理论力学4-4-平面力系的平衡方程
理论力学L4-4 空间力系简化

c ) 一般主矢和主矩矢既不平行也不垂直 由共点矢量知,它们在同一平面内, 假设两矢量正向夹角为α。 ' FR 1) 将 M O分解为垂直于 ' ' ' 的 及平行于 F M R MO MO O " 的 MO , ' ' O M O 的大小: " FR ' MO M O M O sin
' b) 若主矢平行于主矩:FR // M o
O
MO
' 由一个力和一个力偶(且力 FR 垂直于力偶作用面)组成的
力系,称为力螺旋。 力和力偶都是基本力学量, 力螺旋不能再简化。
力偶矩矢与力矢同方向的称为右螺旋(力偶的转 向与力的方向符合右手关系);反之称左螺旋。 但一般主矢和主矩矢既不平行也不垂直。
§4-4 空间任意力系向一点简化
一、空间任意力系向一点简化 与平面任意力系向一点简化相似,空间任意力 系也是利用力的平移定理将各力平移到简化中 心 O 处,并附加矢量表示的空间力偶,则原力 系与空间汇交力系+空间力偶系等效。
MO m m1 n
F2 F’2
F’R
O
F’n
Fn
F’1 m2
F 又由于力偶矩矢是自由矢量,再将平行于 的 R '' 力偶矩矢 M o 平行移动与FR 重合,成为力螺旋。 一般情况下,空间力系简化结果是一个力螺旋。
约束类型
约束反力
数量
空 间 约 束 类 型 和 约 束 反 力
3
4
5 6
MO
F’R
对于空间汇交力系的合 ' 力FR :
O
' FR 等于该力系各力的矢量和, 称其为该力系的主矢; 对于空间力偶系的合力偶,其力偶矩矢 M O等于 各附加力偶矩的矢量和,也是力系中各力对点O 力矩矢的矢量和: MO mi mO ( Fi ) 称为该力系对简化中心O点的主矩。
平面一般力系的平衡方程及其应用

MB 0
W1
l 2
W
l
x
FAyl
0
得
FAy 7k N
Y 0
F T
sin
FAy
W1
W
0
得
FT 34k N
X 0 FAx FT cos 0
得
FAx FT cos 29.44k N
目录
平面力系\平面一般力系的平衡方程及其应用
4) 讨论。 本题若列出对A、B两点的力矩方程 和在x轴上的投影方程,即
F,平衡锤重WQ,已知W、F、a、b、e、l,欲使起重机满载和空载
时均不致翻倒,求WQ的范围。
目录
力系的平衡\平面力系的平衡方程及其应用 【解】 1)考虑满载时的情况 受力如图所示。 列平衡方程并求解 MB=0 WQmin(a+b)WeFl=0
得 We F l
WQmin a b
目录
平面力系\平面一般力系的平衡方程及其应用
理论力学
平面力系\平面一般力系的平衡方程及其应用
平面一般力系的平衡方程及其应用
1.1 平面一般力系的平衡方程
1. 基本形式 如果平面力系的主矢和对平面内任一点的主矩均为零,则力系
平衡。反之,若平面力系平衡,则其主矢、主矩必同时为零(假如 主矢、主矩有一个不等于零,则平面力系就可以简化为合力或合力 偶,力系就不平衡)。因此,平面力系平衡的充要条件是力系的主 矢和对任一点的主矩都等于零,即
应用平面力系的平衡方程求解平衡问题的步骤如下: 1) 取研究对象。根据问题的已知条件和待求量,选择合适的研 究对象。 2) 画受力图。画出所有作用于研究对象上的外力。 3) 列平衡方程。适当选取投影轴和矩心,列出平衡方程。 4) 解方程。 在列平衡方程时,为使计算简单,通常尽可能选取与力系中多 数未知力的作用线平行或垂直的投影轴,矩心选在两个未知力的交 点上;尽可能多的用力矩方程,并使一个方程只含一个未知数。
理论力学4.4第4-4章平面简单桁架的内力计算

x y
0, F2 20 0 0, F1 0
解得: F1 0 F2 20kN
20kN
C
FAx F3 F4 FAy
10kN 10kN 10kN 10kN
F1
A
FBy
F2
FAx
解:(1) 取整体为研究对象
FAy
F1
(3) 取节点A为研究对象
F 0 , F F F cos 45 0 x Ax 4 3 F 0 , F F F sin 45 0 y Ay 1 3
F 0, F F 0, F M 0,
再以截面m-n左面部分为研究对象 MC 0
F3 A C FA F2 F4 F1
Fa F1b FA 2a 0 F1 4a F b
F
F
b
FB
例 题 4
C
求:桁架1、2杆的力。 解:(1) 取整体为研究对象
D a
M
解得:
a
B
0, P.2a FAy 3a 0
FAy 2P 3
α A E F FAC α α C α α
O α B C F G D FBC FGy FGx M
2M CG 2l cos 30 FBC 3l 参考受力图(b), 选x轴与FOB垂直。 ' O O F 0 , F . COS 30 F . COS 60 0 x BC AB
Fi Fix i Fiy j FR
i 1 i 1 i 1
n
n
n
理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)
第四章:力系的平衡条件与平衡方程

未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN
例
已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.
理论力学:第3 章 力系的平衡

力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R
0,M O
0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则
G sin cos
G sin cos( )
cos( ) 1,
arctan 3
3652'
Pmin
G sin
20
3 5
12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q
G(b
e) 50b a
Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。
华北电力大学理论力学第四章 物体系的平衡

由多个刚体相互约束组成的系统称为刚体系。在一般情况下,若系统 是静定的,则刚体系的未知变量总数必等于独立方程总数。静定的 刚体系也称为静定结构。若未知变量总数大于独立方程总数,则系 统是超静定的,称为超静定结构。若未知变量总数小于独立方程总 数,则为不完全约束,刚体系可产生运动而不可能平衡。受不完全 约束的刚体系通常称为机构。
G FAB FAC (a) A G
y
x
例4-3
平面刚架的各部分及受力如图4-7(a)所示,A端为固定端约束,图中 各参数q、F、M、L均为已知。试求A端的约束力。 解:以刚架ABCD整体为研究对象 列平衡方程
F F
x y
0 , FAx qL 0 0 , FAy F 0
3 M M M F L qL L0 0 , A A 2
主矢
0 FR
F F F
ix
iy iz
0 0 0
主矩 M O 0
(对任意点主矩)
M x (F i) 0 M y (F i) 0 M z ( Fi ) 0
共六个独立方程,可解出六个未知量。
特殊力系平衡方程
空间汇交力系
可列三个独立方程
Fix 0 Fiy 0 Fiz 0
F
x
0 , FAB cos30 F 0
得
FAB
2 F 3
A
FAB M
(2)再取OA为研究对象
M
O
( F ) 0 , FAB cos 30 r M 0
FOx
O FOy
解得
M Fr
例题 三刚体平衡
求A、B、D、G处约束。
理论力学平面力系的简化和平衡

原力偶系的合力偶矩
n
M Mi i 1
只受平面力偶系作用的刚体平衡充要条件:
n
M Mi 0 i 1
对BC物块对B点取矩,以逆时针为正列方程应为:
M 2 M B (FC ) M FCY a FCx b M FC (b a) cos45 0
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
两轴不平行即 条件:x 轴不 AB
可,矩心任意
连线
mA (Fi ) 0 mB (Fi ) 0 mC (Fi ) 0
③三矩式 条件:A,B,C不在
同一直线上
上式有三个独立方程,只能求出三个未知数。
4. 平面一般力系的简化结果分析
简化结果: 主矢R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
解除约束,可把支反
力直接画在整体结构
的原图上)
解除约束
由
mA (Fi
)
0
P2a N B
3a0,
N B
2P 3
X 0 XA 0
Y 0 YB NB P0,
YA
P 3
2.5物体系统的平衡、静定与超静定问题
1、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
N2个物体受平面汇交力系(或平面平行力系)
X 0 Y 0
2*n2个独立平衡方程
N3个物体受平 X 0 面任意力系 Y 0
理论力学第4章-平面任意力系

FAx
FAy MA
解:(1)取悬臂刚架为研究对象,受力图。
(2)列平衡方程
Fx 0
FAx F 0
Fy 0
FAy 3q 0
解之得
MA(F) 0
M A F 4 3q 1.5 0
FAx 5kN FAy 6kN M A 11 kN m(与假设相反)
4.5.2 平面平行力系的平衡方程 作用线分布在同一平面内且相互平行的力系,称为平 面平行力系。
MO (F ) 2 OAB面积
(1)当力F通过矩心O时,力对该矩心的力矩为零。 (2)当力F沿作用线移动时,不改变该力对任一点的矩。
力对点之矩的解析式:
MO (F ) Fd Fr sin( ) Fr sin cos Fr cos sin
Fr cos Fx
r cos x
Fr sin Fy
合力矢 作用线的方程。
MO FRx
O
38.66
F Ry
F R
(x, y) FRx
400 x + 500 y = 2726.7
O
FRy
FR
4.5 平面任意力系、平面平行力系平衡方程 4.5.1 平面任意力系的平衡方程 平面任意力系平衡的必要与充分条件为:力系的
主矢以及对作用面内任一点的主矩都等于零,即
r sin y
MO (F ) xFy yFx (4-4)
y
Fy
F
y
r O d
A Fx
x
x
4.2 力线平移定理
力线平移定理: 作用在刚体上A点的力F可以平行 移到任一点B,但必须同时附加一个力偶,此附加力 偶的矩等于原来的力F对B点的矩。
[证] 力 F
力系 F, F1, F1' 力F1 力偶(F, F1')
理论力学课件—力系的平衡

分布荷载的合力及其作用线位置 P
q(x)
dP
A
x dx h l
由合力之矩定理:
B
x
Ph dP x q( x) xdx
l 0
q(x)
荷载集度
合力作用线位置:
dP=q(x)dx 合力大小:
P dP 0 q( x)dx
l
q( x) xdx h q( x)dx
0 l 0
q A 2a
M B
C
G 4a
FAx
FB
解:以水平横梁AB为研究对象。
X 0, F 0 M A F 0,
Ax
FB 4a G 2a q 2a a M 0 3 1 FB G qa 4 2
Y 0, F
Ay
q 2a G FB 0
FAx
y
X 0,
M A ( F ) 0,
FAx P 0
FAx P
x
FB 2a M Pa 0
FB P
Y 0,
FAy FB 0
FAy P
2a M
P
a
C
FAy
D
FB
解法2
A
FAx
B
解法3
M A ( F ) 0, M B ( F ) 0, M C ( F ) 0,
即
2M FA FB ab
§3.3 平面任意力系的平衡条件与平衡方程
1. 平面任意力系的平衡方程
FR=0 ′ Mo=0
X 0 Y 0 M F 0
O
}
平衡方程
平面任意力系平衡的解析条件:所有各力在两个任选的坐标轴上 的投影的代数和分别等于零,以及各力对于任意一点的矩的代数 和也等于零。 ● 几点说明:
理论力学全套解疑04

第四章 平面一般力系题4-1 如将平面一般力系(F 1,F 2,…,F n )分别向其作用面内的A 、B 两点简化,分别得力R A 、力偶M A 和力R B ,力偶M B ,如题4-1图(a)所示。
R A 、R B 、M A 、M B 之间有什么关系?题4-1图解 答 平面一般力系向平面内的任一点简化,一般都得一力和一力偶,力的力矢,即力系的主矢R = ΣF 。
力系向不同点简化所得的力的力矢相同,均等于ΣF ,因此力系的主矢与简化点无关即R A = R B 。
平面一般力系向平面内任一点简化所得的力偶的力偶矩等于原力系的各力对简化中心之矩的代数和,即,称为力系对O 点的主矩。
这个量与矩心的位置有关。
力系向不同点简化所得的力偶的力偶矩不同,即M )(F O O m M ∑=A ≠M B 。
由于力系的简化是力系的等效变换,即力系(F 1,F 2,…,F n ) = (R A ,M A ) = (R B ,M B )。
所以M A 与M B 之间有一定关系,其关系为M B = M A + m B (R A )。
这个关系式可证明如下。
将作用于A 点的力R A 和力偶M A 向B 点简化,由力的平移定理可知,当R A 由A 点平移至B 点时,得一作用于B 点的力R B (R B = R A = ΣF )和一附加力偶,共力偶矩m B = m B (R A )。
再将力偶M A 移到B 点,如题4-1图(b)所示。
力偶M A 和m B (R A )进一步合成一力偶M B ,得M B = M A + M B (R A )。
证毕。
题4-2 设平面一般力系向平面内某一点简化得一合力,如果选择另外的点为简化中心,此力系能否简化为一力偶?解 答 如果平面一般力系向某点简化得一合力,即表明原力系与此合力等效。
如果力系选择另外的点为简化中心,若能简化为一力偶的话,则又表明力系与此力偶等效,因此力系的合力也应与力偶等效。
事实上,一个力是不能与一个力偶等效的。
平面力系的平衡条件与平衡方程式

从而所研究的力系必为平衡力系,如图2-16所示。
三矩式平衡方程为
M A 0 M B 0 M C 0
其中,A,B,C三点不得共线。
图 2-16
由 M A 0 , M B 0 知,该力系只可能为作用线过A,B
两点的合力或是平衡力系;
Fy 0
M O 0 (2-22)
图 2-19
对于平面力偶系,由于它简化后为一个合力偶,而力偶在任何 轴上的投影都是零,因此,式(2-18)中的前两式自然满足。 所以,平面力偶系的平衡方程为
MO 0
理论力学
的平衡,也就不会产生附加的平面力偶系,从而只要主矢为零,该力 系就平衡。其平衡方程为
Fx 0
Fy
0
(2-21)
图 2-18
例
对于平面平行力系(各力作用线共面且平行的力系),该力系简化 后其主矢必与各力平行从而方向已知,这时可取两个投影轴分别与 该力系平行和垂直,则与该力系垂直的轴上的投影方程总是自然满 足的,故其平衡方程式为
M A 0
M B 0
Fx 0
(2-19)
式中,AB连线不得与x轴相垂直。
方程式(2-19)也完全表达了力系的平衡条件:由 M A 0 知,
该力系不能与力偶等效,只能简化为一个作用线过矩心A的合力,
或者为平衡力系;
由 M B 0 知,若该力系有合力,则合力必通过A,B连线
最后,由 Fx 0 知,若有合力,则它必垂直于x轴;而据限制条件,
理论力学
平面力系的平衡条件与平衡方程式
平面力系平衡的充分和必要条件是 力系的主矢及作用面内任意一点的主矩同时为零。
证
由主矢为零,即
材料力学第4章 平面任意力系

MO
M1
M
2
M
n
(2-2)
MO (F1) MO (F2 ) MO (Fn ) MO (F )
由此可见,MO一般与简化中心的位置有关,它
反映了原力系中各力的作用线相对于点O的分布情
况,称为原力系对点O的主矩。
理论力学
静力学
平面任意力系
15
平面任意力系向作用面内任意一点简化,一般 可以得到一个力和一个力偶;该力作用于简化中心, 其大小及方向等于力系的主矢,该力偶之矩等于力 系对于简化中心的主矩。
(2)
理论力学
静力学
平面任意力系
37
例题
MA(F) 0
FT AB sin 300 P AD F AE 0
(3)
由(3)解得
FT
2P 3F 4sin 300
(2 4 3 10)kN m 4m 0.5
19
kN
以
FT
之值代入式(1)、
例如,铁轨给轮 子的力等。
理论力学
静力学
平面任意力系
28
几种分布荷载:
体分布荷载:荷载(力)分布在整个构件内部
各点上。例如,构件的自重等。 面分布荷载:分布在构件表面上。例如,风压
力、雪压力等。
线分布荷载:荷载分布在狭长范围内,如沿构
件的轴线分布。
理论力学
静力学
平面任意力系
29
荷载的单位
(1) 集中荷载的单位,即力的单位 (N,kN)。 分布荷载的大小用集度表示,指密集程度。
值为多少?
理论力学
静力学
理论力学:第3章 力系的平衡

1第3章 力系的平衡 3.1 主要内容空间任意力系平衡的必要和充分条件是:力系的主矢和对任一点的主矩等于零,即 0=R F 0=O M 空间力系平衡方程的基本形式 0,0,0=∑=∑=∑z y x F F F 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M空间汇交力系平衡的必要和充分条件是:力系的合力 0=R F空间汇交力系平衡方程的基本形式0,0,0=∑=∑=∑z y x F F F空间力偶系平衡的必要和充分条件是:各分力偶矩矢的矢量和 0=∑i M空间力偶系平衡方程的基本形式 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M平面力系平衡的必要和充分条件:力系的主矢和对于任一点的主矩都等于零,即:0=∑='F F R;0)(=∑=F O O M M 平面力系的平衡方程有三种形式:基本形式: 0)(,0,0=∑=∑=∑F M F F O y x二矩式: 0)(,0)(,0=∑=∑=∑F M F M F B A x (A 、B 连线不能与x 轴垂直)三矩式: 0)(,0)(,0=∑=∑=∑F M F M M C B A (A 、B 、C 三点不共线)平面力系有三个独立的平衡方程,可解三个未知量。
平面汇交力系平衡的必要和充分条件是合力为零,即0=∑=F F R 平衡的解析条件:各分力在两个坐标轴上投影的代数和分别等于零,即0,0=∑=∑y x F F两个独立的平衡方程,可解两个未知量。
平面力偶系平衡的必要和充分条件为:力偶系中各力偶矩的代数和等于零,即∑=0Mi一个独立的平衡方程,可解一个未知量。
3.2 基本要求1.熟练掌握力的投影,分布力系的简化、力对轴之矩等静力学基本运算。
2.能应用各种类型力系的平衡条件和平衡方程求解单个刚体和简单刚体系统的平衡问题。
对平面一般力系的平衡问题,能熟练地选取分离体和应用各种形式的平衡方程求解。
3.正确理解静定和超静定的概念,并会判断具体问题的静定性。
理论力学重点总结

理论力学重点总结理论力学重点总结绪论1.学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建设服务。
2.学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。
此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。
第一章静力学的基本公理与物体的受力分析1-1静力学的基本概念1.刚体:即在任何情况下永远不变形的物体。
这一特征表现为刚体内任意两点的距离永远保持不变。
2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。
1-3约束与约束力1.自由体:凡可以在空间任意运动的物体称为自由体。
2.非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。
3.约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。
约束是以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。
4.约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。
5.单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的约束称为单面约束;否则称为双面约束。
单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。
6.柔性体约束:为单面约束。
只能承受拉力,作用在连接点或假想截割处,方向沿着柔软体的轴线而背离物体,常用符号F T表示。
(绳索、胶带、链条)7.光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。
光滑接触面(线)的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。
平面任意力系的平衡条件和平衡方程

理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)任何第四个方程只是前三个方程的线 性组合,因而不是独立的。
我们可以利用这个方程来校核计算的结果。
理论力学 3-2平面任意力系的平衡条件和平衡方程
四、平面平行力系
理论力学 3-2平面任意力系的平衡条件和平衡方程
1.平面平行力系是平面任意力系的一种特 殊情形。 2.如图3-10 所示,设物体受平面平行力系 F1,F2,…,Fn 的作用。如选取 x 轴与各力 垂直,则不必力系是否平衡,每一个力在 x 轴上的投影恒等于零,即 。
理论力学 3-2平面任意力系的平衡条件和平衡方程
解: (1)选梁AB为研究对象 梁 AB 所受的主动力有: 均布载荷 q, 重力 P 和矩为 M 的力偶。 梁AB所受的约束力有: 铰链 A 的两个分力 Fax 和 FAy ,滚动支 座 B 处铅直向上的约束力FB。
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)列平衡方程
取坐标系如图3-6 所示,列平面任意力 系的平衡方程,即
理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)求解方程
求解以上方程,得
FB 为负值,说明它的方向与假设的方向相 反,即应指向左。
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
b.如果力系对另一点 B的主矩也同时为 零,则这个力系或一合力沿 A,B 两点的连 线,或者平衡(图3-9)。 c.如果再加上 ,那么力系如 有合力,则此合力必与 x 轴垂直。
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-9
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学4 平面一般力系

力F ′+ 力偶( F , F ′′)
3
说明: 说明 力线平移定理揭示了力与力偶的关系: ①力线平移定理揭示了力与力偶的关系:力 (例断丝锥) 例断丝锥)
力+力偶 力偶
有关, ②力平移的条件是附加一个力偶m,且m与d有关,m=F•d 力平移的条件是附加一个力偶 , 与 有关 ③力线平移定理是力系简化的理论基础。 力线平移定理是力系简化的理论基础。
Fx = 0, FAx − FT cos 30 0 = 0 ∑
Fy = 0, FAy + FT sin300 − P −Q = 0 ∑
1 ∑ M A = 0, FT 2 ⋅ 6a − P ⋅ 3a − Q ⋅ 4a = 0 F T = 17 . 33 kN 解得: F Ax = 15 . 01 kN 解得: F 22 Ay = 5 . 33 kN
a a 两力作用线过x1 = 和x2 = 3 2
17
§3-4
平面一般力系的平衡条件与平衡方程
一 平面任意力系的平衡方程 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零
r ′ 即 FR = 0
Mo = 0
FR′ = (∑ Fx )2 + (∑ Fy )2
MO = ∑MO (Fi )
∑ F = 0, F = 0 ∑ Fy = 0, FAy + FBy − P − q ⋅ 2a = 0
9
固定端(插入端) 固定端(插入端)约束 说明 ① 认为Fi这群力在同一平面内; 雨搭 ② 将Fi向A点简化得一力和一力偶; ③ FA方向不定可用正交分力FAX, FAY 表示; ④ FAX, FAY, MA为固定端约束反力;
FR FYA FXA
理论力学第3章力系平衡方程及应用

a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx
理论力学知识点总结

vx
dx dt
vy
dy dt
vz
dz dt
速度大小 v vx2v2y vz2
速度的方向由其方向余弦确定
cos(
v,i )
vx
v
cos(
v,
j)
vy
v
cos(
v,k )
vz
v
ax
dvx dt
d2 x dt2
ay
dvy dt
d2 y dt2
az
dvz dt
d2z dt 2
加速度大小
a ax2ay2az2
1、一次投影法(直接投影法)
X F cos α , Y F cos β , Z F cos γ
应用此法必须注意:如果投影轴不通过力矢的始端,则可以 过该力矢始端作出与该投影轴平行并且正向相同的轴,根据 同一个力在所有互相平行且正向相同的轴上的投影都相等,
再按一次投影法计算该力的投影。注意力的投影用Fx 、Fy、 Fz或X、Y、Z表示。
值得注意得是,此时三个分力Fx、Fy、Fz与Z轴的空间 位置不是相交、就是平行或者垂直,可见又回到第一、 第二种情况,这时可按第一、第二种情况分别算之,然 后代入上式即可。最后要说明得是:上述计算空间力对 轴之矩的方法适用于动力学中动量矩的计算。
八、空间力偶矢量方法:用右手法则表示,即首 先任作一 法线垂直于力偶作用面,该法线的方位就表 示力偶矩矢的方位,然后沿着这条法线按一定比例尺 取一段长度表示力偶矩的大小,力偶矩矢的指向可按 右手法则确定,即以右手握住这条法线,四个手指表 示力偶矩的转向,大拇指向表示力偶矩矢的指向。
yCA ii A i
(3)负面积法
xCxC1A1 A1 xC A 12A 1 A3 xC1A1 yCyC1A1 A 1yC A 12A 1 A3yC1A1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M Az 0
M Bz 0
三矩式 (A、B、C三点不共线)
M Az 0
2013年10月22日
M Bz 0
M Cz 0
2/14
刚体平衡问题的解题步骤和注意事项
第 4章 1. 正确选取研究对象,取分离体,画受力图。 2. 建立坐标系,列力系平衡方程。力矩轴应 和尽量多的未知力相交或平行(一个方程 解一个未知数)。 3. 解平衡方程式,校核结果。
从这三个方程可以解出NA,NB 和 。
14/14
3
几何静力学
O
arccos
A
B
Q
B
90
D
F
C
W
10/14
解法一
NA
一矩式
y
O
解法二
第 4章
NA
两矩式
y
O
C A
பைடு நூலகம்
x
B
NB
P
D
C A
x
B
NB
P
P
D
几何静力学
P
Rx N B sin N A cos 0
R y N B cos N A sin 2 P 0
几何静力学 几何静力学
几何静力学
一矩式外,应学会灵活应用其它两种形式, 以及二力平衡和三力平衡条件。
最好先用文字符号表示求解结果,并用量
A D B
纲校核后,再代入数据求出数值解。
4/14
P
例 4-4-1
选择吊车梁为研究对象,取坐标系Oxy y l a TB TB
RA
解
第 4章
例 4-4-2
已知起重机重P,可绕铅直轴AB转动,起吊 重量为Q的物体。起重机尺寸如图示。 求止推轴承A和轴承B处约束反力。
对于平面一般力系的刚体平衡问题,除了
例 4-4-1
第 4章 AB是吊车梁,BC是钢索,A端支承可简化为铰 链支座。设已知电葫芦和提升重物共重 P=5 kN, = 25º,AD长度a= 2m,AB长度l = 2.5m。 吊车梁的自重略去不计,求钢索BC和铰A的约 束力。 C
3/14
第 4章
5/14
O
B
P
A
D
O
P
RA
几何静力学
x
RA cos TB cos 0
P RA sin TB sin 0
其它求解方法?
(l a) tan OD BD tan tan AD AD a
RA 8.63kN
TB 9.46kN
6/14
1
Rx N B sin N A cos 0
N B 2 P cos ,
1 π
4
2
N A 2 P sin
16
2 1 arcsin 9
3 π 1 arcsin 9
2 2
能否用Ry = 0 ?
16
12/14
从这三个方程可以解出NA,NB 和。
2
解法三
平面力系平衡方程的各种形式
第 4章 一矩式 (标准形式)
Rx Fix 0
i 1 n n
Ry Fiy 0
i 1
n
几何静力学
4.4 平面力系的平衡方程
M Oz ( xi Fiy yi Fix ) 0
i 1
二矩式 (AB连线不与矢量e垂直)
Re Fie 0
第 4章
NA
三矩式
y
O
第 4章
B
NB
C A
x
P
D
13/14
几何静力学
几何静力学
P
M Az NB a cos P(l a sin )sin P[(l a cos )cos a] 0 M Bz N Aa sin P[(l a sin )sin a] P(l a cos )cos 0 M Oz N Aa sin NB a cos Pl sin Pl cos 0
M Oz N A a sin N B a cos Pl sin Pl cos 0
MAz NBa cos P(l a sin)sin P[(l a cos)cos a] 0
M Bz N A a sin P[(l a sin ) sin a ] P (l a cos ) cos 0
解
第 4章
例 4-4-4
直角尺两边长均为2l,AB = a = 0.4l, 求平衡 时A、B处的约束反力和角。
因为ADE 是直角,所以E一定在圆周上,
AE 2 R
OAD ODA l cos AF 2 R cos 2
E O R N l
A
2 l l 1 8R 8R 2
例 4-4-2
第 4章 (1) 明确对象,取分离体,画受力图。 (2) 列写适当平衡方程,由已知求未知。
M Az 0 N B
NB a P b Q c 0
解
第 4章
例 4-4-3
半径为 R的半球形碗内搁一均匀杆AB。杆长 2l, 设 2 R l R , 且为光滑接触。求杆平衡 时的倾角 。
7/14
第 4章
9/14
第 4章
11/14
几何静力学 几何静力学 几何静力学
几何静力学
B
N B ( Pb Qc) / a
Rx 0 N Ax N B
Ry 0 N Ay P Q
A
思考:如何利用平衡 方程的其它形式?
8/14
例 4-4-3
确定杆为对象,作受力分析。