高一数学必修二立体几何测试题

合集下载

高中数学必修2立体几何测试题(含参考答案)

高中数学必修2立体几何测试题(含参考答案)

高中数学必修2立体几何测试题参考答案一、选择题(每小题5分,共60分)ADDCB BDADD BB二、填空题(每小题4分,共16分)13、小于 14、平行 15、菱形 16、1111AC B D 对角线与互相垂直三、解答题(共74分,要求写出主要的证明、解答过程)17、【解析】(1)方法一:如图,取AD 的中点H ,连结GH ,FH.∵E 、F 分别为PC 、PD 的中点,∴EF ∥CD.∵G 、H 分别为BC 、AD 的中点,∴GH ∥CD.∴EF ∥GH.∴E 、F 、H 、G 四点共面.∵F 、H 分别为DP 、DA 的中点,∴PA ∥FH.∵PA ⊄平面EFG ,FH ⊂平面EFG ,∴PA ∥平面EFG.方法二:∵E 、F 、G 分别为PC 、PD 、BC 的中点.∴EF ∥CD,EG ∥PB.∵CD ∥AB,∴EF ∥AB.∵PB ∩AB=B,EF ∩EG=E,∴平面EFG ∥平面PAB.∵PA ⊂平面PAB ,∴PA ∥平面EFG.(2)由三视图可知,PD ⊥平面ABCD ,又∵GC ⊂平面ABCD ,∴GC ⊥PD.∵四边形ABCD 为正方形,∴GC ⊥CD.∵PD ∩CD=D,∴GC ⊥平面PCD.∵PF=12PD=1,EF= 12CD=1, ∴S △PEF = 12EF ·PF= 12. ∵GC= 12BC=1, ∴V P-EFG =V G-PEF = 13S △PEF ·GC= 13×12×1=16.19、证明:(1)连结11A C ,设11111AC B D O = 连结1AO , 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形11A C AC ∴且 11A C AC = 2分又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =11AOC O ∴是平行四边形 4分111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D∴1C O 面11AB D 6分(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 7分 又1111A C B D ⊥, 1111B D AC C ∴⊥面 9分111AC B D ⊥即 11分 同理可证11A C AB ⊥, 12分又1111D B AB B =∴1A C ⊥面11AB D 14分20.【解析】(1)在△ABE中,P,Q分别是AE,AB的中点,所以PQ∥EB,又DC∥EB,所以PQ∥DC,又PQ⊄平面ACD,DC⊂平面ACD,所以PQ∥平面ACD.(2)连接DP,CQ,在△ABC中,AC=BC=2,AQ=BQ,所以CQ⊥AB,因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,又EB⊂平面ABE,所以平面ABE⊥平面ABC,平面ABE∩平面ABC=AB,所以CQ⊥平面ABE,由(1)知四边形DCQP是平行四边形,所以DP∥CQ,所以DP⊥平面ABE,所以AD在平面ABE内的射影是AP, 所以∠DAP是AD与平面ABE所成的角.在Rt △APD 中,AD ==,DP=CQ=2sin ∠CAQ=1,所以sin ∠DAP= DPAD 5==.故AD 与平面ABE 21.【解析】(1)由条件知PDAQ 为直角梯形.因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=2PD ,则PQ ⊥QD. 所以PQ ⊥平面DCQ.(2)设AB=a.由题设知AQ 为棱锥Q-ABCD 的高,所以棱锥Q-ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P-DCQ 的高,而,△DCQ 的面积为2a 2, 所以棱锥P-DCQ 的体积V 2=13a 3.故棱锥Q-ABCD 的体积与棱锥P-DCQ 的体积的比值为1.22、解:如图,设所截等腰三角形的底边边长为xcm .在Rt EOF 中, 15,2EF cm OF xcm ==, 3分所以EO = 6分于是13V x = 10分 依题意函数的定义域为{|010}x x << 14分。

高一数学必修二 立体几何点线面 专项练习(含答案)

高一数学必修二  立体几何点线面  专项练习(含答案)
(2)证明: 平面;
(3)求直线与平面所成角的正切值.
15. (本题13分)在几何体ABCDE中, ∠BAC= , DC⊥平面ABC, EB⊥平面ABC, F是BC的中点, AB=AC=BE=2, CD=1.
(1)求证: DC∥平面ABE;
(2)求证: AF⊥平面BCDE;
(3)求几何体ABCDE的体积.
16. 如图, 在正三棱柱ABC—A1B1C1中, 底面边长及侧棱长均为2, D是棱AB的中点,
(1)求证 ;
(2)求异面直线AC1与B1C所成角的余弦值.
17.如图,在正方体中,为底面的中心,是的中点,设是上的中点,求证:(1);
(2)平面 ∥平面 .
18. (14分)如图, 在直三棱柱中, , 点是的中点.
(Ⅰ)求证: ;
(Ⅱ)求证: 平面 ;
(Ⅲ)求异面直线 与 所成角的余弦值.
参考答案
Hale Waihona Puke 1.D2.D3.C
4.D
5.B
6.②④
7.平行或相交(直线在平面外)
8.1, 2, 3
9.
10. ②④⑤
11. (1)见解析(2)见解析
12. 见解析。
13. (Ⅰ)见解析;(Ⅱ)见解析。
14. (1)证明: 见解析;(2)证明: 见解析;(3)
二、填空题:
6.设是三个不重合的平面,是直线,给出下列四个命题:
①若
②若
③若
④若
其中正确的命题序号是
7. 已知两条相交直线, , ∥平面, 则与的位置关系是 .
8.如图, 空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点, 那么
①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。

(word版)高一数学必修2立体几何测试题

(word版)高一数学必修2立体几何测试题

高一数学必修2立体几何测试题第一卷一、选择题〔每题3分,共30分〕1、线段AB在平面内,那么直线AB与平面的位置关系是A、ABB、ABC、由线段AB的长短而定D、以上都不对2、以下说法正确的选项是A、三点确定一个平面B、四边形一定是平面图形C、梯形一定是平面图形D、平面和平面有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A、平行B、相交C、异面D、以上都有可能4、在正方体ABCD A1B1C1D1中,以下几种说法正确的选项是A、AC11ADB、D1C1ABC、AC1与DC成45o角D、AC11与B1C成60o角5l∥平面,直线a ,那么l与a的位置关系是、假设直线A、l∥aB、l与a异面C、l与a相交D、l与a没有公共点6、以下命题中:〔1〕平行于同一直线的两个平面平行;〔2〕平行于同一平面的两个平面平行;〔3〕垂直于同一直线的两直线平行;〔4〕垂直于同一平面的两直线平行.其中正确的个数有A、1B、2C、3D、47、在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果与EF、GH能相交于点P,那么A、点P不在直线AC上B、点P必在直线BD上C、点P必在平面ABC内D、点P必在平面ABC外8、a,b,c表示直线,M表示平面,给出以下四个命题:①假设a∥M,b∥M,那么a∥b;②假设b M,a∥b,那么a∥M;③假设a⊥c,b⊥c,那么a∥b;④假设a⊥M,b⊥M,那么a∥b.其中正确命题的个数有A、0个B、1个C、2个D、3个9、二面角AB 的平面角是锐角,内一点C到的距离为3,点C到棱AB的距离为4,那么tan的值等于133737 A、B、C、D、4577A '10、如图:直三棱柱ABC —111的体积为V,点P、AA1 ABC Q分别在侧棱P和CC1上,AP=C1Q,那么四棱锥B—APQC的体积为V V V VA、B、C、D、2345A二、填空题〔每题4分,共16分〕11、等体积的球和正方体,它们的外表积的大小关系是S球_____S正方体(填〞大于、小于或等于〞).12、正方体ABCD A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为13、PA垂直平行四边形ABCD所在平面,假设PCA1 BD,平行那么四边形ABCD一定是D .B114、如图,在直四棱柱ABC1-ABCD中,当底面四边形ABCD111满足条件_________时,有A1B⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)D第二卷一、选择题〔每题3分,共30分〕A 题号123456789答案C' B'Q C BD1 C1 CB 10二、填空题〔每题4分,共16分〕11、12、13、14、三、解答题(共54分,要求写出主要的证明、解答过程)15、圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(7分)16、E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:EH∥BD.(8分)AE HBDFGC217、 ABC 中 ACB90o ,SA 面ABC ,AD SC ,求证:AD 面SBC .(8分)SDA BC18、一块边长为 10cm 的正方形铁片按如下列图的阴影局部裁下 ,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器 ,试建立容器的容积 V 与x 的函数关系式,并求出函数的定义域 .(9分)E10DC 5OFABx19、正方体ABCDA 1B 1C 1D 1,O 是底ABCD 对角线的交点.D 1C 1求证:(1)C 1O ∥面ABD ;(2)AC 面ABD .(10分)A 1B 111 1 11DCOAB20、△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD ,A∠ADB=60°,E 、F分别是 AC 、AD 上的动点,且AE AF 1).AC (0EAD〔Ⅰ〕求证:不管λ为何值,总有平面BEF ⊥平面ABC ; CF〔Ⅱ〕当λ为何值时,平面BEF ⊥平面ACD ?(12分)DB3高一数学必修2立体几何测试题参考答案一、选择题〔每题5分,共60分〕ACDDD BCBDB二、填空题〔每题4分,共16分〕11、小于12、平行13、菱形14、对角线A1C1与B1D1互相垂直三、解答题〔共74分,要求写出主要的证明、解答过程〕15、解:设圆台的母线长为l,那么1分圆台的上底面面积为S上2242分圆台的上底面面积为S下2253分5所以圆台的底面面积为S S上S下294分又圆台的侧面积S侧(25)l7l5分于是7l256分即l 297分为所求.7面BCD,FG面BCD16、证明:QEHPFG,EH∴EH∥面BCD4分又QEH面BCD,面BCDI面ABD BD,∴EH∥BD8分17、证明:Q ACB90o BC AC1分又SA面ABC SA BC3分BC面SAC4分BC AD6分又SCAD,SCIBCCAD面SBC8分18、解:如图,设所截等腰三角形的底边边长为xcm.在Rt△EOF中, EF5cm,OF 1xcm,2分2所以EO251x2,5分4于是V 1x2251x27分34依题意函数的定义域为{x|0x10}9分419、证明:〔1〕连结A1C1,设AC11IB1D1O1连结AO1,QABCD A1B1C1D1是正方体A1ACC1是平行四边形∴A1C1∥AC且A1C1AC1分又O1,O分别是A1C1,AC的中点,∴O1C1∥AO且O1C1AOAOC1O1是平行四边形3分∴C1OPAO1,AO1面AB1D1,C1O面AB1D1∴C1O∥面AB1D1〔2〕QCC1面A1B1C1D1CC1B1D!又QA1C1B1D1,B1D1面AC11C即AC1B1D1同理可证A1C AB1,又D1B1I AB1B1A1C面AB1D120、证明:〔Ⅰ〕∵AB⊥平面BCD,∴AB⊥CD,CD⊥BC且AB∩BC=B,∴CD⊥平面ABC.又AE AF1),AC(0AD分分分分分分分∴不管λ为何值,恒有EF∥CD,∴EF⊥平面ABC,EF平面BEF,∴不管λ为何值恒有平面BEF⊥平面ABC.5分〔Ⅱ〕由〔Ⅰ〕知,BE⊥EF,又平面BEF⊥平面ACD,∴BE⊥平面ACD,∴BE⊥AC.7分BC=CD=1,∠BCD=90°,∠ADB=60°,∴BD2,AB2tan606,9分AC AB2BC27,由AB2=AE·AC得AE6,AE6,11分7AC7故当612分时,平面BEF⊥平面ACD.75。

高中数学必修2立体几何模块测试卷(含参考答案)

高中数学必修2立体几何模块测试卷(含参考答案)

高中数学立体几何测试题(理科)一、选择题:1.下列说法不正确的是A 圆柱的侧面展开图是一个矩形B 圆锥中过轴的截面是一个等腰三角形C 直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥D 圆台平行于底面的截面是圆面2、下面表述正确的是A、空间任意三点确定一个平面B、分别在不同的三条直线上的三点确定一个平面C、直线上的两点和直线外的一点确定一个平面D、不共线的四点确定一个平面3、“a、b是异面直线”是指①a∩b=∅,且a和b不平行;②a⊂平面α,b⊂平面β,且α∩β=∅;③a⊂平面α,b⊂平面β,且a∩b=∅;④a⊂平面α,b ⊄平面α;⑤不存在平面α,使得a⊂平面α,且b⊂平面α都成立。

上述说法正确的是A ①④⑤B ①③④C ②④D ①⑤4、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是A、垂直B、平行C、相交不垂直D、不确定5、下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。

A 、0B 、1C 、2D 、36、一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是A 、异面B 、相交C 、平行D 、不确定 7、直线a 与b 垂直,b 又垂直于平面α,则a 与α的位置关系是A 、a α⊥B 、//a αC 、a α⊆D 、a α⊆或//a α 8、如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A 、平行B 、相交C 、平行或相交D 、无法确定 9.已知二面角α-AB -β为︒30,P 是平面α内的一点,P 到β的距离为1.则P 在β内的射影到AB 的距离为( ). A .23B .3C .43 D .2110、若,m n 表示直线,α表示平面,则下列命题中,正确命题的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫⇒⊥⎬⊥⎭A 、1个B 、2个C 、3个D 、4个 二、填空题:11、三条两两相交的直线可确定12.水平放置的△ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2。

高一数学(必修二)立体几何练习题(含答案)

高一数学(必修二)立体几何练习题(含答案)

一.选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。

2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( )A. 300B.450C. 600D. 900 5.在空间中,下列命题正确的是A.若三条直线两两相交,则这三条直线确定一个平面B.若直线m 与平面α内的一条直线平行,则α//mC.若平面βα⊥,且l =βα ,则过α内一点P 与l 垂直的直线垂直于平面βD.若直线a 与直线b 平行,且直线a l ⊥,则b l ⊥6.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =( )A .3B .9C .18D .10 7.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12πA B DA ’B ’D ’ C C ’ABD CE F8. 正方体的内切球和外接球的半径之比为( )A. 3:1B. 3:2C. 3:3D. 2:39.已知△ABC 是边长为a 2的正三角形,那么它的斜二侧所画直观图A B C 的面积为( )A.32a 2 B.34a 2 C.64a 2 D.6a 210.若正方体的棱长为2,则以该正方体各个面的中心为顶点的多面体的体积为( )A.26B.23C.33D.2311. 在空间四边形ABCD 中,AD=BC=2,E 、F 分别是AB 、CD 的中点,EF=2,求AD 与BC 所成角的大小.( )A. 30B. 45C.60οD. 90 12.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ) A92B 5C 6D 152二、填空题(共4小题,每小题5分,共20分,把答案填在题中的横线上)13. Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为.14.一个圆台的母线长为5 cm ,两底面面积分别为4πcm 2 和25π cm 2.则圆台的体积 ________. 15. 三棱锥S-ABC 中SA平面ABC ,AB 丄BC,SA= 2,AB =B C=1,则三棱锥S-ABC 的外接球的表面积等于______.16.如图,在直角梯形ABCD 中,,,BC DC AE DC ⊥⊥M 、N 分别是AD 、BE 的中点,将三角形ADE 沿AE 折起。

高一数学必修二立体几何测试题

高一数学必修二立体几何测试题

一:选择题( 4 分10 题)1. 下面四个条件中,能确定一个平面的条件是()A. 空间任意三点B. 空间两条直线C. 空间两条平行直线D. 一条直线和一个点2.l1 ,l2 ,l3 是空间三条不同的直线,则下列命题正确的是( ) .A.l1 l2 ,l2 l3 l1 // l3 B.l1 l2 ,l2 // l3 l1 l3C.l2 // l3 // l3 l1 ,l2 ,l3 共面D.l1 ,l2 ,l3 共点l1 ,l2 ,l3 共面3.已知m,n 是两条不同的直线,, , 是三个不同的平面,下列命题中正确的是:A.若, ,则∥ B .若m , n ,则m∥nC.若m ∥,n∥,则m∥n D .若m ∥,m∥,则∥4. 在四面体P ABC 的四个面中,是直角三角形的面至多有()A.0 个B.1 个C. 3 个 D .4 个5,下列命题中错.误.的是A.如果平面平面,那么平面内一定存在直线平行于平面B.如果平面α不垂直于平面,那么平面内一定不存在直线垂直于平面C.如果平面平面,平面平面,l ,那么l 平面D.如果平面平面,那么平面内所有直线都垂直于平面D1C16. 如图所示正方体A C , 下面结论错误的是()1 A1B1A. BD // 平面CB1D1B. AC1 BDDCC. A C1 平面CB DD. 异面直线AD与CB1 角为601 1 A B7. 已知圆锥的全面积是底面积的 3 倍,那么该圆锥的侧面展开图扇形的圆心角是()A. 120B. 150C. 180D. 2408. 把正方形ABCD 沿对角线BD 折成直二面角后,下列命题正确的是()A. AB BCB. AC BDC. CD 平面ABCD. 平面ABC 平面ACD9 某几何体的三视图如图所示,则该几何体的表面积为()A. 180B. 2 0 0C. 2 2 0D. 2 4 0 A1C14 PB110正(主)视图8 左视图3C 2A3B 俯视图12.如图所示点P为三棱柱ABC A1B C 侧棱AA1 上一动点,若四棱锥P BCC1B1 的体积为V , 则1 1三棱柱A BC A1B C 的体积为()1 1A . 2V B. 3V C. 二.填空题( 5 分4题)4V3D.3V23.如图所示正方形O' A' B'C' 的边长为2cm,它是一个水平放置的一个平面图形的直观图,则原图形的周长是______, 面积是_________.12.已知m,l 是直线,, 是平面,给出下列命题正确的是________________.(1) 若l 垂直于内的两条相交直线,则l (2) 若l 平行于,则l 平行于内所有直线;(3) m ,l ,且l m,则;(4) 若l ,且l ,则;(5) m ,l ,且// ,则m // l .5.三棱锥P-ABC中,PA,PB,PC两两垂直,PA=1,P B PC 2 ,已知空间中有一个点到这四个点距离相等,则这个距离是___________.6.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为________( 只填写序号) .三.解答题15.已知圆台的上下底面半径分别为2,6 ,且侧面面积等于两底面面积之和,求该圆台的母线长,侧面积及体积.9.已知四棱锥P ABCD 的三视图如下:1) 画出四棱锥P ABCD 的直观图2) 求四棱锥P ABCD 的体积;3 求四棱锥P ABCD 的表面积;217.如图,已知PA 圆O 所在的平面,AB 是圆O 的直径,AB 2 , C是圆O 上的一点,且AC BC , PC与圆O所在的平面成45 角,E是PC 中点,F为PB 的中点.P(1) 求证:EF //面ABC ;(2) 求证:EF 面PAC ;(3) 求三棱锥 B PAC 的体积FEBAOC18, 如图,在三棱锥S ABC 中,平面SAB 平面SBC ,AB BC ,AS AB ,过A 作AF SB,垂足为F ,点E,G 分别是棱SA,SC 的中点.求证:(1)平面EFG // 平面ABC ;S(2)BC SA.GEFCAB4.如图1,在Rt ABC 中, C 90 ,D,E分别为AAC AB 的中点,点F为线段CD 上的一点,将ADE 沿,A1DE 折起到ADE 的位置,使A1F CD ,如图2。

立体几何测试题

立体几何测试题

高一数学必修2立体几何测试题试卷满分:150分 考试时间:120分钟第Ⅰ卷一、选择题(每小题5分,共60分)1、下列说法正确的是 ( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点2.有一个几何体的三视图如下图所示, 这个几何体应是一个( )A 、棱台B 、棱锥C 、棱柱D 、都不对 3、在正方体1111ABC D A B C D -中,下列几种说法正确的是 A 、11A C AD ⊥ B 、11D C AB ⊥ C 、1AC 与D C 成45 角 D 、11A C 与1B C 成60 角 4、正三棱锥ABCS—的侧棱长和底面边长相等, 如果E 、F 分别为SC ,AB 的中点,那么异面直线EF 与SA 所成角为 ( ) A .090 B .060 C .045 5、下列命题中:正确的个数有 ( ) (1)、平行于同一直线的两个平面平行; (2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行; (4)、垂直于同一平面的两直线平行.A 、1B 、2C 、3D 、46、一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是 ( )A. 2221+B. 22+C. 21+D.221+7、设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题:①若b a ⊥,α⊥a ,α⊄b ,则α//b ;②若α//a , βα⊥,则β⊥a ; ③若β⊥a ,βα⊥,则α//a 或α⊂a ;④若b a ⊥,α⊥a ,β⊥b ,则βα⊥ 其中A .0 B .1 C .2 D .3B 1C 1A 1D 1BACD8、给出下列关于互不相同的直线 和平面 的四个命题: (1),,,m A A l m ∉=⊂点αα 则l 与m 不共面;(2)l 、m 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; (3)若m l m l //,//,//,//则βαβα;(4)若ββαα//,//,,,m l A m l m l 点=⊂⊂ ,则βα//,其中为错误的命题是( )个. A.1个 B.2个 C.3个 D.4个9、下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面的一个图是PPRSSPRRSSPPPQRSSP P QRRSSA 、B 、C 、D 、10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45 D 、56 11、 已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )A.4B.3C.2D.512、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2V B 、3V C 、4V D 、5V二、填空题(每小题4分,共16分)13、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).14、正方体1111ABC D A B C D -中,平面11A B D 和平面1B C D 的位置关系为 15、已知P A 垂直平行四边形A B C D 所在平面,若PC BD ⊥,平行则四边形A B C D 一定是 .16、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)QPC'B'A'CBAH G FE DBACSDCBA高一数学必修2立体几何测试题第Ⅱ卷一、选择题:1---5___________, 6------10__________, 11---12________二、填空题:13、__________ 14、_____________ 15、__________ 16、___________ 三、简答题:17、已知E 、F 、G 、H 为空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且EH ∥FG 。

高一必修二立体几何练习题(含答案)

高一必修二立体几何练习题(含答案)

《立体几何初步》练习题一、 选择题1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A 、垂直B 、平行 C、相交不垂直 D 、不确定 2. 在正方体1111ABCD A BCD -中, 与1A C 垂直的是( )A. BD B. CD C. BC D. 1CC3、线n m ,和平面βα、,能得出βα⊥的一个条件是( )A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ⊂α C.αβ⊆⊥m n n m ,,// D .βα⊥⊥n m n m ,,//4、平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行; B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b //αD.α内的任何直线都与β平行 5、设m、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( ) A .①和②ﻩ B.②和③ﻩ C.③和④ D.①和④6.点P为ΔABC 所在平面外一点,PO ⊥平面ABC,垂足为O ,若PA=PB=PC,则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D .垂心 7. 若l 、m、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l n B.若,l αβα⊥⊂,则l β⊥ C . 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( )①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B .2 C .1 D.09.(2013浙江卷)设m.n是两条不同的直线,α.β是两个不同的平面,( )A.若m ∥α,n ∥α,则m ∥nﻩB.若m ∥α,m ∥β,则α∥β C.若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m⊥β10.(2013广东卷)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是ﻩ( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβ C.若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥二、填空题11、在棱长为2的正方体ABCD —A1B 1C1D 1中,E ,F 分别是棱AB,BC 中点,则三棱锥B —B 1E F的体积为 .12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC,BD=CD 则BC⊥AD;②若AB=CD,AC=BD 则BC ⊥AD;③若AB ⊥AC,B D⊥CD 则B C⊥AD;④若A B⊥CD, BD ⊥AC 则B C⊥AD;其中真命题序号是 .13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 .14. 如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面AB C,ABCP此图形中有个直角三角形三、解答题15.如图,PA⊥平面ABC,平面PAB⊥平面PBC 求证:AB⊥BC16.如图,ABCD和ABEF都是正方形,M AC N FB∈∈,,且AM FN=。

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案一、选择题1. 下列哪个图形不是立体图形?A. 立方体B. 圆锥C. 圆柱D. 正方形答案:D2. 已知一个立方体的边长为5cm,求它的表面积和体积分别是多少?A. 表面积:150cm²,体积:125cm³B. 表面积:100cm²,体积:125cm³C. 表面积:150cm²,体积:100cm³D. 表面积:100cm²,体积:100cm³答案:A3. 以下哪个选项可以形成一个正方体?A. 六个相等的长方体B. 一个正方形和一个长方体C. 六个相等的正方形D. 一个正方形和一个正方体答案:C4. 以下哪个图形可以形成一个圆柱?A. 一个正方形和一个长方体B. 一个圆和一个长方体C. 一个长方形和一个长方体D. 一个正方形和一个正方体答案:C5. 以下哪个选项可以形成一个圆锥?A. 一个圆和一个长方体B. 一个圆和一个正方体C. 一个正方形和一个长方体D. 一个正方形和一个正方体答案:B二、填空题1. 已知一个正方体的表面积为96cm²,求它的边长是多少?答案:4cm2. 已知一个圆柱的半径为3cm,高为10cm,求它的表面积和体积分别是多少?答案:表面积:198cm²,体积:90π cm³3. 以下哪个选项可以形成一个长方体?A. 六个相等的正方形B. 一个圆和一个长方形C. 六个相等的长方形D. 一个正方形和一个正方体答案:C三、解答题1. 某长方体的长、宽、高分别为3cm、4cm、5cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)表面积 = 2(长×宽 + 长×高 + 宽×高)= 2(3×4 + 3×5 + 4×5)= 2(12 + 15 + 20)= 2(47)= 94cm²(2)体积 = 长×宽×高= 3×4×5= 60cm³2. 某圆锥的半径是5cm,高是12cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)斜面积= π×半径×斜高= π×5×13≈ 204.2cm²(2)体积= (1/3)π×半径²×高= (1/3)π×5²×12≈ 314.2cm³四、解析题某正方体的表面积是96cm²,它的边长是多少?解答:设正方体的边长为x,由表面积的计算公式可得:表面积 = 6x²96 = 6x²16 = x²x = 4所以,该正方体的边长为4cm。

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

14高中数学必修2 立体几何考题13. 如图所示,正方体 ABCD -A 1B 1C 1D 1 中,M 、N 分别是 A 1B 1,B 1C 1 的中点.问:(1) AM 和 CN 是否是异面直线?说明理由;(2) D 1B 和 CC 1 是否是异面直线?说明理由.解析:(1)由于 M 、N 分别是 A 1B 1 和 B 1C 1 的中点,可证明 MN ∥AC ,因此 AM 与 CN 不是异面直线.(2)由空间图形可感知 D 1B 和 CC 1 为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题, 这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M 、N 分别是 A 1B 1、B 1C 1 的中点,∴MN ∥A 1C 1.又∵A 1A ∥D 1D ,而 D 1D 綊 C 1C ,∴A 1A 綊 C 1C ,∴四边形 A 1ACC 1 为平行四边形.∴A 1A ∥AC ,得到 MN ∥AC ,∴A 、M 、N 、C 在同一个平面内,故 AM 和 CN 不是异面直线.(2)是异面直线.理由如下:假设 D 1B 与 CC 1 在同一个平面 CC 1D 1 内,则 B ∈平面 CC 1D 1,C ∈平面 CC 1D 1.∴BC ⊂平面 CC 1D 1,这与在正方体中 BC ⊥平面 CC 1D 1 相矛盾,∴假设不成立,故 D 1B 与 CC 1 是异面直线.14. 如下图所示,在棱长为 1 的正方体 ABCD -A 1B 1C 1D 1 中,M 为 AB 的中点,N 为 BB 1 的中点,O 为面 BCC 1B 1 的中心.(1) 过 O 作一直线与 AN 交于 P ,与 CM 交于 Q (只写作法,不必证明);(2) 求 PQ 的长(不必证明).解析:(1)由 ON ∥AD 知,AD 与 ON 确定一个平面 α.又 O 、C 、M 三点确定一个平面 β(如下图所示).∵三个平面 α,β 和 ABCD 两两相交,有三条交线 OP 、CM 、DA ,其中交线 DA 与交线 CM 不平行且共面.∴DA 与 CM 必相交,记交点为 Q .∴OQ 是 α 与 β 的交线.连结 OQ 与 AN 交于 P ,与 CM 交于 Q ,故 OPQ 即为所作的直线.(2)解三角形 APQ 可得 PQ = . 15. 如图,在直三棱柱 ABC -A 1B 1C 1 中,AB =BC =B 1B =a ,∠ABC =90°,D 、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE 为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E 作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E 分别是BB1、MM1的中点,可得DE 綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC 得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB 交于点F,连结AF,由条件易证D是C1F 的中点,B 是CF 的中点,又E 是AC1的中点,所以DE∥AF.在△ACF 中,由AB=BC=BF 知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE 的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,2a.所以DE=2反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD-A1B1C1D1中,O,M 分别是BD1,AA1的中点.(1)求证:MO 是异面直线AA1和BD1的公垂线;(2)求异面直线AA1与BD1所成的角的余弦值;(3)若正方体的棱长为a,求异面直线AA1与BD1的距离.解析:(1)证明:∵O 是BD1的中点,∴O 是正方体的中心,∴OA=OA 1,又M 为AA1的中点,即OM 是线段AA1的垂直平分线,故OM⊥AA1.连结MD1、BM,则可得MB=MD1.同理由点O 为BD1的中点知MO⊥BD1,即MO 是异面直线AA1和BD1的公垂线.33333 2(2)由于AA1∥BB1,所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中,设BB1=1,则BD1=3,所以cos∠B1BD1=,故异面直线AA1与BD1所成的角的余弦值等于.(3)由(1)知,所求距离即为线段MO 的长,1 a由于OA=AC1=a,AM=,且OM⊥AM,所以OM=a.2 2 2 213.如图所示,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E、F,且B1E=C1F,求证:EF∥ABCD.证明:解法一:分别过E、F 作EM⊥AB 于M,FN⊥BC 于N,连结MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN.又B1E=C1F,∴EM=FN,故四边形MNFE 是平行四边形,∴EF∥MN,又MN 在平面ABCD 中,所以EF∥平面ABCD.解法二:过E 作EG∥AB 交BB1于G,B1E B1G连结GF,则1=1,B A B B∵B1E=C1F,B1A=C1B,C1F B1G∴1=1,∴FG∥B1C1∥BC.C B B B又EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD,而EF⊂平面EFG,∴EF∥平面ABCD.14.如下图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC.过BD 作与PA 平行的平面,交侧棱PC 于点E,又作DF⊥PB,交PB 于点F.(1)求证:点E 是PC 的中点;(2)求证:PB⊥平面EFD.证明:(1)连结AC,交BD 于O,则O 为AC 的中点,连结EO.∵PA∥平面BDE,平面PAC∩平面BDE=OE,∴PA∥OE.∴点E 是PC 的中点;(2)∵PD⊥底面ABCD 且DC⊂底面ABCD,∴PD⊥DC,△PDC 是等腰直角三角形,而DE 是斜边PC 的中线,∴DE⊥PC,①又由PD⊥平面ABCD,得PD⊥BC.∵底面ABCD 是正方形,CD⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,22AB6 3∴DE⊥PB,又DF⊥PB 且DE∩DF=D,所以PB⊥平面EFD.15.如图,l1、l2是互相垂直的异面直线,MN 是它们的公垂线段.点A、B 在l1上,C在l2上,AM=MB=MN.(1)求证AC⊥NB;(2)若∠ACB=60°,求NB 与平面ABC 所成角的余弦值.证明:(1)如图由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB 且AN⊥NB.又AN 为AC 在平面ABN 内的射影,∴AC⊥NB.(2)∵Rt△CNA≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC 为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心.连结BH,∠NBH 为NB 与平面ABC 所成的角.在Rt△NHB 中,3HB 3ABcos∠NBH=NB==.16.如图,在四面体ABCD 中,CB=CD,AD⊥BD,点E、F 分别是AB、BD 的中点.求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.证明:(1)在△ABD 中,∵E、F 分别是AB、BD 的中点,所以EF∥AD.又AD⊂平面ACD,EF✪平面ACD,∴直线EF∥平面ACD. (2)在△ABD 中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD 中,∵CD=CB,F 为BD 的中点,∴CF⊥BD.∵EF⊂平面EFC,CF⊂平面EFC,EF 与CF 交于点F,∴BD⊥平面EFC.又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.13.如图,在四棱锥P-ABCD 中,底面ABCD 是边长为a 的正方形,PA⊥平面ABCD,且PA=2AB.(1)求证:平面PAC⊥平面PBD;(2)求二面角B-PC-D 的余弦值.5 6 解析:(1)证明:∵PA ⊥平面 ABCD ,∴PA ⊥BD .∵ABCD 为正方形,∴AC ⊥BD .∴BD ⊥平面 PAC ,又 BD 在平面 BPD 内,∴平面 PAC ⊥平面 BPD . (2)在平面 BCP 内作 BN ⊥PC ,垂足为 N ,连结 DN ,∵Rt △PBC ≌Rt △PDC ,由 BN ⊥PC 得 DN ⊥PC ;∴∠BND 为二面角 B -PC -D 的平面角,在△BND 中,BN =DN = a ,BD = 2a , 5 5 a 2+ a 2-2a 2 6 6 ∴cos ∠BND = 5 a 2 31 =- . 5 14. 如图,已知 ABCD -A 1B 1C 1D 1 是棱长为 3 的正方体,点 E 在 AA 1 上,点 F 在 CC 1 上,G 在 BB 1 上,且 AE =FC 1=B 1G =1,H 是 B 1C 1 的中点.(1) 求证:E 、B 、F 、D 1 四点共面;(2)求证:平面 A 1GH ∥平面 BED 1F .证明:(1)连结 FG .∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綊 A 1E ,∴A 1G 綊 BE .∵C 1F 綊 B 1G ,∴四边形 C 1FGB 1 是平行四边形.∴FG 綊 C 1B 1 綊 D 1A 1,∴四边形 A 1GFD 1 是平行四边形.∴A 1G 綊 D 1F ,∴D 1F 綊 EB ,故 E 、B 、F 、D 1 四点共面. 3 (2) ∵H 是 B 1C 1 的中点,∴B 1H = . 2 又 B 1G =1,∴ B 1G 3 = . B 1H 2 FC 2 又 = ,且∠FCB =∠GB 1H =90°, BC 3∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知 A 1G ∥BE ,且 HG ∩A 1G =G ,FB ∩BE =B ,∴平面 A 1GH ∥平面 BED 1F .15. 在三棱锥 P -ABC 中,PA ⊥面 ABC ,△ABC 为正三角形,D 、E 分别为 BC 、AC 的中点,设 AB =PA =2.(1) 求证:平面 PBE ⊥平面 PAC ;(2) 如何在 BC 上找一点 F ,使 AD ∥平面 PEF ,请说明理由;(3) 对于(2)中的点 F ,求三棱锥 B -PEF 的体积.解析:(1)证明:∵PA ⊥面 ABC ,BE ⊂面 ABC ,∴PA ⊥BE .∵△ABC 是正三角形,E 为 AC 的中点,∴BE ⊥AC ,又 PA 与 AC 相交,∴BE ⊥平面 PAC ,∴平面 PBE ⊥平面 PAC .(2) 解:取 DC 的中点 F ,则点 F 即为所求., 3 3 6 2 2 3 3 3∵E ,F 分别是 AC ,DC 的中点,∴EF ∥AD ,又 AD ✪平面 PEF ,EF ⊂平面 PEF ,∴AD ∥平面 PEF . 1 1 1 3 (3) 解 :V B -PEF =V P -BEF = S △BEF ·PA = × × × ×2= . 3 3 2 2 2 416.(2009·天津,19)如图所示,在五面体 ABCDEF 中,FA ⊥平面 ABCD ,AD ∥BC ∥FE , 1 AB ⊥AD ,M 为 CE 的中点,AF =AB =BC =FE = AD . 2(1) 求异面直线 BF 与 DE 所成的角的大小;(2) 求证:平面 AMD ⊥平面 CDE ;(3) 求二面角 A -CD -E 的余弦值.解答:(1)解:由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线 BF与 DE 所成的角.设 P 为 AD 的中点,连结 EP ,PC .因为 FE 綊 AP ,所以 FA綊 EP .同理,A B 綊 PC .又 FA ⊥平面 ABCD ,所以 EP ⊥平面 ABCD .而 PC ,AD都在平面ABCD 内,故EP ⊥PC ,E P ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设FA =a则 EP =PC =PD =a ,CD =DE =EC = 故∠CED =60°.2a .所以异面直线 BF 与 DE 所成的角的大小为 60°.(2) 证明:因为 DC =DE 且 M 为 CE 的中点,所以 DM ⊥CE .连结 MP ,则 MP ⊥CE .又MP ∩DM =M ,故 CE ⊥平面 AMD .而 CE ⊂平面 CDE ,所以平面 AMD ⊥平面 CDE .(3) 设 Q 为 CD 的中点,连结 PQ ,EQ .因为 CE =DE ,所以 EQ ⊥CD .因为 PC =PD ,所以 PQ ⊥CD ,故∠EQP 为二面角 A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ = a ,PQ = a . PQ 于是在 Rt △EPQ 中,cos ∠EQP = = .EQ 3 所以二面角 A -CD -E 的余弦值为 . 13.(2009·重庆)如图所示,四棱锥 P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面 ABCD ,PA 1 1 =AD =DC = AB =1,M 为 PC 的中点,N 点在 AB 上且 AN = NB .2 3(1) 求证:MN ∥平面 PAD ;(2) 求直线 MN 与平面 PCB 所成的角.解析:(1)证明:过点 M 作 ME ∥CD 交 PD 于 E 点,连结 AE . 1 ∵AN = NB , 3 1 1 ∴AN = AB = DC =EM .4 2又 EM ∥DC ∥AB ,∴EM 綊 AN ,∴AEMN 为平行四边形,∴MN ∥AE ,∴MN ∥平面 PAD .(2)解:过 N 点作 NQ ∥AP 交 BP 于点 Q ,NF ⊥CB 于点 F .连结 QF ,过 N 点作 NH ⊥QF 于 H ,连结 MH ,易知 QN ⊥面 ABCD ,∴QN ⊥BC ,而 NF ⊥BC ,∴BC ⊥面 QNF ,∵BC ⊥NH ,而 NH ⊥QF ,∴NH ⊥平面 PBC ,∴∠NMH 为直线 MN 与平面 PCB 所成的角.2 2 6 2 2 10 10 5 2 10 53 3 通过计算可得 MN =AE = ,QN = ,NF = 2,4 4 QN ·NF ON ·NF ∴NH = = = ,QF QN 2+NF 2 4 NH 3 ∴sin ∠NMH = = ,∴∠NMH =60°,MN 2∴直线 MN 与平面 PCB 所成的角为 60°.14.(2009·广西柳州三模)如图所示,已知直平行六面体 ABCD -A 1B 1C 1D 1 中,AD ⊥BD , AD =BD =a ,E 是 CC 1 的中点,A 1D ⊥BE .(1) 求证:A 1D ⊥平面 BDE ;(2) 求二面角 B -DE -C 的大小.解析:(1)证明:在直平行六面体 ABCD -A 1B 1C 1D 1 中,∵AA 1⊥平面 ABCD ,∴AA 1⊥BD .又∵BD ⊥AD ,∴BD ⊥平面 ADD 1A 1,即 BD ⊥A 1D .又∵A 1D ⊥BE 且 BE ∩BD =B ,∴A 1D ⊥平面 BDE .(2)解:如图,连 B 1C ,则 B 1C ⊥BE ,易证 Rt △BCE ∽Rt △B 1BC ,CE BC ∴ = 1 ,又∵E 为 CC 1 中点, BC ∴BC 2 B B 1BB 21.BB 1= = 22BC = 2a .取 CD 中点 M ,连结 BM ,则 BM ⊥平面 CC 1D 1C ,作 MN ⊥DE 于 N ,连 NB ,由三垂线定理知:BN ⊥DE ,则∠BNM 是二面角 B -DE -C 的平面角. BD ·BC 在 Rt △BDC 中,BM = DC = a , Rt △CED 中,易求得 MN = a , BM Rt △BMN 中,tan ∠BNM = = 5, MN则二面角 B -DE -C 的大小为 arctan 5.15.如图,已知正方体 ABCD -A 1B 1C 1D 1 中,E 为 AB 的中点.(1) 求直线 B 1C 与 DE 所成的角的余弦值;(2) 求证:平面 EB 1D ⊥平面 B 1CD ;(3) 求二面角 E -B 1C -D 的余弦值.解析:(1)连结 A 1D ,则由 A 1D ∥B 1C 知,B 1C 与 DE 所成的角即为 A 1D 与 DE 所成的角. 连结 A 1E ,由正方体 ABCD -A 1B 1C 1D 1,可设其棱长为 a ,则 A 1D = ∴cos ∠A 1DEA 1D 2+DE 2-A 1E 2 2a ,A 1E =DE = a , = 2·A 1D ·DE = . 10∴直线 B 1C 与 DE 所成角的余弦值是 5. (2)证明取 B 1C 的中点 F ,B 1D 的中点 G ,连结 BF ,EG ,GF .∵CD ⊥平面 BCC 1B 1,3 3 33 = 且 BF ⊂平面 BCC 1B 1,∴DC ⊥BF .又∵BF ⊥B 1C ,CD ∩B 1C =C ,∴BF ⊥平面 B 1CD . 1 1 又 ∵GF 綊 CD ,BE 綊 CD ,2 2∴GF 綊 BE ,∴四边形 BFGE 是平行四边形,∴BF ∥GE ,∴GE ⊥平面 B 1CD .∵GE ⊂平面 EB 1D ,∴平面 EB 1D ⊥平面 B 1CD .(3)连结 EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C .又∵GE ⊥平面 B 1CD ,∴EF ⊥B 1C ,∴∠EFG 是二面角 E -B 1C -D 的平面角. 设正方体的棱长为 a ,则在△EFG 中,1 GF = a ,EF = a ,2 2 FG ∴cos ∠EFG =EF = , 3∴二面角 E -B 1C -D 的余弦值为 3 . 16.(2009·全国Ⅱ,18)如图所示,直三棱柱 ABC -A 1B 1C 1 中,AB ⊥AC ,D 、E 分别为 AA 1、 B 1C 的中点,DE ⊥平面 BCC 1.(1) 求证:AB =AC ;(2) 设二面角 A -BD -C 为 60°,求 B 1C 与平面 BCD 所成的角的大小.解析:(1)证明:取 BC 中点 F ,连结 EF , 1则 EF 綊 2B 1B ,从而 EF 綊 DA . 连结 AF ,则 ADEF 为平行四边形,从而 AF ∥DE .又 DE ⊥平面 BCC 1,故 AF ⊥平面 BCC 1,从而 AF ⊥BC ,即 AF 为 BC 的垂直平分线, 所以 AB =AC .(2)解:作 AG ⊥BD ,垂足为 G ,连结 CG .由三垂线定理知 CG ⊥BD ,故∠AGC 为二面 2 角 A -BD -C 的平面角.由题设知,∠AGC =60°.设 AC =2,则 AG = .又 AB =2,BC =2 2,故 AF = 2. 由AB ·AD =AG ·BD 得 2AD 2 · 3AD 2+22, 解得 AD = 2,故 AD =AF .又 AD ⊥AF ,所以四边形 ADEF 为正方形.因为 BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故 BC ⊥平面 DEF ,因此平面 BCD ⊥平面 DEF . 连结 AE 、DF ,设 AE ∩DF =H ,则 EH ⊥DF ,EH ⊥平面 BCD .连结 CH ,则∠ECH 为 B 1C 与平面 BCD 所成的角.4 17 17 16 17 17 6 因 ADEF 为正方形,AD = 2,故 EH =1,又 EC 1 B C =2, = 1 2所以∠ECH =30°,即 B 1C 与平面 BCD 所成的角为 30°.13. 在正四棱柱 ABCD -A 1B 1C 1D 1 中,底面边长为2的中点.(1) 求证:平面 B 1EF ⊥平面 BDD 1B 1;(2) 求点 D 1 到平面 B 1EF 的距离 d .2,侧棱长为 4,E 、F 分别为棱 AB 、BC分析:(1)可先证 EF ⊥平面 BDD 1B 1.(2)用几何法或等积法求距离时,可由 B 1D 1∥BD , 将点进行转移:D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4 倍,先求 B点到平面 B 1EF 的距离即可.解答:(1)证明:E rr o r !⇒EF ⊥平面 BDD 1B 1⇒平面 B 1EF ⊥平面 BDD 1B 1. (2)解:解法一:连结 EF 交 BD 于 G 点.∵B 1D 1=4BG ,且 B 1D 1∥BG ,∴D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4倍. 利用等积法可求.由题意可知,EF 1 AC =2,B G = 17. S △B EF = 2 1 1 EF ·B G 1 2× 17= 17,1 =2 1 S BE ·BF 1 = × 2 1 △BEF = = × 2 2∵VB -B 1EF =VB 1-BEF , 设 B 到面 B EF 的距离为 h 1 17×h 1 1×4,1 ∴h 1= . 1,则 × 3 1= × 3 ∴点 D 1 到平面 B 1EF 的距离为 h =4h 1= . 1 解法二:如图,在正方形 BDD 1B 1 的边 BD 上取一点 G ,使 BG = BD , 4连结 B 1G ,过点 D 1 作 D 1H ⊥B 1G 于 H ,则 D 1H 即为所求距离. 16 17可求得 D 1H = 17(直接法). 14. 如图直三棱柱ABC -A 1B 1C 1中,侧棱CC 1=2,∠BAC =90°,AB =AC= 2,M 是棱 BC 的中点,N 是 CC 1 中点.求:(1) 二面角 B 1-AN -M 的大小;(2) C 1 到平面 AMN 的距离.解析:(1)∵∠BAC =90°,AB =AC = ∴AM ⊥BC ,BC =2,AM =1.∴AM ⊥平面 BCC 1B 1.∴平面 AMN ⊥平面 BCC 1B 1.2,M 是棱 BC 的中点,作 B 1H ⊥MN 于 H ,HR ⊥AN 于 R ,连结 B 1R ,∴B 1H ⊥平面 AMN .又由三垂线定理知,B 1R ⊥AN .∴∠B 1是二面角 B 1-AN -M 的平面角.由已知得 AN = 3 23,MN = 2,B 1M = 5=B 1N , 则 B 1H = 2 , RH HN 又 Rt △AMN ∽Rt △HRN , = ,∴RH = .AM AN 6 2× 2=1.7 10 5 ∴B 1R =14 RH 3 ,∴cos ∠B 1RH = 1 = . B R 14 7∴二面角 B 1-AN -M 的大小为 arccos 14. (2)∵N 是 CC 1 中点,∴C 1 到平面 AMN 的距离等于 C 到平面 AMN 的距离. 设 C 到平面 AMN 的距离为 h ,由 V C -AMN =V N -AMC 1 1 1 1 得 × ·MN ·h = × AM ·MC . 3 2 3 2 2∴h = 2. 15.(2009·北京海淀一模)如图所示,四棱锥 P -ABCD 中,PA ⊥平面 ABCD ,底面 ABCD 为直角梯形,且 AB ∥CD ,∠BAD =90°,PA =AD =DC =2,AB =4. (1) 求证:BC ⊥PC ;(2) 求 PB 与平面 PAC 所成的角的正弦值;(3) 求点 A 到平面 PBC 的距离.解析:(1)证明:如图,在直角梯形 ABCD 中,∵AB ∥CD ,∠BAD =90°,AD =DC =2,∴∠ADC =90°,且 AC =2 2.取 AB 的中点 E ,连结 CE ,由题意可知,四边形 ABCD 为正方形,∴AE =CE =2. 1 1 又∵BE = AB =2.∴CE = AB ,2 2∴△ABC 为等腰直角三角形,∴AC ⊥BC .又∵PA ⊥平面 ABCD ,且 AC 为 PC 在平面 ABCD 内的射影,BC ⊂平面 ABCD ,由三垂线定理得,BC ⊥PC .(2) 由(1)可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC =C ,∴BC ⊥平面 PAC .PC 是 PB 在平面 PAC 内的射影,∴∠CPB 是 PB 与平面 PAC 所成的角.又 CB =2 2,PB 2=PA 2+AB 2=20,PB =2 5, BC 10 ∴sin ∠CPB =PB = 5,即 PB 与平面 PAC 所成角的正弦值为 . (3) 由(2)可知,BC ⊥平面 PAC ,BC ⊂平面 PBC ,∴平面 PBC ⊥平面 PAC .过 A 点在平面 PAC 内作 AF ⊥PC 于 F ,∴AF ⊥平面 PBC ,∴AF 的长即为点 A 到平面 PBC 的距离.在直角三角形 PAC 中, PA =2,AC =2 2,2 63 2 6 36 PC =2 3,∴AF = . 即点 A 到平面 PBC 的距离为 . 16.(2009·吉林长春一模)如图所示,四棱锥 P -ABCD 的底面是正方形,PA ⊥底面 ABCD , PA =2,∠PDA =45°,点 E 、F 分别为棱 AB 、PD 的中点.(1) 求证:AF ∥平面 PCE ;(2) 求二面角 E -PD -C 的大小;(3) 求点 A 到平面 PCE 的距离. 解析:(1)证明:如图取 PC 的中点 G ,连结 FG 、EG ,∴FG 为△PCD 的中位线, 1 ∴FG = CD 且 FG ∥CD . 2又∵底面四边形 ABCD 是正方形,E 为棱 AB 的中点, 1 ∴AE = CD 且 AE ∥CD , 2∴AE =FG 且 AE ∥FG .∴四边形 AEGF 是平行四边形,∴AF ∥EG .又 EG ⊂平面 PCE ,AF ✪平面 PCE ,∴AF ∥平面 PCE .(2)解:∵PA ⊥底面 ABCD ,∴PA ⊥AD ,PA ⊥CD .又 AD ⊥CD ,PA ∩AD =A ,∴CD ⊥平面 PAD .又∵AF ⊂平面 PAD ,∴CD ⊥AF .又 PA =2,∠PDA =45°,∴PA =AD =2.∵F 是 PD 的中点,∴AF ⊥PD .又∵CD ∩PD =D ,∴AF ⊥平面 PCD .∵AF ∥EG ,∴EG ⊥平面 PCD .又 GF ⊥PD ,连结 EF ,则∠GFE 是二面角 E -PD -C 的平面角.在 Rt △EGF 中 ,EG =AF = 2,GF =1,GE ∴tan ∠GFE 2.= = GF∴二面角 E -PD -C 的大小为 arctan 2.(3)设 A 到平面 PCE 的距离为 h , 1 1 1 1 由 V A -PCE =V P -ACE ,即 × PC ·EG ·h = PA · AE ·CB ,得 h = , 3 2 3 2 3 6∴点 A 到平面 PCE 的距离为 3. 13.(2009·陕西,18)如图所示,在直三棱柱 ABC -A 1B 1C 1 中,AB =1,AC =AA 1= 3, ∠ABC =60°.,6 2 6 3 6 3 3 4 3 2 3 M(1) 求证:AB ⊥A 1C ;(2) 求二面角 A -A 1C -B 的大小.解析:(1)证明:∵三棱柱 ABC -A 1B 1C 1 为直三棱柱,∴AB ⊥AA 1,在△ABC 中,AB =1,AC = ∴∠BAC =90°,即 AB ⊥AC .3,∠ABC =60°,由正弦定理得∠ACB =30°,∴AB ⊥平面 ACC 1A 1,又 A 1C ⊂平面 ACC 1A 1,∴AB ⊥A 1C .(2)解:如图,作 AD ⊥A 1C 交 A 1C 于 D 点,连结 BD ,由三垂线定理知BD ⊥A 1C ,∴∠ADB 为二面角 A -A 1C -B 的平面角. AA 1·AC 3 × 3 在 Rt △AA 1C 中,AD = = = , A 1C 6 AB 6 在 Rt △BAD 中,tan ∠ADB = = ,AD 3 ∴∠ADB =arctan ,即二面角 A -A 1C -B 的大小为 arctan . 14.如图,三棱柱 ABC -A 1B 1C 1 的底面是边长为 a 的正三角形,侧面 ABB 1A 1 是菱形且垂直于底面,∠A 1AB =60°,M 是 A 1B 1 的中点.(1) 求证:BM ⊥AC ;(2) 求二面角 B -B 1C 1-A 1 的正切值;(3) 求三棱锥 M -A 1CB 的体积.解析:(1)证明:∵ABB 1A 1 是菱形,∠A 1AB =60°⇒△A 1B 1B 是正三角形 E rr o r !⇒BM ⊥平面 A 1B 1C 1. E rr o r !⇒BM ⊥AC . E rr o r !⇒BE ⊥B 1C 1,∴∠BEM 为所求二面角的平面角, △A 1B 1C 1 中,ME =MB 1·sin60°= a ,Rt △BMB 1 中,MB =MB 1·tan60°= a , MB ∴tan ∠BEM = =2, E ∴所求二面角的正切值是 2. 1 1 1 1 1 3 1 (3)VM -A 1CB = VB 1-A 1CB = VA -A 1CB = VA 1-ABC = × × a 2· a = a 3. 2 2 2 2 3 4 2 1615.(2009·广东汕头一模)如图所示,已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥ AE AF 平面 BCD ,∠ADB =60°,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1).AC AD(1) 求证:不论 λ 为何值,总有 EF ⊥平面 ABC ; 1 (2) 若 λ= ,求三棱锥 A -BEF 的体积. 2解析:(1)证明:∵AB ⊥平面 BCD ,∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°,∴BC ⊥CD .∵又 AB ∩BC =B ,6 15 = 3,S 15 ∴CD ⊥平面 ABC .AE AF 又∵在△ACD 中,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1), AC AD ∴不论 λ 为何值,都有 EF ∥CD , ∴EF ⊥平面 ABC . (2)在△BCD 中,∠BCD =90°,BC =CD =1, ∴BD = 2. 又∵AB ⊥平面 BCD , ∴AB ⊥BC ,AB ⊥BD . 又∵在 Rt △ABD 中,∠ADB =60°, ∴AB =BD ·tan60°= 6, 由(1)知 EF ⊥平面 ABC , ∴V A -BEF =V F -ABE 1 = S △ABE ·EF 3 1 1 = × S △ABC ·EF 3 2 1 1 1 = × ×1× 6× = . 6 2 2 24 6 故三棱锥 A -BEF 的体积是 24 . 16.在四棱锥 P -ABCD 中,侧面 PDC 是边长为2 的正三角形,且与底面垂直,底面 ABCD 是面积为 2 3的菱形,∠ADC 为菱形的锐角. (1) 求证:PA ⊥CD ; (2) 求二面角 P -AB -D 的大小; (3) 求棱锥 P -ABCD 的侧面积; 解析:(1)证明:如图所示,取 CD 的中点 E ,由 PE ⊥CD ,得 PE ⊥平面 ABCD ,连结 AC 、AE . ∵AD ·CD ·sin ∠ADC =2 3, AD =CD =2, 3 ∴sin ∠ADC = 2 , 即∠ADC =60°,∴△ADC 为正三角形,∴CD ⊥AE . ∴CD ⊥PA (三垂线定理). (2) 解:∵AB ∥CD ,∴AB ⊥PA ,AB ⊥AE , ∴∠PAE 为二面角 P -AB -D 的平面角. 在 Rt △PEA 中,PE =AE ,∴∠PAE =45°. 即二面角 P -AB -D 的大小为 45°. (3) 分别计算各侧面的面积: ∵PD =DA =2,PA = 6, 1 ∴cos ∠PDA = ,sin ∠PDA = . 4 1 1 S AB ·PA = 2· 3= 6, △PCD △PAB = 2 ·2· 2 1 S △PAD =S △PBC = PD ·DA ·sin ∠PDA = . 2∴S P -ABCD 侧 = 3+ 6+ 15.13. 把地球当作半径为 R 的球,地球上 A 、B 两地都在北纬 45°,A 、B 两点的球面距离 π是 3R ,A 点在东经 20°,求 B 点的位置. 解析:如图,求 B 点的位置即求 B 点的经度,设 B 点在东经 α,7 2 7 21 = , π∵A 、B 两点的球面距离是 3R . π ∴∠AOB = ,因此三角形 AOB 是等边三角形,∴AB =R , 3又∵∠AO 1B =α-20°(经度差) 2问题转化为在△AO 1B 中借助 AO 1=BO 1=AO cos45°= 2 R , 求出∠AO 1B =90°,则 α=110°,同理:B 点也可在西经 70°,即 B 点在北纬 45°东经 110° 或西经 70°.14. 在球心同侧有相距 9cm 的两个平行截面,它们的面积分别为 49πcm 2 和 400πcm 2, 求球的表面积和体积.解析:如图,两平行截面被球大圆所在平面截得的交线分别为 AO 1、BO 2,则 AO 1∥BO 2. 若 O 1、O 2 分别为两截面圆的圆心,则由等腰三角形性质易知 OO 1⊥AO 1,OO 2⊥BO 2, 设球半径为 R ,∵πO 2B 2=49π,∴O 2B =7cm ,同理 O 1A =20cm.设 OO 1=x cm ,则 OO 2=(x +9)cm.在 Rt △OO 1A 中,R 2=x 2+202,在 Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得 x =15cm.∴R =25cm ,∴S 球=2500πcm 2, 4 62500 V 球= πR 3= πcm 3. 3 3 π15. 设 A 、B 、C 是半径为 1 的球面上的三点,B 、C 两点间的球面距离为3,点 A 与 B 、C π两点间的球面距离均为2,O 为球心,求: (1) ∠AOB 、∠BOC 的大小; (2)球心 O 到截面 ABC 的距离. π 解析:(1)如图,因为球 O 的半径为 1,B 、C 两点间的球面距离为3, π π点 A 与 B 、C 两点间的球面距离均为2,所以∠BOC =3,∠AOB =∠AOC = π , 2 3 (2) 因为 BC =1,AC =AB = 2,所以由余弦定理得 cos ∠BAC sin ∠BAC = ,设 4 4 截面圆的圆心为 O 1,连结 AO 1,则截面圆的半径 r =AO 1,由正弦定理得 r = BC = ,所以 OO 1= OA 2-r 2= .2sin ∠BAC 7 716. 如图四棱锥 A -BCDE 中,AD ⊥底面 BCDE ,AC ⊥BC ,AE ⊥BE .(1) 求证:A 、B 、C 、D 、E 五点共球;(2) 若∠CBE =90°,CE = 3,AD =1,求 B 、D 两点的球面距离.解析:(1)证明:取 AB 的中点 P ,连结 PE ,PC ,PD ,由题设条件知△AEB 、△ADB 、△ABC 都是直角三角形. 1 故 PE =PD =PC = AB =PA =PB . 2所以 A 、B 、C 、D 、E 五点在同一球面上.(2)解:由题意知四边形 BCDE 为矩形,所 以 BD =CE = 3,在 Rt △ADB 中,AB =2,AD =1, 2 ∴∠DPB =120°,D 、B 的球面距离为 π. 32 2 15 5 63 5 17.(本小题满分 10 分)如图,四棱锥 S —ABCD 的底面是正方形,SA ⊥底面 ABCD ,E 是 SC 上一点.(1) 求证:平面 EBD ⊥平面 SAC ;(2) 假设 SA =4,AB =2,求点 A 到平面 SBD 的距离;解析:(1)∵正方形 ABCD ,∴BD ⊥AC ,又∵SA ⊥平面 ABCD ,∴SA ⊥BD ,则 BD ⊥平面 SAC ,又 BD ⊂平面 BED ,∴平面 BED ⊥平面 SAC .(2)设AC ∩BD =O ,由三垂线定理得BD ⊥SO .AO 1 1 AC 2AB 1 · 2·2= 2,SA =4, = = = 2 2 2 则 SO = SA 2+AO 2= 16+2=3 2,S 1 BD ·SO 1 ·2 2·3 2=6.设 A 到面 BSD 的距 △BSD = = 2 2 1 1 4 离为 h ,则 V S -ABD =V A -BSD ,即 3S △ABD ·SA = S △BSD ·h ,解得 h = ,即点 A 到平面 SBD 的距 3 3 4 离为 . 318.(本小题满分 12 分)如图,正四棱柱 ABCD -A 1B 1C 1D 1 中,AA 1=2AB =4,点 E 在 C 1C 上且 C 1E =3EC . (1)证明 A 1C ⊥平面 BED ;(2)求二面角 A 1-DE -B 的大小.解析:依题设知 AB =2,CE =1,(1) 证明:连结 AC 交 BD 于点 F ,则 BD ⊥AC .由三垂线定理知,BD ⊥A 1C .在平面 A 1CA 内,连结 EF 交 A 1C 于点 G , AA 1 AC由于FC =CE=2 , 故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C =∠CFE ,∠CFE 与∠FCA 1 互余. 于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD 、EF 都垂直. 所以 A 1C ⊥平面 BED .(2) 作 GH ⊥DE ,垂足为 H ,连结 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1-DE -B 的平面角.EF = CF 2+CE 2= 3, CE × CF2 CG = EF =3 . 3EG = CE 2-CG 2= 3 . EG 1 1 EF × FD = ,GH = × = .EF 3 3 DE 又 A 1C = AA 21+AC 2=2 A 1G6,A 1G =A 1C -CG = , tan ∠A 1HG = HG=5 . 所以二面角 A 1-DE -B 的大小为 arctan5 5.19.(本小题满分12 分)如图,四棱锥S -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°, AB =BC =SB =SC =2CD =2,侧面 SBC ⊥底面 ABCD .3 3 3 2 3 2= (1) 由 SA 的中点 E 作底面的垂线 EH ,试确定垂足 H 的位置;(2) 求二面角 E -BC -A 的大小.解析:(1)作 SO ⊥BC 于 O ,则 SO ⊂平面 SBC , 又面 SBC ⊥底面 ABCD , 面 SBC ∩面 ABCD =BC , ∴SO ⊥底面 ABCD ① 又 SO ⊂平面 SAO ,∴面 SAO ⊥底面 ABCD , 作 EH ⊥AO ,∴EH ⊥底面 ABCD ② 即 H 为垂足,由①②知,EH ∥SO , 又 E 为 SA 的中点,∴H 是 AO 的中点. (2)过 H 作 HF ⊥BC 于 F ,连结 EF , 由(1)知 EH ⊥平面 ABCD ,∴EH ⊥BC , 又 EH ∩HF =H ,∴BC ⊥平面 EFH ,∴BC ⊥EF , ∴∠HFE 为面 EBC 和底面 ABCD 所成二面角的平面角. 在等边三角形 SBC 中,∵SO ⊥BC , ∴O 为 BC 中点,又 BC =2. ∴SO = 22-12= 3,EH 1SO = , 1 又 HF = AB =1, 2 2 2 3EH 2 ∴在 Rt △EHF 中,tan ∠HFE = = = ,HF 1 2 ∴∠HFE =arctan . 即二面角 E -BC -A 的大小为 arctan. 20.(本小题满分 12 分)(2010·唐山市高三摸底考试)如图,在正四棱柱 ABCD -A 1B 1C 1D 1 中,AB =1,AA 1=2,N 是 A 1D 的中点,M ∈BB 1,异面直线 MN 与 A 1A 所成的角为 90°. (1) 求证:点 M 是 BB 1 的中点;(2) 求直线 MN 与平面 ADD 1A 1 所成角的大小;(3) 求二面角 A -MN -A 1 的大小.解析:(1)取 AA 1 的中点 P ,连结 PM ,PN .∵N 是 A 1D 的中点,∴AA 1⊥PN ,又∵AA 1⊥MN ,MN ∩PN =N ,∴AA 1⊥面 PMN .∵PM ⊂面 PMN ,∴AA 1⊥PM ,∴PM ∥AB ,∴点 M 是 BB 1 的中点.305 2 2 2 2(2) 由(1)知∠PNM 即为 MN 与平面 ADD 1A 1 所成的角.1 在 Rt △PMN 中,易知 PM =1,PN = ,2 PM∴tan ∠PNM =PN =2,∠PNM =arctan2. 故 MN 与平面 ADD 1A 1 所成的角为 arctan2.(3) ∵N 是 A 1D 的中点,M 是 BB 1 的中点,∴A 1N =AN ,A 1M =AM ,又 MN 为公共边,∴△A 1MN ≌△AMN .在△AMN 中,作 AG ⊥MN 交 MN 于 G ,连结 A 1G ,则∠A 1GA 即为二面角 A -MN -A 1 的平面角.在△A 1GA 中,AA 1=2,A 1G =GA = , A 1G 2+GA 2-AA 12 2 2 ∴cos ∠A 1GA = 2A 1G ·GA =- ,∴∠A 1GA =arccos(- ), 3 3 2 故二面角 A -MN -A 1 的大小为 arccos(- ). 321.(2009·安徽,18)(本小题满分 12 分)如图所示,四棱锥 F -ABCD 的底面 ABCD 是菱 形,其对角线 AC =2,BD = 2.AE 、CF 都与平面 ABCD 垂直,AE =1,CF =2. (1) 求二面角 B -AF -D 的大小;(2) 求四棱锥 E -ABCD 与四棱锥 F -ABCD 公共部分的体积.命题意图:本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:(1)解:连接 AC 、BD 交于菱形的中心 O ,过 O 作 OG ⊥AF ,G 为垂足,连接 BG 、DG . 由 BD ⊥AC ,BD ⊥CF 得 BD ⊥平面 ACF ,故 BD ⊥AF .于是 AF ⊥平面 BGD ,所以 BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角 B -AF -D 的平面角.π 由 FC ⊥AC ,FC =AC =2,得∠FAC = ,OG = . 4 2 π 由 OB ⊥OG ,OB =OD = ,得∠BGD =2∠BGO = . (2)解:连接 EB 、EC 、ED ,设直线 AF 与直线 CE 相交于点 H ,则四棱锥 E -ABCD 与四棱锥 F -ABCD 的公共部分为四棱锥 H -ABCD .3 2 3 2 过 H 作 HP ⊥平面 ABCD ,P 为垂足.因为 EA ⊥平面 ABCD ,FC ⊥平面 ABCD ,所以平面 ACEF ⊥平面 ABCD ,从而 P ∈AC ,HP ⊥AC . HP HP AP PC 2 由 + = + =1,得 HP = . CF AE AC AC 3 又因为 S 1 菱形ABCD = AC ·BD = 2, 2 1 2 2 故四棱锥 H -ABCD 的体积 V = S 菱形ABCD ·HP = .3 922.(2009·深圳调考一)(本小题满分 12 分)如图所示,AB 为圆 O 的直径,点 E 、F 在圆 O 上,AB ∥EF ,矩形 ABCD 所在平面和圆 O 所在的平面互相垂直.已知 AB =2,EF =1.(1) 求证:平面 DAF ⊥平面 CBF ;(2) 求直线 AB 与平面 CBF 所成角的大小;(3) 当 AD 的长为何值时,二面角 D -FE -B 的大小为 60°?解析:(1)证明:∵平面 ABCD ⊥平面 ABEF ,CB ⊥AB ,平面 ABCD ∩平面 ABEF =AB ,∴CB ⊥平面 ABEF .∵AF ⊂平面 ABEF ,∴AF ⊥CB ,又∵AB 为圆 O 的直径,∴AF ⊥BF ,∴AF ⊥平面 CBF .∵AF ⊂平面 DAF ,∴平面 DAF ⊥平面 CBF .(2)解:根据(1)的证明,有 AF ⊥平面 CBF ,∴FB 为 AB 在平面 CBF 上的射影,因此,∠ABF 为直线 AB 与平面 CBF 所成的角.∵AB ∥EF ,∴四边形 ABEF 为等腰梯形,过点 F 作 FH ⊥AB ,交 AB 于 H .AB =2,EF =1,则 AH = AB -EF 1 = . 2 2在 Rt △AFB 中,根据射影定理 AF 2=AH ·AB ,得 AF =1, AF 1 sin ∠ABF = = ,∴∠ABF =30°, AB 2∴直线 AB 与平面 CBF 所成角的大小为 30°.(3)解:过点 A 作 AM ⊥EF ,交 EF 的延长线于点 M ,连结 DM .根据(1)的证明,DA ⊥平面 ABEF ,则 DM ⊥EF ,∴∠DMA 为二面角 D -FE -B 的平面角,∠DMA =60°. 1 在 Rt △AFH 中,∵AH = ,AF =1, 2 ∴FH = .又∵四边形 AMFH 为矩形,∴MA =FH = . 3 ∵AD =MA ·tan ∠DMA = 2 · 3=3 2 .3因此,当AD 的长为时,二面角D-FE-B 的大小为60°.2。

新人教版高一数学必修2试题立体几何

新人教版高一数学必修2试题立体几何

高一数学(必修2)立体几何试题参考公式一、选择题(本大题共10小题,每小题4分,共40分,将答案直接填在下表中)(1)下列命题为真命题的是()(A)平行于同一平面的两条直线平行(B)垂直于同一平面的两条直线平行(C)与某一平面成等角的两条直线平行(D)垂直于同一直线的两条直线平行(2)若一个角的两边分别和另一个角的两边平行,那么这两个角()(A)相等(B)互补(C)相等或互补(D)无法确定(3)正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积为()(A(B(C(D(4)已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()(A)2对(B)3对(C)4对(D)5对(5)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()(A)2(B)12+(C)22+(D)1(C)(1,3,5)(D)(-1,-3,5)二、填空题(本大题共6小题,每小题4分,共24分)(11)底面直径和高都是4cm的圆柱的侧面积为cm2.(12)若两个球的表面积之比是4∶9,则它们的体积之比是.(13)图①中的三视图表示的实物为_____________;PA B CD图②为长方体积木块堆成的几何体的三视图,此几何体共由_______块木块堆成.三、解答题(本大题共4小题,共36分.解答应写出文字说明、演算步骤或推证过程) (17)(本小题满分9分)如图,O 是正方形ABCD 的中心, PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)P A ∥平面BDE ;(Ⅱ)平面P AC ⊥平面BDE .(18)(本小题满分9分)已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和. (Ⅰ)求该圆台的母线长; (Ⅱ)求该圆台的体积.高一数学(必修2)训练题参考答案一、选择题二、填空题(11)π16 (12)8∶27 (13)圆锥;4 (14)60° (15)(0,3) (16)8 三、解答题 (17) 证明:(Ⅰ)连结EO ,在△P AC 中,∵O 是AC 的中点,E 是PC ∴OE ∥AP . 又∵OE ⊂平面BDE , P A ⊄平面BDE , ∴P A ∥平面BDE .(Ⅱ)∵PO ⊥底面ABCD ,∴PO ⊥BD .图①正视图 左视图俯视图 正视图 左视图又∵AC ⊥BD ,且AC PO =O , ∴BD ⊥平面P AC . 而BD ⊂平面BDE , ∴平面P AC ⊥平面BDE .(18)解:(Ⅰ)设圆台的母线长为l ,则圆台的上底面面积为224S ππ=⋅=上, 圆台的下底面面积为2636S ππ=⋅=下, 所以圆台的底面面积为40S S S π=+=下上 又圆台的侧面积(26)8S l l ππ=+=侧,于是840l ππ=,即5l =为所求.(Ⅱ)由(Ⅰ)可求得,圆台的高为3h ==.∴ (13V S S h =++圆台下上=(143633ππ+⋅=52π.。

高中高一数学必修2第一、二章立体几何综合测试题

高中高一数学必修2第一、二章立体几何综合测试题

3.圆锥的底面半径为 a,侧面展开图是半圆面,那么此圆锥的侧面积是


A. 2a2 B. 4a2
C. a2 D. 3a2
4.三个平面把空间分成7部分时,它们的交线有


A.1条 B.2条 C.3条 D.1或2条 5.设 α、β、r 是互不重合的平面,m,n 是互不重合的直线,给出四个命题:
又∵平面 SAC 平面 ABC
SO 平面ACB ------------------------------------2 分 SO AB ----------------------------------------------1 分
20.证明:(Ⅰ)连结 BD1 ,在 DD1B 中, E 、 F 分别为 D1D , DB 的中点,则
(Ⅰ)求证: EF //平面 ABC1D1 ; (Ⅱ)求三棱锥VB1EFC 的体积.
D1 A1
E
C1 B1
D
C
F
A
B
高一年级 数学试卷 第 4 页(共 3 页)
参考答案
一、 选择题 本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中, 只有一项符合题目的要求,请将答案填写在题后的表格中.
D1B
EF // D1B 平面A平B面C1D1
EF
//
ABC1D1
EF 平面ABC1D1
D1
(Ⅱ)Q CF 平面BDD1B1
A1
CF 平面EFB1 且 CF BF 2
E
Q
EF
1 2
BD1
3,
C1 B1
B1F BF 2 BB12 ( 2)2 22 6 B1E B1D12 D1E2 12 (2 2)2 3

高中数学必修2立体几何练习题附答案

高中数学必修2立体几何练习题附答案

高中数学必修2立体几何练习题一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.27.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.16.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.参考答案一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.答案:A解析:解:设正四棱台的高为h,斜高为x,由题意可得4••(3+6)x=32+62,∴x=.再由棱台的高、斜高、边心距构成直角梯形、可得h==2,故选A.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-A B C D中,过P作P O⊥平面A B C D于O,连接A O则A O是A P在底面A B C D上的射影.∴∠P A O即为所求线面角,∵A O=,P A=1,∴c o s∠P A O==.∴∠P A O=45°,即所求线面角为45°.故选C.3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S答案:A解析:解:不妨设棱台为三棱台,设棱台的高为2r,上部三棱锥的高为a,根据相似比的性质可得:消去r,然后代入一个方程,可得2故选A.4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个答案:C解析:解:把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,如图所示,则下列命题:①以A、B、C、D四点为顶点的棱锥,当侧面A C D⊥底面A B C时,体积最大值==,正确;②由①可知:当体积最大时直线B D和平面A B C所成的角的大小为∠O B D=45°,正确;③B、D两点间的距离的取值范围是(0,),因此不正确;④当二面角D-A C-B的平面角为90°时,由①可知:异面直线B C与A D所成角为90°,因此不正确.综上可知:只有①②正确.故选:C.5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm答案:B解析:解:因为底面是一个正方形,一共有四条棱,皮球心距这四棱最小距离是10,∵四条棱距离正方形的中心距离为10,所以皮球的表面与8根铁丝都有接触点时,半径应该是边长的一半∴球的半径是10故选B.6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.2答案:A解析:解:将平面A B A1和平面B C D D1A1放在同一个平面上,如图,则A M+M D1的最小值即为线段A D1,在直角三角形A E D1中,A E=,E D1=,∴A D1==,故选A.7.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.答案:B解析:解:如图所示:A.如图(1)符合条件但却不是棱柱;B.图中P A⊥底面A B C,A B是圆O的直径,点C是圆上的一点,则四个面都是直角三角形,符合题意;C.其侧棱不相较于一点,故不是棱台;D.以直角三角形的斜边A B为轴旋转得到的是两个对底的圆锥.综上可知:只有B正确.故选B.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.答案:B解析:解:平行六面体,如图所示:∵∠B A A1=∠D A A1=60°∴A1在平面A B C D上的射影必落在直线A C上,∴平面A C C1A1⊥平面A B C D,∵A B=1,A D=2,A A1=3,∵=∴||2=()2=||2+||2+||2+2+2+2=1+9+4+0+2×1×3×+2×2×3×=23,∴||=,∴A C1等于.故选:B.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]答案:D解析:解:∵正方体A B C D-A1B1C1D1的棱长为2,∴正方体的对角线长为6,∵x∈[1,5],∴x=1或5时,三角形的周长最小,设截面正三角形的边长为t,则由等体积可得,∴t=,∴y m i n=;x=2或4时,三角形的周长最大,截面正三角形的边长为2,∴y m a x=6.∴当x∈[1,5]时,函数y=f(x)的值域为[3,6].故选D.10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体答案:C解析:解:若底面是正方形,有相对的两个侧面垂直于底面,另外两个侧面不垂直于底面,则棱柱为斜棱柱,故A不满足要求;若底面是正方形,有相对的两个侧面是矩形,另外两个侧面是不为矩形的平行四边形,则棱柱为斜棱柱,故B不满足要求;底面是菱形,且过一个顶点的三条棱两两垂直,则底面为正方形,侧棱与底面垂直,此时棱柱为正四棱柱,故C满足要求;各个面都是矩形的平行六面体,其底面可能不是正方形,故D不满足要求;故选C二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•答案:解析:解:设球的半径为r,由正四面体的体积得:,所以r=,设正方体的最大棱长为a,所以,,a=故答案为:12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.答案:64π解析:解:圆柱的侧面展开图是正方形,如图;设圆柱的底面半径为r,高为l,∵圆柱的底面面积是16,∴πr2=16,∴r=;∴l=2πr=2π×=8,∴圆柱的侧面积是l2==64π;故答案为:64π.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.答案:(0,)解析:解:根据条件,四根长为1的直铁棒与两根长为x的直铁棒要组成三棱锥形的铁架,有以下两种情况:①底面是边长为1的正三角形,三条侧棱长为1,x,x,如图,此时x应满足:∵A D=,S D=,且S D<S A+A D,∴<1+,即x2<2+,∴<x<;②构成三棱锥的两条对角线长为x,其他各边长均为1,如图所示,此时应满足0<x<;综上,x的取值范围是(0,).故答案为:(0,).14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.答案:解析:解:∵一平面与正方形的十二条棱所成的角都等于α,∴正方体的面对角线与棱的夹角,∵设正方体的棱长为1,∴A到三角形A B1D1中心的距离为:×=,∴A1点到面A B1D1距离为:=,∴s i nα=∴s i n12α=()6=,故答案为:15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.答案:解析:解:∵四棱锥的中截面与底面相似,且相似比为1:2,面积比为1:4,∴若正四棱锥的中截面的面积为Q,则底面面积为4Q,∵底面为正方形,面积为边长的平方,∴它的底面边长为2故答案为216.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.答案:解析:解:∵四棱锥有5个面组成,∴n=5,当四棱锥的底面是矩形,一条侧棱与底面垂直时,四棱锥的4个侧面都是直角三角形,∴m=4,∴四棱锥“直度”的最大值为,故答案为:.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.答案:①④⑤解析:解:①若P A⊥B C,P B⊥A C,因为P H⊥底面A B C,所以A H⊥B C,同理B H⊥A C,可得H是△A B C的垂心,正确.②若P A=P B=P C,易得A H=B H=C H,则H是△A B C的外心,不正确.③如果棱P A和B C所成的角为60°,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1或;不正确.④如果三棱锥P-A B C的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于,正确.⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s,正确.故答案为:①④⑤.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.答案:解:设长方体的三度分别为:a,b,c,由题意可知:a b=6,b c=2,a c=3所以,a=3,b=2,c=1,所以长方体的对角线长为:故答案为:.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.答案:36解析:解:如图所示,四面体A B1C D1与四面体A1B C1D的重叠部分是以长方体各面中心为定点的多面体,摘出如图,设长方体的过同一顶点的三条棱长分别为a,b,c,则a b c=216,重叠部分的体积为两个同底面的四棱锥体积和,等于.故答案为:36.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______答案:解:因为在长方体中,底面对角线的平方是底面长和宽的平方和,体对角线的平方等于面对角线的平方加上高的平方;长方体对角线的长:故答案为:三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.答案:解:(1)如图所示,∵P O⊥平面A B C D,侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,∴∠P A O=45°,∴P O=O A=,P O1=O1A1=a.分别取A B,A1B1的中点E,E1,连接O E,O1E1.则P E==,P E1==.∴斜高E E1=P E-P E1=.∴棱台的侧面积S侧==;(2)∵棱台的侧面积等于两底面面积之和,∴=a2+b2,∴E E1=.∴O O1===.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.答案:解:如图,S A⊥平面A B C,∠A B C=90°,则∠S A C=∠S A B=90°,又A B⊥B C,所以B C⊥S B,所以∠S B C=90°,即四个面S A B,S A C,S B C,A B C为直角三角形.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.答案:证明:(1)∵S A⊥S B,S A⊥S C,∴S A⊥平面S B C,B C⊂平面S B C.∴S A⊥B C.而A D是S A在平面A B C上的射影,∴A D⊥B C.同理可证A B⊥C F,A C⊥B E,故O为△A B C的垂心.(2)证明△A B C为锐角三角形即可.不妨设a≥b≥c,则底面三角形A B C中,A B=为最大,从而∠A C B为最大角.用余弦定理求得c o s∠A C B=>0,∴∠A C B为锐角,△A B C为锐角三角形.故O在△A B C内.(3)S B•S C=B C•S D,故S D=,=+,又S A•S D=A D•S O,。

(完整版)高中数学必修2立体几何测试题及答案

(完整版)高中数学必修2立体几何测试题及答案

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分)1,三个平面可将空间分成n 个部分,n 的取值为( )A ,4;B ,4,6;C ,4,6,7 ;D ,4,6,7,8。

2,两条不相交的空间直线a 、b ,必存在平面α,使得( )A ,a ⊂α、b ⊂α;B ,a ⊂α、b ∥α ;C ,a ⊥α、b ⊥α;D ,a ⊂α、b ⊥α。

3,若p 是两条异面直线a 、b 外的任意一点,则( )A ,过点p 有且只有一条直线与a 、b 都平行;B ,过点p 有且只有一条直线与a 、b 都垂直;C ,过点p 有且只有一条直线与a 、b 都相交;D ,过点p 有且只有一条直线与a 、b 都异面。

4,与空间不共面四点距离相等的平面有( )个A ,3 ;B ,5 ;C ,7;D ,4。

5,有空间四点共面但不共线,那么这四点中( )A ,必有三点共线;B ,至少有三点共线;C ,必有三点不共线;D ,不可能有三点共线。

6,过直线外两点,作与该直线平行的平面,这样的平面可有( )个A ,0;B ,1;C ,无数 ;D ,涵盖上三种情况。

7,用一个平面去截一个立方体得到的截面为n 边形,则( )A ,3≤n ≤6 ;B ,2≤n ≤5 ;C ,n=4;D ,上三种情况都不对。

8,a 、b 为异面直线,那么( )A ,必然存在唯一的一个平面同时平行于a 、b ;B ,过直线b 存在唯一的一个平面与a 平行;C ,必然存在唯一的一个平面同时垂直于a 、b ;D ,过直线b 存在唯一的一个平面与a 垂直。

9,a 、b 为异面直线,p 为空间不在a 、b 上的一点,下列命题正确的个数是( )①过点p 总可以作一条直线与a 、b 都垂直;②过点p 总可以作一条直线与a 、b 都相交;③过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
A
1
P
1一 :选择题(4分10⨯题)
1.下面四个条件中,能确定一个平面的条件是( )
A. 空间任意三点
B.空间两条直线
C.空间两条平行直线
D.一条直线和一个点
2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ).
A .12l l ⊥,23l l ⊥13//l l ⇒
B .12l l ⊥,23//l l ⇒13l l ⊥
C .233////l l l ⇒1l ,2l ,3l 共面
D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面
3.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,下列命题中正确的是:
A .若,αγβγ⊥⊥,则α∥β
B .若,m n αα⊥⊥,则m ∥n
C .若m ∥α,n ∥α,则m ∥n
D .若m ∥α,m ∥β,则α∥β 4.在四面体ABC P -的四个面中,是直角三角形的面至多有( )
A.0 个
B.1个
C. 3个 D .4个 5,下列命题中错误..的是 A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面αγ⊥平面,平面βγ⊥平面,l =βα ,那么l γ⊥平面
D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β
6.如图所示正方体1AC ,下面结论错误的是( ) A. 11//D CB BD 平面 B. BD AC ⊥1
C. 111D CB AC 平面⊥
D. 异面直线1CB AD 与角为︒
60
7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角是( )
A. ︒120
B. ︒150
C. ︒180
D. ︒
240
8.把正方形ABCD 沿对角线BD 折成直二面角后,下列命题正确的是( ) A. BC AB ⊥ B. BD AC ⊥ C. ABC CD 平面⊥ D. ACD ABC 平面平面⊥ 9某几何体的三视图如图所示,则该几何体的表面积为( )
.A 180 .B 200 .C 220 .D 240
左视图
10.如图所示点P 为三棱柱111C B A ABC -侧棱1AA 上一动点,若四棱锥11B BCC P -的体积为V ,则三棱柱111C B A ABC -的体积为( ) A .V 2 B. V 3 C.
34V D. 2
3V 二.填空题(5分4⨯题)
11.如图所示正方形''''C B A O 的边长为2cm , 它是一个水平放置的一个平面图形的直观图, 则原图形的周长是______, 面积是_________.
12.已知l m , 是直线,βα,是平面,给出下列命题正确的是________________.
(1)若l 垂直于α内的两条相交直线,则α⊥l (2)若l 平行于α,则l 平行于α内所有直线; (3) ;则且βαβα⊥⊥⊂⊂,,,m l l m (4) ;则且若βααβ⊥⊥⊂,,l l (5) αβα且,,⊂⊂l m //m ,则β//l .
13.三棱锥P-ABC 中,PA ,PB ,PC 两两垂直,PA=1,2=
=PC PB ,已知空间中有一
个点到这四个点距离相等,则这个距离是 ___________.
14.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为________(只填写序号).
三.解答题
15.已知圆台的上下底面半径分别为2,6,且侧面面积等于两底面面积之和,求该圆台的母线长,侧面积及体积.
16. 已知四棱锥ABCD P -的三视图如下:
1)画出四棱锥ABCD P -的直观图 2)求四棱锥ABCD P -的体积; 3求四棱锥ABCD P -的表面积;
B 17.如图,已知O PA 圆⊥所在的平面,AB 是O 圆的直径,2=AB ,O
C 是圆上的一点,且
BC AC =,角所在的平面成与圆 45O PC ,PC E 是中点,PB F 为的中点.
(1)求证:EF //面ABC ;
(2)求证:PAC EF 面⊥;
(3)求三棱锥PAC B -的体积
18,如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.
求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.
19. 如图1,在Rt ABC ∆中,90C ∠=,,D E 分别为
,AC AB 的中点,点F 为线段CD 上的一点,将ADE ∆沿
DE 折起到1A DE ∆的位置,使1A F CD ⊥,如图2。

(Ⅰ)求证://DE 平面1A CB ; (Ⅱ)求证:1A F BE ⊥;
(Ⅲ)线段1A B 上是否存在点Q ,使1
AC ⊥平面DEQ ?说明理由。

A B C
S
G F E 图2
图1
F
高一立体几何测试答案
一:1-5;CBBDD 6-10;DCBDD
二:11._16cm_; 82
2cm ____12._1,4____13.
2
5
; 14. ①②③ 15.母线长为5,侧面积为40π,高为3,体积为52π.
16.(1)
(2)由直观图可知此空间几何体为四棱锥,由正视图可知高为2, 所以3
22)11(31=⨯⨯=
-ABCD P V (3)由题意可知是直角三角形,PCB PCD ∆∆, 由勾股定理逆定理可知是直角三角形,PAD PAB ∆∆,
所以.53)512
1
()5121()
212
1
()2121()11(+=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯=++++=PAD PAB PCB PCD ABCD S S S S S S 表
3
2
2)2221(31)(31,2,2)3(.
,//,,;,,;
)2(.
//,,//)1.(17=
⨯⨯⨯=⨯=∴===-∴⊥⊥∴⊥∴=⊥∴⊂⊥⊥∴⊂⊄∆∆-BC S V PA BC AC PAC B BC PAC BC PAC EF EF BC PAC BC C CA BC BC PA ACB BC ACB PA CA BC O AB ABC EF ABC BC ABC EF BC EF EF PBC PAC PAC B 的高;是三棱锥面问知由第面又面面面的直径,是圆平面所以平面平面为中位线,所以中,证明:在 18.证:(1)
SA BA =,AF SB ⊥,SF BF ∴=,由题SE EA =,//EF AB ∴,EF ⊄平面
ABC AB ⊂平面ABC ,//EF ∴平面ABC ,同理//EG 平面ABC ,EF 与EG 为平面EFG 内的
两条相交直线,∴平面//EFG 平面ABC , (2)
平面⊥SAB 平面SBC 于SB ,AF ⊂平面SAB ,AF ∴⊥平面SBC ,AF BC ∴⊥,
又BC AB ⊥且AB 与AF 为平面SAB 内的两条相交直线,BC SA ∴⊥。

19.(1)因为D,E 分别为AC,AB 的中点,所以DE ∥BC.又因为DE ⊄平面A 1CB,所以DE ∥平面A 1CB. (2)由已知得AC ⊥BC 且DE ∥BC,所以DE ⊥AC.所以DE ⊥A 1D,DE ⊥CD.所以DE ⊥平面A 1DC.而A 1F ⊂平面
A1DC,
所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE.所以A1F⊥BE (3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.
又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.
由(2)知DE⊥平面A1DC,所以DE⊥A1C.
又因为P是等腰三角形DA1C底边A1C 的中点,
所以A1C⊥DP,所以A1C⊥平面DEP,从而A1C⊥平面DEQ.
故线段A1B上存在点Q,使得A1C⊥平面DEQ.。

相关文档
最新文档