数学八年级上 中位数和众数 同步练习(附答案)

合集下载

八年级数学北师大版上册课时练第6章《中位数与众数》(含答案解析)(1)

八年级数学北师大版上册课时练第6章《中位数与众数》(含答案解析)(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第6单元中位数与众数一、选择题1.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.92.已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4B.中位数是5,平均数是5C.中位数是5,众数是4D.中位数是4.5,平均数是53.孔晓东同学在“低碳黄冈绿色未来”演讲比赛中,6位评委给他的打分如下表:评委代号ⅠⅡⅢⅣⅤⅥ评分859080959090则他得分的中位数为()A.95B.90C.85D.804.中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。

北师大数学八年级上册第六章6.2中位数与众数

北师大数学八年级上册第六章6.2中位数与众数

6.2中位数与众数(解析)知识精讲中位数(1)将一组数据按从小到大(或从大到小顺)的顺序进行排列,(2)如果数据个数为奇数,则中间的那个数就是中位数,(3)如果数据的个数为偶数,则中位数应是中间两个数据的平均数.一组数据3、8、6、7、2、8、6、8的中位数(1)从小到大进行排列:2、3、6、6、7、8、8、8(2)共8个数字,中位数为第4、第5个数(3)676.52+=众数一组数据中出现次数最多的数据(1)一组数据,1、2、3、4、5、5,众数为5(2)一组数据:1、2、3、3、5、5,众数为3、5(3)一组数据:2、2、3、3、5、5,没有众数易错点:如果一组数据中有两个或两个以上的数据出现的次数一样,都是最多,则以上数据是这组数据的众数. 如果所有数据出现的次数都一样,那么这组数据没有众数,譬如:1,2,3,4,5没有众数.三点剖析一.考点:中位数、众数.二.重难点:中位数、众数.三.易错点:1.如果一组数据中有两个或两个以上的数据出现的次数一样,都是最大,那么这些个数据是这组数据的众数. 如果所有数据出现的次数都一样,那么这组数据没有众数,譬如:1,2,3,4,5没有众数.2.中位数中数据的个数为偶数,则中位数是中间两个数据的平均数.中位数,众数例题1、一组数据:2,3,6,6,7,8,8,8的中位数是()A.6B.6.5C.7D.8【答案】B【解析】这组数据按照从小到大的顺序排列为:2,3,6,6,7,8,8,8,则中位数为:6+72=6.5.例题2、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.最高分与最低分数的差【答案】C【解析】由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.例题3、若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【答案】C【解析】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.例题4、为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数【答案】D【解析】吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.例题5、下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是()年龄13141516频数5713A.中位数是14B.中位数可能是14.5C.中位数是15或15.5D.中位数可能是16 【答案】 D【解析】 5+7+13=25,由列表可知,人数大于25人,则中位数是15或(15+16)÷2=15.5或16.例题6、 两组数据:3,a ,2b ,5与a ,6,b 的平均数都是8,若将这两组数据合并为一组数据.(1)求出a ,b 的值;(2)求这组数据的众数和中位数.【答案】 (1)126a b =⎧⎨=⎩(2)众数为12;中位数是6【解析】 (1)∵两组数据:3,a ,2b ,5与a ,6,b 的平均数都是8, ∴23235246a b a b +=--⎧⎨+=-⎩,解得:126a b =⎧⎨=⎩;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6, 12出现了3次,最多,即众数为12.随练1、 宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表:则全体参赛选手年龄的中位数是__________岁. 【答案】 15【解析】 参赛的人数为:5+19+12+14=50(人),则第25位和第26位年龄的平均数即为全体参赛选手年龄的中位数,则中位数为:15152+=15.随练2、 某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是( ) A.93,96 B.96,96 C.96,100 D.93,100 【答案】 B【解析】 把数据从小到大排列:92,93,95,96,96,98,100, 位置处于中间的数是:96,故中位数是96; 次数最多的数是96,故众数是96随练3、 本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:那么这30名同学四月份诗词背诵数量的众数和中位数分别是( )年龄组13岁 14岁 15岁 16岁 参赛人数 5 19 12 14诗词数量(首)4 5 6 7 8 9 10 11 人数 34457511A.11,7B.7,5C.8,8D.8,7【答案】 D【解析】 这组数据中8出现的次数最多,则其众数为8;30个数据的中位数为第15、16个数据的平均数,则其中位数为7772+=, 随练4、 一组由小到大排列的数据为-1,0,4,x ,6,16,这组数据的中位数为5,则这组数据的众数可能是( )A.5B.6C.-1D.5.5【答案】 B【解析】 根据题目提供的数据,可以看到这组数据的中位数应是4与x 和的平均数,即452x+=, 所以求出x =6,这样这组数据中出现次数最多的就是6,即众数是6.随练5、 已知一组从小到大排列的数据:1,x ,y ,2x ,6,10的平均数与中位数都是5,则这组数据的众数是________. 【答案】 6【解析】 ∵一组从小到大排列的数据:1,x ,y ,2x ,6,10的平均数与中位数都是5, ∵11(12610)(2)562x y x x y +++++=+=, 解得x =3、y =4,则这组数据为1、3、4、6、6、10 ∵这组数据的众数是6.课后练习1、 如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是( )A.27B.29C.30D.31 【答案】 C【解析】 暂无解析2、 一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,3 【答案】 A【解析】 ∵这组数据的众数是2, ∴x =2,将数据从小到大排列为:2,2,2,4,4,7, 则平均数=(2+2+2+4+4+7)÷6=3.5, 中位数为:3.3、 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( ) A.a <13,b =13 B.a <13,b <13C.a >13,b <13D.a >13,b =13 【答案】 A【解析】 ∵原来的平均数是13岁, ∴13×23=299(岁),∴正确的平均数299112.961323a -=≈<,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁, ∴b =13.4、 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90B.众数是5C.中位数是90D.平均分为87.5【答案】 C【解析】 根据折线统计图可得: 最高分为95,故A 错误;90分的人数有5个,人数最多,则众数是90,故B 错误;根据排序后的数据,可得第5和第6个数据落在90分这一组,故中位数为90,故C 正确;平均分为(2×80+85+5×90+2×95)÷10=88.5,故D 错误.5、 6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图: 根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整; (2)写出下表中a 、b 、c 的值: (3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析: ①从平均数和中位数方面比较一班和二班的成绩; ②从平均数和众数方面比较一班和二班的成绩;平均数(分)中位数(分)众数(分)一班 a b 90二班 87.6 80 c③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.【答案】(1)(2)a=87.6;b=90;c=100(3)①一班成绩好于二班②二班成绩好于一班③一班成绩好于二班【解析】(1)一班中C级的有25﹣6﹣12﹣5=2人.故统计图为:(2)a=(6×100+12×90+2×80+70×5)÷25=87.6;b=90c=100;(3)①从平均数和中位数的角度,一班和二班平均数相等,一班的中位数大于二班的中位数,故一班成绩好于二班.②从平均数和众数的角度,一班和二班平均数相等,一班的众数小于二班的众数,故二班成绩好于一班.③从B级以上(包括B级)的人数的角度,一班有18人,二班有12人,故一班成绩好于二班.6、一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_________【答案】7 6【解析】本题考查众数、平均数的概念.根据众数为1,求出a的值,然后根据平均数的概念求解.∵众数为1,∴a=1.∴平均数为1+2+1+0+2+17=667、在“爱满扬州”慈善一日捐款活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.第11题图(1)这50名同学捐款的众数为_____元,中位数为_______元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数【答案】【解析】(1)解:15,15;(4分).解:x=150×(5×8+10×14+15×20+20×6+25×2)=13;解:600×13=7800(元);答:估计该校学生的捐款总数为7800元8、为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)若规定居民生活用水收费标准为2.80元/立方米,请你估算小申家一个月(按30天计算)的水费是多少元?(1立方米=1000升)【解答】解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)8001000×30×2.80=67.20(元).答:小申家一个月(按30天计算)的水费是67.20元.。

北师大版八年级数学上册_百练百胜《中位数与众数》综合练

北师大版八年级数学上册_百练百胜《中位数与众数》综合练

《6.2中位数与众数》综合练13.(2020·达州中考)下列说法正确的是( )A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98,97,99,99,98,96,那么这组数据的众数为98D.数据6,5,8,7,2的中位数是614.(2020·泸州中考)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如表所示:那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25和415.(易错警示题)一组数据4,5,x,7,9的平均数为6,则这组数据的众数为( )A.4B.5C.7D.916.(2020·天水中考)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( )A.40,42B.42,43C.42,42D.42,4117.(生活情境题)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是( )A.4,5B.5,4C.5,5D.5,618.一组数据4,4,x,8,8有唯一的众数,则这组数据的平均数是( )A.28 5B.325或5C.285或325D.519.(2020·包头中考)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为( )A.2B.3C.4D.520.一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):则被遮盖的两个数据依次是( )A.81,80B.80,2C.81,2D.80,8021.已知一组数据从小到大顺序排列为a<b<c<d<e<f<g.则a+1,b+2,c+1,d+2,e+2,f+3,g+2这组数据的中位数是________.22.(素养提升题)(2021·南宁期中)某校作为“垃圾分类”示范校.为了解七、八年级学生(七、八年级各有650名学生)对垃圾分类相关知识的知晓情况,该校举行了垃圾分类知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:七年级:89,95,85,92,85,86,97,80,85,100,85,89,91,83,85,90,94,69,93,87.八年级:100,91,97,92,82,91,100,93,87,93,90,91,84,91,72,87,92,90,80,57.整理数据:分析数据:应用数据:(1)由上表填空:a=____________,b=________, c=________.(2)估计该校七、八两个年级学生在本次竞赛中成绩在95分以上的共有多少人?(3)你认为哪个年级的学生对垃圾分类知识掌握的总体水平较好,请说明理由.易错必究规避陷阱易错点1 不排序就取中位数1.(2020·金华中考)数据1,2,4,5,3的中位数是___________.易错点2 众数有多个时,取不全2.在一次数学答题比赛中,六位同学答对题目的个数分别为7,5,3,7,5,10,则这组数据的众数是__________.参考答案13.答案:D14.答案:A15.答案:B16.答案:C17.答案:C18.答案:C19.答案:B20.答案:D21.答案:d +222.答案:(1)11 88 91; (2) 见解析;(3) 见解析解析:(1)七年级80≤x ≤89的人数a =20-1-8=11,将七年级成绩重新排列为69,80,83,85,85,85,85,85,86,87,89,89,90,91,92,93,94,95,97,100,∴七年级成绩的中位数8789=882b +=,八年级众数c =91. (2)估计该校七、八两个年级学生在本次竞赛中成绩在95分以上的共有23(650650162.516340)+=⨯+≈ (人); (3)八年级学生对垃圾分类知识掌握的总体水平较好,七八年级成绩的平均数相等,而八年级成绩的中位数大于七年级成绩的中位数,∴八年级学生对垃圾分类知识掌握的总体水平较好.易错必究 规避陷阱1.答案:32.答案:7或5。

中考数学八年级上册专题训练50题含参考答案

中考数学八年级上册专题训练50题含参考答案

中考数学八年级上册专题训练50题含答案一、单选题1.在以下一列数3,3,5,6,7,8中,中位数是( ) A .3 B .5C .5.5D .62.若分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x ≠C .0x ≠D .3x ≠-3.某小组英语听力口语考试的分数依次为:25,29,27,25,22,30,26,这组数据的中位数是( ) A .27B .26C .25.5D .254.对“十·一”黄金周7天假期去某景区旅游的人数进行统计,每天旅游的人数统计如下表:其中众数和中位数分别是( )A .1.2,B .2,2.5C .2,2D .1.2, 2.55.下列定理中,没有逆定理的是( ). A .直角三角形的两锐角互余 B .同位角相等,两直线平行C .对顶角相等D .直角三角形两直角边平方和等于斜边的平方6.已知ABC DEF ≅△△,70A ∠=︒,40E ∠=︒,则F ∠的度数为( ) A .30︒B .40︒C .70︒D .110︒7.某中学随机抽取了该校50名学生,他们的年龄如表所示:这50名学生年龄的众数和中位数分别是( ).A .13岁、14岁 B .14岁,14岁C .14岁,13岁D .14岁,15岁8.下列图形是轴对称图形的有( )A .5个B .4个C .3个D .2个9.已知116a b a b+=+,则a bb a +之值为( )A .4B .3C .2D .110.在1x ,12,21x x+,3xy π,3x y +,1+1x 中,分式的个数有( ) A .5个 B .4个 C .3个 D .2个11.下列各组图形中是全等三角形的一组是( )A .B .C .D .12.如图是用直尺和圆规作一个角等于已知角的示意图,要证明A O B AOB '''∠=∠,就要先证明C O D COD '''∆≅∆,那么判定C O D COD '''∆≅∆的依据是( )A .SSSB .SASC .AASD .ASA13.△ABC 中,AB =AC ,顶角是120°,则一个底角等于( ) A .120°B .90°C .60°D .30°14.如图,在Rt ABC ∆中,90C ∠=︒,12cm AC =,6cm BC ,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的值为( )A .6cmB .12cmC .12cm 或6cmD .10cm 或6cm15.下列命题是真命题的是( ) A .同旁内角互补 B .垂直于同一条直线的两直线平行 C .邻补角相等D .两直线平行,内错角相等16.已知分式242x y ⎛⎫- ⎪⎝⎭与另一个分式的商是62x y ,那么另一个分式是( )A .252x y-B .252x yC .1432x yD .32x y -17.要使式子21236x x x x +=---从左到右变形成立,x 应满足的条件是( ) A .x >-2B .x =-2C .x <-2D .x≠-218.若△ ABC 的内角满足,2∠ A -∠ B =60°,4∠ A +∠ C =300°,则△ ABC 是( ) A .直角三角形B .等腰三角形C .等边三角形D .无法确定19.关于x 的分式方程2311m x x -=--有增根,则m 的值是( ) A .1B .2C .1-D .2-20.下列命题中,假命题是( ) A .对顶角相等B .如果一个角的两边分别平行于另一个角的两边,那么这两个角相等C .两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行D .等角的补角相等二、填空题21.我市6月份某一周每天的最高气温为(单位:△):24,25,28,30,31,33,那么这一周每天最高气温的中位数是__.22.如图BD 是ABC 的一条角平分线,AB=8,BC=4,且ABCS =24,则DBC 的面积是_________.23.已知2410x x ++=,则1x x+=______. 24.计算:23b b a a÷=_______________________.25.如图,在ABC 中,B ACB ∠=∠,CD 是ABC 的角平分线,过A 作CD 的平行线交BC 的延长线于点E ,40E ∠=︒,则BAE ∠=_______°26.分式方程24211x x x++--=﹣1的解是_____. 27.21222933++=--+m m m ______. 28.已知方程21242kx x +=--,有增根,则k =_________. 29.在一个三角形中,如果一个内角是另一个内角的2倍,那么这个三角形称为理想三角形;如果一个内角是另一个内角的3倍,那么这个三角形称为梦想三角形.若一个三角形既是理想三角形,也是梦想三角形,写出这个三角形的三个内角的度数(只写出一组)______.30.在ABC 中,已知9028C B A ∠=︒∠-∠=︒,,则B ∠=______.31.如图,AB AC =,AD△BC ,50DAC ∠=︒,则B ∠的度数是_________.32.在平面直角坐标系中,点A (﹣1,8)关于x 轴对称点的坐标是 ___.33.在课堂上,老师发给每人一张印有Rt A B C '''(如图所示)的卡片,然后,要同学们尝试画一个Rt ABC △,使得t Rt R A B ABC C '''≌.小赵和小刘同学先画出了90MBN ∠=︒之后,后续画图的主要过程分别如图所示老师评价:他俩的做法都正确.请你选择一位同学的做法,并说出其作图依据.我选______的做法(填“小赵”或“小刘”),他作图判定t Rt R A B ABC C '''≌的依据是______ 34.如图,△ABC 是等腰直角三角形,AB =AC ,已知点A 的坐标为(﹣2,0),点B 的坐标为(0,1),则点C 的坐标为__.35.已知△AOB=30°,点在△AOB 的内部,与关于OA 对称,与关于OB对称,则△一定是一个__________________三角形.36.方程146x x =+的解是_____. 37.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,则DE 的长为__________.38.已知等腰三角形一腰上的垂直平分线与另一腰所在直线的夹角是50°,则底角的度数为________.39.重庆市政府为了大力发展农牧业,鼓励并支持青年自主创业.打工返乡青年甲、乙两人在政府帮助下合伙养了若干头羊,而每头羊的卖价又恰与羊的头数相等,全部卖完后,两人按下面的方法平分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元(都是整元),轮到乙拿去.为了平均分配,甲应该找补给乙__________元?三、解答题40.如图,点B 、D 、C 、F 在一条直线上,且BD=FC ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ABC△△EFD ,你添加的条件是 .(2)根据你添加的条件,证明△ABC△△EFD .41.已知:如图,AD 是ABC ∆的角平分线,,80B BAD ADC ∠=∠∠=︒,求ABC ∆各内角的度数.42.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ≌;(2)若110A ∠=︒,40C ∠=︒,求AEB ∠的度数. 43.先化简,再求值:(m+2﹣52m -)•243m m--,其中m=﹣12. 44.先化简:(2222a a a a -+-+-)÷2444a a --,再从﹣2,2,﹣1,1中选择一个合适的数代入求值.45.随着国内快递业务量的迅速增长,通过无人机可打造短途航空物流网络,加速物流效率.某公司采用“站点对站点”的无人机快递运送模式,选用了A ,B 两种型号的无人机,已知A 型号无人机平均每分钟比B 型号无人机多飞行150米.若两站点之间的距离为5000米,A 型号无人机单程所需时间是B 型号无人机单程所需时间的45,若不计停留时间,求A 型号无人机在两站点之间往返..的飞行时间.46.已知:如图,在ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于D 、E .(1)若12AC =,10BC =,求EBC 的周长; (2)若40A ∠=︒,求EBC ∠的度数.47.如图,直线a△b ,一块含60°角的直角三角板ABC(△A =60°)按如图所示放置.若△1=55°,求△2的度数.48.如图1,在△ABC 中,BO AC ⊥于点O ,3,1AO BO OC ===,过点A 作AH BC ⊥于点H ,交BO 于点P .(1)求线段OP 的长度;(2)连接OH ,求证:点O 到△AHC 的两边距离相等;(3)如图2,若点D 为AB 的中点,点M 为线段BO 延长线上一动点,连接MD ,过点D 作DN DM ⊥交线段OA 延长线于N 点,则BDM ADN S S ∆∆-的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.49.如图1,在等边三角形ABC 中,AD BC ⊥于,D CE AB ⊥于,E AD 与CE 相交于点O .(1)求证:2OA DO =;(2)如图2,若点G 是线段AD 上一点,CG 平分BCE ∠,60BGF ∠=︒,GF 交CE 所在直线于点F .求证:GB GF =.(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作OG OF OA三条线段之间的数量60∠=︒,边GF交CE所在直线于点F.猜想:,,BGF关系,并证明.参考答案:1.C【详解】试题分析:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.考点:中位数.2.B【分析】分式有意义的条件:分母不为0,根据分式有意义的条件列不等式即可.【详解】解:分式13x-有意义,30,x∴-≠3,x∴≠故选:B.【点睛】本题考查的是分式有意义的条件,掌握“分式的分母不为0”是解本题的关键.3.B【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可.【详解】将这组数据从小到大重新排列为22,25,25,26,27,29,30,△这组数据的中位数为26,故选:B.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.C【分析】先把数据按大小排列,然后根据中位数和众数定义分别求解.【详解】众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;而将这组数据从小到大的顺序排列后,处于中间位置的那个数的是2,那么由中位数的定义可知,这组数据的中位数是2.故选C.【点睛】本题考查统计知识中的中位数和众数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;一组数据中出现次数最多的数据叫做众数.答案第1页,共22页5.C【分析】分别写出四个命题的逆命题,逆命题是真命题的就是逆定理,不成立的就是假命题,就不是逆定理.【详解】解:A 、直角三角形两锐角互余逆定理是两锐角互余的三角形是直角三角形; B 、同位角相等,两直线平行逆定理是两直线平行,同位角相等;C 、对顶角相等的逆命题是:如果两个角相等,那么这两个角是对顶角,逆命题是假命题;D 、直角三角形两直角边平方和等于斜边的平方逆定理是两边的平方和等于第三边的平方的三角形是直角三角形.故选:C .【点睛】本题考查命题与定理,关键是写出四个选项的逆命题,然后再判断真假. 6.C【分析】由题意根据全等三角形对应角相等可得,D A B E F C ∠=∠∠=∠∠=∠,,再利用三角形的内角和等于180°列式计算即可得解.【详解】解:△△ABC △△DEF ,△7040,D A B E F C ︒︒∠=∠=∠=∠=∠=∠,,在△DEF 中,△F =180°-△D -△E =180°-70°-40°=70°.故选:C .【点睛】本题考查全等三角形的性质,主要利用了全等三角形对应角相等,根据对应顶点的字母放在对应位置上准确确定出对应角是解题的关键.7.C【详解】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题中位数=(13+13)÷2=13;数据14出现了18次,次数最多,所以众数是14.故选C .考点:1.众数;2.中位数.8.B【分析】根据轴对称图形的定义,逐一判断图形,即可得到答案.【详解】由题意得:第一、三、四、五个图形是轴对称图形,【点睛】本题主要考查轴对称图形的定义,掌握“沿一条直线折叠,两边完全重合的图形,叫做轴对称图形”是解题的关键.9.A【分析】将已知条件变形可得:26()ab a b =+,利用完全平方公式展开移项合并同类项后可得,224ab a b =+,又因为22a b a b b a ab ++=,代入即可. 【详解】解:△116a b a b+=+可变形为:26()ab a b =+, △2262ab a ab b =++△224ab a b =+ △22ab a b b a ab++= △原式2244a b ab ab ab+===. 故选:A .【点睛】本题考查的知识点是求分式的值,解此题的关键是将已知条件进行变形,得出224ab a b =+.10.B【详解】解:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式, 由此可得1x ,21x x+,3x y +,1+1x 是分式,共4个, 故选B11.B【分析】根据全等三角形的判定定理逐个判断即可.【详解】解:A .不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B .符合全等三角形的判定定理SAS ,能推出两三角形全等,故本选项符合题意;C .只有一个角相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;D .只有一条边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.12.A【分析】由题意:用直尺和圆规作一个角等于已知角的示意图中,可得到三条线段对应相等,据此解题.【详解】根据作法可知: =C O CO D O DO D C DC ''''''==,,()C O D COD SSS '''∴∆≅∆故选:A .【点睛】本题考查基本作图、全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.13.D【分析】根据等腰三角形的性质得出△B =△C ,根据题意得出△A =120°,根据三角形内角和定理即可求得底角的度数.【详解】△△ABC 中,AB =AC ,顶角是120°,△△B =△C ,△A =120°△△A+△B+△C =180°,△△B =△C =1801202︒-︒=30°, 故选:D .【点睛】本题主要考查了等腰三角形性质与三角形内角和定理,熟练掌握相关概念是解题关键.14.C【分析】分△ABC △△QP A 、△ABC △△PQA 两种情况,根据全等三角形的性质解答.【详解】解:由题意得:△C =△P AQ =90°,△分两种情况讨论:当△ABC △△QP A 时,AP =BC =6cm ,当△ABC △△PQA 时,AP =AC =12cm ,即AP 的值为12cm 或6cm ,【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键. 15.D【详解】试题分析:A 、两直线平行,则同旁内角互补;B 、在同一平面内,垂直于同一条直线的两直线平行;C 、邻补角是指一个角.考点:真假命题的判定.16.B【分析】由被除式÷除式=商,根据分式除法的运算法则求出另一个分式即可.【详解】△分式242x y ⎛⎫- ⎪⎝⎭与另一个分式的商是62x y , △242x y ⎛⎫- ⎪⎝⎭÷62x y =84x y ⋅612x y =252x y , △另一个分式是252x y, 故选B.【点睛】本题考查分式除法,分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,熟练掌握运算法则是解题关键.17.D【详解】根据分式的基本性质:“在分式的分子和分母中,同时乘以(或除以)一个不为0的数(或整式)分式的值不变.”可知,要使式子21236x x x x +=---从左到右变形成立,则20x +≠,即2x ≠-,故选D.18.C【详解】因为2△A -△B =60°,4△A +△C =300°,所以△C +2△B =180°.因为△A +△B +△C =180°,所以△A =△B =△C =60°,故选C.19.B【分析】根据题意可得x =1,然后代入整式方程中进行计算,即可解答. 【详解】解:2311m x x -=--, m -2=3(x -1),解得:x =m+13,△分式方程有增根,△x=1,把x=1代入x=m+13中,1=m+13,解得:m=2,故选:B.【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.20.B【分析】分别判断后,找到错误的命题就是假命题.【详解】A. 对顶角相等,正确,是真命题;B. 如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故错误,是假命题.C. 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,正确,是真命题;D.等角的补角相等,正确,是真命题;故选B.【点睛】此题考查命题与定理,解题关键在于掌握其性质定义.21.29【详解】根据中位数的定义,可得每天最高气温的中位数是2922.8【详解】过D作AB、BC的垂线,根据角平分线上的点到角两边的距离相等,得两垂线段相等.所以△△DBC的面积==8.23.4-【分析】将已知方程两边同除以x即可求解.【详解】解:将2410x x++=两边同除以x,得140xx++=△14x x+=- 故答案为:4-.【点睛】本题考查了分式的求值,能正确对已知等式变形是解题关键.24.3b【分析】根据分式除法和分式乘法法则进行计算即可求解. 【详解】解:22333b b b a a a a b b÷=⨯=. 故答案为:3b. 【点睛】本题主要考查分式除法和分式乘法法则,解决本题的关键是要熟练掌握分式除法和分式乘法法则.25.60【分析】根据//CD AE ,40E ∠=︒,可得40BCD E ∠=∠=︒,根据CD 是ABC 的角平分线,可得80B ACB ∠=∠=︒,根据三角形的内角和可得60BDC ∠=︒,再根据两直线平行,同位角相等可得60BAE BDC =︒∠=∠.【详解】解:△//CD AE ,40E ∠=︒,△40BCD E ∠=∠=︒,△CD 是ABC 的角平分线,△224080ACB BCD ∠=∠=⨯︒=︒,△80B ACB ∠=∠=︒,△840180180600BDC BCD B ∠=︒=︒∠=︒-∠-︒-︒-,△//CD AE ,△60BAE BDC =︒∠=∠,故答案是:60.【点睛】本题考查了角平分线的性质,平行线的性质的应用,熟悉相关性质是解题的关键.26.x =13【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:4﹣(x +2)(x +1)=﹣x 2+1,整理得:4﹣x 2﹣3x ﹣2=﹣x 2+1,解得:x =13, 经检验x =13是分式方程的解. 故答案为x =13【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 27.0【分析】先根据平方差公式通分,再加减计算即可. 【详解】原式21222933m m m =-+--+ 222122626999m m m m m +-=-+--- 21226269m m m --+-=- 0=.故答案为:0【点睛】本题考查了分式的加减法,熟悉掌握通分、约分法则是解题的关键.28.14- 【分析】先将分式方程去分母整理为整式方程,然后根据分式方程有增根可得2x =或2x =-,代入计算即可.【详解】解:方程两边同乘(2)(2)x x +-,得12(2)(2)(2)x x k x ++-=-+.△原方程有增根,△最简公分母(2)(2)0x x +-=,增根是2x =或2x =-,当2x =时,14k =-; 当2x =-时,k 无解.△k 值为14-, 故答案为:14-. 【点睛】增根问题可按如下步骤进行:△根据最简公分母确定增根的值;△化分式方程为整式方程;△把增根代入整式方程即可求得相关字母的值.29.30°、60°、90°【分析】根据理想三角形、梦想三角形的定义,列方程求解即可.【详解】解:设最小内角度数为n °,2倍角为2n °,3倍角为3n °,△n +2n +3n =180,△n =30,△这个三角形的三个内角的度数为:30°、60°、90°.故答案为:30°、60°、90°.【点睛】本题考查了n 倍角三角形的定义以及三角形的内角和等知识,解题的关键是学会用方程的思想解决问题.30.59°【分析】由三角形的内角和定理,得到90B A ∠+∠=︒,结合28B A ∠-∠=︒,即可求出B ∠的度数.【详解】解:△在ABC 中,90C ∠=︒,△90B A ∠+∠=︒,△28B A ∠-∠=︒,△59B ∠=︒,21A ∠=︒,故答案为:59°.【点睛】本题考查了三角形内角和定理,解题的关键是熟练掌握三角形内角和定理. 31.50°【分析】根据等腰三角形等边对等角知B C ∠=∠,利用平行线的性质知DAC C ∠=∠,通过等量代换,即可求解.【详解】解:△ AB AC =,△B C ∠=∠,又△//AD BC ,△DAC C ∠=∠(两直线平行,内错角相等),且50DAC ∠=︒,△=50B C DAC ∠=∠∠=︒.故答案为50︒.【点睛】本题考查等腰三角形与平行线的综合,难度不大,熟练掌握等腰三角形以及平行线的性质是顺利解题的关键.32.(-1,-8)【分析】利用关于x 轴的对称点的坐标特点可得答案.【详解】解:△点A (﹣1,8),△点A 关于x 轴的对称点的坐标是(-1,-8),故答案为:(-1,-8).【点睛】此题主要考查坐标的对称,解题的关键是熟知关于x 轴的对称点的坐标特点:坐标轴不变,纵坐标互为相反数.33. 小刘(或小赵) HL (或SAS )【分析】由图可知小赵同学确定的是两条直角边,根据三角形全等判定定理为SAS . 由图可知小刘同学确定了一个直角边和斜边,根据三角形全等判定定理为HL .【详解】小赵同学画了90MBN ∠=︒后,再截取,AB BC 两直角边等于两已知线段,所以确定的依据是SAS 定理;小刘同学画了90MBN ∠=︒后,再截取,BC AC 一直角边和一个斜边,所以确定的依据是HL 定理.故答案为:小刘(或小赵);HL (或SAS )【点睛】本题考查了全等三角形的判定,熟练掌握每种证明方法,做出判断是解题的关键.34.(-3,2)【详解】过C 作CD △x 轴于D ,则△CDA =△AOB =90°,△△ABC 是等腰直角三角形,△△CAB =90°,又△△AOB =90°,△△CAD +△BAO =90°,△ABO +△BAO =90°,△△CAD =△ABO ,在△ACD 和△BAO 中,CDA AOB CAD ABO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ACD △△BAO (AAS ),△CD =AO ,AD =BO ,又△点A 的坐标为(-2,0),点B 的坐标为(0,1),△CD =AO =2,AD =BO =1,△DO =3,又△点C 在第三象限,△点C 的坐标为(-3,2).故答案为:(-3,2).【点睛】考点:1.辅助线的添加;2.三角形全等.35.等边.【详解】试题分析:如图,根据轴对称的性质得到12OP OP OP ==且12260,POP AOB ∠=∠=12OPP ∴是等边三角形.考点:1、轴对称的性质;2、等边三角形的判定.36.x =2.【分析】本题考查解分式方程的能力,观察可得最简公分母是x (x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【详解】方程两边同乘以x (x+6),得x+6=4x ,解得x=2.经检验:x=2是原方程的解.【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.37.1.5【分析】过点P 作//PF BC 交AC 于点F ,根据题意可证APF 是等边三角形,根据等腰三角形三线合一证明AE =FE ,根据全等三角形判定定理可证PFD QCD ≌△△,DF =DC ,进而证明12DE AC =,计算求值即可. 【详解】解:过点P 作//PF BC 交AC 于点F ,如图,△//PF BC ,△60APF B ∠=∠=︒,60A ∠=︒,APF 是等边三角形,△PF PA =,△PE AC ⊥,△AE FE =;△PA CQ =,△PF QC =,△//PF BC ,△∠=∠PFD QCD ,在PFD 和QCD 中,PF QC PFD QCD PDF QDC =⎧⎪∠=∠⎨⎪∠=∠⎩△PFD QCD ≌△△(AAS ),△DF DC =; △12DF FC =,12EF AF =, △DF EF DE +=,FC AF AC +=, △1111()2222DE FC AF FC AF AC =+=+=, △3AC =,113 1.522DE AC ==⨯= 故答案为:1.5【点睛】本题考查了平行线性质、等边三角形性质、全等三角形判定与性质,掌握全等三角形判定定理是解题关键.38.7020︒︒或【分析】分两种情况讨论,△三角形为锐角三角形,根据直角三角形两锐角互余求出顶角,再根据等腰三角形两底角相等列式计算即可;△三角形为钝角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出顶角,再根据等腰三角形两底角相等列式计算即可.【详解】解:由题意,分两种情况讨论,△如图1,三角形为锐角三角形时,905040A ∠=︒-︒=︒, 底角为:()118040702⨯︒-︒=︒; △三角形为钝角三角形时,9050140BAC ∠=︒+︒=︒, 底角为:()1180140202⨯︒-︒=︒, 综上,底角的度数为7020︒︒或.【点睛】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,解题关键是分类讨论.39.2【详解】试题分析:而每头羊的卖价又恰与羊的头数相等.设每头羊的卖价为x;则总的收入是2x ,2x 的尾数可能为0、1、4、5、6、9;全部卖完后,两人按下面的方法平分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元(都是整元),轮到乙拿去,说明这一轮甲拿了10元了,剩下不足十元(都是整元),轮到乙拿去,则最后一轮还剩下的钱大于10,小于20;在10-20间只有16是一个数的平方,所以肯定最后一轮剩下16,甲拿去10元,剩下6元归乙;为了平均分配,甲应该找给乙10-162=2,这样的分配就是平均分配考点:统计点评:本题考查统计,关键是审清题,从而排除各种情况;本题考查学生的逻辑思维能力,归纳能力40.(1)AC=DE;(2)见详解【分析】(1)根据题目中给出的两组对边相等,可以再添加一组对边或一组对角相等利用SSS 或SAS 证明全等即可;(2)根据(1)中添加的条件选择对应的方法证明即可.【详解】(1)AC=DE(2)证明:BD FC =BD DC FC DC ∴+=+即BC DF =在ABC 和EFD △中,AB EF BC DF AC DE =⎧⎪=⎨⎪=⎩()ABC EFD SSS ∴≅【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键. 41.80,40,60BAC B C ∠=︒∠=︒∠=︒【分析】根据B BAD ∠=∠及外角性质可知△B 的度数,进而根据AD 是△BAC 的平分线可知△BAC 的度数,根据三角形内角和求出角C 的度数即可.【详解】△,80B BAD ADC ∠=∠∠=︒,△△B=△BAD=40°,△AD 是△BAC 的平分线,△△BAC=2△BAD=80°,△△B+△BAC+△C=180°,△△C=180°-40°-80°=60°【点睛】本题考查三角形外角性质及三角形内角和定理,熟练掌握三角形内角和定理是解题关键.42.(1)见解析(2)55AEB ∠=︒【分析】(1)根据角平分线的定义得到ABE DBE ∠∠=,再根据全等三角形的判定SAS 证明结论即可;(2)根据三角形的内角和定理求解即可.【详解】(1)证明:△BE 平分ABC ∠,△ABE DBE ∠∠=,在ABE 和DBE 中AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩△()ABE DBE SAS ≌;(2)解:△110,40A C ∠=︒∠=︒,△18030ABC A C ∠=︒-∠-∠=︒由(1)可知ABE DBE ∠∠=,△15ABE ∠=︒,△18055AEB A ABE ∠=︒-∠-∠=︒.【点睛】本题考查角平分线的定义、全等三角形的判定、三角形的内角和定理,熟练掌握全等三角形的判定和三角形的内角和定理是解答的关键.43.-2(m+3),-5.【分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【详解】解:(m+2-5m-2)•243m m --, =()22245•23m m m m-----, =-()22(3)(3)•23m m m m m -+---, =-2(m+3).把m=-12代入,得,原式=-2×(-12+3)=-5.44.-1【分析】根据分式的减法和除法运算法则可以化简题目中的式子,然后在-2,2,-1,1中选择一个使得原分式有意义的x 的值代入求解. 【详解】22244-224a a a a a a -+-⎛⎫÷ ⎪+--⎝⎭()()()()()2222241=224a a a a a a --+-÷+-- ()()()()()228=2241a a a a a a +--⨯+-- =2-1a a - , 当a =﹣1时,原式=﹣()2-1-1-1⨯ =﹣1.【点睛】本题主要考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法. 45.403分 【分析】设B 型无人机飞行速度为x 米/分,则A 型无人机飞行速度为()150x +米/分,根据题意列出方程并求解.【详解】设B 型无人机飞行速度为x 米/分,则A 型无人机飞行速度为()150x +米/分. 由题意得:5000450005150x x ⨯=+ 解得,600x =经检验,600x =是原方程的解.500020402215033x ⨯=⨯=+(分) 答:A 型号无人机在两站点之间往返..的飞行时间为403分. 【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 46.(1)22;(2)△EBC =30°.【分析】(1)由AB 的垂直平分线DE 分别交AB 、AC 于点D 、E ,易得△EBC 的周长=AC +BC ;(2)由AB =AC ,△A =40°,即可得到△ABC 的度数,再根据△ABE =△A ,即可得出△EBC 的度数.【详解】解:(1)△AB 的垂直平分线DE 分别交AB 、AC 于点D 、E ,△AE =BE ,△△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+12=22;(2)△AB=AC,△A=40°,△△ABC=△C=70°,又△AE=BE,△△ABE=△A=40°,△△EBC=70°-40°=30°.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.47.115°【详解】分析:直接利用三角形的内角和定理结合对顶角的定义得出△ANM的度数,再利用平行心啊的性质求出△2即可.详解:如图,△直线a△b,△△AMO=△2;△△ANM=△1,而△1=55°,△△ANM=55°,△△AMO=△A+△ANM=60°+55°=115°,△△2=△AMO=115°.点睛:此题主要考查了三角形的内角定理和平行线的性质,关键是通过三角形的内角和求出△ANM的度数.48.(1)OP =1;(2)见解析;(3)不变,94【分析】(1)证△OAP △△OBC (ASA ),即可得出OP =OC =1;(2)过O 分别作OM △CB 于M 点,作ON △HA 于N 点,证△COM △△PON (AAS ),得出OM =ON .得出HO 平分△CHA ,即可得出结论;(3)连接OD ,由等腰直角三角形的性质得出OD △AB ,△BOD =△AOD =45°,OD =DA =BD ,则△OAD =45°,证出△DAN =△MOD .证△ODM △△ADN (ASA ),得S △ODM =S △ADN ,进而得出答案.(1)解:△BO △AC ,AH △BC ,△△AOP =△BOC =△AHC =90°,△△OAP +△C =△OBC +△C =90°,△△OAP =△OBC ,在△OAP 和△OBC 中,AOP BOC AO BOOAP OBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△OAP △△OBC (ASA ),△OP =OC =1;(2)过O 分别作OM △CB 于M 点,作ON △HA 于N 点,如图1所示:在四边形OMHN 中,△MON =360°-3×90°=90°,△△COM =△PON =90°-△MOP .在△COM 与△PON 中,90COM PON OMC ONP OC OP ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,△△COM △△PON (AAS ),△OM =ON .△OM △CB ,ON △HA ,△HO 平分△CHA ,△点O 到△AHC 的两边距离相等;(3)S △BDM -S △ADN 的值不发生改变,等于94.理由如下: 连接OD ,如图2所示:△△AOB =90°,OA =OB ,D 为AB 的中点,△OD △AB ,△BOD =△AOD =45°,OD =DA =BD△△OAD =45°,△MOD =90°+45°=135°,△△DAN =135°=△DOM .△MD △ND ,即△MDN =90°,△△MDO =△NDA =90°-△MDA .在△ODM 和△ADN 中,MDO NDA OD ADDOM DAN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ODM △△ADN (ASA ),△S △ODM =S △ADN ,△S △BDM -S △ADN =S △BDM -S △ODM =S △BOD =12S △AOB =12×12AO •BO =12×12×3×3=94. 【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质以及三角形面积等知识;本题综合性强,证明三角形全等是解题的关键.49.(1)见解析(2)见解析(3)OF OG OA =+,理由见解析【分析】(1)由等边三角形的可求得30OAC OAB OCA OCB ∠=∠=∠=∠=︒,理由含30︒角的直角三角形的性质可得2OC OD =,进而可证明结论;(2)利用ASA 证明CGB CGF ≌即可证明结论;(3)连接OB ,在OF 上截取OM OG =,连接GM ,可证得OMG 是等边三角形,进而可利用ASA 证明GMF GOB ≌,得到MF OB OA ==,由OF OM MF =+可说明猜想的正确性.【详解】(1)证明:△ABC 为等边三角形,△AB BC AC ==,60BAC ACB ∠=∠=︒,△AD BC ⊥,CE AB ⊥,△AD 平分BAC ∠,CE 平分ACB ∠,△30OAC OAB OCA OCB ∠=∠=∠=∠=︒,△OA OC =,在Rt OCD △中,90ODC ∠=︒,30OCD ∠=︒,△2OC OD =,△2OA OD =;(2)证明:△AB AC BC ==,AD BC ⊥,△BD CD =,。

初二关于众数的练习题

初二关于众数的练习题

初二关于众数的练习题1. 小明的班级有30名学生,其中25人喜欢篮球,20人喜欢足球,15人喜欢排球。

请问众数是什么?解答:众数是一组数据中出现次数最多的数值。

通过统计,我们可以得知篮球喜好的学生人数最多,因此篮球是该班级学生最喜欢的运动,众数是篮球。

2. 小红调查了她班级同学收集了他们每天晚上睡眠的小时数,结果如下:6, 7, 7, 8, 8, 9, 9, 9, 9, 10。

请问众数是多少?解答:通过观察数据,我们可以发现9出现了最多次,共出现了4次,其他数字都只出现了1到2次,因此该数据集的众数是9。

3. 甲乙丙丁四人参加一次考试,分数如下:60, 70, 80, 80。

请问众数是多少?解答:分数中出现最多次的是80分,共有两个人得到了这个分数,因此该数据集的众数是80。

4. 小华的班级有40名学生,他们的考试成绩按照从低到高排序如下:72, 75, 76, 78, 78, 78, 79, 81, 82, 82, 83, 84, 85, 85, 86, 88, 88, 89, 89, 90, 90, 90, 91, 92, 92, 93, 94, 95, 96, 96, 97, 98, 98, 99, 99, 100, 100, 100, 100。

请问众数是多少?解答:通过观察数据,我们可以看出75、76和78分都只出现了1次,是最少的。

而90和100分出现了最多次,分别为3次。

但由于90分的人更多,因此该数据集的众数是90。

5. 一组数据的众数可以有多个吗?请解释。

解答:是的,一组数据的众数可以有多个。

当多个数值出现的次数相等时,它们都可以被称为众数。

举个例子,比如一组数据有5个2和5个3,那么众数就同时是2和3。

这种情况下,就存在多个众数。

综上所述,众数是一组数据中出现次数最多的数值。

它可以帮助我们找到数据中的主要趋势,用于统计和分析。

在解决实际问题时,了解众数的概念和计算方法是很有用的。

(完整版)平均数、众数、中位数练习题

(完整版)平均数、众数、中位数练习题

平均数、众数、中位数练习题、选择题经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差2. 一家鞋店在一段时间内销售了某种女鞋30 双,各种尺码的销售量如下表:如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5 厘米和25 厘米三种女鞋数量之和最合.适..的是().A.20 双B.30 双C.50 双D.80 双3. 某公司员工的月工资如下表:A .2200 元1800 元1600 元B.2000 元1600 元1800 元C .2200 元1600 元1800 元D.1600 元1800 元1900 元4. 某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A .平均数B.众数C.中位数D.方差5. 跳远比赛中,所有15 位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8 名,只需要知道所有参赛者成绩的()A .平均数B.众数C.中位数D.方差6. 在一次数学单元考试中,某小组7 名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70. 则这组数据的中位数是A.90B.85C.80D.707. 某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:该店经理如果想要了解哪种尺码的女鞋销售量最大,那么他应关注的统计量是()A. 平均数B.众数C. 中位数D. 方差8. 某一公司共有51 名员工(包括经理),经理的工资高于其他员工的工资. 今年经理的工资从去年的200 000 元增加到225 000 元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B. 平均数增加,中位数不变C.平均数不变,中位数增大D. 平均数和中位数都增大9. 有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前 4 名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9 名同学成绩的()A .众数B .中位数C .平均数D .极差、填空题10. 东海县素有“水晶之乡”的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链 75 条, 其价格和销售数量如价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)1396731664211. 某市广播电视局欲招聘播音员一名,对 A 、B 两名候选人进行了两项素质测试.两人的两项测试成绩如右表所示:根据实际需要,广播电视局将面试、综合知识测试的得分按 3∶ 2 的比例计算两人的总成绩,那么(填 A 或 B )将被录用 .12. 四次测试小丽每分钟做仰卧起坐的次数分别为: 50、 45、48、 47,这组 数据的中位数为 ___________ .13. 甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为: 9、 9、11、7, 则这组数据的 :①众数为 ____________________ ; ②中位数为 ______________ ; ③平均数为 ____________ 14. 李红同学为了在中考体育加试中取得好成绩,每天自己在家里练习做一分钟仰卧起坐,妈妈统计了 她一个星期做的次数: 30、28、24、30、25、30、22. 则李红同学一个星期做仰卧起坐的次数的中位数 和众数分别是 . 三、应用题15. 某校八年级( 1)班 50 名学生参加 2007 年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分) 7174 78 80 82 83 85 86 88 90 91 92 94 人数 1235453784332(1)该班学生考试成绩的众数是 .(3 分) (2)该班学生考试成绩的中位数是 .(4 分)(3)该班张华同学在这次考试中的成绩是 83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3 分)16. 某校高中一年级组建篮球队,对甲、乙两名备选同学 进行定位投篮测试,每次投 10 个球,共投 10 次. 甲、乙两名同学测试情况如图所示: (1)根据图中所提供的信息填写下表: (2)如果你是高一学生会文体委员, 会选择哪名同学进入篮球队?请说明理由.平均数众数 方差甲1.2 乙2.2测试项目 测试成绩AB面试 90 95 综合知识 测试8580投中个数17. 星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:1)根据上述数据完成下表:平均数中位数 众数方差甲队游客年龄1515乙队游客年龄15471.4(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计量是 _______________________________________ ②平均数能较好地反映乙队游客的年龄特征吗?为什么?18. 某中学初三( 1)班、(2)班各选 5 名同学参加“爱我中华”演讲比赛,其预赛成绩(满分 100 分) 如图所示:1)根据上图信息填写下表:2)根据两班成绩的平均数和中位数,分析19. 如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题: 1)田径队共有多少人?2)该队队员年龄的众数和中位数分别是多少? 3)该队队员的平均年龄是多少?乙队: 年龄 13 14 15 16 17 13 人数 2 1 4 1 22年龄 345 6 54 57人数1 2 2311( 3)如果每班各选 2 名同学参加决赛,你认为哪个班 实力更强些?请说明理由 .平均数中位数众数初三( 1)班8585初三( 2)班8580甲队:20. 在烟台市举办的“读好书、讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多. 除学校购买外,还有师生捐献的图书. 下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐图书的中位数和众数分别是多少?四、猜想、探究题21. 某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100 分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩甲乙丙教学能力857373科研能力707165组织能力647284(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2 的比例确定每人的成绩,谁将被录用,说明理由.1、有一棵奇妙的树,原来只有1 个树枝,第一年长出1 个树枝,第二年每个树枝分别长出1 个新枝,第三年每个树枝又都分别长出1 个新枝,照这样计算,第五年这棵树一共有几个树枝?2、阿米巴原虫(一种寄生虫)是用简单分裂的方式(一分为二)繁殖的,每分裂一次要用 3 分钟。

《平均数、中位数、众数及方差的有关计算》测试题及答案

《平均数、中位数、众数及方差的有关计算》测试题及答案

《平均数、中位数、众数及方差的有关计算》测试题2015.12.28一、选择题1.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有一个数据被遮盖).被遮盖的数据是( )A.1 ℃B.2 ℃C.3 ℃D.4 ℃2.在一次体育测试中,小芳所在小组8人的成绩分别是46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A.47B.48C.48.5D.493.为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是1,2,3,3,3,4,5,6.则这组数据的众数是( )A.2.5B.3C.3.375D.54.若要对一射击运动员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知道他这5次训练成绩的( )A.中位数B.平均数C.众数D.方差5.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐6.某校篮球队在一次定点投篮训练中进球情况如图,那么这个队的队员平均进球个数是__________.7.有一组数据:2,3,5,5,x,它的平均数是10,则这组数据的众数是__________.8.数据-2,-1,0,3,5的方差是__________.9.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__________(填“平均数”或“中位数”).10.为测试两种电子表的走时误差,做了如下统计:则这两种电子表走时稳定的是__________.11.一次数学测验中,以60分为标准,超过的部分用正数表示,不够的部分用负数表示,其中5名学生的成绩(单位:分)如下:+36,0,+12,-18,+20.(1)这5名学生中,最高分是多少?最低分是多少?(2)这5名学生的平均分是多少?12.今有两人进行射击比赛,成绩(命中环数)(单位:环)如下:甲:10,8,7,7,8;乙:9,8,7,7,9.哪个人的成绩稳定?13.某校举办八年级学生数学素养大赛.比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分(单位:分)情况.(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?14.甲、乙两名同学进入初四后某科6次考试成绩如图所示:(1)请根据上图填写下表:平均数方差中位数众数甲75 75乙33.3(2)请你从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?15.某次数学竞赛,初一(6)班10名参赛同学的成绩(单位:分)分别为85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的方差.16.为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率(2)小明对同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是_________(填“甲”或“乙”)组的学生;(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.参考答案9.中位数10.甲1.C2.C3.B4.D5.A6.67.58.34511.(1)因为在记录结果中,+36最大,-18最小,所以这5名学生中,最高分为96分,最低分为42分;(2)因为(36+0+12-18+20)÷5=10,所以他们的平均成绩为60+10=70(分).12.x 甲=15×(10+8+7+7+8)=8,x 乙=15×(9+8+7+7+9)=8.s 2甲=15×[(10-8)2+2×(8-8)2+2×(8-7)2]=1.2,s 2乙=15×[2×(9-8)2+(8-8)2+2×(8-7)2]=0.8.因为x 甲=x 乙且s 2甲>s 2乙, 所以乙的成绩稳定.13.(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分). (2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y.由题意,得20608070,20809080.x y x y ++=++=⎧⎨⎩解得0.3,0.4.x y ==⎧⎨⎩ 所以甲的总分为:20+89×0.3+86×0.4=81.1>80. 即甲能获一等奖. 14.(1)125;75;75;72.5;70.(2)①甲、乙两名同学成绩的平均数均为75分,但是甲的方差为125,乙的方差仅仅33.3,所以乙的成绩相对比甲稳定得多;②从折线图中甲、乙两名同学的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.15.因为这10名同学成绩的唯一众数为85分, 所以x 、y 中至少有一个数为85.假设x为85,又因为平均成绩为90分,×(85+88+95+124+85+y+85+72+88+109)=90.所以110可得另一个数为69.所以这10名同学的成绩的方差为:×s2=110[(85-90)2+(88-90)2+(95-90)2+(124-90)2+(85-90)2+(69-90)2+(85-90)2+(72-90)2+(88 -90)2+(109-90)2]=239.16.(1)6;7.1.(2)甲.(3)乙组的平均分、中位数都高于甲组,方差小于甲组,且成绩集中在中上游.。

八年级数学上册 6.2 中位数与众数练习 试题

八年级数学上册 6.2 中位数与众数练习 试题
〔4〕从看,你认为成绩较好的是班.
3
1
这七人成绩的中位数是〔 〕Aຫໍສະໝຸດ 22B.89C.92
D.96
3在一次生田径运动会上,参加男子跳高的15名运发动的成绩如下表:这些运发动跳高成绩的中位数和众数分别是〔 〕
跳高成绩〔m〕
0
5
1.60
1.65
0
5
跳高人数
1
3
2
3
5
1
A.1.65,0
B.0,1.65
C.0,0
D.3,5
4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是〔单位:元〕:50,20,50,30,50,25,135.这组数据的众数和中位数分别是.
轧东卡州北占业市传业学校 中位数与众数
1.在樱桃采摘园,五位游客每人各采摘了一袋樱桃,质量分别为〔单位:千克〕:5,2,3,5,5,那么这组数据的平均数和中位数分别为〔 〕
A.4,3
B.3,5
C.4,5
D.5,5
2.在一次数学测验中,一学习小组七人的成绩如表所示:
成绩〔分〕
78
89
96
100
人数
1
2
某校在一次考试中,甲乙两班学生的数学成绩统计如下:
分数
50
60
70
80
90
100
人数

1
6
12
11
15
5

3
5
15
3
13
11
请根据表格提供的信息答复以下问题:
〔1〕甲班众数为,乙班众数为.
〔2〕甲班的中位数是,乙班的中位数是.
〔3〕假设成绩在80分以上〔包括80分〕为优秀,那么甲班的优秀率为,乙班的优秀率为.

八年级数学中考训练题-中位数和众数

八年级数学中考训练题-中位数和众数

成绩较好的是 甲 班;
(2)甲班的中位数是 80 分,乙班的中位数是 80 分;
(3)若成绩在80分以上为优秀,则成绩较好的是哪个班?
(4)哪个班的平均分比较高?
数学
八年级 下册
人教版
第2课时 中位数和众数
(3)解:甲班优秀的有15+5=20(人); 乙班优秀的有13+11=24(人). ∵20<24. ∴乙班成绩较好.
现抽取10听样品进行检测,它们的质量与标准质量的差值
(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,
+10.这10听罐头质量的平均数及众数为( B )
A.454,454
B.455,454
C.454,459
D.455,0
数学
八年级 下册
人教版
第2课时 中位数和众数
3.学校为了解“阳光体育”活动开展情况,随机调查了50名学 生一周参加体育锻炼的时间,数据如表所示:
数学 人教版 八年级 下册
数学
八年级 下册
人教版
第2课时 中位数和众数
20.1 数据的集中趋势 第2课时 中位数和众数
数学
八年级 下册
人教版
第2课时 中位数和众数
1.为了解全校八年级女生的身高情况,了解部分女生的身高
数据x(单位:cm)并绘制如下统计表格,则该样本的中位数
落在( B )
组别
第一组 x≤160
数学
八年级 下册
人教版
第2课时 中位数和众数
(4)xത甲=
50+60×6+70×12+80×11+90×15+100×5 50
=79.6(分),
xത乙=
50×3+60×5+70×15+80×3+90×13+100×11 50

20.2.2平均数、中位数和众数的选用同步练习含答案

20.2.2平均数、中位数和众数的选用同步练习含答案

20.2.2 平均数、中位数和众数的选用基础训练1.关于一组数据的平均数、中位数、众数,下列说法中正确的是( )A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的数D.以上说法都不对2.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( ) A.平均数 B.中位数C.众数D.以上都不对3.学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:建议学校商店进货数量最多的品牌是( )A.甲品牌B.乙品牌C.丙品牌D.丁品牌4.种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( )A.13.5,20B.15,5C.13.5,14D.13,145.某同学进行社会调查,随机抽查了某个地区的20户家庭的年收入情况,并绘制了如图所示的统计图.(1)先完成下表,再回答问题:年收入(万元) 0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7户数这20户家庭的年平均收入为______万元;(2)这20户家庭的年收入的中位数、众数分别是多少?(3)在平均数、众数两数中,哪个更能反映这个地区家庭的年收入水平?为什么?培优提升1.八年级(1)班有学生46人,已知该班学生的平均身高为1.58米.明明的身高为1.59米,但明明说他的身高在全班是中等偏下的,班上有25个同学比他高,20个同学比他矮,下列说法不正确的是( )A.不可能,因为他的身高已经超过平均身高了B.可能,因为他的身高可能低于中位数C.可能,因为平均数会受极端值的影响D.可能,因为某个同学可能特别矮2.下列说法错误的是( )A.如果一组数据的众数是5,那么这组数据出现次数最多的数是5B.一组数据的平均数一定大于其中每一个数据C.一组数据的平均数、众数、中位数有可能相同D.一组数据的中位数有且只有一个3.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师说:“我班的学生考得还不错,有一半的学生的成绩在79分以上,一半的学生的成绩不到79分.”王老师说:“我班大部分学生的成绩都在80分到85分之间.”通过上面两位老师的对话,你认为林、王两位老师所说的话分别针对( )A.平均数、众数B.众数、中位数C.中位数、平均数D.中位数、众数4.某校有21名同学参加某比赛,预赛成绩各不相同,要取前11名同学参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )A.最高分B.中位数C.平均数D.最低分5.某商场一天内出售某品牌运动鞋13双,其中各种尺码的鞋的销售量如下表:请你给该商场提出一条合理的进货建议: .6.我们知道平均数、中位数和众数都是数据的代表,它们从不同侧面反映了数据的“平均水平”.有一次,小王、小李和小张三位同学进行射击比赛,每人打10发子弹,命中环数如下:小王:9 7 6 9 9 10 8 8 7 10小李:7 10 9 8 9 10 6 8 9 10小张:8 8 9 10 7 8 10 10 10 10统计结果表明,三人的“平均水平”都是9环.每人运用了平均数、中位数和众数中的一种表示“平均水平”,则小王运用了_______;小李运用了;小张运用了.7.为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,从中随机抽取了15名学生家庭的年收入情况,数据如下表:(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.8.甲、乙、丙三个家电厂家在广告中都声称自己的某种电子产品在正常情况下的使用寿命是8年,质量检测部门对这三个厂家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是顾客,你会选购哪个厂家的产品?为什么?参考答案【基础训练】1.【答案】C解:A.如数据0,1,1,4,这四个数的平均数是1.5,不是这组数中的数,错误;B.如数据1,2,3,4的中位数是2.5,不是这组数中的数,错误;C.众数是一组数据中出现次数最多的数,它一定是数据中的数,正确.故选C.2.【答案】C3.【答案】D4.【答案】C5.解:(1)填表如下:1.6(2)中位数是1.2万元,众数是1.3万元.(3)众数更能反映这个地区家庭的年收入水平.因为在平均数,众数两数中,平均数受到极端值的影响较大,所以众数更能反映这个地区家庭的年收入水平.【培优提升】1.【答案】A解:A.班上有25个同学比明明高,即身高在平均身高以下的同学占少数,若比明明高的同学的身高比平均身高高的幅度不大,比明明低的同学的身高比平均身高低的幅度大,则明明的说法是可能的.故本选项错误;B.本选项正确;C.本选项正确;D.本选项正确.故选A.2.【答案】B解:根据众数的概念知A正确;一组数据的平均数、众数、中位数有可能相同,如数据2,3,5,5,10,C正确;一组数据的中位数有且只有一个,故D正确;平均数是所有数据的和与数据个数的比值,不会大于其中每一个数据,故B错误.故选B.3.【答案】D解:“有一半的学生的成绩在79分以上,一半的学生的成绩不到79分”针对的是中位数,“大部分学生的成绩都在80分到85分之间”针对的是众数.故选D.4.【答案】B5.【答案】多进尺码为25 cm的运动鞋解:由表得:众数为25 cm,即25 cm的鞋卖得最好,故多进25 cm的运动鞋.6.【答案】众数;中位数;平均数解:小王命中环数的平均数为(9+7+6+9+9+10+8+8+7+10)÷10=8.3(环),中位数为8.5环,众数为9环;小李命中环数的平均数为(7+10+9+8+9+10+6+8+9+10)÷10=8.6(环),中位数为9环,众数为9环和10环;小张命中环数的平均数为(8+8+9+10+7+8+10+10+10+10)÷10=9(环),中位数为9.5环,众数为10环.∵三人的“平均水平”都是9环,∴小王运用了众数;小李运用了中位数;小张运用了平均数.7.解:(1)平均数为=4.3(万元).这15名学生家庭年收入的中位数为3万元,众数为3万元.(2)用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数和众数3万元是大部分家庭可以达到的水平,因此用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.8.解:(1)第一组数据:平均数为×(4+5+5+5+5+7+9+12+13+15)=8,众数为5,中位数为6;第二组数据:平均数为×(6+6+8+8+8+9+10+12+14+15)=9.6,众数为8,中位数为8.5;第三组数据:平均数为×(4+4+4+6+7+9+13+15+16+16)=9.4,众数为4,中位数为8.(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数.(3)选购乙厂的产品,理由:在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此选购乙厂的产品.。

初二平均数中位数众数方差练习题

初二平均数中位数众数方差练习题

初二平均数中位数众数方差练习题1. 某班级有10个学生,他们的身高分别是:150cm, 152cm, 148cm, 155cm, 160cm, 145cm, 155cm, 150cm, 157cm, 153cm。

请计算该班级学生的平均身高、中位数、众数和方差。

解答:平均身高:(150 + 152 + 148 + 155 + 160 + 145 + 155 + 150 + 157 + 153) ÷ 10 = 153.5cm中位数:首先将身高从小到大排序:145cm, 148cm, 150cm, 150cm, 152cm, 153cm, 155cm, 155cm, 157cm, 160cm中位数为中间的数值,也就是150cm。

众数:众数是指出现次数最多的数值。

在这个例子中,150cm和155cm各出现了两次,其他的数值只出现了一次,因此众数有两个,即150cm 和155cm。

方差:方差是用来衡量数据的离散程度,是每个数据值与平均值的差的平方的平均值。

计算方差的方法如下:1) 计算各个数据值与平均值的差的平方:(150 - 153.5)^2 = 9.02(152 - 153.5)^2 = 2.25(148 - 153.5)^2 = 29.02(155 - 153.5)^2 = 2.25(160 - 153.5)^2 = 42.02(145 - 153.5)^2 = 71.02(155 - 153.5)^2 = 2.25(150 - 153.5)^2 = 9.02(157 - 153.5)^2 = 12.02(153 - 153.5)^2 = 0.252) 计算差的平方的平均值:(9.02 + 2.25 + 29.02 + 2.25 + 42.02 + 71.02 + 2.25 + 9.02 + 12.02 + 0.25) ÷ 10 ≈ 21.12因此,该班级学生身高的方差约为21.12。

4.2中位数课时练习2024-2025学年青岛版数学八年级上册

4.2中位数课时练习2024-2025学年青岛版数学八年级上册

4.2 中位数一、单选题1.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.3和2 B.4和2 C.2和2 D.2和42.随机抽取九年级某班10位同学的年龄情况为:17岁1人,16岁5人,15岁2人,14岁2人.则这10位同学的年龄的中位数和平均数分别是(单位:岁)()A.16和15B.16和15.5C.16和16D.15.5和15.53.在演讲比赛中,你想知道自己在所有选手中处于什么水平,应该关心的是()A.平均数B.中位数C.众数4.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人数最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得116分.这说明本次考试分数的中位数是()A.21B.103C.116D.1215.九(1)班一合作学习小组有7人,初三上期数学期中考试成绩数据分别为98、86、95、77、82、85、93.则这组数据的中位数是()A.86B.95C.77D.936.2021年世园会在中国西安举行,吉祥物“长安花”(如图)将组织带领一大堆志愿者们为参观者服务,安排参加志愿者的人数分别为33,34,32,31,32,28,26,33.这组数据的中位数是()A.28B.31C.32D.337.某校九(1)班10名学生参加“数学素养比赛”,他们的得分情况如表:那么这10名学生所得分数的众数和中位数分别是()A.90,90B.85,85C.90,87.5D.85,87.58.某公司20名员工年薪如下表所示,则该公司全体员工年薪的中位数是()A.7万元B.8万元C.8.5万元D.11万元9.数据12、15、18、17、10、19的中位数为()A.14B.15C.16D.1710.菲尔兹奖(Fields Medal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家对截至2014年获奖者获奖耐的年龄进行统计,整理成下面的表格这56个数据的中位数落在()A.第一组.B.第二组.C.第三组.D.第四组.二、填空题11.小明随机调查了本班5名同学的家庭一个月的平均用水量(单位:t),记录如下:9,11,8,6,15,则这组数据的中位数是.12.已知一组数据7,9,5,x,3的中位数是6,则这组数据的平均数为.13.若一组数据5,2,1,7,x,5的中位数为4,则x= .14.第十二届全国人大代表选举的基本原则是:城乡同比选举,实现人人平等、地区平等、民族平等.据新华网2月28日公布,全国5个少数民族自治区的人大代表如下:这五个地区代表人数的中位数是.选区广西西藏新疆宁夏内蒙人数(人)902060215815.某射击小组有7人,他们某次射击的数据如下:8,7,9,7,8,9,8.则这组数据的中位数是.16.一组数据28292218,,,,,它的中位数是23,则这组数据的平均数为.x17.深圳市某中学对八年级学生进行了体育综合测试(满分50分),下表是某小组10名学生的测试成绩,则这组学生体育成绩的中位数是.得分454850人数25318.一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是.19.2020年12月31日,我县某片区校有11名学生参加“学习新思想做好接班人”主题朗诵选拔赛,选拔赛成绩各不相同,取前6名学生参加凤凰县教体局主办“学习新思想”主题学生朗诵总决赛.其中一名学生知道自己的分数后,要判断自己能否进入决赛,只需要知道这11名学生成绩的.20.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表:年龄组13岁14岁15岁16岁参赛人数5191214则全体参赛选手年龄的中位数是岁.三、解答题21.惠城区横沥镇陈大叔承包了甲、乙两座小山,各栽100棵荔枝树,发现成活率均为97%,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的荔枝,每棵的产量如折线统计图所示.(1)直接写出甲山4棵荔枝树产量的中位数;(2)分别计算甲、乙两座山荔枝样本的平均数,并判断哪座山的样本的产量高;(3)用样本平均数估计甲乙两座山荔枝的产量总和.22.为了鼓励学生积极参加体育锻炼,提高学生的身体素质,某校七年级组织了跳绳比赛,每班各有20名学生参加比赛,对1班、2班参赛学生一分钟跳绳个数的数据进行整理、描述和分析,下面给出了部分信息(数据分成5组:170180x ≤<,180190x ≤<,190200x ≤<,200210x ≤<,210220x ≤≤).a .1班参赛学生一分钟跳绳个数的统计表如下:b .2班参赛学生一分钟跳绳个数的扇形统计图如下:c .1班参赛学生一分钟跳绳个数在180190x ≤<这一组的是:181 181 181 183 185 189d .1班、2班参赛学生一分钟跳绳个数的平均数、中位数如下:2班186.3188根据以上信息,回答下列问题:(1)写出表中m的值;(2)在2班参赛学生一分钟跳绳个数的扇形统计图中,求“190200≤<”所在扇形的圆心角度x数;(3)在1班参赛学生中,记一分钟跳绳个数超过平均数的人数为1p,在2班参赛学生中,记一分钟跳绳个数超过平均数的人数为2p,比较1p,2p的大小,并说明理由.23.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1、图2的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是______,每人所创年利润的中位数是______;(3)若每人创造年利润10万元及以上为优秀员工,在公司1200名员工中有多少人可以评为优秀员工?24.鱼塘承包户小李在春天往鱼塘投放了2000条鱼苗,打算在中秋节前全部售出,据统计,鱼的存活率约为90%.小李随机捕捞了20条鱼,将每条鱼称重后得到的质量作为一个样本,然后把鱼又放回鱼塘.统计结果如图所示:(1)求样本的中位数和平均数;(2)已知这种鱼的售价为25元/kg,利用样本平均数,估计小李售完鱼塘里的这种鱼的总收入.25.某校需要选出一名同学去参加市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况()15名候选人模拟说题比赛)成绩的中位数是()2由于C E、两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、、两名模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C E候选人平时成绩、任课老师打分情况如表所示.请你通过计算说明最终谁将参加说题比赛参考答案:1.A2.B3.B4.C5.A6.C7.C8.C9.C10.C11.912.613.314.58.15.816.2417.4818.6619.中位数20.1521.(1)38(2)甲山的样本产量高(3)用样本平均数估计甲乙两座山荔枝的产量总和为7663千克 22.(1)184;(2)108︒;(3)21p p ≥,略.23.(1)抽取员工总数为:50(人),补全图形略(2)8万元,8万元(3)在公司1200员工中有384人可以评为优秀员工24.(1)这20条鱼质量的中位数和平均数分别为1.4kg,1.425kg (2)估计小李售完鱼塘里的这种鱼的总收入64125元.25.(1)85;(2)候选人E将参加说题比赛,略。

中位数和众数同步练习(原卷解析卷)

中位数和众数同步练习(原卷解析卷)

3.2 中位数和众数同步练习一.选择题(共8小题)1.一组6个数:15,16,18,20,22,22,则这组数据的中位数是()A.22B.20C.19D.182.一组数据﹣1,﹣3,2,4,0,2的众数是()A.0B.1C.2D.33.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天用水量的中位数是()A.30吨B.36吨C.32吨D.34吨4.为了了解阳光居民小区“全民健身”活动的开展情况,某志愿者随机调查了该小区50名成年居民一周的体育锻炼时间,并将数据进行整理后绘制成如图所示的统计图,则这50人一周体育锻炼时间的众数是()A.6小时B.20人C.10小时D.3人5.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.6B.8C.9D.106.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是()A.39B.40C.41D.427.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85B.85.5和85C.85和82.5D.85.5和808.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2B.3C.4D.8二.填空题(共6小题)9.已知一组数据是3,4,7,a,中位数为4,则a=.10.一组数据2、3、5、6、x的平均数正好也是这组数据的中位数,那么正整数x为.11.某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:尺码/cm23.52424.52525.52626.5销量/双376161882由此你能给这家鞋店提供的进货建议是.12.在振华中学书香文化节中,参加绘画作品评选20名同学所交作品份数如下表,则这20名同学所交作品份数的中位数是份.13.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.14.若一组数据1,3,4,5,x中,有唯一的众数是1,这组数据的中位数是.三.解答题(共4小题)15.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?16.某品牌汽车的销售公司有营销人员14人,销售部为制定营销人员的月销售汽车定额,统计了这14人在某月的销售量如下表:销售辆数201713854人数112532(1)这14位销售员该月销售某品牌汽车的平均数、众数和中位数各是多少辆?(2)销售部经理把每位销售员每月销售汽车定额为9辆,你认为是否合理?为什么?如果不合理,请你设计一个比较合理的销售定额,并说明理由.17.某商场服装部为了调动营业员的积极性,计划实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个恰当的年销售目标,商场服装部统计了每位营业员在去年的销售额(单位:万元),并且计划根据统计制定今年的奖励制度.下面是根据统计的销售额绘制的统计表:人数1374年销售额(万元)10853根据以上信息,回答下列问题:(1)年销售额在万元的人数最多,年销售额的中位数是万元,平均年销售额是万元;(2)如果想让一半左右的营业员都能获得奖励,你认为年销售额定位多少合适?说明理由;(3)如果想确定一个较高的奖励目标,你认为年销售额定位多少比较合适?说明理由.18.某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如图的统计图.(1)求m的值;(2)该射击队运动员年龄是众数是.(3)求该射击队运动员的平均年龄;(4)若该射击队有13岁运动员2人,则该射击队中14岁运动员有几人?。

八年级数学中位数和众数1

八年级数学中位数和众数1
7.2
小李作为一位统计员,得出这位歌手的最 后得分是6.95分,结果评委和选手们都提出了抗 议.你觉得小李的统计是否合理?为什么?
公司要求他到电大夜 校去充电!小李深深 地体会到了数学在生 活中的重要性
我们一起来充电!
过关有奖哦!
第一关
填一填
数据 15,20,20,22,35 15,22,20,20,35,35 15,-20,20,22,35,-35 -35,-20, 15, 20,22, 35
此时工资的众数是多少呢? 答:员工的工资数中,出现次数最多的是1200和1500, 所以工资的众数是1200元和1500元. 心得1: 一组数据的众数可能不止一个。
我抗议
公司为某企业策划“为航天献歌”文艺演出,8 位评委为第一位歌手的打分如下(单位:分):
7.0
7.1
7.1
8.0
4.9
7.0
7.3
心得2: 1、一组数据的中位数是唯一的,但中位数不 一 定在原数据中出现. 2、一组数据的众数可能不止 一个,也可能没有。
中位数
20 21 17.5
众数
20 20和35 没有
第二关
同桌合作讨论:
请你们构造一组数据的平均 数、中位数、众数是同一个数
第三关
在数据1, 0, 4, 5, 8中插 入一个数据 x , 使得这组数据 6 中位数是 4.5 的 平均数 3 ,则x____.
我们好几个人的 工资都是1200元 职员D 职员C
我的工资是 1500元,在公 司算中等收入
你骗人!我已问 过其他职员,没 有一个的工资 达到2500元的.
小伙子,别急 别急!我可没 骗你,平均工 资确实是每月 2500元,不信, 你瞧!!

八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)

八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)

八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校在五个班级中对认识伦敦奥运会吉祥物的人数进行了调查,统计结果为(单位:人):30,31,27,26,31.这组数据的中位数是A.27 B.29C.30 D.31【答案】C【解析】将数据由小到大排列得:26,27,30,31,31.所以中位数为30.故选C.2.一组数据:85,88,73,88,79,85,其众数是A.88 B.73C.88,85 D.85【答案】C【解析】数据85,88,73,88,79,85有两个众数,它们是88,85.故选C.3.某班一次英语测验的成绩如下,得98分的7人,90分的4人,80分的17人,70分的8人,60分的3人,50分的1人,这里80分是A.是平均数B.只是众数C.只是中位数D.既是众数又是中位数【答案】D【解析】∵80分出现了17次,出现的次数最多,∴80分是众数.∵共有40个数,中位数是第20、21个数的平均数,∴这组数据的中位数是80.故选D.4.某青年排球队12名队员的年龄情况如下:则12名队员的年龄A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选D.5.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的A.中位数B.平均数C.众数D.方差【答案】A【解析】11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选A.6.10个商店某天销售同一品牌的电脑,销售的件数是16、14、15、12、17、14、17、10、15、17,设其平均数为a,中位数为b,众数为c,则有A.a>b>c B.b>c>dC.c>a>b D.c>b>a【答案】D【解析】∵16、14、15、12、17、14、17、10、15、17,设其平均数为a=(16+14+15+12+17+14+17+10+15+17)÷10=14.7,10个数据从小大大排列:10,12,14,14,15,15,16,17,17,17,中位数为b是最中间两数的平均数,即:b=(15+15)÷2=15;众数为c,即c=17.∴a<b<c.故选D.二、填空题:请将答案填在题中横线上.7.一组数据3,4,x,5,8的平均数是6,则该组数据的中位数是__________.【答案】5【解析】根据题意可得:345865x++++=,解得:x=10,这组数据按照从小到大的顺序排列为:3,4,5,8,10,则中位数为:5.故答案为:5.8.某巴蜀中学组织数学速算比赛,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数是__________.【答案】15【解析】把这组数据从小到大排列:13、13、15、15、20,最中间的数是15,则这组数据的中位数是15,故答案为:15.9.已知一组数据:x,10,12,6的中位数与平均数相等,则x的值是__________.【答案】4或8或16【解析】(1)将这组数据从大到小的顺序排列为12,10,x,6,处于中间位置的数是10,x,那么由中位数的定义可知,这组数据的中位数是(10+x)÷2,平均数为(12+10+x+6)÷4,∵数据12,10,x,6,的中位数与平均数相等,∴(10+x)÷2=(12+10+x+6)÷4,解得x=8,大小位置与8对调,不影响结果,符合题意.(2)将这组数据从大到小的顺序排列后12,10,6,x,中位数是(10+6)÷2=8,此时平均数是(12+10+x+6)÷4=8,解得x=4,符合排列顺序.(3)将这组数据从大到小的顺序排列后x,12,10,6,中位数是(12+10)÷2=11,平均数(x+12+10+6)÷4=11,解得x=16,符合排列顺序.∴x的值为4、8或16.故答案为:4或8或16.10.自然数4,5,5,x,y从小到大排列后,其中位数是4,如果这组数据唯一的众数是5,那么所有满的最大值是__________.足条件的x,y中,x y【答案】5【解析】∵这组数据的中位数为4,∴x≤4,y≤4,∵这组数据唯一的众数是5,∴x≠4且y≠4,要求x+y的最大值,∴x=2,y=3,或x=3,y=2,即x+y的最大值=2+3=5,故答案为:5.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.小明最近6次测验的成绩依次为90分、85分、70分、65分、85分、75分。

初二数学中位数练习题

初二数学中位数练习题

初二数学中位数练习题中位数是统计学中的一个重要概念,它可以帮助我们了解一组数据的中间值。

在初二数学中,我们经常需要进行中位数的计算和应用,下面是一些中位数练习题,帮助大家熟悉中位数的求解过程和应用。

题目一:有一组数据:30, 45, 50, 60, 65, 70, 75。

求这组数据的中位数。

题目二:某班级的学生进行一次数学测验,共有20位学生参加。

他们的成绩如下:87, 75, 92, 68, 78, 89, 90, 81, 72, 85, 76, 95, 63, 57, 94, 70, 88, 84, 77, 86。

求这次测验的中位数。

题目三:小明参加一场有50位选手的游泳比赛,他的成绩是第21名。

求这场比赛的中位数。

题目四:某餐厅的菜品价格如下:28元、32元、35元、38元、40元、45元、48元、52元、56元。

求这些菜品的中位数。

题目五:有一组数据表示一周7天的气温:23度、25度、24度、28度、29度、26度、21度。

求这组数据的中位数。

首先将数据进行从小到大的排序:30, 45, 50, 60, 65, 70, 75。

由于数据一共有7个,为奇数个,所以中位数就是第4个数,即60。

因此,这组数据的中位数是60。

解答二:首先将学生的成绩进行从小到大的排序:57, 63, 68, 70, 72, 75, 76, 77, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 94, 95。

这组数据一共有20个数,为偶数个,所以中位数就是第10个数和第11个数的平均值,即(78+81)/2=79.5。

因此,这次测验的中位数是79.5。

解答三:由于选手一共有50人,所以中位数是第(50+1)/2=25.5个选手的成绩。

即小明的成绩是第25个和第26个选手成绩的平均值。

由于这是一个整数比赛,所以他的成绩就是第26个选手的成绩。

求得第26个选手的成绩为小明的中位数。

解答四:首先将菜品的价格进行从小到大的排序:28, 32, 35, 38, 40, 45, 48, 52, 56。

第2课时中位数和众数(原卷版)

第2课时中位数和众数(原卷版)

第六章数据分析6.2 中位数和众数1.为筹备学校元旦联欢晚会,在准备工作中,班长先对全班同学喜爱的水果做了民意调查,再决定最终买哪种水果.下面的统计量中,他最关注的是()A.众数B.平均数C.中位数D.方差2.根据疫情防控要求,所有乘坐高铁的乘客都须测量体温,在某个时间段有7名乘客的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这7名乘客体温的众数是()A.36.3 B.36.8 C.36.5 D.36.73.下面是某校八年级(2)班两组女生的体重(单位:kg):第1组35,36,38,40,42,42,75第2组35,36,38,40,42,42,45下面关于对这两组数据分析正确的是:()A.平均数、众数、中位数都相同B.平均数﹑众数、中位数都只与部分数据有关C.中位数相同,都是39D.众数、中位数不受极端值影响,平均数受极端值影响4.一组数据0,1,2,1,0,1的众数和中位数分别是()A.1,0 B.0,1 C.1,1 D.0,05.数据21,12,18,16,20,21的众数和中位数分别是()A.21和19B.21和17C.20和19D.20和186.一组数据由5个整数组成,已知中位数是10,唯一众数是12,则这组数据和的最大值可能是()A.50 B.51 C.52 D.537.随机抽取八年级(1)班5名同学的跳绳测试成绩(单位:个)如下:168,170,170,172,185.这组数据的众数是()A.168 B.170 C.171 D.1738.如图是某商场一天的运动鞋销售量情况统计图.这些运动鞋的尺码组成的一组数据中,众数和中位数分别为( )A.25,25 B.25,24.5 C.24.5,25 D.24.5,24.59.为了解某电动车一次充电后行驶的里程数(千米),抽检了10辆车统计结果是:200、210、210、210、220、220、220、220、230、230,则这组数据中众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,21010.对于数据3,3,2,3,9,①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的结论有()A.1个B.2个C.3个D.4个11.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,2212.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数B.众数C.平均数D.不能确定,,,, 1,,因某种原因身高13.某女子羽毛球球队6名队员身高(单位cm)是17017417818080184为174cm的队员退役,补上一位身高为178cm的队员后,该女子羽毛球队有关队员身高的数据正确的是()A .平均数变大,中位数不变B .平均数变大,中位数变大C .平均数变小,中位数不变D .平均数变小,中位数变大14.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )A .30和 20B .30和25C .30和22.5D .30和17.515.病毒无情,人间有爱,某中学广大教师为防疫积极捐款献爱心,如图所示是该校50名教师的捐款情况统计,则他们捐款金额的众数和中位数分别是( )A .200元,100元B .100元,200元C .200元,150元D .100元,150元16.下表为某班某次数学考试成绩的统计表.已知全班共有38人,且众数为50分,中位数为60分,则22x y 的值等于____. 成绩(分) 20 30 40 5060 7090 100 次数(人)235x 6y3417.“每天锻炼一小时,健康生活一辈子”.为了解学生每天的锻炼时间,学校体育组随机调查了若干名学生的每天锻炼时间,统计如表:每天锻炼时间(分钟)30 40 60 80 学生数(人)2341关于这些同学的每天锻炼时间,给出下列说法:①抽查了10个同学;②平均锻炼时间是50分钟;③锻炼1个小时的人数最多;④中位数是50分钟.其中所有正确说法的序号是______.提升篇18.我市某中学八年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班40名同学捐款情况如下表,则该班同学捐款金额的众数和中位数分别是_______、________.捐款(元) 5 10 15 20 25 30人数 5 7 8 6 10 419.2020年新冠疫情来势汹汹,我国采取了有力的防疫措施,控制住了疫情的蔓延.甲,乙两个学校各有400名学生,在复学前期,为了解学生对疫情防控知识的掌握情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两校各随机抽取20名学生进行了相关知识的网上测试,测试成绩如下:甲98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58乙99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差(说明:成绩80分及以上为优良,60﹣79分为合格,60分以下为不合格)(4)得出结论a.估计甲学校掌握疫情防控知识优良的学生人数约为;b.可以推断出学校的学生掌握疫情防控知识的水平较高,理由为.20.八(1)班的40名同学在6月5日(世界环境日)调查了各自家庭丢弃废塑料袋的情况,统计结果如下:(1)这40户家庭丢弃废塑料袋的众数是__________,中位数是__________;(2)求这40户家庭丢弃废塑料袋的平均数(结果保留整数).21.近日,我区中小学防溺水安全教育正式启动,某校积极响应并开展“防溺水安全知识竞赛”活动,从八年级、九年级各随机抽取10名学生的竞赛成绩进行统计整理如下:九年级抽取的学生竞赛成绩:85,65,80,90,80,90,90,50,100,90.八年级、九年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)表中a=,b=;(2)根据上述数据,你认为该校八、九年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校八年级的600名学生和九年级的700名学生参加了此次竞赛活动,请估计这两个年级竞赛成绩达到90分及以上的学生人数是多少?22.某市需调查该市八年级男生的体能状况,为此抽取了50名八年级男生进行引体向上个数测试,已知这次抽样测试数据的平均数为6个,测试情况绘制成表格如下:个数0 1 2 3 4 5 6 7 8 9 10 12 15 25以上人数 3 1 1 8 13 8 6 2 2 1 1 1 1 2(1)求这次抽样测试数据的众数为______个,中位数为______个;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市八年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)若八年级男生引体向上10个及10个以上为优秀,如果该市今年有4000名八年级男生,试估计该市八年级男生引体向上的优秀人数.23.为了解八年级学生的体质健康状况,某校对八年级(10)班43名同学进行了体质检测(满分10分,最低5分),并按照男女把成绩整理如图:八年级(10)班体质检测成绩分析表平均数中位数众数方差男生7.48 8 c 1.99女生 a b 7 1.74(1)求八年级(10)班的女生人数.(2)根据统计图可知,a=,b=,c=.(3)若该校八年级一共有860人,则得分在8分及8分以上的人数共有多少人?24.某校七年级和八年级学生人数都是200人,学校想了解这两个年级学生的阅读情况,分别从每个年级随机抽取了40名学生进行调查,收集了这80名学生一周阅读时长的数据,并对数据进行了整理、描述和分析.下面给出了部分信息.a.七、八年级各抽取的40名学生一周阅读时长统计图(不完整)如下(两个年级的数据都分成6组:0≤x <2,2≤x<4,4≤x<6,6≤x<8,8≤x<10,10≤x<12):b.八年级学生一周阅读时长在6≤x<8这一组的数据是:6;6;6;6;6.5;6.5;7;7;7;7;7.5;7.5c.七、八年级学生一周阅读时长的平均数、中位数和众数如下:年级平均数中位数众数七年级 6.225 7 7八年级 6.375 m 8根据以上信息,回答下列问题:(1)图1中p%=%;(2)①补全八年级学生一周阅读时长统计图(图2);②上表中m的值为.(3)将收集的这80名学生的数据分年级由大到小进行排序,其中有一名学生一周阅读时长是6.5小时,排在本年级的前20名,由此可以推断他是年级的学生;(填“七”或“八”)(4)估计两个年级共400名学生中,一周阅读时长不低于8小时的人数.25.今年7月1日是中国共产党建党100周年的纪念日,为了让学生和家长对党的历史有更加深刻的了解,某校在学生和家长中开展了“风雨百年党史知识竞赛”的活动,从家长和学生的答卷中各随机抽取20份,并将成绩(成绩得分用x 表示,单位;分)进行整理、描述和分析.下面给出了部分信息.20名家长的竞赛成绩:80 72 90 77 89 100 80 90 79 73 77 73 81 81 61 89 86 81 68 94家长竞赛成绩统计表 成绩(分) 6070x ≤<7080x ≤<8090x ≤<90100x ≤≤人数(人)2 6a b家长竞赛成绩统计表和学生竞赛成绩频数分布直方图如图所示,其中,学生的竞赛成绩中位于8090x ≤<的学生的分数为:83、80、86、83、85、83、80、84、83:抽取的学生和家长竞赛成绩的平均数、中位数、众数、方差如下表所示: 平均分 中位数 众数 方差 家长分数 82 80.5c109 学生分数82d 8399根据以上信息,解答下列问题:(1)上述表格中a =______,b =______,c =______,d =______;(2)根据以上数据,你认为家长和学生哪一个群体对党的历史知识了解情况更好?请说明理由.(写出一条即可)(3)己知有800名家长和840名学生参加了此次竞赛活动,请估计分数不低于90分的学生和家长共有多少人。

人教版八年级上册数学第六单元同步练习:中位数和众数

人教版八年级上册数学第六单元同步练习:中位数和众数

人教版八年级上册数学第六单元同步练习:中位数和
众数
学习是一个墨守成规的进程,也是一个不时积聚不时创新的进程。

下面小编为大家整理了人教版八年级上册数学第六单元同步练习:中位数和众数,欢迎大家参考阅读! (1)在一次数学检验中,甲、乙、丙、丁四位同窗的分数区分是90、、90、70,假定这四个同窗得分的众数与平均数恰恰相等,那么他们得分的中位数是( )
A、100
B、90
C、80
D、70
(2)当5个整数从小到大陈列,其中位数是4,假设这组数据的独一众数是6,那么5个整数能够的最大的和是( )
A、21
B、22
C、23
D、24
(3)10名工人,某天消费同一零件,消费到达件数是:15,17,14,10,15,19,17,16,14,12,那么这一组数据的众数是()
A、15
B、17 15
C、14
D、17 15 14
4、某鞋店销售了9双鞋,各种尺码的销售量如下:
鞋的尺码 20 21 22 23
销售量(双) 1 2 4 2
(1)计算这9双鞋尺码的平均数、中位数和众数.
(2)哪一个目的是鞋厂最感兴味的目的?哪一个目的是鞋厂最不感兴味的?
以上就是查字典数学网为大家整理的人教版八年级上册数学第六单元同步练习:中位数和众数,怎样样,大家还满意吗?希望对大家的学习有所协助,同时也祝大家学习提高,考试顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 中位数和众数同步练习
基础训练:1、判断题:
(1)给定一组数据,那么描述这组数据的平均数一定只有一个.()(2)给定一组数据,那么描述这组数据的中位数一定只有一个.()(3)给定一组数据,那么描述这组数据的众数一定只有一个.()(4)给定一组数据,那么描述这组数据的平均数一定位于最大值与
最小值之间.()
(5)给定一组数据,那么描述这组数据的中位数一定位于最大值与
最小值的正中间.()
(6)给定一组数据,如果找不到众数,那么众数一定就是0.()2、根据所给数据,求出平均数、中位数和众数,并填入下表.(精确到0.1)
数据平均数中位数众数
20,20,21,24,27,30,
32
0,2,3,4,5,5,10
-2,0,3,3,3,8
―6,―4,―2,2,4,6
3、选择题:
(1)在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()
A、100
B、90
C、80
D、
70
(2)当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,则5个整数可能的最大的和是()
A、21
B、22
C、23
D、24
(3)10名工人,某天生产同一零件,生产达到件数是:15,17,14,10,15,19,17,16,14,12,则这一组数据的众数是()
A、15
B、17 15
C、14
D、
17 15 14
4、某鞋店销售了9双鞋,各种尺码的销售量如下:
鞋的尺码20 21 22 23
销售量(双) 1 2 4 2
(1)计算这9双鞋尺码的平均数、中位数和众数.
(2)哪一个指标是鞋厂最感兴趣的指标?哪一个指标是鞋厂最不感兴趣的?拓展思考:某公司有10名销售业务员,去年每人完成的销售额情况如下表
销售额(万元) 3 4 5 6 7 8 10
销售人数 1 3 2 1 1 1 1
问题:(1)求10名销售员销售额的平均数、中位数和众数(单位:万元)(2)为了调动员工积极性,公司准备采取超额有奖措施,请问把标准定为多少万元时最合适?
火眼金睛:
问题:那边草地上有六个人正在玩游戏,他们年龄的平均数是15岁. 请想象一下是怎样年龄的六个人在玩游戏?
小飞认为:那一定是一群中学生在玩游戏.
你认为小飞的想法肯定正确吗?如果你认为不正确,那么指出错误的原因.
学习预报:阅读课本第六章第4节“方差和标准差”,并思考:
(1)什么叫方差、标准差?
(2)怎样求方差、标准差?
(3)方差的大小反映了数据怎样的特征?
答案
4.3 基础训练:1、(1)∨(2)∨(3)×(4)∨(5)×(6)×
2、
数据平均数中位数众数
24.9 24 20
20,20,21,24,27,30,
32
0,2,3,4,5,5,10 4.1 4 5
-2,0,3,3,3,8 2.5 3 3
―6,―4,―2,2,4,6 0 0 1
3、(1)B (2)B (3)D
4、(1)平均数21.8,中位数22,众数22 (2)众数平均数
拓展思考:(1)平均数5.6万元,中位数5万元,众数4万元(2)答案不唯一,只要有道理,都正确
火眼金睛:不一定正确. 比如是一位65岁的大娘领着五个5岁的孩子在玩游戏也是有可能的,因为这是一个不适合用平均数而适合用众数或中位数代表一组数据的例子,大娘的年龄把平均年龄一下子给抬上去了。

相关文档
最新文档