题的能力的各种教学活动。

(2)教学方法和手段○1本课程的教学要贯彻理论联系实际的原则。

通过对本课程内容的系统分析、讲解及训练,使学生掌握本课程的基本概念,基本理论,基本技能与方法。

并通过综合训练,进一步使学生掌握运用基础知识综合处理数学理论问题,建立数学模型,解决实际问题的能力。

○2本课程采用讲授法与讨论法相结合的教学方式,鼓励学生积极参与教学活动,充分发挥学生的主观能动性,调动学生的学习兴趣,变被动学习为主动获取。

○3运用网络,将教学内容中那些比较前沿的内容,通过网络,让学生了解最新相关知识。

○4借评讲作业、课堂提问及每次课后辅导的机会,对学生进行学习方法的指导。

(3)能力培养方案为了培养学生分析问题解决问题的能力,在教学中要注重学生对于理论的兴趣和自我学习的能力,提高学生的理论思维能力。

首先,以教师讲授为主,讲授基本的知识与概念,但同时也要尽可能启发学生的思维,调动学生的积极性。

其次,注重讨论、研究、问题式教学。

要求教师根据教学中的重点、难点设计问题或讨论的话题,组织学生课堂讨论,或课后研究,提交书面总结,然后教师再进行归纳总结。

再次,除布置的课后作业以外,结合重点内容布置若干小论文题目,让学生自己查阅文献分析问题,培养论文写作能力。

最后,鼓励学生自学。

自学不等于放任,自学要与检查、督促、辅导结合起来。

3、学业考核与评定《泛函分析》为考查课程。

本课程每学期结束安排闭卷考试。

本课程在命题上应充分体现开放性、灵活性。

采用百分制评分,平时成绩:20分(包括考勤、作业等),期末成绩:80分(试卷成绩的80%),即期末总成绩=试卷成绩*80%+平时成绩。

考核类型分三类:识记、理解、综合运用。

试题类型为选择、填空、判断、计算、证明等。

填空题与选择题或判断题约占40%,计算题和证明题约占60%。

试卷满分为100分,考试时间为120分钟。

六、教材选用与参考书目1、建议教材本课程近些年来使用的教材是程其襄等编写,高等教育出版社2006年5月出版的教材《实变函数与泛函分析基础》。

2、教学参考书[1] 张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社[2] 王声望,郑维行.实变函数与泛函分析概要(第二册) [M]. 北京:高等教育出版社[3] 刘炳初.泛函分析[M].北京:科技出版社[4] John B.Conway.A Course of Functional Analysis[M].北京:世界图书出版公司北京公司。

相关文档
最新文档