地形图生成DEM
第3章 DEM数据获取方法
2.几何学观点:DEM表面通过不同的几何结构来 表示,这些结构按其自身的性质可分为规则和 不规则两种形式。 规则结构据其在空间表现可分为: • 一维结构:对应的采样方法为剖面法或等高线 法。 • 二维结构:通常为正方形或矩形、等边三角形、 六边形或其他规则几何图形。 不规则结构:不规则三角形或多边形。
步骤: 扫描图件准备:图件、接图表、控制点、坐标系等 图件预处理:检查图面是否平整、图廓点与符号清 晰,量测图廓边长,检查变形情况,检查接边,等 高线连接情况等。 定向纠正与编辑:将地图数据由数字化仪坐标(扫 描文件坐标)转化为地理/地图坐标。若图面变形大, 逐格网进行纠正。坐标变化方式由仿射变换、双线 性变换、二次多项式等方法。坐标误差要小于10米。
南方NTS-202 205全站仪 徕卡TPS700系列卓越中文全站仪
南方ET-02A 05A电子经纬仪
4.其他数据源 用气压测高法、航空测高法、重力测量 等方法,可得到地面系数分布的高程 数据。 依此建立的DEM主要用于大范围且高程 精度要求较低的研究。
5.既有DEM数据 我国到目前为止,已经建成了覆盖全国范围的 1:100万、1:25万、1:5万数字高程模型,以及 七大江河重点防洪区的1:1万DEM,省级1:1万 数字高程模型的建库工作也已全面展开。 对已存在的各种分辨率的DEM数据,应用时要考 虑自身的研究目的以及DEM分辨率、存储格式、 数据精度和可信度等因素。
2.数据的密度 数据密度是指采样数据密集程度,与研究区 域的地貌类型和地形复杂程度相关。用于刻 画地形形态所必需的最少的数据点。 表示方法:相邻两点之间的距离、单元面积内 的点数、截止频率、单位线段上的点数等。 采样距离:相邻两采样点之间的距离,也称采 样间隔。
采样距离为20米—表示规则格网分布的采 样数据 每平方米500点—描述随机分布的采样数据 单位线段上的点数,每米2点—描述数据分 布是沿等高线或特征线等线状分布采样点
地形图比例尺、等高距和DEM分辨率关系
地形图⽐例尺、等⾼距和DEM分辨率关系地表⾯的形态是很复杂的,不同地貌类型的形态是由它的相对⾼度、地⾯坡度以及所处的地势所决定的,它们是影响等⾼距的主要因素。
从等⾼距计算公式可以看出,当地图⽐例尺和图上等⾼线间的最⼩距离简称等⾼线间距确定之后,地⾯坡度是决定等⾼距的主要因素,当然等⾼距的⼤⼩也受到地⾯⾼度所制约。
h=M*S*tanα/1000式中:M—地形图⽐例尺分母;S—等⾼线间的最⼩间距;α—地⾯坡度。
h—等⾼距。
等⾼距的选择⼀般应考虑两种因素:图⾯清晰度和地貌表⽰的详细度。
对选择等⾼距来说,图⾯清晰度指地图上等⾼线最⼩间距对图⾯载负的影响程度。
地貌表⽰详细度指单位⾼差内等⾼线所通过的数量对地貌表⽰的影响程度。
它们之间是互相影响⼜互相制约的统⼀体。
所以选择分区适宜的等⾼距的实质是选择详细度和图⾯清晰度的最佳结和。
常见⽐⽐例尺、等⾼距和DEM分辨率关系如下表所⽰:2、cellsize与dem分辨率的关系cellsize(x,y)是栅格象元的⼤⼩,不是通常意义上dem的分辨率。
通常dem有两种分辨率:1)⽔平分辨率:就是你说的那个数;2)垂直分辨率:也就是通常意义上dem的分辨率。
改变栅格⼤⼩使⽤重采样的⽅法,arctoolbox⾥有个⼯具resample。
由原始数据(例如等⾼线、有⽴体像对的卫星数据)⽣成dem时cellsize 会影响dem的精度,但对dem做resample时表⾯上看xy分辨率是提⾼了,但实际上并没有真正提⾼dem的精度,和直接⽣成的该分辨率的dem有很⼤的差别。
resample后计算出的坡度范围要⽐原始的dem计算出的坡度范围宽。
DEM的分辨率,⼀般⽽⾔是格⽹⼤⼩cellsize的3-4倍。
cellsize(5,5)说明的是格⽹⼤⼩是5*5,分辨率⼀般在15-20M左右。
但是确定精度还得根据图中信息元素判断。
DEM数字高程模型
概述:DEM旳点模式表达
高程矩阵(规则矩形格网),与栅格地图相同。 ●表达措施:将区域划提成网格,统计每个网格旳 高程; ●线模型到高程矩阵旳转换。 ◆优点:计算机处理以栅格为基础旳矩阵很以便, 使高程矩阵成为最常见旳DEM; ◆缺陷:在平坦地域出现大量数据冗余;若不变化 格网大小,就不能适应不同旳地形条件;在视线计 算中过分依赖格网轴线。
概述:建立DEM旳目旳
1)作为国家地理信息旳基础数据; 2)土木工程、景观建筑与矿山工程规划与设计; 3)为军事目旳而进行旳三维显示; 4)景观设计与城市规划; 5)流水线分析、可视性分析; 6)交通路线旳规划与大坝选址; 7)不同地表旳统计分析与比较; 8)生成坡度图、坡向图、剖面图、辅助地貌分析、估计侵蚀和径流等; 9)作为背景叠加多种专题信息如土壤、土地利用及植被覆盖数据等,以 进行显示与分析; 10)与GIS联合进行空间分析; 11)虚拟现实(Virtual Reality); 另外,从DEM还能派生下列主要产品:平面等高线图、立体等高线图、等 坡度图、晕渲图、通视图、纵横断面图、三维立体透视图、三维立体彩色图 等。
等高线插值法
三、DEM旳应用
概述应用: 1、三维景观 2、数码城市和虚拟现实 3、DEM在工程上旳应用 应用算法: 1、基于DEM旳信息提取 2、等高线旳绘制 3、基于DEM旳可视化分析
三维景观
数码城市和虚拟现实
City Model
Attribute RDB
DOM
DEM
DLG
数码深圳
3D 建筑
空间插值措施转换成点模式格式数据。
DEM旳生成
措施: 1、人工格网法 2、三角网法 3、立体像对法 4、曲面拟正当 5、等值线插值法
人工格网法
DEM数据获取方法
DEM数据获取⽅法⼀、DEM数据获取⽅法:定义:地形图指的是地表起伏形态和地物位置、形状在⽔平⾯上的地物和地貌按⽔平投影的⽅法,并按照⼀定的⽐例缩绘到图纸上,这种图称为地形图。
特点:(1)具有统⼀的⼤地坐标系统的⾼程系统(2)具有完整的⽐例尺系列和分幅编号系统:国家基本地形图含1:5千、1:1万、1:2:2.5/1:5万、1:10万、1:25万、1:50万、1:100万8种⽐例地形图。
缺点:(1)地形图现势性较差:纸质地形图制作⼯艺复杂,更新周期⽐较长,⼀般不及时反映局部地形地貌的变化情况(2)地形图存储介质单⼀,容易变形:传统地形图多为纸质存储介质,存放环境(温湿度)导致地形图图幅产⽣不同程度的变形,这种变形表现在不同⽅向上的长度变形和图幅⾯积上的变形(3)地图精度有限:地图精度决定这地形图对实际地形表达的可信度,与地形图⽐例尺、等⾼线密度(由等⾼距表⽰),成图⽅法有关。
不同⽐例尺的地形图,其所表⽰的⼏何精度和内容详细程度有很⼤的差别。
在应⽤DEM的时候要考虑DEM分辨率、存储格式、数据精度和可信度等因素。
⼆、DEM数据采样策略与采样⽅法:采样:确定在何处需要测量点的过程,这个过程有三个参数。
决定:点的分布、点的密度和点的精度。
1.采样数据的分布:由数据位置和结构(分布)来确定,指数据点的分布形态位置有地理坐标系统中经纬度或者⽹格坐标系统中坐标决定。
结构的形式很多,因地形特征、设备、应⽤的不同⽽不同。
2.数据的密度:是指采样数据密集程度,与研究区域的地貌类型和地形复杂程度有关。
⽤于刻画地形形态所必须的最少的数据点。
表⽰⽅式:相邻的两点之间的距离、单元⾯积内的点数、截⽌频率(采样数据所能表⽰的最⾼频率)、单位线段上的点数等。
采样距离:相邻两点之间的距离,也称采样间隔。
·通常数字加单位来表⽰,如采样距离为20⽶,表⽰规格⽹分布的采样数据·另⼀种表⽰法是单位⾯积内的点数,如每平⽅⽶500点,描述随机分布的采样数据·描述数据分布是沿等⾼线或特征等线状分布采样点,常⽤单位线段上的点数,如每⽶2点3.数据的精度:是指数据点本⾝所具有的精确度,是数据获取过程中各种不同类型误差的综合反映采样数据精度与数据源、数据的采集⽅法和数据采集的⼀起密切相关。
GIS概论7_DEM与数字地形分析
GIS概论
李伟涛 liweitao_801225@
DEM与数字地形分析
基本概念
数字高程模型、数字地形分析
DEM采集与建立 数字地形分析
基本因子分析、地形特征分析、流域分析、可视性分析
23
DEM空间插值方法—局部分块内插
局部分块内插是将地形区域按一定的方法进行分块,对每 一分块,根据其地形曲面特征单独进行曲面拟合和高程内 插。 分块方法:一般按地形结构线或规则区域分块,分块大小 取决于地形复杂一定宽度的重 叠,或者对内插曲面补充一定的连续性条件。 优点:简化了地形的曲面形态,每一分块可用不同曲面表 达,同时得到光滑连续的空间曲面。不同的分块单元可使 用不同内插函数。 常用内插函数:线性内插、双线性内插、多项式内插、样 条函数、多层曲面叠加法等。
25
DEM与数字地形分析
基本概念
数字高程模型、数字地形分析
DEM采集与建立 数字地形分析
基本因子分析、地形特征分析、流域分析、可视性分析
26
数字地形分析
一、基本因子分析
1、坡度
2、坡向
3、曲率 4、宏观地形因子
27
数字地形分析
一、基本因子分析
1、坡度
当具体进行坡度提取时,常采用简化的差分公式,完整的数学表示为:
28
数字地形分析
一、基本因子分析
2、坡向
对于地面任何一点来说,坡向表征了该点高程值改变量的最大变化方向。 在输出的坡向数据中,坡向值有如下规定:正北方向为0°,顺时针方向 计算,取值范围为0°~360°。
29
数字地形分析
一、基本因子分析
3、曲率
DEMDOMDLG生产流程
1.数字立体摄影测量生产DLG方法
航摄负片
象片参数
象片扫描
控制点坐标
象对定向
立体测绘地物
脱机编辑
符号化 与制图整饰
矢量数据库建库 绘图或刻盘 质量检测与元数据文件 记录
2.地图扫描矢量化或手扶跟踪数字化
地图扫描矢量化或手扶跟踪数字化 地图扫描矢量化或手扶跟踪数字化技术 还比较成熟,作业流程如下:
全要素地形图
等高线版地形图
地图扫描 人机交互等高线矢量化 加测注记点
地图扫描 等高线自动矢量化 加测注记点
等高线高程赋值与检查
周边等高线地图的数据获取
构造三角网
内插DEM格网
DEM建库与刻盘
质量检测与元数据文件记录
二、数字正射影像的生产流程
数字正射影像的生产根据不同的数据源 和不同的设备有下面几种生产工艺。 1.全数字摄影测量方法 与前面所述的全数字自动摄影测量和 交互式数字摄影测量方法相一致,由数字 摄影测量工作站直接生成数字正射影像, 工艺流程如下:
第二种是点栅格观点:认为该网格单元 的数值是网格中心点的高程或该网格单 元的平均高程值,这样就需要用一种插 值方法来计算每个点的高程。
规则格网的优点:
数据结构简单,很容易地用计算机 进行处理,特别是栅格数据结构的 地理信息系统。 很容易地计算等高线、坡度坡向、 山坡阴影和自动提取流域地形,使 得它成为DEM最广泛使用的格式。
遥感数据
控制点坐标
数字影象几何纠正
数字影象处理与融合
数字影象镶嵌
地名注记与 图廓整饰 数字正射影象 数据库 绘图或刻盘 质量检测与 元数据文件记录
三、数字线划图(矢量型)的生产工艺
浅谈DEM的制作方法
浅谈DEM的制作方法摘要:论文阐述了数字高程模型DEM内涵,简要介绍了DEM的制作方法,通过对乌海市海勃湾区某煤场地形图航片的数字处理,通过JX4-G TINDEM.exe 模块,理论联系实际的展现利用数字摄影测量的方法生成多种DEM和其它三维数字产品的全过程。
关键词:摄影测量;DEM;三维产品1 DEM的内涵数字地面模型(DTM)是表示地面特征的空间分布的数据阵列,最常用的是用一系列地面点的平面坐标X,Y以及该点的地面高程Z或属性组成的数据阵列。
若地面点按一定的网格排列,点的平面坐标X,Y有起始点开始推算,无需记录,地面形态只用地面高程表示这样的数据阵列被称为数字高程模型(DEM)。
三维分析大多是在数字高程模型(DEM)上进行的,一旦区域上生成所需密度和精度的DEM,内容丰富的各种三维分析是轻而易举的,其三维的可视化、真实场景、电子沙盘也迎刃而解。
DEM最常用的三种形式为:等值线DEM、TINDEM 、格网DEM。
1.1 等值线DEM高程等值线方法是地图学的基本方法,将地图上所有等高线数字化,即可形成高程等值线DEM。
等高线DEM的建立一般是直接采用数字化地图上的等高线。
1.2 不规则三角网TIN若将按地形特征采集的点按一定规则连接成覆盖整个区域且互不重叠的许多三角形,构成一个不规则三角网TIN表示的DEM,通常称为三角网DEM或TIN。
通常的TIN(Triangulated Irregular Network)结构是按Delaunay三角形规则生成,该三角形的特点是任一三角形外接圆内部包含其它点,这里并未包括外接圆上。
按这个规则生成的三角网,称为Delaunay三角网。
1.3 格网DEM利用一系列在X,Y方向上都是等间隔排列的地形点的高程Z表示地形,形成一个个矩形格网DEM。
格网的每一个交点都包含有此处相关的高程信息。
2 DEM的制作方法论文用摄影测量的方法制作DEM,这种方法制作DEM是指通过影像中的地物以及已经制作好的数据来进行生产。
第八章 DEM分析
4、DEM应用
1)作为国家地理信息的基础数据; 2)土木工程、景观建筑与矿山工程规划与设计; 3)为军事目的而进行的三维显示; 4)景观设计与城市规划; 5)流水线分析、可视性分析; 6)交通路线的规划与大坝选址; 7)不同地表的统计分析与比较; 8)生成坡度图、坡向图、剖面图、辅助地貌分析、估计侵蚀和径流等; 9)作为背景叠加各种专题信息如土壤、土地利用及植被覆盖数据等,以 进行显示与分析; 10)与GIS联合进行空间分析; 11)虚拟现实(Virtual Reality);
在计算出各地表单元的坡度后,可对不同的坡度设定不同的灰度 级,可得到坡度图。
2、坡向
坡向是地表单元的法向量在水平面上的投影与X轴之间的夹角,
在计算出每个地表单元的坡向后,可制作坡向图,通常把坡向分为东、 南、西、北、东北、西北、东南、西南8类,再加上平地,共9类,用 不同的色彩显示,即可得到坡向图。
2)三角网法
对有限个离散点,每三个邻近点 联结成三角形,每个三角形代表一个 局部平面,再根据每个平面方程,可 计算各格网点高程,生成DEM。
2、DEM 生成 3)曲面拟合法
根据有限个离散点的高程,采用多项式或样条函数求 得拟合公式,再逐个计算各点的高程,得到拟合的DEM。 可反映总的地势,但局部误差较大。
(三)基于DEM的可视化分析
1、剖面分析
1)意义:
常常可以以线代面,研究区域的地貌形态、轮廓形状、 地势变化、地质构造、斜坡特征、地表切割强度等。
如果在地形剖面上叠加其它地理变量,例如坡度、土 壤、植被、土地利用现状等,可以提供土地利用规划、工 程选线和选址等的决策依据。
由DWG地形图生成DEM
1.由DWG地形图生成DEM1.1从DWG中提取高程点数据1.1.1切割DWG地形图数据量太大,先切割再进行其他操作。
具体步骤为:用CAD2005把上、下两幅图转换成2000格式(CASS是CAD2002配套产品)-用CASS打开上、上两幅图(CAD中没有SAVET保存选择多边形内图形功能)-“插入”-“块”-名称中打开红线研究区-去掉“在屏幕上指定点”(X,Y,Z全是0)-确定后就可以显示红线研究区-用矩形圈出研究区-“SAVET命令”-输入比例尺(10 000)-多边形保存1-选中刚画的矩形-OK。
1.1.2合并上下两幅图CAD中有一些命令,qselect可以选择满足条件的数据,就可以选择一层数据,wblock可以制作块保存选择的数据,具体步骤为:打开裁剪后的图上-“插入”-“块”-打开裁剪后的图下-去掉“在屏幕上指定点”(X,Y,Z 全是0)-选上左下角的“分解”(如果不分解,整个下图就是一块,选中一条线就把图下全部选中了,删除一条线就把整个删除了,当然现在不选,可以用CAD分解命令分解开)-确定后两幅图就拼接好了-然后打开红线-再次整体裁剪两幅合并的图-打开图层管理-只显示等高线和高程数据图层-另存为CAD图。
1.1.3补充高程点数据由于等高线质量太差了-断线或缺少线,没有高程属性等,不用等高线生成DEM,用高程点数据生成DEM)。
具体步骤为:设置文字样式通过“格式”-“文字样式”-设置和原来的高程文字相同样式-补点用TEXT命令-用鼠标确定文字位置-确定角度为0-输入高程数据-复制高程数据文字-沿着等高线粘贴该高程数据即可(以后用回车或空格完成粘贴)-换等高线时粘上错误高程后双击文字可改-然后再复制新文字1.1.4获得高程点数据表原先已有高程点是由“高程点和高程数据注记文字”组成的,高程点提供了准确的位置(X,Y)而没有Z属性,但文字注记提供了高程值而位置是不准的,有一个解决办法可以得到准确位置的准确高程值,先得到所有点的位置数据表(包含X,Y),再得到高程数据表(包含X,Y,H),再编程实现点和高程值的匹配,具体实现方法为:点的位置数据和高程数据分别保存在两个数组中,从第一个点开始在高程数据中找距离与他小于一个定值的高程文字,这个文字的内容就是这个点的高程,找到后马上去掉这个高程文字数据,减小以后的寻找负担(在VC中可以用CUintArray作为数据数组,有删除函数,采用GetSize()得到要寻找的数据个数;当然还有一种方法是,现在已经有EXCEL数据,转换成ACESS数据库,然后在VC中读取数据库,一个在VC中好实现读取ACESS数据库,再一个是不是速度比VC中读取EXCEL文件快呢?具体实现时在点数据表中新那一个字段,保存高程,在另一个高程表中读取XY值比较距离,打到高程就把高程数值更新到点数据表中的新字段中,当然找到一个就把高程表那一条记录删除,当然找到一条记录最好是再接着找,要是找到两个就说明那附近有问题,一个点和两个高程数据接近,或者说没有找到任何一个点,是不是距离设置太小了。
什么是4D(DRG、DLG、DOM、DEM)数据
什么是4D(DRG、DLG、DOM、DEM)数据1,DOM ,利⽤数字⾼程模型对扫描处理的数字化的航空相⽚、遥感影像抄,经逐个像元纠正,按图幅范围裁切⽣成的影像数据。
百DOM 是需要DEM进⾏⼆次加⼯的,也是4D产品中最为⾼级的产品。
2,DEM ,通过等⾼线、或航空航天影像建⽴以表达地⾯⾼程起伏形态的数字集合。
DEM数据为基础数据。
3,DRG,是纸制地形图的栅格形式的数字化产品,可与DOM、DEM集成派⽣出新的可视信息。
4,DLG,利⽤航空航天影像通过对影像进⾏识别和⽮度量化,建⽴基础地理要素分层存储的⽮量数据集,既包括空间信息也包括属性信息,可⽤于各专业信息系统的空间定位基础。
⼀、 DOM (图):利⽤数字⾼程模型对扫描处理的数字化的航空相⽚、,经逐个像元纠正,按图幅范围裁切⽣成的影像数据,它的信息⽐较直观,具有良好的可判读性和可量测性,从中可直接提取⾃然地理和社会经济信息。
在SAR图像处理中,往往需借助DEM数据来解决RD定位导致的斜距成像⼏何失真。
因此,求解X,Y,Z考虑了三个⽅程。
即距离公式、多普勒频率公式和地球坐标公式。
也就是说DOM是需要DEM 进⾏⼆次加⼯的,也是4D产品中最为⾼级的产品。
DEM (数字⾼程模型) :通过等⾼线、或影像建⽴以表达地⾯⾼程起伏形态的数字集合。
⽬前可得到的有90m的SRTM,和30m的Aster GDTM数据。
前者采⽤InSAR技术获取,后者则是⾼分辨率⽴体摄影测量技术。
两者相似之处都需要两幅图像,⽽且精确配准。
需要有⼀定的基线长度,需在⼀定范围内取值。
不同之处,前者是利⽤波的相⼲性原理求得,后者则是光直线传播所产⽣的共线⽅程。
DEM数据为基础数据。
DRG (数字栅格地图) :数字栅格地图是纸制地形图的栅格形式的数字化产品,可与DOM、DEM集成派⽣出新的可视信息。
该类型数据主要是将已有的纸质地图进⾏栅格化,然后配准,⽬前这类图很少⽤到,多⽤⾼分辨率的影像来取代,或者就是将主要地物进⾏⽮量化表征和存储,⽬前⼤多数的都⽀持这⼀功能。
DEM数据获取方法解析
tan
Y
2
2
Y
R
x 1
Z01
P
Z10
T
(1,1)
OLeabharlann (0,0)(1,0)
又:
tan X
PO RO
PO QO QO RO
tan sin 1
Q
y
2 S
tan Y
PO SO
PO QO QO SO
tan
sin 2
tan
cos1
所以: tan 2 X tan 2 Y tan 2
第三节 DEM数据采样策略与采样方法
地形曲面几何特征
理论基础: 地形表面可以划分成点和线划 分成一系列的单一几何表面 组成地形表面点和线可以分为两大类: 特 征要素和非特征要素
特征要素包括地形特征点和特征线
特征点: 山顶、洼地、鞍部、山脚 点、山脊点、山谷点等
特征线: 山脊线、山谷线、各种断 裂线(陡坎、海岸线、水涯线等)
(实线为山脊线, 虚线为山谷线, 三角形表示山顶, 小园 为鞍部, 正方形为方向变化点和坡度变化点)
摄影测量数据采集方法
绝大部分的大比例尺图(1:5千、1:1万、 1:5万)的成图是采用摄影测量方法
立体像对法
资料来源于张超主编的《地理信息系统教程》所配光盘
两类数字摄影测量
全数字自动摄影测量方法: 全数字摄影测量方 法采用规则格网采样,直接形成格网DEM,如 果与GPS自动空中三角测量系统集成,则可形 成内外业一体的高度自动化DEM数据采集技术 流程
数据精度
采样数据精度与数据源、数据的采集方 法和数据采集的仪器密切相关的 数据源: 野外测量>影像>地形图扫描 影像:摄影测量 >GPS
以数字化等高线地形图快速生成DEM
以数字化等高线地形图快速生成DEM
王乐;徐炳亭
【期刊名称】《网络新媒体技术》
【年(卷),期】2001(022)005
【摘要】本文提出一种根据等高线快速建立DEM的方法.用以矢量方式存储的等高线和等高线树形关系作为基础数据,通过分析计算出各等高线间空白区域的高程,并用这些数据将原数据填补成完整的DEM数据.
【总页数】4页(P314-317)
【作者】王乐;徐炳亭
【作者单位】天津大学职业技术教育学院,;天津大学职业技术教育学院,
【正文语种】中文
【中图分类】TP391
【相关文献】
1.山区DEM的快速生成与精度分析 [J], 杨昕;王春;陈卫荣
2.基于DEM数据的等高线地形图的制作——以四川省绵阳市为例 [J], 任正霖
3.机载LiDAR技术快速生成高精度DEM [J], 程纲;李志文;吴朝辉;刘元志
4.基于地形图数据快速生成大范围DEM的研究与实现 [J], 胡香;谭忠厚
5.基于机载点云数据的高精度水域DEM快速生成方法 [J], 周国新; 唐建波; 雷丽珍; 林超; 陈驰
因版权原因,仅展示原文概要,查看原文内容请购买。
如何处理地形图数据以生成数字高程模型
如何处理地形图数据以生成数字高程模型生成数字高程模型(Digital Elevation Model,简称DEM)是地图制作和地理信息处理的重要工作。
DEM作为一种描述地面高程分布的数据模型,广泛应用于土地规划、环境分析、气象预测等领域。
本文将介绍如何处理地形图数据以生成DEM,包括数据获取、处理方法和应用。
一、数据获取生成DEM所需的地形图数据可以通过多种途径获取。
其中,地理信息系统(GIS)是常用的数据来源。
通过GIS软件,可以获取地面要素数据、地形图和卫星遥感图像等。
此外,卫星激光测高(Lidar)和航空摄影测量也是获得高精度地表数据的重要手段。
二、数据预处理取得地形图数据后,需要进行预处理以满足DEM生成的要求。
首先,需对数据进行去噪处理,去除不符合地形特征的异常值或干扰信号。
其次,进行数据格式转换,将地形图数据转化为标准的栅格数据格式,如TIFF、ASCII等。
此外,对数据进行坐标系统转换和投影转换,以适配不同的使用环境。
三、数据插值数据插值是生成DEM的关键步骤之一。
在实际应用中,地形图数据的采样精度通常有限,需要通过插值算法填充缺失的高程数据。
最常见的插值方法包括反距离加权法、克吕金插值法和三次样条插值法等。
不同插值方法适用于不同类型的地形数据,选择合适的插值方法可以提高DEM的精度和真实性。
四、数据平滑生成的DEM数据通常会存在噪声和异常值,需要进行平滑处理。
平滑处理可以通过使用滤波器或进行数据平均等方法实现。
其中,滤波器可以根据滤波窗口的大小和形状对周围数据进行加权平均,以减少数据的波动和噪声。
数据平均则是通过将邻近的像素值进行平均,实现对DEM数据的平滑处理。
五、DEM的应用生成的DEM数据可以广泛应用于地理信息系统、地质勘探、环境科学等领域。
在地理信息系统中,DEM可以作为地图制作和测量分析的基础数据,用于土地规划、地形分析和水文模拟等。
在地质勘探中,DEM可以用于地质构造分析和地震预测等。
DTMDEMDSM、DOM和DLG介绍
一、DTM(Digital Terrain Model)数字地面模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一个简单的统计表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
地形表面形态的属性信息一般包括高程、坡度、坡向等。
数字地形模型(DTM, Digital Terrain Model)最初是为了高速公路的自动设计提出来的(Miller,1956)。
此后,它被用于各种线路选线(铁路、公路、输电线)的设计以及各种工程的面积、体积、坡度计算,任意两点间的通视判断及任意断面图绘制。
在测绘中被用于绘制等高线、坡度坡向图、立体透视图,制作正射影像图以及地图的修测。
在遥感应用中可作为分类的辅助数据。
它还是的基础数据,可用于土地利用现状的分析、合理规划及洪水险情预报等。
在军事上可用于导航及导弹制导、作战电子沙盘等。
对 DTM的研究包括DTM的精度问题、地形分类、数据采集、DTM的粗差探测、质量控制、数据压缩、DTM应用以及不规则三角网DTM的建立与应用等。
二、DEM(Digital Elevati on Matrix)数字高程矩阵。
GIS、地图学中的常用术语。
数字高程模型(Digital Elevati on Model,缩写DEM)是一定范围内规则格网点的平面坐标(X,Y)及其高程(Z)的数据集,它主要是描述区域地貌形态的空间分布,是通过等高线或相似立体模型进行数据采集(包括采样和量测),然后进行数据内插而形成的。
DEM是对地貌形态的虚拟表示,可派生出等高线、坡度图等信息,也可与DOM或其它专题数据叠加,用于与地形相关的分析应用,同时它本身还是制作DOM的基础数据。
DEM是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型(Digital Terrain Model,简称DTM)的一个分支。
DEM数据的介绍,获取,处理
DEM网格单元大小的确定简单方法1由地形图上的等高线生成DEM时,DEM网格大小的粗略估计: CELL Size = Scale分母/ 纸张分辨率纸张分辨率为300bpi(一般为200bpi),即一英寸纸张上面可以印刷300条线,以1:5万地形图为例:cell size = 50000/300 (inch) = 4.24 (meter)方法2地图比例尺,航空摄影测量、影像分辨率的关系带来的启示航摄规范(GB/T 15661-1995)中规定航摄仪有效使用面积内镜头分辨率“每毫米内不少于25 线对”。
根据物镜分辨率和摄影比例尺可以估算出航摄影像上相应的地面分辨率D,即D=M/R。
(其中M 为摄影比例尺分母,R 为镜头分辨率。
)根据航摄规范中“航摄比例尺的选择”的规定和以上公式,可得下表。
成图比例尺航摄比例尺影像地面分辨率(m)1:5000 1:10,000~1:20,000 0.4~0.81:10,000 1:20,000~1:40,000 0.8~1.61:2,5000 1:25,000~1:60,000 1.0~2.41:50,000 1:35,000~1:80,000 1.4~3.2补充:卫星影像分辨率的选择考虑不同比例尺成图对影像分辨率要求和对应规格商用卫星影像产品的稳定货源。
卫星QuickBird-2 IKONOS-2 SPOT-5 SPOT-4 Landsat-7最高分辩率(m) 0.61 1 2.5 10 15成图比例尺卫星影像(分辨率)1:5000~1:10,000 QuickBird(0.61m)IKONOS-2 (1m)1:25,000 QuickBird-2(0.61m)IKONOS-2 (1m)SPOT-5(2.5m)1:50,000 SPOT-5(2.5m)DEM生成方法- ANUDEM 模型水是地貌形成的主要侵蚀因素。
ANUDEM (Australian National University Digital Elevation Model) 采用了这一思想,使用地貌与水文数据作为插值约束条件,插值等高线高程。
dem高程
dem高程
Dem高程是地形图制作中一种广泛使用的测量技术,用于测量某一特定地区的海拔高度。
它可以使用一个称为数字高程模型(DEM)的三维数据模型来测量由数千条定向线组成的特定区域的特征,以便了解该区域的地形、植被和淹没水域等。
Dem高程测量技术利用各种调查和测量技术,如空间点和定向线,以及数字地形模型(DTM),获得测点的高程信息,以确定地形的高度和结构。
使用Dem 高程测量技术可以以二维或三维的方式图解地形。
通过显示像素颜色,可以完美地显示出地形的形状和高度变化。
Dem高程测量技术使用的技术和方法可以根据实际需求进行灵活调整。
它可以使用多种数据收集方法,如手持调查器、激光测距仪、地形扫描仪等。
在使用时,Dem高程测量技术可以根据所处的地理环境,自动将高程数据转换为已知的地理标准来表示。
Dem高程测量技术的结果可以用于地形图制作,例如通过绘制标高等值线来生成复杂地形的地形图,以便便捷地浏览地形信息。
此外,Dem高程测量技术还可以用于建筑设计、地质探测、地表分析、地质洞室投放、路网分析等领域。
Dem高程测量技术是一项复杂的数据采集技术,它可以准确地获取绝对海拔高度,为科学家们的地质调查和规划工作提供有用的数据支持,并为广大城市发展者,经济发展者和规划者提供了一种准确可靠的工具。
Dem高程测量技术的使用将进一步改善人们的生活,为新的城市发展提供更强大的支持。
立体像对提取DEM原理和方法
立体像对提取DEM原理与方法一、概述数字高程模型(Digital Elevation Model),简称 DEM,它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。
DEM 除了包括地面高程信息外,还可以派生地貌特性,包括坡度、坡向等,还可以计算地形特征参数,包括山峰、山脊、平原、位面、河道和沟谷等。
建立 DEM 的方法有多种,从数据源及采集方式主要有:根据航空或航天影像,通过摄影测量途径获;野外测量或者从现有地形图上采集高程点或者等高线,后通过内插生成 DEM 等方法,主要方法如二、流程立体像对获取 DEM 的原理简易阐述是:在天空两点(P1和 P2)拍摄地面同一点 A 时形成一∠P1AP2夹角,当 P1和 P2空间位置确定后,该角度越大地物点越高,反之,角度越小地物越低。
将地面所有点的高程解算后就得到了数字地面模型。
像对DEM获取方法有主要两种:一种是通过GCP和影像上对应的像素来计算卫星的外方位元素(卫星姿态),通过像对间的匹配点(TP, Tie Point)配准影像,然后进行后方交汇计算每个地面点的高程;另一种是外方位元素的从卫星的星历中解算,其它步骤同1,此方法要求具有精确的卫星星历,而且生成的DEM为相对高程。
利用立体像对提取 DEM 的流程图,总体上分为六步。
如下:1、数据输入将立体像对输入到进行实验处理的软件中。
2、输入控制点、定义连接点定义地面控制点后得到的 DEM 是绝对高程,否则是以卫星默认的地势面作为基准面的相对高程,然后将控制点输入。
要生成 DEM 首先要选择立体像对上的一些连接点。
连接点也是同名点,它是用来建立两张像片之间关系的。
连接点的提取一般先自动提取,再手工交互编辑。
连接点的自动提取采用基于灰度的影像相关的办法。
自动提取以后再进行人工编辑,剔出错误的连接点,如果点数太少,人工地选取一些连接点,保证连接点分布均匀。
3、生成核线影像如果直接用影像相关的算法,求出各个像素的同名点,再计算视差,计算量非常大,一般是先生成核线影像,把二维的相关问题变成一维的相关问题。
2000地形图对应精度Dem
2000地形图对应精度Dem
1:2000地形图构建DEM时栅格尺寸的大小。
方法:以1:2000地形图为数据源构建不同栅格尺寸的DEM,并计算它们的精度和数据量。
结果:在1:2000地形图构建DEM时,栅格尺寸取2m较适合。
在选择合适栅格尺寸的过程中,DEM精度的好坏是主要的选择标准。
通过图6以看出,当栅格尺寸由小到大,DEM内插中误差的总体趋势是由小到大。
在图6,25mDEM的内插中误差陡然增大,使得它的内插中误差远大于其他DEM的内插中误差,25m DEM很难描述实际地形状况。
为了能更具体地分析选择合适的栅格尺寸,将1m 到10m的DM的内插中误差重新放大显示得到图。
根据图表各DEM中误差可以看出,栅格尺寸取1m和2m时,DEM 精度最好;依次是3,4,5,6m及10m,所以栅格尺寸为1m或2m 的DEM都能很好地反映地形特征。
通过图可以看出,当栅格尺寸由小到大,DEM的数据量是由大到小。
1mDEM的数据量大约是2m DEM 数据量的4倍。
综上所得,在1:2000地形图构建DEM时,栅格尺寸取2m较为合适。
发现1:2000比例尺的地形图在构建DEM的时候,栅格尺寸取2m所获得的DEM能较好地反映地形特征,其DEM的精度较高。