全等三角形教案

合集下载

三角形全等判定的教案

三角形全等判定的教案
2
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?

第12章全等三角形-一边一角构造全等(教案)

第12章全等三角形-一边一角构造全等(教案)
-对应角的概念,即两个全等三角形中,角度相等的角是哪些。
-如何通过测量边长和角度来确定两个三角形是否满足SSS和SAS条件。
-应用全等三角形的性质解决实际问题:重点在于学生能够将全等三角形的性质应用于解决具体的几何问题,例如计算未知边长或角度。
2.教学难点
-理解全等三角形的判定过程:难点在于学生需要理解全等判定不是简单的图形比较,而是一个逻辑推理过程。以下是具体的难点细节:
-难以将全等三角形的性质灵活运用于不同的解题场景。
-在解决综合问题时,难以决定使用哪种全等判定方法。
在教学过程中,需要通过具体的例题、图形演示和实际操作,帮助学生明确重点,突破难点。教师应设计不同难度的练习题,从基础的概念巩固到综合应用题,逐步引导学生深入理解全等三角形的判定和应用。同时,应鼓励学生主动参与,通过小组讨论、上台演示等方式,提高他们对核心知识的掌握程度。
3.重点难点解析:在讲授过程中,我会特别强调SSS和SAS这两个全等判定的重点。对于难点部分,比如对应边和对应角的识别,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用模型或纸片来构造全等三角形,从而演示全等的基本原理。
-难以区分SSS和SAS条件,特别是在实际应用中。
-难以理解全等判定中的“对应”概念,容易混淆哪些边和角是需要比较的。
-难以从给定的信息中识别出可用于全等判定的要素。
-在实际问题中识别和应用全等三角形:难点在于学生需要将理论知识和实际问题联系起来,以下为具体的难点:
-难以从复杂的实际问题中抽象出全等三角形的模型。

第十二章全等三角形12.1全等三角形教案

第十二章全等三角形12.1全等三角形教案
其次,在讲解全等三角形的判定方法时,我尝试用了一些具体图形和实例来说明,但可能还不够充分。我打算在下一节课增加一些更具挑战性的题目,让学生们亲自动手操作,以加深对判定方法的理解。
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:

第十二章-全等三角形-教案

第十二章-全等三角形-教案

初中数学导学案初中数学导学案学习例题:例1:找对应边,对应角⑴ 已知:△ ABC^A DBC DCB =、、D(2)>C已知:△ ABC^AAB^Z CD例2、已知:△ ABE^A DCF AB与DC是对应边,上〈A与/ D是对应角.BE=8,EF=3.(1) 求: CE AV --------------B 7=*(2)求证:AB// DCyC D巩固新知练习:课本P33复习巩固:1、2、找对应边和对应角分别是哪些。

1、全等用符号表示,读作:2、判断题(1)全等三角形的对应角相等,对应边相等。

( )(2)全等三角形的周长相等,面积也相等。

( )(3)周长相等的三角形是全等三角形。

( )达(4)面积相等的三角形是全等三角形。

( )标3、课本P33页3、4题训4、已知:(1)、△ ABE^A ACD (2)已知: △ACF^A练找出对应边,对应角•A*XBCA B CD小结1、(交流归纳)今天我们学了哪些内容:提2、谈谈本节课的收获:升教学反思初中数学导学案初中数学导学案初中数学导学案教学反思巩固新知练习:课本P41页练习第1、2题•••△ ADC BOD ()•••△ ADC BOD (3、如图,AB 丄BC,AD 丄DC,/ 仁/2。

求证AB = AD。

4、如图,要测量河两岸相对的两点A, B的距离,可以在AB的垂线BF上取两点C, D,使BC=CD再定出BF的垂线DE使A, C,E在一条直线上,这时测得DE的长就是AB的长。

为什么?1、区分ASA和AAS AS 两角一夹边对应相等;AA两角及其中一角的对边对应相等,两种方法可以相互转化.3、证明属于两个三角形的线段相等或角相等的问题,常通过证明这两个三角形全等来解决例2、如图,/ ACB M DBC / A=Z D.求证:AC=DB.达标训练1、如图,某同学把一块三角形的玻璃打碎成了3块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是 ___________A、带①去B、带②去C、带③去 D 带①②③去2、如图,应填什么就有「/ A= / B (已知)J _____________ (已知)/ C= / D (已知)△ AOC 也△ BODA= / B (已知)(CA=DB (已知小结提升)C E初中数学导学案教学反思1、在Rt△ ABC和Rt△ DEF中,/ ACB=/ DFE=90。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

全等三角形教案(精选3篇)

全等三角形教案(精选3篇)

全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。

(3)、此公理与前面学过的公理区别与联系。

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

全等三角形教案(5篇)

全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。

3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。

(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。

至于D,由于AD 和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

三角形全等的判定教案

三角形全等的判定教案

三角形全等的判定教案教学目标1。

通过实际操作理解“学习三角形全等的四种判定方法”的必要性。

2。

比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力。

3。

初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法。

4。

掌握证明三角形全等问题的规范书写格式。

教学重点和难点应用三角形的边角边公理证明问题的分析方法和书写格式。

教学过程设计一、实例演示,发现公理1.教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式。

2.在此过程当中应启发学生注意以下几点:(1)可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立。

如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合。

因此△BAD可与△CAE重合,说明△BAD≌△CAE。

(2)每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定。

(3)由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等。

3。

画图加以巩固。

教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象。

二、提出公理1。

板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义.2.强调以下两点:(1)使用条件:三角形的两边及夹角分别对应相等.(2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上.3.板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程.如图3-50,在△ABC与△A’B’C’中,(指明范围)三、应用举例、变式练习1.充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,例1已知:如图3-51,AB=CB,∠ABD=∠CBD.求证:△ABD≌△CBD.分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等 BD=BD得到.说明:(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等.(2)学习从结论出发分析证明思路的方法(分析法).分析:△ABD≌△CBD因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD.(3)可将此题做条种变式练习:练习1(改变结论)如图 3-51,已知 AB=CB,∠ABD=∠CBD。

《全等三角形》教案

《全等三角形》教案

《全等三角形》教案全等三角形教案教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程Ⅰ.提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的.2.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.3.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.形状与大小都完全相同的两个图形就是全等形.要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.Ⅱ.导入新课将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.议一议:各图中的两个三角形全等吗?不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D 是对应顶点,•所以C和B重合,A和D重合.∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.解:对应角为∠BAE和∠CAD.对应边为AB与AC、AE与AD、BE与CD.[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC 与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.Ⅲ.课堂练习课本练习1.Ⅳ.课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是大家要重点掌握的.找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.Ⅴ.作业课本习题11.11、2、3板书设计§11.1全等三角形一、概念二、全等三角形的性质三、性质应用例1:(运动角度看问题)例2:(根据位置来推理)例3:(根据位置和运动角度两种办法来推理)四、小结:找对应元素的方法运动法:翻折、旋转、平移.位置法:对应角→对应边,对应边→对应角.。

全等三角形教案【7篇】

全等三角形教案【7篇】

全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。

数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点正确寻找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,形状和大小都相同。

你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

第12章《全等三角形》全章教案(11页,含反思)

第12章《全等三角形》全章教案(11页,含反思)

第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。

全等三角形教案六篇

全等三角形教案六篇

全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。

同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。

二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。

因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。

《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。

为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。

2.方法与过程:争论、引导教学法。

3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。

三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。

第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。

全等三角形的定义:两个能够重合的三角形称为全等三角形。

全等三角形的性质:全等三角形的对应边、对应角相等。

活动目的:回忆前面学习过的学问,为探究新学问作预备。

三角形全等的判定教案

三角形全等的判定教案

全等三角形的判定(一)教学目标知识与技能:1.经历探索三角形全等条件的过程。

2.掌握探究问题的一般方法。

3.初步掌握运用“SSS”判定两个三角形全等,能够用文字语言、图形语言和符号语言分别表述三角形全等的判定方法。

过程与方法:使学生经历探索三角形全等条件的过程,体验用操作法、归纳法得出数学结论的过程。

情感态度与价值观:通过小组合作交流的学习模式,增强学生的团队意识,使学生获得正确的学习方式和良好的情感体验。

教学重点:掌握三角形全等的“边边边”条件。

突出重点:通过感受、思考、操作、归纳、应用五个步骤来突出重点。

教学难点:三角形全等条件的探索过程。

突破难点:主要采用学生体验、推测、绘图、归纳、应用五个步骤,同时充分运用多媒体课件和自制学具的直观、形象和动态来突破难点。

教学步骤教学过程一、创设情境、导入新课教师活动学生活动设计意图出示国庆61周年欢庆图片:学校准备进行国庆庆祝活动,请同学们帮忙做一些三角形的小彩旗,怎样才能使全校同学做的三角形彩旗形状、大小完全相同呢?学生尝试把实际问题转化成数学问题:怎样画一个三角形与已知三角形全等。

对学生进行爱国主义教育的同时,从学生熟知的生活经验和知识经验入手,符合学生学习数学的心理规律。

二、主动参与、逐层探究目标1:探索三角形全等的条件。

教师活动学生活动设计意图1、出示两个全等的三角形,学生明确满足六个条件确实能保证两个三角形全等,并且意识到满足六个条件中的一部分也可能保证两个三角形全等。

这样设计让学生明确探究方向,激发学生的探究欲望。

2、活动1:只满足一个条件对应相等,能否保证所画三角形全等?学生动手画图,举出反例,探索出只给一个条件不能保证两个三角形全等。

教师引导全班同学共同完成满足一个条件情况的探究,让学生初步感知探究的方法。

3、活动2:满足两个条件对应相等,能否保证所画两个三角形全等?学生分组操作,对满足两个条件的情况进行探究,并在组内进行交流、讨论,进而得出只给两个条件时,所画的三角形也不一定全等。

全等三角形教案

全等三角形教案

全等三角形教案一、教学目标1.知识与技能目标:掌握全等三角形的判定条件、全等三角形的性质和全等三角形的应用。

2.过程与方法目标:培养学生的观察能力、推理能力和解决问题的能力。

3.情感态度目标:培养学生对几何学的兴趣,增强学生的合作意识和团队精神。

二、教学重点1.掌握全等三角形的判定条件。

2.掌握全等三角形的性质。

三、教学难点1.掌握全等三角形的判定条件的推理过程。

2.掌握全等三角形的性质的推理过程。

四、教学过程设计1.导入(活动1:发现全等条件)教师出示三个等边三角形的剪纸模型,请学生观察并发现其中的规律。

引导学生发现:等边三角形的三边相等。

教师简单地解释:等边三角形的三个边长相等。

确定本课的学习目标:学习全等三角形的判定条件。

2.规范学习(1)概念的引入教师展示两个三角形的剪纸模型,先是发现三角形的一些性质,并将这些性质进行比较。

(2)知识的讲解a.全等三角形的判定条件教师通过例题引导学生总结全等三角形的判定条件:(1)两边和夹角相等;(2)三边相等;(3)两边和对应角相等。

b.全等三角形的性质教师引导学生讨论全等三角形的特点,并总结全等三角形的性质:(1)对应边和对应角相等;(2)对应角的对立面相等;(3)全等三角形的周长和面积相等。

3.拓展学习(1)巩固与提高教师出示一道全等三角形的练习题,请学生自主解答并将解题思路进行讲解。

(2)学以致用教师出示一些应用题,引导学生运用全等三角形的判定条件和性质进行解题,如计算图形的周长、面积等。

5.知识运用与实践(1)巩固练习教师出示几道练习题,请学生分组完成,并进行讲解,加深对全等三角形的理解和巩固所学知识。

(2)拓展练习教师布置一些练习题供学生自主练习,鼓励学生运用全等三角形的知识解决实际问题。

(3)课堂总结教师对本节课的学习内容进行总结,并针对学生提出的问题进行解答。

五、板书设计判定条件:1.两边和夹角相等。

2.三边相等。

3.两边和对应角相等。

性质:1.对应边和对应角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《全等三角形》教案
教学内容:《全等三角形》的复习
课程目标:1、回顾全等三角形的定义、性质和判定
2、会按照规定书写全等三角形的证明过程
3、了解中考中全等三角形的相关例题,并学会用辅助线合理构造全等三角形。

教学重点:全等三角形证明的书写格式,合理构造全等三角形。

教学难点:通过条件寻找全等关系,或构造全等关系。

教学准备:ppt课件
/
学情分析:该部分内容为初三中考前的复习,学生对内容已经比较了解,只需要加强记
忆和巩固复习。

同时也需要学生把握中考动态,了解全等三角形在中考中的出题类型。

教学过程:
前面我们已经对三角形的性质和特点进行了专门的复习,那么今天我们要对两个三角形的关系——三角形的全等关系进行复习。

我们都知道两个三角形能都完全重合我们就说这两个三角形全等,而在实际应用中全等的三角形往往是通过平移或旋转得到。

既然能够重合,那么我们也就得到三角形的性质是对应边相等,对应角也相等。

而在这六个关系中我们只需要得到指定的三种等量关系就可以判定两个三角形全等。

那我们一起来看看书上57页,一起完成知识梳理的内容。

一、知识梳理:(该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。

时间为3分钟)
1、全等三角形:能够完全重合的三角形叫全等三角形。

2、三角形全等的判定方法:SSS 、SAS 、ASA 、AAS 。

直角三角形全等的判定除以上的方法还有HL 。

3、全等三角形的性质:全等三角形对应边相等、对应角也相等。

4、全等三角形的面积相等、周长相等、对应高、对应边的中线、对应角的角平分线相等。

{
二、预习自测:(该部分内容由学生自行完成,时间为2分钟)
1、如图下列条件中,不能证明△ABD △ACD的是( D )
=DC,AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C, ∠BAD=∠CAD
D. ∠B=∠C,BD=DC
[
2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是
A D
C
O
D C
B
A
一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO=CO=
21AC;③△ABD ≌△CBD ,其中正确的结论有( D ) |
个 个 个 个
三、典例分析:
例1、(该题比较容易,由教师引导解题思路学生自行解答,不在课堂安排时间)
已知:在四边形ABCD 中AB ∥CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F.求证:AB=CF.
分析:求证△CFE ≌△BAE
例2、(该题将作为本节课一道证明三角形全等的典型例题进行分析,主要要求学生在证明题过程书写时符合规范,时间设计为3分钟)
如图。

AC=AE ,∠1=∠2,AB=AD.求证:BC=DE.
证明:∵∠1=∠2 《 ∴∠1+∠BAE =∠2+∠BAE 则∠CAB=∠EAD
又∵AC=AE , AB=AD
∴△CAB ≅△EAD(SAS)
所以BC=DE.
三、合作交流:(该部分内容由学生自主练习,请两位同学分别将第
二题和第三题的过程书写在黑板上,学生书写时间为5分钟,教师讲
评5分钟)
1、如图,AF=DC,BC ∥EF ,请只补充一个条件 ,使△ABC ≅△
DEF,并说明理由。

答案:EF=BC / ∠A=∠D / AB ∥DE
2、如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,
求线段DF 的长。

证明:∵AD 和BE 是三角形ABC 的高
&
所以∠ADB=∠AEB=90°
又∵∠ABC=45°∴三角形ABD 是等腰直角三角形
则 AD=BD
又在Rt △BDF 中∠FBD+∠BFD=90°
在Rt △BDF 中∠EAF+∠AFE=90°
∠BFD=∠AFE (对顶角)
所以 ∠FBD=∠EAF
则Rt △FBD=△CAD(SAS)
'
∴DF=CD=4
[此题同学们主要是要利用互余关系找到角相等]
3.如图,已知AC ⊥ BC ,BD ⊥ AD ,AC 与BD 交于O ,AC =BD . — C E D B B
D C ;
E A
求证:(1)BC=AD ; (2)△ OAB 是等腰三角形.
证明:(1)∵AC ⊥BC,BD ⊥AD
∴ ∠D =∠C=90°
在Rt △ACB 和 Rt △BDA 中,
AB=BA ,AC=BD
∴ △ACB ≌ △BDA (HL )
∴BC=AD
(2)由△ACB ≌△BDA 得 ∠CAB =∠DBA
∴△OAB 是等腰三角形
[待学生完成后进行分析]
$
四、挑战中考:
一、填空题(该部分内容由学生自主练习,学生练习时间3钟,教师分析2钟)
1、如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 。

#
2、如图,在Rt △ABC 中,∠B=90°,沿AD 折叠,使点B 落在斜边AC 上,若AB=3,BC=4,
则BD= 23。

*
3、如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。

有以下四个结论:①AF ⊥BC ;②△ADG ≅△ABF;③O 为BC 的中点;④AG:DE=3:4,其中正确结论的序号是 ①②③④ 。

二、解答题
4、(该题比较容易,由教师引导解题思路学生自行解答,不在课堂安排时间)
在四边形ABCD 中,∠A=∠BCD=90°,BC=DC 。

延长AD 到E 点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC ≅△EDC 。

5、(该题将作为本节课的重点习题,并进行不同方法的探讨,计划时间为10分钟)
已知,如图,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连接DF 并延长交BC 的延长线于点E ,EF=FD.求证:AD=CE.
方法一:证明:过点D 作DG ∥BC 交AC 于点G
∴∠GDF=∠E
]
又∠DFG=∠EFC(对顶角)且FD=EF
所以△DGF≌△ECF(ASA)
∴DG=CE
又DG∥BC 且△ABC是等边三角形
∴∠AGD=∠ACB=∠A=60°
所以△ADG也是等边三角形
则AD=DG
所以AD=CE(得证)

方法二:证明:过点D作DG∥AC交BC于点G
在△EDG中FD=EF
∴FC是△EDG的中位线
∴EC=CG
又△ABC是等边三角形
∴AD=CG(平行线分线段成比例)
所以AD=CE(得证)

6、(该题安排1-2名同学口述思路,计划时间为5分钟)
如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC鱼点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长。

(1)证明:∵AN平分∠BAC ∴∠BAN=∠DAN
又∵BN⊥AN于点N ∴∠BNA=∠DNA=90°
且AN是公共边
所以△ABN≌△ADN(ASA)
所以BN=DN(得证)
(2)解:由(1)得AB=AD=10
因为M是边BC的中点,N是边BD的中点
所以MN是△BCD的中位线
则DC=2MN=6.
∴△ABC的周长=AB+BC+AD+DC=10+15+10+6=41
五、课堂总结:
全等三角形在中考中一般出现在填空、选择和证明题中。

也常常和其他几何体混合出题,我们在解题时要求同学们能根据已知找到全等关系也能够在没有现成的全等关系是学会通过做辅助线的方法构造全等形。

相关文档
最新文档