矩阵特征值求解

合集下载

矩阵特征值的计算

矩阵特征值的计算

矩阵特征值的计算一、特征值的定义和性质矩阵A的特征值是指满足下列条件的数λ:存在一个非零向量x,使得Ax=λx,即为矩阵A作用在向量x上的结果是该向量的数量倍,其中λ为特征值。

定义特征值之后,可以证明如下性质:1.相似矩阵具有相同的特征值;2.矩阵的特征值个数等于矩阵的阶数;3.特征值可以是实数也可以是复数;4.如果一个矩阵的特征向量独立,则该矩阵可对角化。

二、特征值的计算方法特征值的计算方法有多种,包括直接计算、特征向量迭代法等。

以下介绍两种常用的方法,分别是雅可比法和幂法。

1.雅可比法雅可比法是最基本和最直接的求解特征值和特征向量的方法。

首先,构造一个对称阵J,使其主对角线元素等于矩阵A的主对角线元素,非对角线元素等于矩阵A的非对角线元素的平方和的负数。

然后,对J进行迭代计算,直到满足迭代终止条件。

最终得到的J的对角线元素就是矩阵A 的特征值。

雅可比法的优点是计算量相对较小,算法比较简单,可以直接计算特征值和特征向量。

但是,雅可比法的收敛速度较慢,对于大规模矩阵的计算效率较低。

2.幂法幂法是一种迭代算法,用于计算矩阵的最大特征值和对应的特征向量。

首先,随机选择一个非零向量b作为初值。

然后,迭代计算序列b,A*b,A^2*b,...,直到序列趋向于收敛。

最终,特征值是序列收敛时的特征向量的模长,特征向量是序列收敛时的向量。

幂法的优点是可以计算矩阵的最大特征值和对应的特征向量。

此外,幂法对于大规模矩阵的计算效率较高。

然而,幂法只能计算最大特征值,对于其他特征值的计算不适用。

三、特征值的应用1.特征值分解特征值分解是将一个矩阵分解为特征值和特征向量构成的对角矩阵的乘积。

特征值分解是一种重要的矩阵分解方法,它在信号处理、图像压缩、最优化等领域有广泛应用。

通过特征值分解,可以对矩阵进行降维处理、数据压缩和特征提取等操作。

2.矩阵的谱半径矩阵的谱半径是指矩阵的所有特征值的模的最大值。

谱半径在控制系统、网络分析和量子力学等领域有广泛的应用。

求矩阵特征值的简便方法

求矩阵特征值的简便方法

求矩阵特征值的简便方法矩阵的特征值是一个非常重要的数学概念,在很多领域都有广泛的应用。

求矩阵特征值的传统方法包括求解特征多项式或者使用迭代法等。

但是这些方法都要求对矩阵进行复杂的运算,计算量很大,效率不高。

本文介绍一种简便而有效的方法,能够快速求解矩阵的特征值。

首先,我们可以使用矩阵的迹和行列式来求解特征值。

具体来说,对于一个n阶方阵A,它的特征值可以表示为:λ1, λ2, …, λn其中,λi是矩阵A与单位矩阵I的差的行列式的第i个根。

也就是说,我们可以通过下面的公式来求解每个特征值:det(A - λi*I) = 0其中,I是n阶单位矩阵。

这个公式是求解特征值的传统方法之一,但是计算复杂度很高,在实际应用中并不实用。

我们可以利用矩阵的迹和行列式来简化这个公式,具体来说,我们可以将公式改写为:det((A - λ*I) * (A - λ*I)) = 0其中,I是n阶单位矩阵。

这个公式比较简单,而且可以用矩阵乘法来计算,效率比传统方法要高。

我们可以将上述公式展开,得到:(λ1 - λ) * (λ2 - λ) * … * (λn - λ) = 0其中,λ1, λ2, …, λn是矩阵A的特征值,而λ是我们要求解的特征值。

这个公式可以通过求解一个n次方程来求解特征值。

除了上述方法,我们还可以使用雅可比迭代法来求解矩阵的特征值。

这个方法比较复杂,需要对矩阵进行多次迭代,但是计算效率比传统方法要高。

综上所述,求解矩阵特征值的方法有很多种,我们可以根据实际情况选择最适合的方法。

如果矩阵较小,我们可以使用传统的方法来求解特征值;如果矩阵较大,我们可以使用更快速的方法来提高计算效率。

矩阵特征值的求法

矩阵特征值的求法

矩阵特征值的求法
矩阵特征值是矩阵在线性代数中的重要概念,它可以帮助我们解决许多实际问题。

矩阵的特征值表示的是在矩阵作用下,某个向量方向不发生改变的情况下,对应的缩放比例。

特征值可以用于求解线性方程组、矩阵对角化等问题
求矩阵特征值的方法有多种,其中较为常见的是使用特征方程的方法。

即根据矩阵的定义,暴力枚举每个特征值,然后求解对应的特征向量,最后将所有特征向量拼成一个矩阵,这个矩阵就是矩阵A的特征向量矩阵。

另外,还可以使用雅可比迭代法、QR分解等方法来求解矩阵的特征值。

这些方法在实际应用中有着广泛的应用。

例如,QR分解被用于矩阵对角化、奇异值分解、线性最小二乘问题等领域。

总之,求解矩阵的特征值是在线性代数中十分重要的问题。

不同的求解方法有着各自的优缺点,根据实际需求选择合适的方法可以提高计算效率和准确度。

- 1 -。

矩阵特征值快速求法

矩阵特征值快速求法

矩阵特征值快速求法矩阵特征值是矩阵分析中十分重要的概念。

它在物理、工程、数学等许多领域都有着广泛的应用。

矩阵特征值是指矩阵运动时特殊的运动状态,是一种宏观量度矩阵运动的指标。

求解矩阵特征值是一项复杂的任务,通常需要使用高级算法来完成。

本文将介绍几种常用的求解矩阵特征值的算法,其中包括幂法、反幂法、QR算法、分裂Broyden算法等。

一、幂法幂法是求解矩阵特征值的一种基础算法,其基本思想是通过迭代来逐步逼近矩阵的最大特征值。

幂法的核心公式如下:x_(k+1)=A*x_k/||A*x_k||其中,x_k表示第k次迭代中得到的特征向量,A表示原始矩阵。

幂法通过不断的迭代来逼近A的最大特征值,当迭代次数趋近于无限大时,得到的特征向量就是A的最大特征值所对应的特征向量。

幂法的运算量较小,适用于比较简单的矩阵。

反幂法与幂法类似,不同之处在于每次迭代时采用的是A的逆矩阵来进行计算。

其核心公式如下:x_(k+1)=(A-λI)^(-1)*x_k其中,λ表示要求解的特征值。

反幂法能够求解非常接近于特征值λ的特征向量,并且对于奇异矩阵同样适用。

需要注意的是,在实际计算中,如果A-λI的秩不满,那么反幂法就无法使用。

三、QR算法1. 将原矩阵A进行QR分解,得到A=Q*R。

2. 计算A的近似特征矩阵A1=R*Q。

5. 重复步骤3-4,直到A的对角线元素全部趋近于所求特征值为止。

QR算法的计算量较大,但其具有收敛速度快、精度高等优点,广泛应用于科学计算中。

四、分裂Broyden算法分裂Broyden算法是QR算法的一种改进算法,其基本思想是将矩阵分解成上下三角形式,然后再对其进行QR分解,以减少QR算法中的乘法运算量。

具体实现过程如下:2. 构造一个倒数矩阵B=U^(-1)*L^(-1)。

4. 计算A的近似特征矩阵A1=Q^(-1)*L^(-1)*A*R^(-1)*U^(-1)*Q。

分裂Broyden算法的计算量较小,能够有效地解决QR算法中的乘法运算量过大的问题。

求矩阵特征值的方法

求矩阵特征值的方法

求矩阵特征值的方法矩阵特征值是矩阵理论中的一个重要概念,它在许多领域中都有着广泛的应用,如物理学、工程学、计算机科学等。

求矩阵特征值的方法有多种,下面将介绍其中的三种常用方法。

一、特征多项式法特征多项式法是求矩阵特征值的一种常用方法。

它的基本思想是将矩阵A与一个未知数λ相乘,得到一个新的矩阵B=A-λI,其中I为单位矩阵。

然后求解矩阵B的行列式,得到一个关于λ的多项式,称为特征多项式。

矩阵A的特征值就是使特征多项式等于零的λ值。

具体步骤如下:1. 构造矩阵B=A-λI。

2. 求解矩阵B的行列式det(B)。

3. 解特征多项式det(B)=0,得到矩阵A的特征值λ。

二、幂法幂法是求矩阵特征值的一种迭代方法。

它的基本思想是从一个任意的非零向量开始,不断地将其乘以矩阵A,直到向量的方向趋于特征向量的方向,同时向量的模长趋于特征值的绝对值。

具体步骤如下:1. 选择一个任意的非零向量x0。

2. 迭代计算xn+1=Axn/||Axn||,其中||Axn||为Axn的模长。

3. 当xn+1与xn的差值小于某个预设的精度时,停止迭代,此时xn 的模长即为矩阵A的最大特征值,xn/||xn||即为对应的特征向量。

三、QR分解法QR分解法是求矩阵特征值的一种数值方法。

它的基本思想是将矩阵A 分解为QR,其中Q为正交矩阵,R为上三角矩阵。

然后对R进行迭代,得到一个对角矩阵,对角线上的元素即为矩阵A的特征值。

具体步骤如下:1. 对矩阵A进行QR分解,得到A=QR。

2. 对R进行迭代,得到一个对角矩阵D,对角线上的元素即为矩阵A的特征值。

以上三种方法都有其优缺点,具体选择哪种方法取决于实际应用场景和计算需求。

在实际应用中,还可以结合多种方法进行求解,以提高计算精度和效率。

矩阵特征值的数值解法

矩阵特征值的数值解法

矩阵特征值的数值解法矩阵的特征值是在矩阵与其特征向量之间的关系中的数值解。

特征值在各个领域中都有广泛应用,包括物理、工程、金融等。

在解决实际问题时,我们经常需要计算矩阵的特征值,因此研究如何求解矩阵特征值的数值方法是非常重要的。

1. 幂迭代法(Power Iteration)幂迭代法是求解矩阵特征值的一种简单而常用的数值方法。

它的基本思想是通过不断迭代矩阵与向量的乘积,使得向量趋近于该矩阵的一个特征向量。

具体步骤如下:(1)初始化一个非零的初始向量x。

(2)进行迭代计算,即$x^{(k+1)}=Ax^{(k)}/,Ax^{(k)},$。

(3)当向量x的相对误差小于一些预设的精度要求时,停止迭代,此时的x即为矩阵A的一个特征向量。

(4)将x带入特征值的定义式$\frac{Ax}{x}$,计算出特征值。

幂迭代法的优点是简单易实现,计算速度较快,缺点是只能求解特征值模最大的特征向量,而且对于存在特征值模相近的情况,容易收敛到错误的特征值上。

2. QR迭代法(QR Iteration)QR迭代法是一种较为稳定的求解矩阵特征值的数值方法。

它的基本思想是通过不断进行QR分解,使得矩阵的特征值逐渐收敛。

具体步骤如下:(1)将矩阵A进行QR分解,得到正交矩阵Q和上三角矩阵R,令$A_1=RQ$。

(2)将$A_1$再次进行QR分解,得到新的矩阵$A_2=R_1Q_1$。

(3)重复步骤(2),直到得到收敛的矩阵$A_k$,此时$A_k$的对角线上的元素即为矩阵A的特征值。

QR迭代法的优点是对于特征值模相近的情况仍然能够收敛到正确的特征值上。

缺点是每次QR分解都需要消耗大量的计算量,迭代次数较多时计算速度较慢。

3. Jacobi迭代法(Jacobi's Method)Jacobi迭代法是一种通过对称矩阵的对角线元素进行迭代操作,逐步将非对角元素变为零的求解特征值的方法。

具体步骤如下:(1)初始化一个对称矩阵A。

矩阵特征值求法的十种求法(非常经典)

矩阵特征值求法的十种求法(非常经典)

矩阵特征值求法的十种求法(非常经典)以下是矩阵特征值求法的十种经典求法:1. 幂法(Power Method)幂法(Power Method)幂法是求解特征值的常用方法之一。

它基于一个重要的数学原理:对于一个非零向量$x$,当它连续乘以矩阵$A$的$k$次幂后,$Ax$的方向将趋于特征向量相应的特征值。

这种方法通常需要进行归一化,以防止向量过度增长。

2. 反幂法(Inverse Power Method)反幂法(Inverse Power Method)反幂法是幂法的一种变体。

它通过计算矩阵$A$的逆来求解最小的特征值。

使用反幂法时,我们需要对矩阵$A$进行LU分解,以便更高效地求解线性方程组。

3. QR方法QR方法QR方法是一种迭代方法,可以通过将矩阵$A$分解为$QR$形式来逐步逼近特征值。

这种方法是通过多次应用正交变换来实现的,直到收敛为止。

QR方法不仅可以求解特征值,还可以求解特征向量。

4. Jacobi方法Jacobi方法Jacobi方法是一种迭代方法,通过施加正交相似变换将矩阵逐步变为对角矩阵。

在每个迭代步骤中,Jacobi方法通过旋转矩阵的特定元素来逼近特征值。

这种方法适用于对称矩阵。

5. Givens旋转法Givens旋转法Givens旋转法是一种用于特征值求解的直接方法。

它通过施加Givens旋转矩阵将矩阵逐步变为对角矩阵。

这种方法是通过旋转矩阵的特定元素来实现的。

6. Householder变换法Householder变换法Householder变换法是一种用于特征值求解的直接方法。

它通过施加Householder变换将矩阵逐步变为Hessenberg形式,然后再进一步将其变为上三角形式。

这种方法是通过对矩阵的列向量进行反射来实现的。

7. Lanczos方法Lanczos方法Lanczos方法是一种迭代方法,用于对称矩阵的特征值求解。

该方法创建一个Krylov子空间,并使用正交投影找到最接近特征值的Krylov子空间中的特征值。

矩阵特征值的计算

矩阵特征值的计算
矩阵特征值的计算
物理、力学和工程技术中的许多问题在数学上都归结为求矩 阵的特征值和特征向量问题。
� 计算方阵 A 的特征值,就是求特征多项式方程:
| A − λI |= 0 即 λn + p1λn−1 + ⋅ ⋅ ⋅ + pn−1λ + pn = 0
的根。求出特征值 λ 后,再求相应的齐次线性方程组:
(13)
为了防止溢出,计算公式为
⎧ Ay k = xk −1
⎪ ⎨
m
k
=
max(
yk )
( k = 1, 2, ⋅ ⋅⋅)
⎪ ⎩
x
k
=
yk
/ mk
(14)
相应地取
⎧ ⎪
λ
n


1 mk
⎪⎩ v n ≈ y k ( 或 x k )
(15)
9
(13)式中方程组有相同的系数矩阵 A ,为了节省工作量,可先对
11
11
≤ ≤ ⋅⋅⋅ ≤
<
λ1 λ2
λn −1
λn
对应的特征向量仍然为 v1, v2 ,⋅⋅⋅, vn 。因此,计算矩阵 A 的按模
最小的特征值,就是计算 A−1 的按模最大的特征值。
� 反幂法的基本思想:把幂法用到 A−1 上。
任取一个非零的初始向量 x0 ,由矩阵 A−1 构造向量序列:
xk = A−1xk−1 , k = 1, 2, ⋅⋅⋅
如果 p 是矩阵 A 的特征值 λi 的一个近似值,且
| λi − p |<| λ j − p | , i ≠ j
1 则 λ i − p 是矩阵 ( A − pI )−1 的按模最大的特征值。因此,当给

矩阵特征值的求法举例

矩阵特征值的求法举例

矩阵特征值的求法举例矩阵的特征值是矩阵在特征向量上的变化率,可以用于矩阵的分析和求解问题。

在数学中,特征值的求法有不同的方法,下面举例介绍其中几种常用的方法。

1. 幂迭代法幂迭代法是求解矩阵最大特征值的一种常用方法。

假设A是一个n阶方阵,且有一个特征值λ1使得|λ1|>|λ2|≥|λ3|≥...≥|λn|,那么在随机选取的一个m维向量x0上进行迭代操作,可以得到一个序列x1、x2、…、xm,最终收敛到特征值为λ1的特征向量。

具体迭代过程如下:(1) 选取一个初始向量x0,进行归一化处理: x0 = x0 / ||x0||(2) 迭代计算xm的值: xm = Axm-1(3) 对xm进行归一化处理: xm = xm / ||xm||(4) 判断结束条件:判断向量xm与xm-1的差别是否小于一个给定的阈值,如果是则结束迭代,返回最终结果。

2. Jacobi方法Jacobi方法是一种迭代方法,用于求解对称矩阵的全部特征值和特征向量。

假设有一个n阶实对称矩阵A,那么Jacobi方法的步骤如下:(1) 将A初始化为对角矩阵,即通过旋转操作将非对角元素都变为0: A' = R^TAR(2) 计算A'的非对角线元素的绝对值之和,如果小于一个给定的阈值,则结束迭代,返回矩阵A'的对角线元素作为矩阵A的特征值的近似解。

(3) 否则,选择一个非对角元素a_ij的绝对值最大的位置(i,j),对矩阵A'进行旋转操作,使a_ij=0。

(4) 返回步骤(2)。

(1) 初始化矩阵A: A0 = A(2) 对矩阵A0进行QR分解,得到A0=Q1R1。

(3) 计算A0的近似第一特征值λ1的估计值:λ1 = R1(n,n)。

(4) 将A0更新为A1: A1 = R1Q1。

(5) 判断矩阵A1是否满足结束条件,如果是则迭代结束,返回A1的对角线元素作为矩阵A的特征值的近似解。

(6) 否则,返回步骤(2)。

矩阵的特征值求解技巧

矩阵的特征值求解技巧

矩阵的特征值求解技巧矩阵的特征值和特征向量是线性代数中重要的概念,对于解决矩阵的性质和应用问题有着重要的作用。

特征值求解是矩阵特征值问题的核心内容,本文将介绍特征值求解的技巧和方法。

一、特征值和特征向量的定义首先,我们需要理解特征值和特征向量的概念。

给定一个n阶矩阵A,如果存在数λ和非零向量X使得AX=λX,则称λ为矩阵A的一个特征值,X称为对应于特征值λ的特征向量。

二、特征值的求解1. 利用特征多项式对于n阶矩阵A,我们可以定义其特征多项式p(λ)=|A-λI|,其中I是n阶单位矩阵。

求解特征多项式的根即为矩阵的特征值。

2. 利用特征值的性质特征值的性质有助于我们求解特征值。

下面列举一些常见的性质:- 特征值与矩阵的行列式相等。

即det(A-λI)=0。

- 矩阵的特征值个数等于其矩阵的阶数。

- 如果矩阵A是n阶矩阵,那么矩阵A的特征值之和等于A的主对角线元素之和。

- 特征值互不相等,特征向量也互不相等。

即不同特征值对应的特征向量是线性无关的。

3. 利用特殊矩阵的性质对于特殊的矩阵,我们可以利用其性质来求解特征值。

例如,对于对称矩阵,其特征值一定是实数;对于三角矩阵,其特征值等于主对角线元素。

三、特征向量的求解特征向量的求解是在已知特征值的情况下进行的。

对于给定的特征值λ,我们可以利用矩阵特征方程(A-λI)X=0,利用高斯消元法或其他行列运算方法求解出特征向量。

四、实际问题中的应用特征值和特征向量在实际问题中有着广泛的应用,如:- 在物理学中,特征值和特征向量可以用来描述量子力学中的量子态和量子力学运算符的本征态和本征值。

- 在工程中,特征值和特征向量可以用来描述系统的振动模态和固有频率。

- 在数据分析中,特征值和特征向量可以用来进行降维处理和特征选取。

总结:特征值和特征向量是矩阵的重要性质,通过求解特征值和特征向量,我们可以了解矩阵的本质、性质和应用。

特征值的求解可以利用特征多项式、特征值的性质和特殊矩阵的性质等方法,特征向量的求解可以通过矩阵特征方程进行求解。

第七章—矩阵特征值计算

第七章—矩阵特征值计算

定义4 设A是n阶实对称阵, 对于任一非零向量x R n , 称 ( Ax, x ) R( x ) ( x, x ) 为关于向量x的瑞雷( Rayleigh)商.
定理11 设A为n阶实对称阵, 1 n为A的特征值. 则 ( 1 ) (2) ( Ax, x ) 1 n , 对于任何非零向量x R n , ( x, x ) ( Ax, x ) 1 max , xR n ( x, x )
为了避免“溢出”下面做改进. 记 max(v )为向量v的绝对 v 值最大的分量,规范化得 u (v 0). 就有 max(v ) 定理13 设A R nn有n个线性无关的特征向量, 其特征值
1 2 n ,
对任何非零初始向量v0 (a1 0), 计算 u0 v0 , v Au , k k 1 (k 1,2, ) k max(vk ), uk vk / k . x1 lim uk , lim k 1. k max(x1 ) k


定理2 若i (i 1,, n)是矩阵A的特征值, 则 n n (1) i aii tr ( A), i 1 i 1 (2) det( A) 1 n .
定理3 设A R nn , 则
( A ) ( A).
T
定理4 设A为分块上三角阵, A11 A A12 A22 A1m A2 m Amm
对任何非零初始向量u0 v0,计算 vk ( A pI ) 1 uk 1, (k 1,2, ). u vk , k max(vk ) 如果p是A的特征值 j的近似,并且满足 (2.12)
0 j p i p , ( j i )

第五章矩阵特征值计算

第五章矩阵特征值计算

第五章矩阵特征值计算与线性方程组的求解问题一样,矩阵特征值与特征向量的计算也是数值线性代数的重要内容. 在理论上,矩阵的特征值是特征多项式方程的根,因此特征值的计算可转化为单个多项式方程的求解. 然而对于高阶矩阵,这种转化并不能使问题得到简化,而且在实际应用中还会引入严重的数值误差. 因此,正如第二章指出的,我们一般将多项式方程求解转化为矩阵特征值计算问题,而不是反过来.本章介绍有关矩阵特征值计算问题的基本理论和算法. 与非线性方程求根问题类似,计算矩阵特征值的算法也是迭代方法①.5.1基本概念与特征值分布本节先介绍矩阵特征值、特征向量的基本概念和性质,然后讨论对特征值分布范围的简单估计方法.5.1.1基本概念与性质定义5.1:矩阵A=(a kj)∈ℂn×n,(1) 称φ(λ)=det(λI−A)=λn+c1λn−1+⋯+c n−1λ+c n为A的特征多项式(characteristic polynomial);n次代数方程φ(λ)=0为A的特征方程(characteristic equation),它的n个根:λ1,⋯,λn,被称为A的特征值(eigenvalue). 此外,常用λ(A)表示A的全体特征值的集合,也称为特征值谱(spectrum of eigenvalue).(2) 对于矩阵A的一个给定特征值λ,相应的齐次线性方程组(λI−A)x=0 , (5.1)有非零解(因为系数矩阵奇异),其解向量x称为矩阵A对应于λ的特征向量(eigenvector).根据方程(5.1),我们得出矩阵特征值与特征向量的关系,即Ax=λx .(5.2)第三章的定义3.5就利用公式(5.2)对矩阵特征值和特征向量进行了定义,它与定义5.1是等价的. 另外,同一个特征值对应的特征向量一定不唯一,它们构成线性子空间,称为特征子空间(eigenspace).我们一般讨论实矩阵的特征值问题. 应注意,实矩阵的特征值和特征向量不一定是实数和实向量,但实特征值一定对应于实特征向量(方程(5.1)的解),而一般的复特征值对应的特征向量一定不是实向量. 此外,若特征值不是实数, 则其复共轭也一定是特征值(由于特征方程为实系数方程). 定理3.3表明,实对称矩阵A∈ℝn×n的特征值均为实数,存在n个线性无关、且正交的实特征向量,即存在由特征值组成的对角阵Λ和特征向量组成的正交阵Q,使得:A=QΛQ T.(5.3)例5.1(弹簧-质点系统):考虑图5-1的弹簧-质点系统,其中包括三个质量分别为m1、m2、m3的物体,由三个弹性系数分别为k1,k2,k3的弹簧相连,三个物体的位置均为时间的函数,①如果用有限次运算能求得一般矩阵的特征值,则多项式方程求根问题也可用有限次运算解决,这与阿贝尔证明的“高于4次的多项式并不都有用初等运算表示的求根公式”的理论矛盾.这里考查三个物体偏离平衡位置的位移,分别记为y 1(t), y 2(t), y 3(t). 因为物体在平衡状态所受的重力已经和弹簧伸长的弹力平衡,所以物体的加速度只和偏离平衡位置引起的弹簧伸长相关. 根据牛顿第二定律以及胡克定律(即弹簧的弹力与拉伸长度成正比)可列出如下微分方程组②: My ′′(t)+Ky(t)=0 ,其中y (t )=[y 1(t)y 2(t)y 3(t)]T ,M =[m 1000m 2000m 3],K =[k 1+k 2−k 20−k 2k 2+k 3−k 30−k 3k 3] . 在一般情况下,这个系统会以自然频率ω做谐波振动,而y 的通解包含如下的分量: y j (t )=x j e iωt ,(j =1,2,3)其中i =√−1,根据它可求解出振动的频率ω及振幅x j . 由这个式子可得出:y j ′′(t )=−ω2x j e iωt ,(j =1,2,3)代入微分方程,可得代数方程:−ω2Mx +Kx =0,或Ax =λx ,其中A =M −1K ,λ=ω2. 通过求解矩阵A 的特征值便可求出这个弹簧-质点系统的自然频率(有多个). 再结合初始条件可确定这三个位移函数,它们可能按某个自然频率振动(简正振动),也可能是若干个简正振动的线性叠加.例5.2(根据定义计算特征值、特征向量):求矩阵A =[5−1−131−14−21]的特征值和特征向量.[解]: 矩阵A 的特征方程为:det (λI −A )=|λ−511−3λ−11−42λ−1|=(λ−3)(λ−2)2=0故A 的特征值为λ1=3,λ2=2(二重特征值).当λ=λ1=3时,由(λI −A)x =0,得到方程[−211−321−422][x 1x 2x 3]=[000]它有无穷多个解,若假设x 1=1, 则求出解为x =[1,1,1]T ,记为x 1,则x 1是λ1对应的一个特征向量.当λ=λ2=2时,由(λI −A)x =0,得到方程[−311−311−421][x 1x 2x 3]=[000]它有无穷多个解,若假设x 1=1, 则求出解为x =[1,1,2]T ,记为x 2,则x 2是λ2对应的一个特② 本书第八章将介绍这种常微分方程组的数值求解方法.图5-1 弹簧-质点系统.征向量.下面概括地介绍有关矩阵特征值、特征向量的一些性质,它们可根据定义5.1,以及公式(5.2)加以证明.定理5.1:设λj (j =1,2,…,n)为n 阶矩阵A 的特征值,则(1) ∑λj n j=1=∑a jj n j=1=tr(A) ;(2) ∏λj n j=1=det(A) .这里tr(A)表示矩阵对角线上元素之和,称为矩阵的迹(trace ).从上述结论(2)也可以看出,非奇异矩阵特征值均不为0, 而0一定是奇异矩阵的特征值. 定理5.2:矩阵转置不改变特征值,即λ(A )=λ(A T ).定理5.3:若矩阵A 为对角阵或上(下)三角阵,则其对角线元素即为矩阵的特征值.定理5.4:若矩阵A 为分块对角阵,或分块上(下)三角阵,例如A =[A 11A 12⋯A 1m A 22⋯A 2m ⋱⋮A mm] , 其中每个对角块A jj 均为方阵,则矩阵A 的特征值为各对角块矩阵特征值的合并,即λ(A )=⋃λ(A jj )m j=1.定理5.5:矩阵的相似变换(similarity transformation)不改变特征值. 设矩阵A 和B 为相似矩阵,即存在非奇异矩阵X 使得B =X −1AX ,则(1) 矩阵A 和B 的特征值相等,即 λ(A )=λ(B ) ;(2) 若y 为B 的特征向量,则相应地,Xy 为A 的特征向量.通过相似变换并不总能把矩阵转化为对角阵,或者说矩阵A 并不总是可对角化的(diagonalizable). 下面给出特征值的代数重数、几何重数,和亏损矩阵的概念,以及几个定理..定义5.2: 设矩阵A ∈ℝn×n 有m 个(m n )不同的特征值λ̃1,⋯,λ̃m ,若λ̃j 是特征方程的n j 重根,则称n j 为λ̃j 的代数重数(algebraic multiplicity),并称λ̃j 的特征子空间(ℂn 的子空间)的维数为λ̃j 的几何重数(geometric multiplicity). 定理5.6:设矩阵A ∈ℝn×n 的m 个不同的特征值为λ̃1,⋯,λ̃m ,特征值λ̃j ,(j =1,⋯,m)的代数重数为n j ,几何重数为k j ,则(1) ∑n j m j=1=n ,且任一个特征值的几何重数不大于代数重数,即∀j ,n j ≥k j .(2) 不同特征值的特征向量线性无关,并且将所有特征子空间的∑k j m j=1个基(特征向量)放在一起,它们构成一组线性无关向量.(3) 若每个特征值的代数重数等于几何重数,则总共可得n 个线性无关的特征向量,它们是全空间ℂn 的基.定义5.3:若矩阵A ∈ℝn×n 的某个代数重数为k 的特征值对应的线性无关特征向量数目少于k (即几何重数小于代数重数),则称A 为亏损阵(defective matrix ),否则称其为非亏损阵(nondefective matrix ).定理5.7:设矩阵A ∈ℝn×n 可对角化,即存在非奇异矩阵X ∈ℂn×n 使得X −1AX =Λ,其中Λ∈ℂn×n 为对角阵, 的充要条件是A 为非亏损矩阵. 此时,Λ的对角线元素为矩阵A 的特征值,而矩阵X 的列向量为n 个线性无关的特征向量.定理5.7中方程的等价形式为A =XΛX −1, 它被称为特征值分解,也叫谱分解(spectrum decomposition). 特征值分解存在的充要条件是A 为非亏损矩阵. 但现实中还有很多矩阵是亏损矩阵,例如例5.2中的矩阵,它的特征值2的代数重数为2,而几何重数仅为1. 这种矩阵不能相似变换为对角阵,但存在下面的若当分解(Jordan decomposition).定理5.8:设矩阵A ∈ℝn×n , 存在非奇异矩阵X ∈ℂn×n 使得A =XJX −1,矩阵J 为形如[J 1⋱J p ]的分块对角阵(称为若当标准型),其中J k =[ λk 1λk ⋱⋱1λk ] 称为若当块,其对角线元素为矩阵A 的特征值. 设矩阵A 有m 个不同的特征值为λ̃1,⋯,λ̃m ,特征值λ̃j ,(j =1,⋯,m)的代数重数为n j ,几何重数为k j ,则p =∑k j m j=1, λ̃j 对应于k j 个若当块, 其阶数之和等于n j .在若当分解中,如果所有若当块都是1阶的,则J 为对角阵,这种分解就是特征值分解,相应的矩阵为非亏损阵. 若当分解是很有用的理论工具,利用它还可证明下面关于矩阵运算结果的特征值的定理.定理5.9:设λj (j =1,2,…,n)为n 阶矩阵A 的特征值,则(1) 矩阵cA, c 为常数, 的特征值为cλ1,cλ2,⋯,cλn .(2) 矩阵A +pI, p 为常数, 的特征值为λ1+p,λ2+p,⋯,λn +p.(3) 矩阵A k , k 为正整数, 的特征值为λ1k ,λ2k ,⋯,λn k .(4) 设p (t )为一多项式函数,则矩阵p (A )的特征值为p (λ1),p (λ2),⋯ ,p (λn ) .(5) 若A 为非奇异矩阵,则λj ≠0,(j =1,2,…,n), 且矩阵A −1的特征值为λ1−1,λ2−1,⋯,λn −1.5.1.2特征值分布范围的估计估计特征值的分布范围或它们的界,无论在理论上或实际应用上,都有重要意义. 比如,本书前面的内容曾涉及两个问题:(1). 计算矩阵的2-条件数:cond (A )2=√λmax (A T A)λmin (A T A) ;(2). 考察一阶定常迭代法x (k+1)=Bx (k)+f 的收敛性、收敛速度:收敛的判据是谱半径ρ(B)=max 1≤j≤n |λj (B)|<1 ; 收敛速度为R =−log 10ρ(B) .其中都需要对矩阵特征值分布范围的了解.上一章的定理4.4说明谱半径的大小不超过任何一种算子范数,即ρ(A )≤‖A ‖ ,这是关于特征值的上界的一个重要结论.下面先给出定义5.4,再介绍有关特征值的界的另一个重要结论.定义5.4:设A =(a kj )∈ℂn×n ,记r k =∑|a kj |n j=1j≠k ,(k =1,⋯,n),则集合D k ={z||z −a kk |≤r k ,z ∈ℂ},(k =1,⋯,n)在复平面为以a kk 为圆心、r k 为半径的圆盘,称为A 的Gerschgorin (格什戈林)圆盘.图5-2显示了一个3⨯3复矩阵的格什戈林圆盘.定理5.10 (圆盘定理):设A =(a kj )∈ℂn×n ,则:(1) A 的每一个特征值必属于A 的格什戈林圆盘之中,即对任一特征值λ必定存在k,1≤k ≤n ,使得:|λ−a kk |≤∑|a kj |nj=1j≠k .(5.4)图5-2 复坐标平面,以及3⨯3矩阵A 的格什戈林圆盘.用集合的关系来说明,这意味着λ(A)⊆⋃D k n k=1.(2) 若A 的格什戈林圆盘中有m 个组成一连通并集S ,且S 与余下的n −m 个圆盘分离,则S内恰好包含A 的m 个特征值(重特征值按重数计).对图5-2所示的例子,定理5.10的第(2)个结论的含义是:D 1中只包含一个特征值,而另外两个特征值在D 2,D 3的并集中. 下面对定理5.10的结论(1)进行证明,结论(2)的证明超出了本书的范围.[证明]: 设λ为A 的任一特征值,则有Ax =λx ,x 为非零向量. 设x 中第k 个分量最大,即|x k |=max 1≤j≤n|x j |>0 , 考虑方程(5.2)中第k 个方程:∑a kj x j nj=1=λx k , 将其中与x k 有关的项移到等号左边,其余到右边,再两边取模得:|λ−a kk ||x k |=|∑a kj x j n j=1j≠k |≤∑|a kj ||x j |n j=1j≠k ≤|x k |∑|a kj |nj=1j≠k .(5.5)最后一个不等式的推导利用了“x 中第k 个分量最大”的假设. 将不等式(5.5)除以|x k |,即得到(5.4)式,因此证明了定理 5.10的结论(1). 上述证明过程还说明,若某个特征向量的第k 个分量的模最大,则相应的特征值必定属于第k 个圆盘中.根据定理5.2,还可以按照矩阵的每一列元素定义n 个圆盘,对于它们定理5.10仍然成立. 下面的定理是圆盘定理的重要推论,其证明留给感兴趣的读者.定理5.11:设A ∈ℝn×n ,且A 的对角元均大于0,则(1) 若A 严格对角占优,则A 的特征值的实部都大于0.(2) 若A 为对角占优的对称矩阵,则A 一定是对称半正定矩阵,若同时A 非奇异,则A 为对称正定矩阵.例5.3 (圆盘定理的应用):试估计矩阵A =[41010−111−4]的特征值范围.[解]: 直接应用圆盘定理,该矩阵的三个圆盘如下:D 1: |λ−4|≤1, D 2: |λ|≤2, D 3: |λ+4|≤2.D 1与其他圆盘分离,则它仅含一个特征值,且必定为实数(若为虚数则其共轭也是特征值,这与D 1仅含一个特征值矛盾). 所以对矩阵特征值的范围的估计是:3≤λ1≤5,λ2,λ3∈D 2∪D 3 .再对矩阵A T 应用圆盘定理,则可以进一步优化上述结果. 矩阵A T 对应的三个圆盘为: D ’1: |λ−4|≤2, D ’2: |λ|≤2, D ’3: |λ+4|≤1.这说明D ’3中存在一个特征值,且为实数,它属于区间[-5, -3],经过综合分析可知三个特征值均为实数,它们的范围是:λ1∈[3,5],λ2∈[−2,2],λ3∈[−5,−3].事实上,使用Matlab 的eig 命令可求出矩阵A 的特征值为:4.2030, -0.4429, -3.7601.根据定理5.5,还可以对矩阵A 做简单的相似变换,例如取X 为对角阵,然后再应用圆盘定理估计特征值的范围.例5.4 (特征值范围的估计):选取适当的矩阵X ,应用定理5.5和5.10估计例5.3中矩阵的特征值范围.[解]: 取X−1=[100010000.9] , 则A 1=X −1AX =[41010−109⁄0.90.9−4]的特征值与A 的相同. 对A 1应用圆盘定理,得到三个分离的圆盘,它们分别包含一个实特征值,由此得到特征值的范围估计:λ1∈[3,5],λ2∈[−199,199],λ3∈[−5.8,−2.2]. 此外,还可进一步估计ρ(A)的范围,即3≤ρ(A)≤5.8 .上述例子表明,综合运用圆盘定理和矩阵特征值的性质(如定理5.2, 定理5.5),可对特征值的范围进行一定的估计. 对具体例子,可适当设置相似变换矩阵,尽可能让圆盘相互分离,从而提高估计的有效性.5.2幂法与反幂法幂法是一种计算矩阵最大的特征值及其对应特征向量的方法. 本节介绍幂法、反幂法以及加快幂法迭代收敛的技术.5.2.1幂法定义5.5:在矩阵A 的特征值中,模最大的特征值称为主特征值,也叫“第一特征值”,它对应的特征向量称为主特征向量.应注意的是,主特征值有可能不唯一,因为模相同的复数可以有很多. 例如模为5的特征值可能是5,−5,3+4i,3−4i , 等等. 另外,请注意谱半径和主特征值的区别.如果矩阵A 有唯一的主特征值,则一般通过幂法能方便地计算出主特征值及其对应的特征向量. 对于实矩阵,这个唯一的主特征值显然是实数,但不排除它是重特征值的情况. 幂法(power iteration)的计算过程是,首先任取一非零向量v 0∈ℝn ,再进行迭代计算:v k =Av k−1,(k =1,2,⋯)得到向量序列{v k },根据它即可求出主特征与特征向量. 下面用定理来说明.定理5.12: 设A ∈ℝn×n ,其主特征值唯一,记为λ1,且λ1的几何重数等于代数重数,则对于非零向量v 0∈ℝn ,v 0不与主特征值对应的特征向量正交,按迭代公式进行计算:v k =Av k−1,(k =1,2,⋯),存在如下极限等式:lim k→∞v k λ1k =x 1 , (5.6) lim k→∞(v k+1)j (v k )j =λ1 , (5.7)其中x 1为主特征向量,(v k )j 表示向量v k 的第j 个分量(k =1,2,⋯).[证明]: 为了推导简便,不妨设主特征值λ1不是重特征值,并且假设矩阵A 为非亏损矩阵. 设A 的n 个特征值按模从大到小排列为: |λ1|>|λ2|≥⋯≥|λn |,它们对应于一组线性无关的单位特征向量x ̂1,⋯,x ̂n . 向量v 0可写成这些特征向量的线性组合:v 0=α1x̂1+⋯+αn x ̂n 根据已知条件,α1≠0,则v k =Av k−1=A k v 0=α1λ1k x ̂1+α2λ2k x̂2+⋯+αn λn k x ̂n =λ1k [α1x ̂1+∑αj (λj λ1)kx ̂j n j=2] =λ1k (α1x̂1+εk ) 其中εk =∑αj (λj λ1)k x ̂j n j=2. 由于|λj λ1|<1,(j =2,…,n), 则 lim k→∞εk =0 ⟹lim k→∞v kλ1k =α1x̂1 . 由于特征向量放大、缩小任意倍数后仍是特征向量,设x 1=α1x̂1,则它是主特征对应的一个特征向量. 上式说明,随k 的增大, v k 越来越趋近于主特征值的对应的特征向量.设j 为1到n 之间的整数,且(v k )j ≠0,则(v k+1)j (v k )j =λ1(α1x ̂1+εk+1)j (α1x̂1+εk )j 由于lim k→∞εk =0,随k 的增大上式等号右边趋于一个常数: λ1. 这就证明了定理的结论.若矩阵A 为亏损矩阵,可利用矩阵的若当分解证明这个定理,这里略去. 在这种情况下,“主特征值的几何重数等于代数重数”这一条件很重要,例如,若A =[310030001] ,它的主特征值为3,但其几何重数为1,不满足条件. 对这个矩阵A 进行实验显示无法用幂法求出主特征值.关于定理5.12,再说明几点:● 当主特征值λ1为重特征值时,应要求其几何重数等于代数重数,此时特征子空间维数大于1,向量序列{v k λ1k ⁄}的收敛值是其特征子空间中的某一个基向量.● 公式(5.7)式的含义是相邻迭代向量分量的比值收敛到主特征值. 因此在实际计算时,可任意取j 的值,只需保证比值的分母不为零.● 证明中假设了α1≠0,在实际应用中往往随机选取v 0,由于存在舍入误差,它一般都能满足. 感兴趣的读者也可思考一下,若初始向量v 0恰好与主特征向量都正交,那么幂法中的迭代向量序列会有什么结果?直接使用幂法,还存在如下两方面问题:(1) 溢出:由于v k ≈λ1k x 1,则|λ1|>1时,实际计算v k 会出现上溢出(当k 很大时);|λ1|<1时,实际计算v k 会出现下溢出(当k 很大时).(2) 可能收敛速度很慢. 由于εk =∑αj (λj λ1)kx j n j=2, εk →0的速度取决于求和式中衰减最慢的因子|λ2λ1|,当|λ2λ1|≈1时,收敛很慢. 由此导致v k →λ1k α1x 1, (v k+1)j (v k )j →λ1的收敛速度都将很慢,严重影响计算的效率.下面采用规格化向量的技术防止溢出,导出实用的幂法. 关于加速收敛技术的讨论,见下一小节.定义 5.6:记max ̅̅̅̅̅̅(v )为向量v ∈ℝn 的绝对值最大的分量, max ̅̅̅̅̅̅(v )=v j ,其中j 满足|v j |=max 1≤k≤n |v k |, 若j 的值不唯一,则取最小的那个. 并且,称u =v/max ̅̅̅̅̅̅(v )为向量v 的规格化向量(normalized vector).例5.5(规格化向量):设v =[3,−5,0]T ,max ̅̅̅̅̅̅(v )=−5,对应的规格化向量为u =[−35,1,0]T .根据定义5.6,容易得出规格化向量的两条性质.定理5.13: 定义5.6中的规格化向量满足如下两条性质:(1) 若u 为规格化向量,则‖u ‖ =1,并且max ̅̅̅̅̅̅(u )=1.(2) 设向量v 1和v 2的规格化向量分别为u 1和u 2,若v 1=αv 2, 实数α≠0,则u 1= u 2.在幂法的每一步增加向量规格化的操作可解决溢出问题. 先看第一步,v 1=Av 0,此时计算v 1的规格化向量u 1=v 1max ̅̅̅̅̅̅(v 1)=Av 0max ̅̅̅̅̅̅(Av 0). 然后使用规格化向量计算v 2:v 2=Au 1=A 2v 0max ̅̅̅̅̅̅(Av 0), (5.8) 再进行向量规划化操作,u 2=v 2max ̅̅̅̅̅̅(v 2)=A 2v 0max ̅̅̅̅̅̅(A 2v 0). (5.9) 公式(5.9)的推导,利用了(5.8)式和定理5.13的结论(2). 依次类推,我们得到: { v k =Au k−1=A k v 0max ̅̅̅̅̅̅(A k−1v 0) u k =v k max ̅̅̅̅̅̅(v k )=A k v 0max ̅̅̅̅̅̅(A k v 0) , k =1,2,⋯. (5.10) 根据定理5.12的证明过程, A k v 0=λ1k [α1x ̂1+∑αj (λj λ1)k x ̂j n j=2] ⟹u k =A k v 0max ̅̅̅̅̅̅(A k v 0)=α1x ̂1+∑αj (λj λ1)k x ̂j n j=2max ̅̅̅̅̅̅(α1x ̂1+∑αj (λj λ1)k x ̂j n j=2)k→∞→ x 1max ̅̅̅̅̅̅(x 1) , 即u k 逐渐逼近规格化的主特征向量. 同理,v k =Au k−1=A k v 0max ̅̅̅̅̅̅(A k−1v 0)=λ1k [α1x ̂1+∑αj (λj λ1)k x ̂j n j=2]max ̅̅̅̅̅̅(λ1k−1[α1x ̂1+∑αj (λj λ1)k−1x̂j n j=2]) =λ1α1x ̂1+∑αj(λj λ1)kx ̂j n j=2max ̅̅̅̅̅̅(α1x ̂1+∑αj (λj λ1)k−1x ̂j n j=2) 因此,根据定理5.13的结论(1)有:lim k→∞v k=λ1x1max̅̅̅̅̅̅(x1)⟹limk→∞max̅̅̅̅̅̅(v k)=λ1.基于上述推导,我们得到如下定理,以及如算法5.1描述的实用幂法.定理5.14: 设A∈ℝn×n,其主特征值唯一(且几何重数等于代数重数),记为λ1,取任意非零初始向量v0=u0,它不与主特征值对应的特征向量正交,按迭代公式(5.10)进行计算,则lim k→∞u k=x1max̅̅̅̅̅̅(x1),(5.11)lim k→∞max̅̅̅̅̅̅(v k)=λ1 ,(5.12)其中x1为主特征向量.算法5.1:计算主特征值λ1和主特征向量x1的实用幂法输入:v,A; 输出:x1,λ1.u:=v;While不满足判停准则dov:=Au;λ1:=max̅̅̅̅̅̅(v); {主特征值近似值}u:=v/λ1; {规格化}Endx1:=u. {规格化的主特征向量}在算法5.1中,可根据相邻两步迭代得到的主特征值近似值之差来判断是否停止迭代. 每个迭代步的主要计算是算一次矩阵与向量乘法,若A为稀疏矩阵则可利用它的稀疏性提高计算效率. 实用的幂法保证了向量序列{v k},{u k}不溢出,并且向量v k的最大分量的极限就是主特征值.最后,针对幂法的适用范围再说明两点:(1). 若实矩阵A对称半正定或对称半负定,则其主特征值必唯一(而且是非亏损阵). 有时也可以估计特征值的分布范围,从而说明主特征值的唯一性. 只有满足此条件,才能保证幂法的收敛性.(2). 对一般的矩阵,幂法的迭代过程有可能不收敛,此时序列{u k}有可能包括多个收敛于不同向量的子序列,它趋向于成为多个特征向量的线性组合. 但是,一旦幂法的迭代过程收敛,向量序列的收敛值就一定是特征向量,并可求出相应的特征值.例5.6 (实用的幂法):用实用的幂法求如下矩阵的主特征值:A=[3113] ,[解]: 取初始向量为v0=u0=[01]T . 按算法5.1的迭代过程,计算结果列于表5-1中.表5-1 实用幂法的迭代计算过程从结果可以看出,在每次迭代步中做的规格化操作避免了分量的指数增大或缩小. 经过9步迭代,特征值max ̅̅̅̅̅̅(v k )已非常接近主特征值的准确值4,特征向量也非常接近[1 1]T .5.2.2加速收敛的方法 加速幂法迭代收敛过程的方法主要有两种:原点位移技术和瑞利商(Rayleigh quotient )加速. 下面做些简略的介绍.一. 原点位移技术原点位移技术,也叫原点平移技术,它利用定理5.9的结论(2),即矩阵A −pI 的特征值为A 的特征值减去p 的结果. 对矩阵B =A −pI 应用幂法有可能得到矩阵A 的某个特征值λj 和相应的特征向量. 要使原点位移达到理想的效果,首先要求λj −p 是B 的主特征值,其次还要使幂法尽快收敛,即比例|λ2(B)λj −p |要尽量小,这里的λ2(B)表示矩阵B 的(按模)第二大的特征值. 在某种情况下设置合适的p 值,矩阵A,B 可同时取到主特征值. 图5-3显示了这样一个例子,矩阵A 的特征值分布在阴影区域覆盖的实数轴上,λ1为其主特征值. 按图中所示选取的p 值,将使得λ1−p 是矩阵B =A −pI 的主特征值,并且显然有|λ2(B)λ1−p |<|λ2(A)λ1| . 此时用幂法计算B 的主特征值能更快地收敛,进而得到矩阵的A 的主特征值. 图5-3也解释了原点位移法名字的由来,即将原点(或虚数坐标轴)移到p 的位置上,原始矩阵A 的特征值分布变成了矩阵B 的特征值分布.采用原点位移技术后,执行幂法仅带来很少的额外运算,而且仍然能利用矩阵A 的稀疏性. 它的关键问题是,如何选择合适的参数p 以达到较好的效果?这依赖于具体矩阵的情况,以及对其特征值分布的了解. 在后面,我们还会看到原点位移技术的其他用途.二. 瑞利商加速首先给出瑞利商的定义,以及它与特征值的关系,然后介绍瑞利商加速技术.定义5.7:设A ∈ℝn×n ,且为对称矩阵,对任一非零向量x ≠0,称R (x )=〈Ax,x 〉〈x,x 〉为对应于向量x 的瑞利商(Rayleigh quotient ). 这里符号〈,〉代表向量内积.定理5.15:设A ∈ℝn×n ,且为对称矩阵,其n 个特征值依次为:λ1≥λ2≥⋯≥ λn ,则矩阵A 有关的瑞利商的上下确界分别为λ1和λn . 即∀x ≠0,λn ≤R (x )≤λ1,且当x 为λ1对应的特征向量时R (x )=λ1,当x 为λn 对应的特征向量时R (x )=λn .[证明]: 根据实对称矩阵的特点,即可正交对角化(定理3.3),设特征值λ1,λ2,⋯,λn 对应的单位特征向量为x 1,x 2,⋯,x n ,设x =∑αj x j n j=1,则〈x,x 〉=〈∑αj x j n j=1,∑αj x j n j=1〉=∑αj 2n j=1,而图5-3 原点位移技术示意图.。

求矩阵特征值的方法

求矩阵特征值的方法

求矩阵特征值的方法矩阵特征值是矩阵在线性代数中的重要概念之一,它在很多数学和物理问题中都有着重要的应用。

求解矩阵特征值的方法有很多种,下面将介绍常见的几种方法。

1. 通过特征方程求解:设A为一个n阶矩阵,I为n阶单位矩阵,如果存在一个非零向量x使得Ax=λx,其中λ为一个常数,则称λ为矩阵A的一个特征值,x 为对应的特征向量。

特征方程为:A-λI =0。

对于一个n阶矩阵,特征方程是一个n次多项式,其根即为特征值。

根据特征方程求解特征值的一般步骤为:(1) 计算特征方程A-λI =0中的行列式;(2) 求解特征方程,得到特征值。

2. 使用特征值分解:特征值分解是将一个矩阵分解成特征值和特征向量的乘积的形式。

对于一个n阶方阵A,如果存在一个可逆矩阵P和一个对角矩阵D,使得A=PDP^ -1,则称D为A的特征值矩阵,P为A的特征向量矩阵。

特征值分解的一般步骤为:(1) 求解矩阵A的特征值和对应的特征向量;(2) 将特征值按降序排列,将对应的特征向量按列排列,得到特征向量矩阵P;(3) 构造对角矩阵D,将特征值按对角线排列;(4) 计算可逆矩阵P的逆矩阵P^ -1;(5) 得到特征值分解A=PDP^ -1。

特征值分解方法对于对称矩阵和正定矩阵特别有用,可以将这些矩阵转化为对角矩阵,简化了矩阵的计算。

3. 使用幂迭代方法:幂迭代法是一种用于估计矩阵的最大特征值和对应特征向量的迭代方法。

它的基本思想是先任意给定一个非零向量,将其标准化得到单位向量,然后通过矩阵不断作用于该向量使其逐渐趋近于所求的特征向量。

幂迭代法的一般步骤为:(1) 随机选择一个初始向量x(0),其中x(0)的范数为1;(2) 迭代计算向量x(k+1) = A * x(k),直到x(k)收敛于所求的特征向量;(3) 使用向量x(k)计算特征值λ(k) = (A * x(k)) / x(k)。

幂迭代法的收敛性与初始向量的选择有关,在实际应用中通常需要进行多次迭代并取得多个结果进行比较,以获得较准确的特征值。

矩阵特征值的求法

矩阵特征值的求法

矩阵特征值的求法
矩阵特征值是矩阵在特定方向上的伸缩比率,或者说是矩阵在某
些方向上的重要程度,因此它在数学中有很多的应用。

在这篇文章中,我们将介绍矩阵特征值的求法。

一、定义
矩阵特征值是矩阵 A 的特征多项式P(λ) 的根,即
P(λ)=det(A-λI)=0,其中 I 是单位矩阵,det 表示行列式。

该多项
式的阶数等于矩阵 A 的阶数。

二、求法
1. 直接计算
对于小阶的矩阵,可以直接求解特征多项式的根,得到特征值。

2. 特征值分解
对于大阶的矩阵,可以通过特征值分解的方式求得矩阵的特征值。

特征值分解是一种将矩阵分解为特征向量和特征值的方法,即矩阵
A=QΛQ^-1,其中 Q 是正交矩阵,Λ 是对角矩阵,其对角线上的元素
就是特征值。

3. 幂迭代法
幂迭代法是一种通过连续迭代计算矩阵 A 的最大特征值和对应
特征向量的方法。

该方法的基本思想是利用矩阵特征值的性质,通过
不断迭代对特征向量进行单调放缩,最终得到矩阵的最大特征值和对
应特征向量。

4. QR 分解法
QR 分解法是一种通过 QR 分解求解矩阵特征值和特征向量的方法。

该方法的基本思想是将矩阵 A 分解为一个正交矩阵 Q 和一个上
三角矩阵 R,即 A=QR,然后对 R 迭代求解特征值和特征向量。

三、总结
矩阵特征值的求法有多种方法,其中直接计算适用于小阶矩阵,
而特征值分解、幂迭代法和 QR 分解法则适用于大阶矩阵。

在实际应
用中,需要根据具体情况选择合适的方法,以便快速、准确地求解矩阵的特征值和特征向量。

矩阵特征值的计算方法

矩阵特征值的计算方法

矩阵特征值的计算方法
矩阵特征值的计算方法指的是求解矩阵的特征值和特征向量的
过程。

矩阵的特征值是一个数,它表示矩阵线性变换后的方向和大小,而特征向量则是指在该方向上不发生变化的向量。

矩阵的特征值和特征向量在很多数学和工程领域中都有着广泛的应用,比如在谱分析、信号处理、图像处理、电力系统等方面都有重要的应用。

矩阵特征值的计算方法有很多种,其中最常见的方法是使用特征值分解。

特征值分解是指将一个矩阵分解成特征向量和特征值的乘积的形式,即 A = QΛQ^-1,其中A是待求解的矩阵,Q是特征向量组成的矩阵,Λ是特征值组成的对角矩阵。

特征值分解的计算方法比较简单,但是它只适用于有n个线性无关特征向量的n阶矩阵,而对于其他类型的矩阵,比如奇异矩阵和非对称矩阵,就需要使用其他的方法。

除了特征值分解之外,还有很多其他的计算方法可以用来求解矩阵的特征值和特征向量,比如幂法、反幂法、QR分解法、雅可比方法等。

这些方法各有特点,可以根据实际情况选择适合的方法来求解矩阵的特征值和特征向量。

总之,矩阵特征值的计算方法是一个重要的数学问题,它在很多领域中都有着广泛的应用。

不同的计算方法有不同的优缺点,需要根据实际情况选择合适的方法来求解矩阵的特征值和特征向量。

- 1 -。

求矩阵的特征值的三种方法

求矩阵的特征值的三种方法

求矩阵的特征值的三种方法
设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是矩阵A的一个特征值。

求矩阵的特征值的方法:计算的特征多项式;求出特征方程的全部根,即为的全部特征值;对于的每一个特征值,求出齐次线性方程组。

设A是n阶方阵,如果数λ和n维非零列向量x使关系式A x=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。

式A x=λx也可写成(A-λE)X=0。

这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式|A-λE|=0。

矩阵特征值的求法
对于矩阵A,由AX=λ0X,λ0EX=AX,得[λ0E-A]X=0即齐次线性方程组有非零解的充分必要条件是
即说明特征根是特征多项式|λ0E-A|=0的根,由代数基本定理
有n个复根λ1,λ2,…,λn,为A的n个特征根。

当特征根λi(I=1,2,…,n)求出后,(λiE-A)X=θ是齐次方程,λi均会使|λiE-A|=0,(λiE-A)X=θ必存在非零解,且有无穷个解向量,(λiE-A)X=θ的基础解系以及基础解系的线性组合都是A的特征向量。

求特征值的方法

求特征值的方法

求特征值的方法
特征值是矩阵理论中的重要概念,它在很多领域都有着广泛的应用,比如在物理学、工程学和计算机科学等领域。

求解特征值是矩阵分析中的一个重要问题,下面我们将介绍几种常用的求特征值的方法。

首先,最常见的求特征值的方法是使用特征方程。

对于一个n阶矩阵A,其特征值满足特征方程|A-λI|=0,其中I为单位矩阵,λ为特征值。

我们可以通过解特征方程来求解特征值,进而得到矩阵A的特征值。

其次,雅可比迭代法也是一种常用的求特征值的方法。

雅可比迭代法是通过矩阵的相似变换来逐步逼近特征值的方法。

通过不断迭代,可以得到矩阵的特征值和对应的特征向量。

另外,幂法也是一种常用的求特征值的方法。

幂法是通过不断迭代矩阵的幂次来逼近矩阵的最大特征值和对应的特征向量。

幂法的收敛速度较快,适用于大规模矩阵的特征值求解。

除了上述方法外,拉盖尔法和QR方法也是常用的求特征值的方法。

拉盖尔法是通过将矩阵转化为特定的三对角矩阵,再通过求解三对角矩阵的特征值来求解原矩阵的特征值。

而QR方法则是通过矩阵的相似变换和正交相似变换来逼近矩阵的特征值和特征向量。

总结一下,求解特征值是矩阵分析中的一个重要问题,有很多种方法可以用来求解特征值。

常见的方法包括特征方程、雅可比迭代法、幂法、拉盖尔法和QR方法等。

不同的方法适用于不同类型的矩阵,我们可以根据具体的问题和需求选择合适的方法来求解特征值。

希望本文介绍的方法对您有所帮助。

矩阵特征值求法

矩阵特征值求法

矩阵特征值求法在数学中,矩阵特征值是矩阵的一个非常重要的性质。

它可以用来描述矩阵的很多性质,比如矩阵的对角化、矩阵的相似变换等。

矩阵特征值的求法有很多种,其中比较常见的有幂法、Jacobi方法、QR方法等。

本文将介绍这些方法的基本原理和具体实现过程。

一、幂法幂法是一种求解矩阵特征值和特征向量的迭代方法。

其基本思想是:从一个随机的初始向量开始,不断地将矩阵乘上这个向量,并将结果归一化,得到一个新的向量。

这个过程会不断重复,直到向量收敛到某个特征向量为止。

此时,对应的特征值就是矩阵的最大特征值。

具体实现过程如下:1. 初始化一个随机向量 $x_0$,并进行归一化,得到$x_1=frac{x_0}{left|x_0right|}$。

2. 对于 $k=1,2,3,cdots$,重复以下步骤:(1)计算 $y_k=Ax_{k}$。

(2)计算$lambda_k=frac{left|y_kright|}{left|x_kright|}$。

(3)归一化向量 $x_{k+1}=frac{y_k}{left|y_kright|}$。

3. 当 $left|lambda_{k+1}-lambda_kright|<epsilon$,其中$epsilon$ 是一个足够小的数,表示收敛精度时,停止迭代。

此时,向量 $x_{k+1}$ 就是对应的特征向量,特征值为 $lambda_{k+1}$。

幂法的优点是简单易懂,容易实现。

但是,由于它只能得到矩阵的最大特征值和对应的特征向量,因此需要对矩阵进行对角化或者其他方法来得到所有的特征值和特征向量。

二、Jacobi方法Jacobi方法是一种求解实对称矩阵特征值和特征向量的方法。

其基本思想是:通过一系列旋转变换,将实对称矩阵变换为对角矩阵,从而得到特征值和特征向量。

具体实现过程如下:1. 初始化一个实对称矩阵 $A$。

2. 选择一个非对角线元素 $a_{i,j}$,并计算旋转角度$theta$,使得 $a_{i,j}$ 变为 $0$。

求解特征值矩阵的技巧

求解特征值矩阵的技巧

求解特征值矩阵的技巧特征值矩阵是线性代数中重要的概念,它在许多领域中都有广泛的应用,如物理、工程、计算机科学等。

解特征值矩阵的问题是线性代数中一个经典且基础的问题,下面将介绍几种常用的求解特征值矩阵的技巧。

1. 特征值与特征向量的定义特征值矩阵是指满足 Ax = λx 的特征向量x和特征值λ的矩阵A。

其中,A是一个n×n的矩阵,x是一个n维非零向量,λ是一个标量。

2. 计算特征值的方法求解特征值的方法有很多种,常见的方法包括特征值分解法、幂法和QR分解法。

2.1 特征值分解法特征值分解是一种常用的求解特征值的方法。

对于一个n×n的矩阵A,可以将其分解为 A = PDP^(-1) 的形式,其中P是一个由特征向量组成的矩阵,D是一个对角矩阵,对角线上的元素是矩阵A的特征值。

2.2 幂法幂法是一种迭代方法,用于求解特征值问题。

它通过不断迭代矩阵A乘以一个向量,并取结果向量的模长作为特征值的估计值。

具体步骤如下:- 选择一个n维随机向量x(0)。

- 标准化向量x(0),即令x(0) = x(0)/||x(0)||,其中||x(0)||表示x(0)的模长。

- 迭代计算,直到收敛:1. 计算向量y(k) = Ax(k)。

2. 计算特征值的估计值λ(k) = (y(k))^T x(k)。

3. 标准化向量x(k+1) = y(k)/||y(k)||。

2.3 QR分解法QR分解是一种将矩阵分解为正交矩阵Q和上三角矩阵R的方法。

它可以用于求解特征值问题。

具体步骤如下:- 对矩阵A进行QR分解,得到A = QR。

- 迭代计算:1. 计算矩阵A(k) = R(k)Q(k),其中A(k)是矩阵A的第k次迭代结果。

2. 将矩阵A(k)分解为QR,得到A(k) = Q(k+1)R(k+1)。

3. 重复步骤1和2,直到满足收敛条件。

3. 求解特征向量的方法对于已知的特征值,可以通过一些方法求解对应的特征向量,如幂法、反幂法和QR分解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵特征值求解的分值算法12组1. 1矩阵计算的基本问题(1) 求解线性方程组的问题.即给定一个n 阶非奇异矩阵A 和n 维向量b ,求 一个n 维向量X,使得Ax =b (1.1.1 )(2) 线性最小二乘问题,即给定一个mx n 阶矩阵A 和m 维向量b ,求一个n 维向量使得 |A X -b | =min{ |Ay -比严 R n }(3) 矩阵的特征问题,即给定一个n 阶实(复)矩阵A ,求它的部分或全部特 征值以及对应的特征向量,也就是求解方程Ax = Z xA 的属于特征值A 的特征向量。

在工程上,矩阵的特征值具有广泛的应用,如大型桥梁或建筑物的振动问题: 机械和机件的振动问题;飞机机翼的颤振问题 ;无线电电子学及光学系统的电磁 振动问题;调节系统的自振问题以及声学和超声学系统的振动问题 .又如天文、地 震、信息系统、经济学中的一些问题都与矩阵的特征值问题密切相关。

在科学上,计算流体力学、统计计算、量子力学、化学工程和网络排队的马 尔可夫链模拟等实际问题,最后也都要归结为矩阵的特征值问题.由于特征值问 题在许多科学和工程领域中具有广泛的应用,因此对矩阵的特征值问题的求解理 论研究算法的开发软件的制作等是当今计算数学和科学与工程计算研究领域的 重大课题,国际上这方面的研究工作十分活跃。

1.2矩阵的特征值问题研究现状及算法概述对一个nxn 阶实(复)矩阵A,它的特征值问题,即求方程(I.1.3)式的非平凡 解,是数值线性代数的一个中心问题.这一问题的内在非线性给计算特征值带来 许多计算问题.为了求(1.1.3)式中的A , —个简单的想法就是显式地求解特征方 程det(A —几I) = 0除非对于个别的特殊矩阵,由于特征方程的系数不能够用稳定的数值方法由 行列式的计算来求得,既使能精确计算出特征方程的系数,在有限精度下,其特征 多项式f ") =det(A-ZJ)的根可能对多项式的系数非常敏感 能在理论上是有意义的,实际计算中对一般矩阵是不可行的 数较大,则行列式det(A -几I)的计算量将非常大;其次,根据 数大于四的多项式求根不存在一种通用的方法 ,基于上述原因,人们只能寻求其 它途径.因此,如何有效地!精确地求解矩阵特征值问题,就成为数值线性代数领 域的一个中心问题.目前,求解矩阵特征值问题的方法有两大类:一类称为变换方法,另一类称为 向X,(1.1.2 )(1.1.3 ) 一对解(4 X),其中R(C),x- R n (C n ),即A 为矩阵A 的特征值,X 为矩阵(121 ).因此,这个方法只 .首先,若矩阵A 的阶 Galois 理论,对于次量迭代方法.变换方法是直接对原矩阵进行处理,通过一系列相似变换,使之变换成一个易于求解特征值的形式,如Jacobi算法,Givens算法,QR算法等。

变换方法由于要存储矩阵元素,因而它只适用于求解中小型矩阵,它一般和向量迭代方法结合起来使用.向量迭代方法是通过一系列矩阵向量乘积而求得特征值和特征向量的.由于向量迭代方法可采用压缩存储技术,因而它适合于求大规模矩阵的特征值问题,尤其是大型稀疏矩阵的部分特征值和特征向量问题,如Lanczos 方法,Amoldi方法Qavidson方法等,现在这类问题仍是比较热的研究课题。

2分治方法的基础及理论研究2.1分治方法的概述考虑对称三对角矩阵T n的特征值问题TnX = Z X(2.1.1 ) 其中(2.1.2 )P n.1981年Cuppen提出一种求上述对称三对角矩阵T n所有特征值和特征向量的分而治之方法(divide 一and —conquer method).其基本思想是先将对称三对角矩阵T n分割为两个分别为k X k阶和(n - kp<(n - k)阶低阶对称三对角子矩阵T⑼和T⑴.T (0)和T⑴)可以用同样的方法也分别分割为两个更低阶的子矩阵,递归的采用这种分割技术可以把矩阵分割为一些能直接求出特征值的足够小的子矩阵(比如2阶或1阶矩阵),或者按照某种标准分割到适当阶数(如小于等于25 阶)后,结合其它求矩阵特征值的方法,如QR算法,求出其特征值。

在求出低阶矩阵特征值的基础上,开始胶合过程。

在胶合阶段,分割前的矩阵T1的特征值的求出(所谓的“治之”)是建立在其两个子矩阵T(0)和T(1)的特征值的基础上的,其中T(0)和T⑴.是在分割阶段由T1分割出的低阶子矩阵.随后的数值分析表明,Cuppen的方法存在着数值不稳定的危险,特别是当存在特征值束时,计算出的特征向量可能不正交。

Gu和Eisenstat对Cuppen的方法作了改进,极大地降低了数值不稳定的危险性。

Cuppen的方法在计算T n的特征值的同时也需要计算对应的特征向量,并且是在T ⑼和T ⑴的特征值和特征向量的基础上进行计算的 .根据文中,当用残量|TnX -A X |和正交性|x T X -ln |作为检验准确性的标准时,的标准时,二分法或多分法精确些.此外Cuppen 的分而治之方法要求矩阵乘积, 存储量为0(n 2),而二分法或多分法的存储量仅为 0(n),比前者少.应此,当只需 计算特征值时,通常选用后者.1987年Dongarra 和Sorensen 把分治思想应用到 求对称三对角矩阵特征值的并行计算,取得了不错的效果,再次引起了人们对分 治方法的极大关注。

分割胶合方法(split-merge method )是后来提出用分治方式求对称三对 角矩阵特征值T n 的方法,不同于分而治之方法在分割过程中采用矩阵的秩 1扰动, 它采用矩阵的秩2扰动.与二分法和多分法相似,在分割胶合方法中,特征值的计 算独立于特征向量的计算.如果需要计算特征向量,可采用反幕法。

由于分割胶 合方法计算特征值时采用具有三次收敛的Laguerre 迭代,数值试验表明,其计算速度和精度都明显优于二分法和多分法.并且文中给出的用于计算 Laguerre 迭代的非线性三项递归式可以避免上溢和下溢问题。

2.1.1分割策略分治方法的第一步就是把原来高阶的对称三对角矩阵特征值问题转化为两 个低阶对称三对角矩阵特征值问题 示如下(2.1.1.1 )不妨假设P j HO(j =1,2,…,n-1),即称T n 为不可约矩阵。

否则,若存在某些P j =0, 则T n 就可以约化为若干个低阶主子矩阵特征值问题,T n 的特征值就由这若干个低阶主子矩阵的特征值构成.当T n 为不可约对称三对角矩阵时,对其作如下分割Cuppen 的方法比二分法或多分法精确的多。

但文[3中,,如果用扎-kT n 作为衡量特征值准确性,即所谓的分割阶段.设对称三对角矩阵T n 表P n Jan丿fr (0))Tnd T ⑴丿(2.1.1.2)记T n =T n+E ,其中T (0)和T ⑴)分别为k 沢k 阶和(n —k )" n-k )或(n - k -1)x( n - k -1)阶对称三对角矩阵,通常k =[ n/2]。

(0扰动矩阵.此时有名1 p 1、、宀P 1+ J ■+J ■,T ⑴=+ J ■+ J ■Lk』 Ln』P k 4 叫丿P n 4 J 丿f oP knJan/p 1Q k卄用2P k卅、P 1+ ■T ")=P k H 4a k * -+ J+ J P k .+ +JJP n」P k A叫-p 」J 丿1扰动矩阵.此时有 T (0)P peP0 pe 2Pvv T时,其中 v =(o ;•-,T,…,0)且称此为秩(2)当Pe k eJ^称此为秩2(3)P k时,称此为秩3扰动矩阵.此时有务1 P 1g 七 P k 七P k七 叭七人们关注的问题是:对于上述三种分治策略T n 与T n 的特征值之间的关系.利用Hoffman-Wielandt 定理的结论,我们可以得到如下定理:定理2.1设A 和B 是两个n 阶Hermite 矩阵,它们的特征值分别是几’> 沁才,心 和已>^2 A" >巴,则其中H F 为Frobenius 范数。

根据上述定理,设T n 与T n 的特征值分别为Uh "和A 4 > A 2 A"工扎n,则有下面关系成立(2.1.1.4 )因此,只要(2.1.1.4)式右端越小,k j 就越接近A j ,即T n与T n 的特征值就越接近。

对于秩1和秩2扰动,T n 与T n 的特征值之间关系更详细的描述,将在后文 给出。

2.1.2胶合在矩阵T n 分割后,先求出矩阵T n 的特征值,即求出T ⑼和T ⑴的特征值。

剩下的工作就是如何由T n 的特征值出发求出T n的特征值,这就是胶合阶段主要任务。

在这个阶段可以采用不同的迭代方法,如割线法!Newton 迭代、Laguerre 迭 代以及路径跟踪等,以T n 的某个特征值或T n 的特征值构成的区间内的点为初 始点经过若千步迭代,最后收敛到T n 的某个特征值.本文中采用Laguerre 迭代从 特征区间提取特征值。

2.2 Laguerre 迭代2.2.1 Laguerre 迭代及其计算根据文中,对于不可约对称三对角矩阵 T n ,它的特征值或特征多项式f a ) =detT n -M n)的根全为互不相同的实数.因此,适合求多项式的根都是实n[J仏j -P j) ]2 < A -B |F (2.1.1.3)单根的具有三次收敛的Laguerre迭代L』x) = X +---------- 「…(2.2.1.1)-「罟卯V需j需)]非常适合用来从特征区间提取出T n 的特征值.这个方法早在13世纪就已经提出, 为了避免上述(2.2.1.3)式、(2.2.1.4)式和(221.5)式在计算中可能出现的上 溢或下溢问题,文中给出如下的改进的非线性三项递归式:令2治/2…,n,(2 . 2. 1.3)式两边都除以得fi^GJ 得近年来结合分治策略又重新焕发出生机 .文中首次对用Laguerre 迭代求不可约对称三对角矩阵的特征值的实用性进行了研究 题。

,而后又被用于求矩阵的奇异值问为了利用Laguerre 迭代求T n 的特征值,我们需要计算T n 的特征多项式f 仏)=det (T n -讥)以及其一阶导数f ‘仏)、 二阶导数f "仏).由文中知,计算这 些值的有效的方法是三项递归式.众所周知,当矩阵阶数比较大时,三项递归式 可能出现上溢或下溢问题.文中给出了一种改进的非线性的三项递归式 ,数值试 验表明,除极其个别的情形,改进的三项递归式可以避免上溢或下溢问题。

对称三对角矩阵T n 的特征多项式及其一、二阶倒数的计算公式设对称三对角矩阵T n 如 (221.1 )式所示,T k 表示其k 阶顺序主子式,表 示如下P 1匕P k j P k 4 «k >(2.2.1.2)f k (Q = det (T k -)・l k )为T k 的特征多项式,则特征多项式及其导数计算公式如下(三项递归式):rfo G ) =1,f 1(Q=% 八t f i 仏)=(% -Q f i 4仏)—P i !仁⑷,i =2,3,…,n(221.3r f 。

相关文档
最新文档