第十三章轴对称导学案全章

合集下载

八年级第13章《轴对称》导学案资料.doc

八年级第13章《轴对称》导学案资料.doc

新人教版八年级数学上册第13 章《轴对称》导学案施甸一中八年级数学导学案(第 13 章轴对称)新人教版八年级数学上册第13 章《轴对称》导学案13.1.1轴对称及其性质导学案【学习目标】1.知识技能(1)通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两(2)在具体的学习过程中加强的观察能力、思维能力、操作能力、归力的培养。

2.解决问题按要求做出简单的平面图形的轴对称图形,初步体会从对称的对称图案掌握线段的垂直平分线、角的平分线的性质及应用能够简单应用.【学习重难点】1.重点:由具体情境抽象出轴对称与轴对称图形的概念.2.难点:理解轴对称与轴对称图形之间的区别与联系.【知识回顾】一、基础知识填空欣赏下面几张美丽的图片,【探究 1】1. 轴对称图形:如果一个图形沿着一条直线称图形。

折痕所在的这条直线叫做__ 分别在上面图形中画出它们的对称轴。

,两侧的图形能够___。

图形上能够重合的2.轴对称:欣赏下面几幅图片,并完成问题。

新人教版八年级数学上册第13 章《轴对称》导学案2、下列图形中不是轴对称图形的有()A1个B2个C3个D4个3、以下汽车标志中,和其他三个不同的是()A B C D4、哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们 ABCDEFGHIJKLMNOPQRSTUVWXYZ5、观察下列各种图形,判断是不是轴对称图形.新人教版八年级数学上册第13 章《轴对称》导学案13.1.2线段垂直平分线的性质导学案【学习目标】1.知识技能(1)了解两个图形成轴对称性的性质,了解轴对称图(2)探究线段垂直平分线的性质.2.解决问题(1)理解轴对称的性质.(2)会利用线段垂直平分线的定理和逆定理解决相关问【学习重难点】1.重点:( 1)轴对称的性质.( 2)线段垂直平分线的性质.2.难点:体验轴对称的特征【知识回顾】1 、轴对称图形的对称轴是一条_____________ 。

2、写出五个成轴对称的汉字:______3、写出 3 个是轴对称图形的英文字母:________________4、如图,△ABCA′ B′ C′关于直线MN 和△对称,点 A′、 B′、 C′分别是点 A、 B、 C 的对称点,猜想一下线段 AA′、 BB′、 CC′与直线 MN有什么关系?MN垂直平分_____.MN垂直平分___.MN垂直平分_ ____.探究一:如下图.木条是 L 上的点,有什么发现?思考方法L 与 AB 钉在一起, L 垂直平分 AB, P1, P2, P3,?分别量一量点 P1, P2, P3,到 A 与 B 的距离,你1 .用平面图将上述问题进行转化,先作出线段AB,过 AB 中点作上取 P、P、P,连结AP、 AP、BP 、BP、CP、 CP1 2 3 1 2 1 2 1 22 .作好图后,用直尺量出AP1、 AP2、 BP1、 BP2、 CP1、 CP2讨论发现用我们已有的知识来证明这个结论吗?讨论给出证明.新人教版八年级数学上册第13 章《轴对称》导学案操作:1.用平面图形将上述问题进行转化.作线段AB ,取其中点 P ,过连结 AP 、 AP 、 BP 、 BP . 会有以下两种可能.1 2 1 22 .讨论:要使 L 与 AB 垂直, AP 1、 AP 2 、 BP 1 、BP 2 应满足什么条件?【巩固练习】1. 在 AE 的垂直平分线上, AB 、 AC 、 CE 的长度有什么关系?AB+BD 与 DE 有什么关系?2.如下图,AB=AC , MB=MC .直线 AM 是线段 BC 的垂直平分线吗?3、已知: MN AB 的垂直平分线,下列说法中,正确的是(是线段A. 与 AB 距离相等的点在 MN 上B.与点 A 和 B 距离 C MNAB 上 D AB 垂直平分 MN .与 距离相等的点在. 4、如图1 , PA=PB , QA=QB ,则直线 PQ 是线段 AB 的____________证明:因为 PA=PB (已知)所以P点在线段AB的中垂线上( ___________________因为QA=QB(已知)所以 Q 点在线段 AB 的中垂线上( ___________________所以 _____________________________( 两点确定一条直线新人教版八年级数学上册第13 章《轴对称》导学案13.2.1作轴对称图形导学案【学习目标】1.通过具体实例学做轴对称图形,认识轴对称变形,探索它的基本性2.能按要求作出简单平面图形经过一次或两次轴对称后的图形。

人教版八年级数学上册《第十三章 轴对称》导学案

人教版八年级数学上册《第十三章 轴对称》导学案
针对训练 1.如图,△ABC 中,AC 的垂直平分线交 AB 于点 D,∠A=50°,则∠BDC=( )
6.当堂检测
7
(见幻灯片
24-28)
教学备注 配套 PPT 讲授
4.课堂小结
第 1 题图
第 2 题图
2.如图,△ABC 中,AB=AC=18cm,BC=10cm,AB 的垂直平分线 ED 交 AC 于 D 点,
探究点 2:轴对称的性质
1.填一填:如图,四边形 ABCD 与四边形 EFGH 关于 MN
对称.,A、B、C、D 的对称点分别是

线段 AD、AB 的对应线段分别是

CD=
, ∠CBA= ,∠ADC=

2.量一量:连接 BF、AE 交 MN 于点 P、Q,BP____FP,
AQ____EQ(填“>”“<”或“=”),∠BPM=_____°,
则△BCD 的周长为_________.
3.如图,在△ABC 中,∠ACB=90゜,BE 平分∠ABC,交 AC 于
E,DE 垂直平分 AB,交 AB 于 D,求证:BE+DE=AC.
探究点 2:线段垂直平分线的判定
1.做一做:用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射
出去.
A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM
第 1 题图
第 2 题图
第 3 题图
2.如图,△ABC 与△ADC 关于直线 AC 对称,∠BCA=35°,∠B=80°,则∠DAC 的度数
为A.(55° )
B.65°
C.75°
D.85°
3.如图,AD 是三角形 ABC 的对称轴,点 E、F 是 AD 上的两点,若 BD=2,AD=3,则图

第十三章《轴对称》导学案

第十三章《轴对称》导学案

(1) 13.1 .1 轴对称学习目标认识轴对称和轴对称图形,并能找出对称轴,并掌握轴对称的性质。

学习过程一、自主学习(一)自学课本58页,完成以下问题:1.观察课本图13.1-1和图13.1-2中的每个图形,它们有什么共同特征?___________________________________ ____ _______.2.什么是轴对称图形?3.下面的图形是轴对称图形吗?如果是,画出它的对称轴。

(1)(2)(3)(4)(5)1.观察课本图13.1-3中的每对图形,它们有什么共同特征?2.什么叫做两个图形成轴对称?什么叫对称点?3. 轴对称图形与两个图形轴对称的区别与联系:区别:轴对称图形指的是____个图形沿一条直线折叠,直线两旁的部分能够互相_____。

轴对称指的是___个图形沿一条直线折叠,这个图形能够与另一个图形_________。

联系:把成轴对称的两个图形看成一个整体,它就是一个____ ______;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线。

二、探究学习探究轴对称的性质1、如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A与A′重合吗?于是有PA=,∠MPA==度(2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗?(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?2、垂直平分线的定义:经过线段并且这条线段的直线,叫做这条线段的垂直平分线.3、轴对称的性质:如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的。

类似地,轴对称图形的对称轴,是任何一对对应点所连线段的。

三、巩固练习1.(2016·青海西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.2.(2016·四川泸州)下列图形中不是轴对称图形的是()A.B.C.D.3.(2016·四川眉山)下列既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2016·重庆)下列图形中是轴对称图形的是()A.B.C.D.5.(2016·重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.6.下列图形中对称轴最多的是()A.矩形 B.正方形C.圆 D.线段(2) 13.1.2 线段垂直平分线的性质学习目标1、掌握线段垂直平分线的性质2、运用线段垂直平分线的性质解决问题 学习过程 一、知识链接右面的图形是轴对称图形吗?如果是,画出它的对称轴。

新人教版八年级数学上册第十三章《轴对称》导学案

新人教版八年级数学上册第十三章《轴对称》导学案

第十三章轴对称13.1.1 轴对称学习目标1、初步认识轴对称图形;判掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、断一个图形是否是轴对称图形;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。

3、能够判别两个图形是否成轴对称。

通过试验,归纳出轴对称图形概念,能用概念;培养良好的动手试验能力、归纳能力和语言表述能力。

重点:理解轴对称图形的概念;轴对称图形的对应线段相等、对应角相等难点:判断图形是否是轴对称图形;两个图形成轴对称与轴对称图形两个概念的区别与联系。

一、预习新知P581、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.5、观察课本P59图13.1-3中的三幅图形,并试着沿虚线折叠,每对图形有什么共同特征?6、一个图形沿着某条直线折叠,如果他能够与________重合,那么就说_______关于这条直线对称,这条直线叫做__________,折叠后________叫做对称点.7、在课本中的图13.1-3的第三个图中,(1)标出A、B、C的对称点,∠A、∠B、∠C的对应角,(2)连接AA′,BB′,CC′,你发现这三条线段有什么关系?你找到规律了吗?8、成轴对称的两个图形全等吗?为什么?9、全等的两个图形成轴对称吗?试举例说明。

(可以画图说明)10、课本P60练习题做下面的题,检验你预习的结果1、轴对称图形的对称轴是一条___________(A ) (B ) (C )(D )(A ) (B ) (C ) (D ) A 直线 B 射线 C 线段1、 右面的图形是轴对称图形吗?如果是,指出对称轴。

最新人教版第十三章轴对称导学案

最新人教版第十三章轴对称导学案

13.1.1轴对称班级小组姓名【学习目标】1.理解轴对称图形及轴对称的定义;2.了解轴对称图形与轴对称的联系与区别;3.了解线段垂直平分线的概念,理解轴对称图形和轴对称的性质.【重点难点】对轴对称图形与轴对称概念的理解;轴对称图形与轴对称的联系与区别.预习案【预习导学】预习课本58-60页内容,完成下列问题.1.轴对称图形的定义:.2.轴对称的定义:.3.线段垂直平分线的定义是:.4.轴对称图形和轴对称的性质:探究案探究1:准备一张纸;对折纸;用圆规在纸上扎出如图所示的图案(或者发挥你的想象扎出其它你认为美丽的图案);把纸打开铺平,观察所得的图案,位于折痕两侧的部分有什么关系?练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?图(1)有条对称轴;图(2)有条对称轴;图(3)有条对称轴;图(4)有条对称轴;图(5)有条对称轴.探究2:观察下列图形,有什么共同特点?思考:两图形关于直线a成轴对称,它们全等吗?已知两图形全等,它们成轴对称吗?探究3:参照下图说明轴对称图形与两个图形成轴对称有什么区别与联系?区别:。

联系:。

.(A)(B)(C)(D)(A )(B )(C )(D )探究4:如图,ABC ∆和C B A '''∆关于直线MN 对称, 点A '、B '、C '分别是点A 、B 、C 的对称点, 线段A A '、B B '、C C '与直线MN 有什么关系? 由此你能得到什么结论?训练案1.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )2.下列图案中,不是轴对称图形的是( )3.下列图形中对称轴最多的是 ( )A 、圆B 、正方形C 、等腰三角形D 、线段4.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )5.下面哪些选项的右边图形与左边图形成轴对称?( )6.下面四组图形中,右边与左边成轴对称的是( )A. B. C. D.7.下列说法不正确的是 ( ) A.两个关于某直线对称的图形一定全等 B. 对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称8.试想想“角的对称轴就是它的角平线”这句话对吗?判断正误,说明理由。

第13章《轴对称》总复习-导学案(人教版)

第13章《轴对称》总复习-导学案(人教版)

第十三章《轴对称》总复习导学案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。

3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.4.等腰三角形有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做 .5.等边三角形三条边都的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角”).(2)等腰三角形的顶角、底边上的、底边上的相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别,两底角的平分线也 .5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于0.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形.四、练习一、选择题1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,ACB A ''C '图2图1E DCBAlODCBABA交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.FE DCAP 2P 1N MO PB Aα35°115°DECBAO22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.D C BAADEFB C25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .F CBAEDCBAABCDE28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .31.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.HEA(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论N MDCBA。

八年级上册数学(人教):第十三章轴对称导学案

八年级上册数学(人教):第十三章轴对称导学案

第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某条直线对称的概念,了解轴对称及轴对称图形的的性质.2.能识别简单的轴对称图形及其对称轴.重点:轴对称与轴对称图形的概念.难点:轴对称与轴对称图形的性质.一、自学指导自学1:自学课本P58-59页“思考1及思考2”,了解轴对称图形、轴对称的概念,以及它们之间的区别和联系,完成下列填空.(5分钟)总结归纳:(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.自学2:自学课本P59页“思考3”,了解轴对称及轴对称图形的的性质.(5分钟)如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点.(1)设AA′交对称轴于点P,将△ABC或△A′B′C′沿MN折叠后,点A与点A′重合,则有△ABC≌△A′B′C′,PA=PA′,∠MPA=∠MPA′=90度.(2)MN与线段AA′的关系为MN垂直平分线段AA′.总结归纳:(1)经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)成轴对称的两个图形是全等形.(3)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(4)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图所示的图案中,是轴对称图形的有A,B,C,D.2.下列图形中,不是轴对称图形的是(D)A.角B.等边三角形C.线段D.直角梯形3.下图中哪两个图形放在一起成轴对称B与F,C与D.4.轴对称与轴对称图形有什么区别与联系?答:区别为轴对称是指两个图形沿对称轴折叠后重合,而轴对称图形是指一个图形的两部分沿对称轴折叠后能完全重合;联系是都有对称轴、对称点和两部分完全重合的特性.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1下列图形是轴对称图形吗?如果是,指出轴对称图形的对称轴.①等边三角形;②正方形;③圆;④平行四边形.解:①等边三角形的对称轴为三条中线所在的直线;②正方形的对称轴为两条对角线所在的直线和两组对边中点所在的直线;③圆的对称轴为过圆心的直线.点拨精讲:对称轴是一条直线.探究2如图,△ABC和△ADE关于直线l对称,若AB=2 cm,∠C=80°,则AE =2_cm,∠D=80°.点拨精讲:根据成轴对称的两个图形全等,再根据全等的性质得到对应线段相等,对应角相等.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.指出下列哪组图形是轴对称,并指出对称轴.①任意两个半径相等的圆;②正方形的一条对角线把一个正方形分成的两个三角形;③长方形的一条对角线把长方形分成的两个三角形.解:①两圆心所在的直线和连接两圆心的线段的垂直平分线;②正方形两条对角线所在的直线;③不是轴对称关系.点拨精讲:是不是轴对称看是否能沿某条直线折叠后重合.2.下列两个图形是轴对称关系的有A,B,C.3.如图,在网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在旁边的网格中设计出一个轴对称图案.(不得与原图案相同,黑、白方块的个数要相同)(3分钟)1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.1.2线段的垂直平分线的性质(1)1.理解线段垂直平分线的性质和判定,并会运用此性质解决问题.2.会用尺规作图过直线外一点作已知直线的垂线.重、难点:线段垂直平分线的性质和判定定理的理解与运用.一、自学指导自学1:自学课本P61页“探究”,理解线段垂直平分线的性质与判定定理,完成下列填空.(5分钟)1.如图,l⊥AB,垂足为C,AC=BC,则△PAC≌△PBC,PA=PB.2.如图,PA=PB,若PC⊥AB,垂足为C,则AC=BC;若AC=BC,则PC⊥AB.总结归纳:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(3)线段的垂直平分线是到线段两个端点的距离相等的点的集合.自学2:自学课本P62页“例1”,掌握经过已知直线外一点作这条直线的垂线的方法.(5分钟)如图,A,B,C三点表示三个村庄,为了解决村民子女就近入学的问题,计划新建一所小学,要使学校到三个村庄距离相等,请你在图中确定学校的位置.解:①连接AB,AC,BC;②分别作AC,BC的垂直平分线交于点P,则点P就是所要确定的学校的位置.点拨精讲:此题主要运用了作线段垂直平分线解决问题的方法.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P62页练习题1,2.2.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,AB =AC =8 cm ,AB 的垂直平分线交AC 于D ,若△ADB 的周长为18,求DC 的长.解:∵DM 是AB 的垂直平分线,∴AD =BD ,设CD 的长为x ,则AD =AC -CD =8-x ,∵C △ADB =AB +AD +BD =8+(8-x)+(8-x)=18,∴x =3,即CD 的长为3 cm .点拨精讲:由线段垂直平分线的性质得AD =BD 进而求解.探究2 如图,△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DC ⊥AC 于C ,求证:直线AD 是CE 的垂直平分线.证明:∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DE =CD ,∴点D 在CE 的垂直平分线上.在Rt △AED 与Rt △ACD 中,∵AD =AD ,DE =DC ,∴Rt △AED ≌Rt △ACD(HL ),∴AE =AC ,∴点A 在CE 的垂直平分线上,∴直线AD 是CE 的垂直平分线.点拨精讲:证线段垂直平分线的方法1即定义,证垂直平分线的方法2即线段垂直平分线的判定方法.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,在△ABC 中,EF 是AC 的垂直平分线,AF =12,BF =3,则BC =15.2.如图,直线AD 是线段BC 的垂直平分线.求证:∠ABD =∠ACD.证明:∵直线AD 是线段BC 的垂直平分线,∴AB =AC ,DB =DC.在△ABD 与△ACD 中⎩⎨⎧AB =AC ,DB =DC ,AD =AD ,∴△ABD ≌△ACD(SSS ),∴∠ABD =∠ACD.3.在锐角△ABC 内一点P 满足PA =PB =PC ,则点P 是△ABC(D )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边垂直平分线的交点(3分钟)线段的垂直平分线的性质和判定有时是交叉使用,线段垂直平分线的性质是证明线段相等的常用定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.1.2线段的垂直平分线的性质(2)会画轴对称图形或成轴对称的两个图形的对称轴.重、难点:会画轴对称图形或成轴对称的两个图形的对称轴.一、自学指导自学1:自学课本P62-63页“思考及例2”,掌握轴对称图形或成轴对称的两个图形的对称轴的作法,完成下列填空.(7分钟)如图,△ABC和△DEF关于某条直线成轴对称,你能作出这条直线吗?点拨精讲:作线段垂直平分线是根据线段垂直平分线的判定,而作对称轴是根据轴对称的性质作对称轴.总结归纳:(1)如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.(2)对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P64页练习题1,2,3.2.下列图形是不是轴对称图形?如果是轴对称图形的,画出对称轴的条数.解:(略)3.角、线段、直线、圆、扇形、正方形、等边三角形、直角三角形、等腰梯形和长方形中是轴对称图形的有哪些?分别有几条对称轴?解:轴对称图形有:角、线段、直线、圆、扇形、正方形、等边三角形、等腰梯形和长方形;角、扇形、等腰梯形只有1条对称轴,直线、圆有无数条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,长方形、线段有2条对称轴.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)探究1正三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形有6条对称轴,正七边形有7条对称轴(分别画出图形的对称轴)……正n边形有n条对称轴.探究2如图是从镜中看到的一串数字,这串数字应为810076.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.课本P64-65页复习巩固题1,2,3,7,8.2.下列轴对称图形中,只有两条对称轴的图形是(A)3.如图,把一圆形纸片对折后,然后沿虚线剪开,得到两部分,其中一部分展开后的平面图形是(B)4.画出下列图形的对称轴.(3分钟)1.作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.2.对称轴是一条直线;一个图形可能没有对称轴,也可能有很多条,不要多画,也不要漏画.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.2画轴对称图形(1)了解轴对称变换的意义,能够按要求作出简单平面图形经过一次轴对称变换后的图形.重、难点:借助轴对称的意义,画出一个图形关于某一条直线对称的图形.一、自学指导自学:自学课本P67-68页“归纳、思考与例1”,会作已知图形关于某条直线对称的图形,能利用轴对称的一些性质设计图案,完成下列填空.(5分钟)如图,观察下面作线段AB关于直线l对称图形的过程并填空:总结归纳:几何图形都可以看作由点组成,对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P68页练习题1,2.2.如图,以虚线为对称轴,画出图形的另一半,并说明完成后图形可能代表什么含义.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,已知△ABC,直线MN,求作△A′B′C′,使△A′B′C′与△ABC关于直线MN对称.解:如图,①过点A作AD⊥MN于D,延长AD至点A′,使A′D=AD,得点A关于直线MN的对称点A′;②同样作出点B,C关于直线MN的对称点B′,C′;③连接A′B′,B′C′,A′C′,则△A′B′C′就是所求作的三角形.点拨精讲:首先作出点A,B,C关于直线MN的对称点A′,B′,C′,使直线MN 为线段AA′,BB′,CC′的垂直平分线,然后连接A′B′,B′C′,A′C′,得△A′B′C′.探究2如图在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这样的三角形共有2个.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如图,把一个正方形纸片按以下方向对折后,沿虚线剪下,再展开,则所得的图形是(D)2.下列说法正确的是(C)A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△ADE成轴对称,则△ABC≌△ADED.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B 关于直线l对称3.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于60°.4.如图,是画出的风筝的一半,请将另一半补充完整.(3分钟)连接任意一对对应点的线段被对称轴垂直平分是作轴对称图形的重要依据,作轴对称图形的方法:①找——在原图形上找特殊点(如线段的端点);②作——作各个特殊点关于对称轴的对称点;③连——依次连接各对称点.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.2画轴对称图形(2)探索x轴、y轴对称的每对对称点的规律,利用规律作出关于x轴、y轴对称的图形.重、难点:用坐标轴表示轴对称.一、自学指导自学:自学课本P69-70页“思考、例2及归纳”,掌握x轴、y轴对称的每对对称点的规律,完成下列填空.(7分钟)1.如图,在坐标系中作出B,C两点关于x轴对称的点;总结归纳:点(x,y)关于x轴的对称点是(x,-y);关于x轴对称的点的坐标的特点是:横坐标相等,纵坐标互为相反数.2.如图,在坐标系中作出B,C两点关于y轴对称的点.总结归纳:点(x,y)关于y轴的对称点是(-x,y);关于y轴对称的点的坐标的特点是:纵坐标相等,横坐标互为相反数.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P70-71页练习题1,2,3.2.点P(-5,6)关于x轴对称点为Q,则点Q的坐标为(-5,-6);点P(-5,6)关于y轴对称点为M,则点M的坐标为(5,6).3.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).4.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.5.若点M(a,-5)与点N(-2,b)关于x轴对称,则a=-2,b=5;若这两点关于y 轴对称,则a=2,b=-5.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1已知点A(-3,2),且点A与点B,点B与点C,点C与点D分别关于x轴、y轴对称.(1)写出B,C,D的坐标;(2)问四边形ABCD是什么四边形?(3)试求四边形ABCD的面积.解:(1)点B(-3,-2),点C(3,-2),点D(3,2);(2)四边形ABCD是长方形;(3)S长方形ABCD=BC·AB=4×6=24.探究2如图,已知△ABC的三个顶点的坐标分别是(-1,5),(-5,3),(-3,-1),作出△ABC关于x轴、y轴的对称图形.解:如图,△A 1B 1C 1,△A 2B 2C 2即为所求作的图形.点拨精讲:可先写出各对称点的坐标,再描点画图.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.由(-1,3)→(-1,-3)经过了关于x 轴做轴对称变换;由(-5,-6)→(-5,-2)经过了关于直线y =-4做轴对称变换.2.已知点P(x +1,2x -1)关于x 轴对称的点在第一象限,试化简|x +2|-|1-x|.解:由题意可得⎩⎨⎧x +1>0,2x -1<0,解之得-1<x <12,∴x +2>0,1-x >0,∴|x +2|-|1-x|=x +2-(1-x)=x +2-1+x =2x +1.3.如图,点A(4,-1),B(2,-4),C(5,-5).(1)作出△ABC 关于直线y =1为对称轴的对称图形△A 1B 1C 1;(2)写出A ,C 关于直线x =-2的对称点A 2,C 2的坐标,及四边形ACC 2A 2的面积. 解:(略)(3分钟)解题时紧紧抓住点关于x 轴、y 轴和图形关于x 轴、y 轴对称的规律,弄清规律后就可以轻松解题了.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3 等腰三角形13.3.1 等腰三角形(1)1.了解等腰三角形的概念,掌握等腰三角形的性质.2.运用等腰三角形的概念及性质解决相关问题.重、难点:等腰三角形的性质及其应用.一、自学指导自学:自学课本P75-76页“探究、思考与例1”,掌握等腰三角形的性质并学会运用,完成下列填空.(7分钟)1.如图,在△ABC中,AB=AC,标出各部分名称:2.如图,把一张长方形纸片按图中的虚线对折,剪下阴影部分,再把它展开,得到△ABC,则AB=AC.点拨精讲:根据轴对称的性质可得以上结论.总结归纳:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.(3)等腰三角形是轴对称图形,对称轴是底边上的中线(顶角平分线、底边上的高)所在的直线.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P77练习题1,2,3.2.如图,在△ABC中,AB=AC,点D在BC上.(1)∵AD⊥BC,∴∠1=∠2,BD=CD.(2)∵AD是中线,∴AD⊥BC,∠BAD=∠CAD;(3)∵AD是角平分线,∴AD⊥BD,BD=CD.3.等腰三角形有两条边长为4 cm和9 cm,则该三角形的周长是22 cm.点拨精讲:此题要用到分类思想,但根据三角形三边关系排除一种情况.4.等腰三角形的一个外角是80°,则其底角是40°.5.等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角为60°或120°.点拨精讲:此题分为高在三角形的内部和外部两种情况.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1已知△ABC是等腰三角形,且∠A+∠B=130°,求∠A的度数.解:①当∠A为顶角时,∵∠A+∠B+∠C=180°,∠A+∠B=130°,∴∠C=50°,∴∠A=80°;②当∠C为顶角时,则∠A=∠B,∵∠A+∠B=130°∴∠A=65°.点拨精讲:解题时应认真审题,分析已知条件,分清是顶角还是底角.探究2如图,AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.证明:过点A作AE⊥BC于点E,∵AB=AC,∴∠BAD=2∠2,∵BD⊥AC于点D,∴∠BDC=90°,∴∠2+∠C=∠C+∠DBC=90°,∴∠DBC=∠2,∴∠BAD=2∠DBC.点拨精讲:利用等腰三角形三线合一的性质求证.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm,则它的底边长为4_cm.2.如图,在△ABC中,D为BC的中点,AB=AC,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:DE=DF.证明:∵AB=AC,D为BC的中点,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE =DF.(3分钟)在等腰三角形中,常常需要作底边上的高,运用等腰三角形“三线合一”的性质,对于解决所有的问题能起到事半功倍的效果.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3.1等腰三角形(2)1.探索等腰三角形的判定方法.2.掌握等腰三角形性质与判定的综合应用.重点:等腰三角形判定的应用.难点:等腰三角形性质与判定的综合应用.一、自学指导自学:自学课本P77-78页“思考与例2”,掌握等腰三角形判定方法,并能综合运用等腰三角形的有关知识解决问题,完成下列填空.(8分钟)如图,在△ABC中,∠B=∠C,求证:AB=AC.方法一:过点A作AB的垂直平分线AD,垂足为D.方法二:作△ABC的角平分线AD.数学老师说:方法二是正确的,方法一的作法需要订正.(1)请你简要说明方法一辅助线作法错在哪里;(2)根据方法二的辅助线作法,完成证明过程.总结归纳:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P79页练习题1,2,3,4.2.在△ABC中,∠A=80°,∠B=50°,那么△ABC的形状是等腰三角形.3.如图①,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD=3_cm.4.如图②,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=55°.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,OB=OC,∠ABO=∠ACO,求证:AB=AC.证明:连接BC,∵OB=OC,∴∠OBC=∠OCB,∵∠ABO=∠ACO,∴∠ABO+∠OBC =∠ACO+∠OCB,∴∠ABC=∠ACB,∴AB=AC.点拨精讲:通过连接BC,使AB,AC在同一个三角形中,通过证明它们所对的角相等,而证得这两条线段相等.探究2 如图,在△ABC 中,AC =BC ,∠ACB =90°,O 为AB 的中点,现将一个三角板EGF 的直角顶点G 放在点O 处,把三角板EGF 绕点O 旋转,EG 交边AC 于点K ,FG 交边BC 于点H.(1)请判断△OHK 的形状;(2)求证:BH +AK =AC.解:(1)连接OC ,∵在△ABC 中,AC =BC ,∠ACB =90°,O 为AB 的中点,∴∠A =∠B =∠ACO =∠BCO =45°,∠AOC =∠BOC =90°,∴AO =CO =BO ,又∠KOH =90°,∴∠KOH -∠COH =∠BOC -∠COH ,即∠COK =∠BOH ,在△COK 和△BOH 中⎩⎨⎧∠KCO =∠B =45°,OC =OB ,∠COK =∠BOH ,∵△COK ≌△BOH(ASA ),∴OK =OH ,∵∠KOH =90°,∴△OHK 是等腰直角三角形.(2)证明:∵△COK ≌△BOH ,∴CK =BH ,∵CK +AK =AC ,∴BH +AK =AC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,∠A =∠B ,CE ∥DA ,CE 交AB 于点E.求证:△CEB 是等腰三角形.证明:∵CE ∥DA ,∴∠CEB =∠A ,∵∠A =∠B ,∴∠CEB =∠B ,∴CE =CB ,即△CEB 是等腰三角形.2.如图,△ABC 中,BA =BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 且交BC 于E.求证:△DBE 是等腰三角形.证明:∵DF ⊥AC ,∴∠A +∠D =90°,∠FEC +∠C =90°,∵BA =BC ,∴∠A =∠C ,∴∠D =∠FEC ,∵∠FEC =∠BED ,∴∠D =∠BED ,∴BE =BD ,即△DBE 是等腰三角形.(3分钟)对于判断三角形是否是等腰三角形这一类问题,常常是抓一个三角形有两个角相等,转化到对应的边相等.要善于根据已知条件进行联想,对于复杂的几何图形,可以采用已知条件和结论“两头凑”的方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3.2等边三角形(1)1.理解并掌握等边三角形的定义.2.探索等边三角形的性质和判定方法.重点:等边三角形的性质与判定.难点:等边三角形的性质与判定的综合应用.一、自学指导自学:自学课本P79-80页“思考与例4”,理解等边三角形与等腰三角形的关系,掌握等边三角形的性质与判定方法,完成下列填空.(7分钟)总结归纳:(1)三条边都相等的三角形叫做等边三角形.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°;等边三角形具有等腰三角形的性质,且有三条对称轴;(3)判定:三个角都相等的三角形为等边三角形;有一个角是60°的等腰三角形是等边三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P80页练习题1,2.2.在三角形ABC中,AB=AC=2,∠A=60°,则BC=2;3.设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中能表示它们之间关系的是(A)小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.解:(1)证明:∵△ABC为等边三角形,∴∠BAE=∠DCA=60°,AB=AC,在△ABE 与△CAD中,∵AB=AC,∠BAE=∠DCA,AE=CD,∴△ABE≌△CAD.(2)∵△ABE≌△CAD,∴∠ABE=∠DAC,∵∠BAF+∠DAC=∠BAC=60°,∠BFD =∠ABE+∠BAF,∴∠BFD=∠BAF+∠DAC=60°.探究2 如图,△DAC 和△EBC 均是等边三角形,AE ,BD 分别与CD ,CE 交于点M ,N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AM =DN ,其中正确结论的个数是(A )A .3个B .2个C .1个D .0个学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列命题中,正确的有(B )①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边中线的等腰三角形是等边三角形;④三个外角都相等的三角形是等边三角形.A .4个B .3个C .2个D .1个2.如图,△ABC 是等边三角形,点D ,E ,F 分别是AB ,BC ,CA 上的点,若AD =BE =CF ,△DEF 是等边三角形吗?为什么?解:结论:△DEF 是等边三角形.证明:∵△ABC 是等边三角形,∴∠A =∠B =∠C ,AB =BC =AC ,∵AD =BE =CF ,∴AB -AD =BC -BE =AC -CF ,∴BD =CE =AF ,在△ADF 与△BED 中⎩⎨⎧AD =BE ,∠A =∠B ,AF =BD ,∴△ADF ≌△BED ,∴DF =DE ,同理可证得△ADF ≌△CFE ,∴DF =EF ,∴DF =DE =EF ,即△DEF 是等边三角形.(3分钟)等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的三条边相等,三个角都等于60°,“三线合一”的应用就更灵活.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3.2 等边三角形(2)掌握含有30°角的直角三角形的性质.重、难点:含有30°角的直角三角形的性质.一、自学指导自学:自学课本P80-81页“探究及例5”,掌握含有30°角的直角三角形的性质,完成下列填空.(5分钟)总结归纳:在直角三角形中,如果一个锐角等于30°,那么,它所对的直角边等于斜边的一半.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P81页练习题1.2.在Rt △ABC 中,若∠BCA =90°,∠A =30°,AB =4,则BC =2.3.如图,∠C =90°,∠ABC =60°,BD 平分∠ABC ,若AD =4 cm ,则CD =2_cm .4.若等腰三角形一腰上的高等于腰长的一半,则这个三角形的底角等于75°或15°.5.如图,AD 为等边△ABC 的高,DE 是△ADC 的高,已知△ABC 的边长为6,求AE 的长.解:∵AD 为等边△ABC 的高,∴CD =12CB =3,∵DE ⊥AC ,∠C =60°,∴∠CDE =30°,∴CE =12CD =12×3=32.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,BA =BC ,∠B =120°,AB 的垂直平分线交AC 于D ,求证:AD =12CD. 证明:连接BD ,∵BA =BC ,∠B =120°,∴∠A =∠C =30°,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠ABD =∠A =30°,∵∠CBD =∠ABC -∠ABD =120°-30°=90°,又∵∠C =30°,∴DB =12CD ,∴AD =12CD.探究2 如图,在等边△ABC 中,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,求证:BP =2PQ.证明:∵△ABC 是等边三角形,∴∠BAE =∠C =60°,AB =AC ,∵在△ABE 与△CAD 中⎩⎨⎧AB =CA ,∠BAE =∠C ,AE =CD ,∴△ABE ≌△CAD ,∴∠ABE =∠CAD ,∵∠BPQ =∠BAP +∠ABE =∠BAP +∠CAD =∠BAC =60°,∵BQ ⊥AD ,∴∠PBQ =30°,∴BP =2PQ.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)如图,一棵大树在一次强台风中离地面5米处折断倒下,倒下部分与地面成30°夹角,这样的大树在折断前的高度为(B )A .10米B .15米C .25米D .30米(3分钟)在直角三角形中,由角的度数可以得到边之间的数量关系,同样根据边的数量关系也可以得到角的特殊度数.在运用的过程中,要注意前提条件是在直角三角形中.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)。

最新整理初二数学教案初二上册数学第十三章轴对称全章导学案.docx

最新整理初二数学教案初二上册数学第十三章轴对称全章导学案.docx

最新整理初二数学教案初二上册数学第十三章轴对称全章导学案13.4最短路径问题(综合案)学习目标:体会利用作图解决最短路径问题学习重点:体会利用作图解决最短路径问题学习难点:体会利用作图解决最短路径问题学法指导:1、温习前面所学的知识完成知识链接;2、读课本85~87页了解内容;3、再读课文问题1,找出解决问题的正确画法4.再读课文问题2,区分与问题1的区别,如何作图。

一、知识链接:1、如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?2、两点在一条直线异侧:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

预习检查组长签字:_____________合作探究探究一:1、问题:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.作法:跟踪训练:1、要在河边修建一个水泵站,分别向张村、李庄送水(如图)。

修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由。

2、某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到D 处座位上,,请你帮助他设计一条行走路线,使其所走的总路程最短?第十三章轴对称复习练习题1.已知等腰三角形的一个角为420,则它的底角度数_______.2.下列10个汉字:林上下目王田天王显吕,其中不是轴对称图形的是_______;有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________.3.如图,镜子中号码的实际号码是___________.4.等腰三角形的两边长分别是和,则其周长为______.5.在平面直角坐标系中,点P(-2,1)关于y轴对称的点的坐标为.,点P (-2,1)关于x轴对称的点的坐标为是.6.如图,AB=AC,,AB的垂直平分线交BC于点D,那么。

2013第十三章轴对称导学案全章

2013第十三章轴对称导学案全章

教学开放日教案做课教师:房旭东第13章轴对称13.1.1轴对称学习目标:1、通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念;2、探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察,培养学生认真探究、积极思考的能力。

学习重点:轴对称图形和两个图形关于某直线对称的概念及轴对称的性质学习难点:轴对称图形和两个图形关于某直线对称的区别和联系及轴对称的性质.教学设计:1、浏览学案,带着问题自学课本;2、首先读课本58~60页了解内容;1.什么是轴对称图形?什么是对称轴?2.关于这条直线成轴对称?什么是对称点?3.轴对称图形和成轴对称的两个图形有什么区别和联系?4.什么是垂直平分线?5.轴对称的性质是什么?预习自测:1、下列图案是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2、等腰三角形的对称轴有()A、1条B、3条C、1条或3条D、无数条3.下面不是轴对称图形的是()。

①长方形②平行四边形③圆④半圆4.要使大小两个圆有无数条对称轴,应采用第()种画法。

①③探究一:轴对称图形与成轴对称的两个图形的区别与联系观察上面两幅图片,议一议:两个图形的区别与联系?区别:轴对称是说个图形的位置关系,轴对称图形是说个具有特殊形状的图形。

联系:都能沿着某条直线。

这条直线是_________。

跟踪训练1:1.标出下列图形中的对称点探究二:轴对称的性质如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A与A′重合吗?于是有PA=,∠MPA=∠=度(2)对于其他的对应点,如点B、B′,C、C′也有类似的情况吗?(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?归纳:1、垂直平分线的定义:__________________________________,叫做这条线段的垂直平分线2、轴对称的性质:①如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的②类似地,轴对称图形的对称轴,是_____________________的垂直平分线。

八年级数学上册第13章《轴对称》全章教案(人教版)

八年级数学上册第13章《轴对称》全章教案(人教版)

13.1轴对称13.1.1轴对称1.在生活实例中认识轴对称图形.(重点)2.分析轴对称图形,理解轴对称的概念.(重点)3.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.(难点)一、情境导入请同学们认真观看动画片,听故事,思考最后的问题.(配合动画讲故事)故事:在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜.忽然,来了一只蜻蜓在它面前飞来飞去,蝴蝶生气地说:“谁在跟我捣乱?”蜻蜓笑嘻嘻地说:“你怎么连一家人都不认识了,我是来找你玩的.”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢.”(播放动画)思考问题:为什么蜻蜓、蝴蝶、树叶是一家?二、合作探究探究点一:轴对称图形【类型一】轴对称图形的识别下列体育运动标志中,从图案看不是轴对称图形的有( )A.4个 B.3个 C.2个 D.1个解析:根据轴对称图形的概念可得(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选B.方法总结:要确定一个图形是否是轴对称图形要根据定义进行判断,关键是寻找对称轴,图形两部分折叠后可重合.【类型二】判断对称轴的条数下列轴对称图形中,恰好有两条对称轴的是( )A .正方形B .等腰三角形C .长方形D .圆解析:A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.方法总结:判断对称轴的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:轴对称及轴对称图形的性质【类型一】 应用轴对称的性质求角度如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是( )A .130°B .150°C .40°D .65°解析:∵这种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,∴∠D =40°,∴∠BCD =360°-150°-40°-40°=130°.故选A.方法总结:轴对称其实就是一种全等变换,所以轴对称往往和三角形的内角和、外角的性质综合考查.【类型二】 利用轴对称的性质求阴影部分的面积如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )A .4cm 2B .8cm 2C .12cm 2D .16cm 2解析:根据正方形的轴对称性可得,阴影部分的面积等于正方形ABCD 面积的一半,∵正方形ABCD 的边长为4cm ,∴S 阴影=12×42=8(cm)2.故选B. 方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】 用轴对称的性质证明线段之间的关系如图,O 为△ABC 内部一点,OB =72,P 、R 为O 分别以直线AB 、BC 为对称轴的对称点.(1)请指出当∠ABC 是什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度小于7还是大于7?并完整说明你判断的理由.解析:(1)连接PB 、RB ,根据轴对称的性质可得PB =OB ,RB =OB ,然后判断出点P 、B 、R 三点共线时PR =7,再根据平角的定义求解;(2)根据三角形的任意两边之和大于第三边解答.解:(1)如图,∠ABC =90°时,PR =7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、BC 为对称轴的对称点,∴PB =OB =72,RB =OB =72.∵∠ABC =90°,∴∠ABP +∠CBR =∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×72=7; (2)PR 的长度小于7,理由如下:∠ABC ≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR =2OB =2×72=7,∴PR <7.方法总结:利用轴对称的性质可以将线段进行转化,然后结合三角形的任意两边之和大于第三边的性质予以解答,总之熟记各性质是解题的关键.【类型四】 轴对称在折叠问题中的应用如图,将长方形纸片先沿虚线AB 向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( )解析:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A.∵再展开可知两个短边正对着,∴选择答案D ,排除B 与C.故选D.方法总结:对于此类问题,要充分发挥空间想象能力,或亲自动手操作答案即可呈现.三、板书设计轴对称图形1.轴对称图形的定义;2.对称轴; 3.轴对称图形的设计方法.这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养.13.1.2线段的垂直平分线的性质第1课时线段的垂直平分线的性质和判定1.掌握线段垂直平分线的性质.(重点)2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?二、合作探究探究点一:线段垂直平分线的性质【类型一】应用线段垂直平分线的性质求线段的长如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( )A.5cmB.10cmC.15cmD.17.5cm解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.【类型三】 线段垂直平分线与角平分线的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,且AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.探究点二:线段垂直平分线的判定如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠FAD ,DE =DF .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计线段的垂直平分线1.线段的垂直平分线的作法.2.线段的垂直平分线性质定理和逆定理.3.三角形三边的垂直平分线交于一点.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.第2课时 线段的垂直平分线的有关作图1.作出轴对称图形的对称轴,即线段垂直平分线的尺规作图.(重点)2.依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴.(重点)一、情境导入有时我们感觉两个平面图形成轴对称,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、合作探究探究点一:作线段的垂直平分线【类型一】 作某条线段的垂直平分线如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?(注:作一对对应点的对称轴就是作线段AB 的垂直平分线)解析:本题其实就是作线段AB 的垂直平分线,根据线段垂直平分线的作法作出即可.解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F 两点;(2)作直线EF ,EF 即为所求的直线.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.方法总结:要熟练掌握线段垂直平分线的作法,作出的图形中的作图痕迹要保留.【类型二】 垂直平分线的作法与垂直平分线的性质的综合如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA =PB .(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM =PN ,BN =PM ,求证:∠MAP =∠NPB .解析:(1)利用线段垂直平分线的作法作出即可;(2)利用全等三角形的判定方法以及利用其性质得出即可.解:(1)如图所示:(2)在△AMP 和△BNP 中,∵⎩⎪⎨⎪⎧AM =PN ,PM =BN ,AP =BP ,∴△AMP ≌△PNB (SSS),∴∠MAP =∠NPB .方法总结:解决此类问题首先要正确作出图形,然后运用相关的知识解决其他问题.【类型三】 垂直平分线作法的应用如图,某地由于居民增多,要在公路l 边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站C 建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?解析:作线段AB的垂直平分线,由垂直平分线的定理可知,垂直平分线上的点到A,B的距离相等.解:连接AB,作AB的垂直平分线交直线l于O,交AB于E.∵EO是线段AB的垂直平分线,∴点O到A,B的距离相等,∴这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长.方法总结:对于作图题首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.【类型四】线段垂直平分线与角平分线作法的综合运用如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)解析:到两条公路的距离相等,在这两条公路的夹角的平分线上;到两所大学的距离相等,在这两所大学两个端点的连线的垂直平分线上,所画两条直线的交点即为所求的位置.解:如图,点P为所求.方法总结:通过本题要熟练地掌握角平分线的作法以及线段垂直平分线的作法.探究点二:对称轴的画法【类型一】画出已知图形的对称轴画出下列轴对称图形的所有对称轴(不考虑颜色).解析:利用轴对称图形的性质分别得出其对称轴即可.解:如图所示:方法总结:画轴对称图形的对称轴,先找出对称点,然后作对称点的垂直平分线即可.【类型二】补全图形,并画出对称轴如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内填涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.解析:根据轴对称的性质画出图形即可.解:如图所示:方法总结:解答此类问题,一般要先设计出轴对称图形,然后根据图形的特点,画出对称轴.三、板书设计线段的垂直平分线的有关作图1.线段垂直平分线的作法.2.作轴对称图形的对称轴的方法.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD =( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A、B、C关于直线l的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.第2课时用坐标表示轴对称1.直角坐标系中关于x轴、y轴对称的点的特征.(重点)2.直角坐标系中关于某条直线对称的点的特征.(难点)一、情境导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确的告诉了他.你知道为什么吗?结合老北京的地图向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?二、合作探究探究点一:用坐标表示轴对称【类型一】求一个点关于坐标轴的对称点的坐标在平面直角坐标系中,与点P(2,3)关于x轴或y轴成轴对称的点是( )A.(-3,2) B.(-2,-3)C.(-3,-2) D.(-2,3)解析:点P(2,3)关于x轴对称的点的坐标为(2,-3),关于y轴对称的点的坐标为(-2,3),故选D.方法总结:关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.【类型二】关于坐标轴对称的点与方程的综合已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2016的值.解析:(1)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得2a-b =2b -1,5+a -a +b =0,解方程(组)即可;(2)根据关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变可得2a -b +2b -1=0,5+a =-a +b ,解方程(组)即可.解:(1)∵点A 、B 关于x 轴对称,∴2a -b =2b -1,5+a -a +b =0,解得a =-8,b=-5;(2)∵A 、B 关于y 轴对称,∴2a -b +2b -1=0,5+a =-a +b ,解得a =-1,b =3,∴(4a +b )2016=1.方法总结:根据关于x 轴、y 轴对称的点的特征列方程(组)求解.【类型三】 关于坐标轴对称的点与不等式(组)的综合已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.解析:点P (a +1,2a -1)关于x 轴的对称点在第一象限,则点P (a +1,2a -1)在第四象限.解:依题意得P点在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0,解得-1<a <12,即a 的取值范围是-1<a <12. 方法总结:根据点的坐标关于坐标轴对称,判断出对称点所在的象限,由各象限内坐标的符号,列不等式(组)求解.探究点二:作关于坐标轴对称的图形【类型一】 作关于x 轴或y 轴对称的图形在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.解析:作出A ,B ,C 三点关于y 轴的对称点,顺次连接各点即可.解:如图所示,△DEF 是△ABC 关于y 轴对称的图形.方法总结:在坐标系中作出关于坐标轴的对称点,然后顺次连接,此类问题一般比较简单.【类型二】 与对称点有关的综合题如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,画出四边形ABCD关于y 轴对称的四边形A 1B 1C 1D 1;(2)点D 1的坐标是________;(3)求四边形ABCD 的面积.解析:(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连接即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.解:(1)如图所示;(2)点D 1的坐标为(-1,1);(3)四边形ABCD 的面积为12×1×3+12×1×2=52. 方法总结:轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连接对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.三、板书设计用坐标表示轴对称1.直角坐标系中关于x 轴、y 轴对称的点的特征.2.直角坐标系中关于某条直线对称的点的特征.从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等.调动了学生学习的积极性,充分发挥了学生的主体作用.课堂拓展了学生的学习空间,给学生充分发表意见的自由度.13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质1.理解并掌握等腰三角形的性质.(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点一:等腰三角形的概念【类型一】利用等腰三角形的概念求边长或周长如果等腰三角形两边长是6cm和3cm,那么它的周长是( )A.9cm B.12cmC.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.探究点二:等腰三角形的性质【类型一】利用“等边对等角”求角度等腰三角形的一个内角是50°,则这个三角形的底角的大小是( )A.65°或50° B.80°或40°C.65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】利用方程思想求等腰三角形角的度数如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解析:设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A =2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x +2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .【类型三】 利用“等边对等角”的性质进行证明如图,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明如图,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG -DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC . 方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题如图,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE ⊥。

初中数学八年级上册第十三章轴对称教案、导学案 人教版

初中数学八年级上册第十三章轴对称教案、导学案 人教版

第十三章轴对称13.1 轴对称13.1.1 轴对称1.理解轴对称图形和两个图形关于某条直线对称的概念,了解轴对称及轴对称图形的的性质.2.能识别简单的轴对称图形及其对称轴.重点:轴对称与轴对称图形的概念.难点:轴对称与轴对称图形的性质.一、自学指导自学1:自学课本P58-59页“思考1及思考2”,了解轴对称图形、轴对称的概念,以及它们之间的区别和联系,完成下列填空.(5分钟)总结归纳:(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.自学2:自学课本P59页“思考3”,了解轴对称及轴对称图形的的性质.(5分钟)如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点.(1)设AA′交对称轴于点P,将△ABC或△A′B′C′沿MN折叠后,点A与点A′重合,则有△ABC≌△A′B′C′,PA=PA′,∠MPA=∠MPA′=90度.(2)MN与线段AA′的关系为MN垂直平分线段AA′.总结归纳:(1)经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)成轴对称的两个图形是全等形.(3)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(4)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图所示的图案中,是轴对称图形的有A,B,C,D.2.下列图形中,不是轴对称图形的是(D)A.角B.等边三角形C.线段D.直角梯形3.下图中哪两个图形放在一起成轴对称B与F,C与D.4.轴对称与轴对称图形有什么区别与联系?答:区别为轴对称是指两个图形沿对称轴折叠后重合,而轴对称图形是指一个图形的两部分沿对称轴折叠后能完全重合;联系是都有对称轴、对称点和两部分完全重合的特性.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 下列图形是轴对称图形吗?如果是,指出轴对称图形的对称轴.①等边三角形;②正方形;③圆;④平行四边形.解:①等边三角形的对称轴为三条中线所在的直线;②正方形的对称轴为两条对角线所在的直线和两组对边中点所在的直线;③圆的对称轴为过圆心的直线.点拨精讲:对称轴是一条直线.探究2 如图,△ABC和△ADE关于直线l对称,若AB=2 cm,∠C=80°,则AE=2_cm,∠D=80°.点拨精讲:根据成轴对称的两个图形全等,再根据全等的性质得到对应线段相等,对应角相等.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.指出下列哪组图形是轴对称,并指出对称轴.①任意两个半径相等的圆;②正方形的一条对角线把一个正方形分成的两个三角形;③长方形的一条对角线把长方形分成的两个三角形.解:①两圆心所在的直线和连接两圆心的线段的垂直平分线;②正方形两条对角线所在的直线;③不是轴对称关系.点拨精讲:是不是轴对称看是否能沿某条直线折叠后重合.2.下列两个图形是轴对称关系的有A,B,C.3.如图,在网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在旁边的网格中设计出一个轴对称图案.(不得与原图案相同,黑、白方块的个数要相同)(3分钟)1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)第十三章轴对称13.1 轴对称13.1.1 轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l 对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2 线段的垂直平分线的性质(1)1.理解线段垂直平分线的性质和判定,并会运用此性质解决问题.2.会用尺规作图过直线外一点作已知直线的垂线.重、难点:线段垂直平分线的性质和判定定理的理解与运用.一、自学指导自学1:自学课本P61页“探究”,理解线段垂直平分线的性质与判定定理,完成下列填空.(5分钟)1.如图,l⊥AB,垂足为C,AC=BC,则△PAC≌△PBC,PA=PB.2.如图,PA=PB,若PC⊥AB,垂足为C,则AC=BC;若AC=BC,则PC⊥AB.总结归纳:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(3)线段的垂直平分线是到线段两个端点的距离相等的点的集合.自学2:自学课本P62页“例1”,掌握经过已知直线外一点作这条直线的垂线的方法.(5分钟)如图,A,B,C三点表示三个村庄,为了解决村民子女就近入学的问题,计划新建一所小学,要使学校到三个村庄距离相等,请你在图中确定学校的位置.解:①连接AB,AC,BC;②分别作AC,BC的垂直平分线交于点P,则点P就是所要确定的学校的位置.点拨精讲:此题主要运用了作线段垂直平分线解决问题的方法.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P62页练习题1,2.2.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,AB =AC =8 cm ,AB 的垂直平分线交AC 于D ,若△ADB 的周长为18,求DC 的长.解:∵DM 是AB 的垂直平分线,∴AD =BD ,设CD 的长为x ,则AD =AC -CD =8-x ,∵C △ADB =AB +AD +BD =8+(8-x)+(8-x)=18,∴x =3,即CD 的长为3 cm .点拨精讲:由线段垂直平分线的性质得AD =BD 进而求解.探究2 如图,△ABC 中,AD 平分∠BAC,DE ⊥AB 于E ,DC ⊥AC 于C ,求证:直线AD 是CE 的垂直平分线.证明:∵AD 平分∠BAC,DE ⊥AB ,DC ⊥AC ,∴DE =CD ,∴点D 在CE 的垂直平分线上.在Rt △AED 与Rt △ACD 中,∵AD=AD ,DE =DC ,∴Rt △AED ≌Rt △ACD(HL ),∴AE =AC ,∴点A 在CE 的垂直平分线上,∴直线AD 是CE 的垂直平分线.点拨精讲:证线段垂直平分线的方法1即定义,证垂直平分线的方法2即线段垂直平分线的判定方法.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,在△ABC 中,EF 是AC 的垂直平分线,AF =12,BF =3,则BC =15.2.如图,直线AD 是线段BC 的垂直平分线.求证:∠ABD=∠ACD.证明:∵直线AD 是线段BC 的垂直平分线,∴AB =AC ,DB =DC.在△ABD 与△ACD 中⎩⎪⎨⎪⎧AB =AC ,DB =DC ,AD =AD ,∴△ABD ≌△ACD(SSS ),∴∠ABD =∠ACD.3.在锐角△ABC 内一点P 满足PA =PB =PC ,则点P 是△ABC(D )A .三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点(3分钟)线段的垂直平分线的性质和判定有时是交叉使用,线段垂直平分线的性质是证明线段相等的常用定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.1.2 线段的垂直平分线的性质(2)会画轴对称图形或成轴对称的两个图形的对称轴.重、难点:会画轴对称图形或成轴对称的两个图形的对称轴.一、自学指导自学1:自学课本P62-63页“思考及例2”,掌握轴对称图形或成轴对称的两个图形的对称轴的作法,完成下列填空.(7分钟)如图,△ABC和△DEF关于某条直线成轴对称,你能作出这条直线吗?点拨精讲:作线段垂直平分线是根据线段垂直平分线的判定,而作对称轴是根据轴对称的性质作对称轴.总结归纳:(1)如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.(2)对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P64页练习题1,2,3.2.下列图形是不是轴对称图形?如果是轴对称图形的,画出对称轴的条数.解:(略)3.角、线段、直线、圆、扇形、正方形、等边三角形、直角三角形、等腰梯形和长方形中是轴对称图形的有哪些?分别有几条对称轴?解:轴对称图形有:角、线段、直线、圆、扇形、正方形、等边三角形、等腰梯形和长方形;角、扇形、等腰梯形只有1条对称轴,直线、圆有无数条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,长方形、线段有2条对称轴.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)探究1 正三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形有6条对称轴,正七边形有7条对称轴(分别画出图形的对称轴)……正n边形有n条对称轴.探究2 如图是从镜中看到的一串数字,这串数字应为810076.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.课本P64-65页复习巩固题1,2,3,7,8.2.下列轴对称图形中,只有两条对称轴的图形是(A)3.如图,把一圆形纸片对折后,然后沿虚线剪开,得到两部分,其中一部分展开后的平面图形是(B)4.画出下列图形的对称轴.(3分钟)1.作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.2.对称轴是一条直线;一个图形可能没有对称轴,也可能有很多条,不要多画,也不要漏画.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.1.2 线段的垂直平分线的性质第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论.原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”.此时,逆命题就很容易写出来.“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成.学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC =CB ,∠PCA =∠PCB=90°,∴P 在AB 的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD ⊥AB ,D 是垂足,但D 不平分AB ;如图(2),PD 平分AB ,但PD 不垂直于AB.这说明一般情况下,“过P 作AB 的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.从同学们的推理证明过程可知线段的垂直平分线的性质的逆命题是真命题,我们把它称为线段的垂直平分线的判定.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据. 例1 尺规作图:经过已知直线外一点作这条直线的垂线. 已知:直线AB 和AB 外一点C.(如下图) 求作:AB 的垂线,使它经过点C.作法:(1)任意取一点K ,使点K 和点C 在AB 的两旁. (2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定). ∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题.2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA=PB,PO⊥AB,则必有AO=BO,为什么?(2)如左下图,△ABC中,AC=16 cm,DE为AB的垂直平分线,△BCE的周长为26 cm.求BC的长.(3)有A,B,C三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法.难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴?二、探究新知我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图. 作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C ,D 两点;(2)作直线CD.CD 就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图. 教师引导学生思考:(1)在作法中为什么有CA =CB ,DA =DB?(2)可以用这种方法找线段的中点吗?四等分点呢? 三、举例分析例2 如图(1),△ABC 和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A 、点A′连线的垂直平分线即可,如图(2).例3 图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2 画轴对称图形(1)了解轴对称变换的意义,能够按要求作出简单平面图形经过一次轴对称变换后的图形.重、难点:借助轴对称的意义,画出一个图形关于某一条直线对称的图形.一、自学指导自学:自学课本P67-68页“归纳、思考与例1”,会作已知图形关于某条直线对称的图形,能利用轴对称的一些性质设计图案,完成下列填空.(5分钟)如图,观察下面作线段AB关于直线l对称图形的过程并填空:总结归纳:几何图形都可以看作由点组成,对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P68页练习题1,2.2.如图,以虚线为对称轴,画出图形的另一半,并说明完成后图形可能代表什么含义.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,已知△ABC,直线MN,求作△A′B′C′,使△A′B′C′与△ABC关于直线MN对称.解:如图,①过点A作AD⊥MN于D,延长AD至点A′,使A′D=AD,得点A关于直线MN的对称点A′;②同样作出点B,C关于直线MN的对称点B′,C′;③连接A′B′,B′C′,A′C′,则△A′B′C′就是所求作的三角形.点拨精讲:首先作出点A,B,C关于直线MN的对称点A′,B′,C′,使直线MN为线段AA′,BB′,CC′的垂直平分线,然后连接A′B′,B′C′,A′C′,得△A′B′C′.探究2 如图在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这样的三角形共有2个.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如图,把一个正方形纸片按以下方向对折后,沿虚线剪下,再展开,则所得的图形是(D)2.下列说法正确的是(C)A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△ADE成轴对称,则△ABC≌△ADED.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B关于直线l对称3.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于60°.4.如图,是画出的风筝的一半,请将另一半补充完整.(3分钟)连接任意一对对应点的线段被对称轴垂直平分是作轴对称图形的重要依据,作轴对称图形的方法:①找——在原图形上找特殊点(如线段的端点);②作——作各个特殊点关于对称轴的对称点;③连——依次连接各对称点.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.2 画轴对称图形(2)探索x轴、y轴对称的每对对称点的规律,利用规律作出关于x轴、y轴对称的图形.重、难点:用坐标轴表示轴对称.一、自学指导自学:自学课本P69-70页“思考、例2及归纳”,掌握x轴、y轴对称的每对对称点的规律,完成下列填空.(7分钟)1.如图,在坐标系中作出B,C两点关于x轴对称的点;总结归纳:点(x,y)关于x轴的对称点是(x,-y);关于x轴对称的点的坐标的特点是:横坐标相等,纵坐标互为相反数.2.如图,在坐标系中作出B,C两点关于y轴对称的点.总结归纳:点(x,y)关于y轴的对称点是(-x,y);关于y轴对称的点的坐标的特点是:纵坐标相等,横坐标互为相反数.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P70-71页练习题1,2,3.2.点P(-5,6)关于x轴对称点为Q,则点Q的坐标为(-5,-6);点P(-5,6)关于y轴对称点为M,则点M的坐标为(5,6).3.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).4.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.5.若点M(a,-5)与点N(-2,b)关于x轴对称,则a=-2,b=5;若这两点关于y轴对称,则a=2,b=-5.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 已知点A(-3,2),且点A与点B,点B与点C,点C与点D分别关于x轴、y 轴对称.(1)写出B,C,D的坐标;(2)问四边形ABCD是什么四边形?(3)试求四边形ABCD的面积.解:(1)点B(-3,-2),点C(3,-2),点D(3,2);(2)四边形ABCD是长方形;(3)S长方形ABCD=BC·AB=4×6=24.探究2 如图,已知△ABC的三个顶点的坐标分别是(-1,5),(-5,3),(-3,-1),作出△ABC关于x轴、y轴的对称图形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题导读:1.什么是轴对称图形?什么是对称轴?2.关于这条直线成轴对称?什么是对称点?3.轴对称图形和成轴对称的两个图形有什么区别和联系?4.什么是垂直平分线?5.轴对称的性质是什么?预习自测:1、下列图案是轴对称图形的有(探究一:轴对称图形与成轴对称的两个图形的区别与联系区别与联系?区别:轴对称是说个图形的位置关系,13.1.1轴对称学习目标:1、通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念;2、探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察,培养学生认真探究、积极思考的能力。

学习重点:学习难点:轴对称图形和两个图形关于某直线对称的概念及轴对称的性质轴对称图形和两个图形关于某直线对称的区别和联系及轴对称的性质.A. 1个B. 2个C. 3个D. 4个等腰三角形的对称轴有()A、1条B、3条C、1条或3条D、无数条3.下面不是轴对称图形的是()。

①长方形②平行四边形③圆④半圆4.要使大小两个圆有无数条对称轴, 应米用第(2、)种画法。

学法指导: 1、浏览学案,带着问题自学课本;2、首先读课本58〜60页了解内容;3、再读课文,根据下面“问题导读”戈闲关的概念及性我的疑惑: ②◎质;4、再读课文,理解轴对称图形和成轴对称的两个图形之间的区别和联系以及轴对称的性质5、完成课后习题;6、再读课文,找出疑惑1:并作出相应的标记;7、合上课本完成学案;9、交流讨论学案的内容2:并作出评价。

观察上面两幅图片,议一议:轴对称图形与成轴对称的两个图形的轴对称图形是说个具有特殊形状的图形。

联系:都能沿着某条直线跟踪训练2:作出下列图形的对称轴。

跟踪训练1:1.标出下列图形中的对称点探究二:轴对称的性质。

这条直线是0如图,△ ABC ffiA A B' C关于直线MN对称, 轻松检测点A'、B'、C分别是点A、B、C的对称点,线段AA'、BB'、CC与直线MN有什么关系?(1)设AA交对称轴MN于点卩,将^ ABC和△ A B' C沿MN折叠后,点A与A'重合吗?于是有P心,/ MPA F/ (2)对于其他的对应点,如点B、B' , C C 度1.下列图形中不是轴对称图形的是(似的情况吗?(3)那么MN与线段AA,BB',CC的连线有什么关系呢?归纳:1、垂直平分线的定义:,叫做这条线段的垂直平分线也有类5.2、轴对称的性质:①如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的②类似地,轴对称图形的对称轴,是的垂直平分线。

A B2.下列英文字母属于轴对称图形的是(A、NB、S3 .下列各时刻是轴对称图形的为(I3:DEC、4.在镜中看到的一串数字是“下列图形中对称轴最多的是A、圆 B 、正方形C、)780903”,则这串数字是()C 、等腰三角形 D*6.求右图阴影部分的面积。

(单位:厘米)反思总结:□:5D、线段113.1.2线段垂直平分线性质定理学习目标: 通过动手试验掌握线段的垂直平分线的性质与判定 理解线段垂直平分线与对称轴的关系 掌握线段垂直平分线的性质及判定 1、 2、 3、 学习重点: 学习难点: 线段垂直平分线的性质与判定的理解 运用线段垂直平分线性质及判定解决问题。

学法指导: 1、温习前面所学的知识完成知识链接;2、读课本61页了解内容; 3、再读课文,划出线段垂直平分线性质定理与判定定理 4.再读课文,理解线段垂直平分线性质定理与判定定理; 5、再读课文, 理解并推导出线段垂直平分线性质定理及判定定理; &再读课文,找 出疑惑并作出相应的标记;7、再读课文,做课后的习题;8、完成学案; 9、交流讨论学案的内容并作出评价。

一、知识链接: 如图,四边形ABCD 与四边形EFGH 关于MN 对称。

(1) A B C D 的对称点分别是___________________ ,线段AD AB 的对应线段分别是 ____________ , CD= ________ , / CBA ____ , / ADC __________(2) 连接AE BF, AE 与BF 平行吗?为什么? (3) 对称轴MN 与线段AE 的关系?M二、探究点一:线段垂直平分线性质定理如图,直线I 垂直平分线段AB, P i , P 2, R ,…是I 上的点,请猜想点P i,P 2,R ,… 到点A 与点B 的距 离之间的数量关系并证明你的猜想 猜想:已知: 求证: 证明:直线I 垂直平分点C 在直线I 上AC= 线段垂直平分线性质定理:几何语言:跟踪训练:如右图所示,直线MN和DE分别是线段AB、直平分线,它们交于P点,请问PA和PC相等吗?为什么?判定定理:几何语言: 跟踪训练:.已知:如图△ ABC中,边AB, BC的垂直平分线相交于点P. 求证:点P在AC的垂直平分线上. A BC的垂三、探究点二:线段垂直平分线判定定理你能写出线段垂直平分线的性质定理的逆命题吗?归纳:小帅同学为验证逆命题已经做出了一些步骤,请你帮他补充完整: 已知:求证:在AB的线上C £四、随堂检测:1 如图,AD X BC BD =DC点C在AE的垂直平分线上,五、反思总结问题导读:6.如何作线段的垂直平分线?13.1.2 线段垂直平分线(2)7.如何过直线外一点作这条直线的垂线? 组长签字: 学习目标:利用轴对称的性质和线段垂直平分线的性质和判定画图并解决实例。

学习重点学习难点学法指导利用轴对称的性质和线段垂直平分线的性质和判定画图并解决实例。

过直线外一点作直线的垂线的尺规作图.1、浏览学案,带着问题自学课本;2、首先读课本62〜63页了解内容;3、再读课文,根据下面“问题导读”划相关的作图步骤;4、完成课后习题;5、再读课文,找出疑惑并作出相应的标记;6、合上课本完成学案;7、交流讨论学案的内容并作出评价。

复习巩固1、如图所示,有A B C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在()A.在AC BC两边高线的交点处B.在AC BC两边中线的交点处C.在AC BC两边垂直平分线的交点处D.在A、B两内角平分线的交点处2、作/ AOB勺角平分线探究一:作已知直线的垂直平分线已知:求作:作法:究二:过直线外一点作这条直线的垂线已知求作作法B O O c 跟踪训练:2. 某地有两所大学和两条相交叉的公路,如图所示(点 M N 表示大 学,AO BO表示公路).现计划修建一座物资仓库,希望仓库到两所 大学的距离相等,到两条公路的距离也相等.(1) 你能确定仓库应该建在什么位置吗?在所给的图形中 画出你的设计方案;(2) 阐述你设计的理由.反思总结:13.2画轴对称图形学习目标:1、 能够按要求作出简单平面图形经过一次对称后的图形。

2、 能设计简单的轴对称图案。

3、 通过画轴对称图形,增强学生学习几何的趣味感,培养审美情操。

学习重点学习难点练习:1. △ ABC 中, DE 是 AC 的垂直平分线,垂足为E,交AB 于点D,AE=5cm1、温习前面所学的知识完成知识链接;2、读课本67〜68页了解内容;3、再读课文,找出画轴对称图形的方法;4.再读课文,当堂检测:某地由于居民增多,要在公路I 上增加一个公共汽车站 A 、B 是路边的两个新建小区,这个公共汽车站建在什么位置B1、 2.如图,已知在^ ABC 中,AB=AC / BAC=120, AC 的垂直平分线EF 交AC 于点E,交BC 于点F .求证:BF=2CFA利用对称轴作轴对称图形。

找对称点。

学法指导N -B理解画轴对称图形时如何找对称点;5、再读课文,理解并记忆这种方法;6、再读课文,找出疑惑并作出相应的标记;7、再读课文,做课跟踪训练:为学校运动会设计一徽标,要求贴近学生生活,突出运动主题, 是轴对称图案。

五、当堂检测:1、如图,△ ABC 中, AB=AC DE 是AB 勺垂直平分线, AB=8, BC=4 / A=36°,则/跟踪训练:请画出三角形关于直线I 对称的图形LDBC= _____ , △ BDC 勺周长 C BDC =后的习题;8、完成学案;9、交流讨论学案的内容并作出评价。

、知识链接:1、如图:你能做出它关于虚线的对称图形吗?R " * J ・ *f・ F八…(1)找到点A 的对称点AA A ’与对称轴有什么关系?(3)在图中另找一对对称点,接对称点的线段与对称轴还有上述关系吗?归纳:连接任意一对对称点的线段被对称轴 ____________________ 二、预习自测:如图,已知点A 和直线I ,试画出点A 关于直线I 的对称点A'。

请说说你的画法、探究点1:画已知图形的轴对称图形 作^ABC 关于直线 画法: I 的对称的图形△ A B' C连并画出△ ABC2、如图,△ ABC的三边AB BC CA的长分别是20、30、40、其中三条角平分线将△ ABD分为三个三角形,则S 必BO : S 舌CO : S告AO = ____ . 4.再读课文,理解点关于x轴,y轴对称点的坐标;5、再读课文, 点关于x轴,y轴对称点的坐标;6、再读课文,找出疑惑并作出相第1题第2题应的标记;7、再读课文,做课后的习题;8、完成学案;9、交流讨论学案的内容并作出评价。

、知识链接:1、如图,在平面直角坐标系中,分别标出点A、B、C、D、^点的坐标。

3、如图,已知:AD平分N BAC,EF垂直平分AD交BC延长线于F,连结AF。

证:N B=NCAF。

六、反思总结:12.2直角三角形全等的判定学习目标:1、掌握在平面直角坐标系中,关于X轴和y轴对称点的坐标特点。

2、能在平面直角坐标系中画出一些简单的关于X轴和y轴的对称图形。

3、能运用坐标中的轴对称特点解决简单的问题。

学习重点学习难点在平面直角坐标系中画出一些简单的关于X轴和y轴的对称图形能运用坐标中的轴对称特点解决简单的问题。

学法指导1、温习前面所学的知识完成知识链接;2、读课本69〜70 页了解内容;3、再读课文,划出点关于X轴,y轴对称点的坐标I p II 4 iI I I』I.L ---- L _ 廿I p .--H-Y TA I I h t I H目I I I J』》I I ',L —_L------- I----- ]■ --- 卜h P I 4 hP I P卄一卜一十一咔一十p II 丨tI I I P F.L L--卜—十一十■”寸Y J 4 d b Iri—十;-IIIIII一IIL—PIr^EI_■■_■■IIIL1riJ-■.^^.1*B-亠IIC—11LP2二、探究点一:点关于x轴对称(1)在坐标系中标出点A B C、D E关于X轴的对称点A、B i、C、D I、E i(2)写出它们的坐标(3)观察每对对称点的坐标,你发现了什么规律?归纳:在平面直角坐标系中,关于X轴对称的点横坐标______________ ,,纵坐标____________________ 点(X,y)关于X轴的对称点的坐标为4、已知△ ABC的三个顶点的坐标分别为A(-3,5),B(-4 ,1),C(-1 ,3),作出△ ABC关于y轴对称的图形。

相关文档
最新文档