2017考研数学:梳理框架的重要性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017考研数学:梳理框架的重要性

2017考研复习还剩下几天时间,这个期间相信所有考生最重视的事情就是复习的效率。现今社会生活节奏日益加快,考研也是一样,在最短的时间里获得最多的知识就可以说已经成功了一大部分。而针对考研数学的学习特点,因为要掌握各种题型的解法和技巧,所以对考察考生的思维能力是比较关键的对象。在短时间内要做到掌握陌生题型的所有方法和技巧可以说是很难达到的,在此提醒广大考生,可以通过请教的方式获取更直接的正确解题技巧,可以询问老师或有经验的前辈。

考生在做文科复习的时候,基本上就明白了为章节之间做出概要和总结找出章节中的联系有多重要,但是对于数学很多考生还是拘泥于背概念和做题上,无法找出知识点之间的联系。

1.其实任何学科知识点的框架化都十分的重要。

我们在做题之余还要注重各章节之间的内在联系,数学考试中会有很多应用到多个知识点的综合性试题和应用型试题。这个类型的题目都比较灵活,难度很大。对综合性的典型考题的分析,来提高自身解决综合性问题的能力。

2.数学有其自身的规律,其表现的一个重要特征就是各知识点之间、各科目之间的联系非常密切,这种相互之间的联系给综合命题创造了条件,因而考生应进行综合性试题和应用题训练。

养成良好的做题习惯,认真的用心去做,遇到陌生的题型要积极自己进行思考并联想关联的知识点,在复习多注意其知识点带来的新题型的解法,平时将遇到的难题多进行翻看,时间长了你对难题的应对能力也就会有很大的提高。对于复合型的难题,要积累自己的解题思路,将每个知识点有机的结合起来。真正的将书本上的知识转化成自己真正学到并可以灵活运用的东西。

3.数学题型以灵活性著称,大多数同学都会为此感到头疼。

数学题型虽然千变万化,但其知识结构却基本相同。一般来讲只要用心去理解了就可以得出比较方便的解题套路熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。我们都知道基本概念、基本方法、基本性质是考研数学复习的根基。线性代数的概念比较抽象,方法与性质也有相应的适用条件。

在平时的复习中就要有很扎实的基础,线性代数的知识点是三大科目里最少的,但基本概念和性质较多,他们之间的联系也比较紧密。掌握知识点之间的联系与区别,对大家处理其他低分值试题也是有助益的。

最后预祝广大考生可以在2017考研冲刺复习中一举拿下数学,在考试中有一个良好的发挥。

对于正在忙碌考研的考生来说,试题所考什么样的类型是很关心的。也有不少同学做了自己的预测,也就是所谓的押题!在这里老师们依据最近几年的考研数学考试大纲以及真题所考类型,概括出以下几个重点题型来供大家参考,助同学们考研成功!

题型一向量的线性相关性

向量的线性相关性是最近几年考研数学真题中线性代数的一个常考题型,比如在2014

年、2012年、2011年及2009年都有出现,大多以选择题或者填空题的类型出现,属于比较简单的类型,同学们定要重视一下以免造成无谓的丢分。

题型二行列式的计算

行列式的计算和其他类型相比算是比较简单的类型,在以往的真题试题中大部分是计算n阶特殊的行列式。这种题型称得上是“送分童子”。

题型三关于对称矩阵的问题

关于对称矩阵,围绕这类矩阵来出题显得更加灵活,最常见的类型是求对称矩阵或者二次型

对应的矩阵的所有特征值以及所对应特征向量,有时还要求考生求一正交变换使对称矩阵能够对角化并化成标准型或者规范化,虽然2014年真题中没有出现,但在2013年、2012年、2011年、2009年的考研数学中都有涉及到,或者是根据对称矩阵在正交变换下的标准型反过来求矩阵例如2010年的考研数学中;再者就是根据对称矩阵的秩或者二次型的解的个数来求解矩阵中出现的参数比如在2012年、2010年、2009年的数学考研中;最后是根据矩阵中已给出的特征值和特征向量求出所有的特征值和特征向量或者是反求出矩阵2011年、2010年、2007年的考研数学中均有出现。今年考的几率很大望引起你的重视。

题型四有关线性方程组的解的问题

线性方程组关于解的问题是线性代数的基础,这类题中大多是根据对应矩阵中的参数变化来确定解的情况,比如方程组有唯一解、无穷多解还是无解以及求第三矩阵。例如2014年、2012年、2010年2008年、2007年等的历年考研中都有出现,这方面的应用一定要熟练掌握。

题型五矩阵之间的相似、合同和等价

这类题主要是填空、选择或者证明题的的形式出现(例如2014年的第21大题)还有就是判断它们之间的关系或者根据它们之间的关系求其中的参数或者特征值。

题型六矩阵或者向量的秩来出题

这类题的形式比较多(多数是求参数题),但多是一些较简单的题目来出现。

题型七矩阵的行、列初等变换的题目

多以选择或者填空的形式出现,要求真正理解。

上面只是概括列举了最近几年考研数学真题中线性代数常考的题型,希望同学们在临考之前一定要把线性代数的知识点快速理解一遍,然后找重点类型多做练习加以熟练,尽量不要在线性代数方面丢分。老师们预祝同学们考研成功。

所谓答题技巧,在于解题思路和运算方法。一道数学题可能有不止一种做法,最简便快捷的那一种就是最优的解题技巧。仍是以计算大题的第一道求极限为例,这道题往往会略有难度。原因有二:

一是要考查的目标知识点较多,该种题型综合性强,便于前后考点串联;二则为了测试考生的心理素质,第一题无法解答会给后面做题带来毁灭性的打击。然而,重视答题技巧的考生会总结出该题难则难矣,方法却较为固定:化简极限运算,洛必达法则,等价无穷小,以及泰勒公式。这四种方法皆是考纲重点,但是难易有别。最易想到的是洛必达法则,因为其最为方便,只需上下同时求导。当考生无法一眼看出答案,目标极限又造型复杂时,洛必达法则往往成为解题首选。但是由于洛必达法则具有严格的使用条件,而考研真题大部分不符合该项条件,考生面临的就是上下求导一圈之后,不是错误答案,就是无法求出答案,反而越化越复杂。考试是为了区别考生,老师的出题手段绝不可能如此简单。显然,洛必达法则便是错误的解题技巧。对于求极限,优质的答题技巧往往是先化简再综合运用泰勒公式和等价无穷小,既有对记忆的要求,计算又不至于过于繁重,最能考查考生的知识综合运用能

相关文档
最新文档