卤胺抗菌类纺织品
N-卤胺POSS共聚物改性织物及其抗菌疏水性能
N-卤胺POSS共聚物改性织物及其抗菌疏水性能作者:孔雀栗志广来源:《丝绸》2022年第11期摘要:文章通過自由基聚合方法将八乙烯基低聚倍半硅氧烷、甲基丙烯酰胺、甲基丙烯酸羟乙酯、甲基丙烯酸三氟乙酯进行反应制备N-卤胺改性的低聚倍半硅氧烷(POSS)共聚物,并表征其结构性能。
首先采用“浸渍-焙烘”的方法将N-卤胺改性POSS共聚物整理到棉织物表面并对其进行氯化处理,制备了具有抗菌疏水功能的棉织物。
然后对整理前后棉织物的表面形貌、接触角、存储稳定性和抗菌性能进行表征分析,结果表明整理后棉织物的接触角达到134.5°,且在5 min内能够杀死100%的金黄色葡萄球菌和大肠杆菌,即具有优异的抗菌疏水性能。
此外,对棉织物的断裂强力、透气透湿性能进行测试,结果表明整理后的棉织物具有优异的物理机械性能和透气透湿性能。
最后对织物的耐摩擦和耐皂洗稳定性的测试表明,抗菌疏水棉织物具有良好的机械耐久性和水洗耐久性。
关键词:棉织物;N-卤胺;低聚倍半硅氧烷;疏水;抗菌;自由基聚合中图分类号: TS195.5文献标志码: A文章编号: 1001-7003(2022)11-0026-07引用页码: 111104DOI: 10.3969/j.issn.1001-7003.2022.11.004(篇序)棉织物由于手感柔软、服用性能好、保暖性和透气性优良等特点,已经发展成为人类生活中广泛使用的一类纺织面料,但是由于棉织物极易吸湿的特点,使棉织物容易被水浸湿、沾染污渍,并成为细菌滋生的载体[1-2]。
一旦棉织物表面集聚了细菌等有害微生物将导致疾病传播,危害人体健康。
因此,对棉织物进行疏水抗菌整理是解决这一问题的关键。
疏水表面防止细菌黏附与抗菌基团灭菌相结合的双功能“抑菌-杀菌”的研究方法是近年来实现棉织物自清洁功能整理的发展趋势。
目前大多数研究是将抗菌剂和疏水剂通过物理结合的方式应用到织物整理环节中,但存在牢度差、效果不佳的缺点。
抗菌疏水棉织物的制备及性能研究
1.1 实验材料 5,5-二甲 基 海 因,购 自 河 北 亚 光 精 细 化 工 有 限 公
司;氢氧化钠、环 氧 氯 丙 烷、丙 酮、3-氨 丙 基 三 乙 氧 基 硅 烷 、乙 醇 、次 氯 酸 钠 溶 液 、碘 化 钾 、硫 代 硫 酸 钠 标 准 溶 液 , 购 自 国 药 集 团 化 学 试 剂 公 司 ;可 溶 性 淀 粉 、购 自 上 海 一 基实 业 有 限 公 司;长 链 丙 烯 酸 酯 拒 水 剂 REPELLAN FF,购 自 科 凯 精 细 化 工 (上 海 )有 限 公 司;棉 织 物 (14.76tex×14.76tex ,524 根/10cm×284根/10cm), 购自浙江冠东印染服饰有限公司。 1.2 实验方法 1.2.1 卤胺化合物 GHAPA 的制备
整 理 后 织 物 的 疏 水 角 能 够 达 到 136°,具 有 良 好 的 疏 水 性 能 ;抗 菌 测 试 结 果 表 明 氯 化 后 的 棉 织 物 具 有 优 异 的 抗 菌 性
能,在5 min内可杀死全部金黄色葡萄球菌,30 min内可杀死全部大肠杆菌。
关键词: 卤胺化合物;无氟;抗菌;疏水;棉织物
具 有 抗 菌 疏 水 性 能 的 棉 织 物 。 探 究 了 焙 烘 温 度 、浓 度 对 织 物 含 氯 量 和 接 触 角 的 影 响 ,确 定 出 最 佳 整 理 工 艺 。 采 用
SEM、FT-IR 对整理后的棉织物进行表征,测试分析了整 理 后 棉 织 物 的 强 力、疏 水 性 及 抗 菌 性 能。结 果 表 明 经 过
目前就制备抗 菌 疏 水 棉 织 物 已 取 得 一 定 进 展,而
合成一种抗菌疏 水 双 功 能 整 理 剂 较 为 困 难,已 有 的 抗 菌疏水双功能整 理 剂 整 理 效 果 往 往 不 佳,因 此 目 前 主 要通过抗菌剂和疏水剂的协同作用来使织物获得抗菌 疏水性 。 [12-14] 本 研 究 择 用 长 链 丙 烯 酸 酯 拒 水 剂 REPELLAN FF 与 [15] 水溶性 卤 胺 化 合 物 作 为 原 料,以 水 为溶剂,通过轧 烘 焙 工 艺 制 备 出 了 一 种 抗 菌 疏 水 棉 织 物,制备的棉织 物 可 用 于 医 疗 卫 生 领 域 中 医 护 人 员 服 装 、口 罩 、手 术 包 等 ,大 大 降 低 了 感 染 的 风 险 ,另 外 在 工 业生产、军用产 品 和 日 常 生 活 中 都 具 有 重 要 的 应 用 价 值。
纺织品抗菌剂,抗菌除臭整理剂,纳米银抗菌整理剂,抗菌防霉剂,除螨剂,防尘螨加工剂,水溶性甲壳素,防菌剂
纺织品卫生整理实际应用探讨山东纺织科学研究所刘学提要本文介绍了新近研究开发的、有机硅季胺盐类整理剂STU-AMlO1的主要性能及特点。
对其整理工艺和抗菌效果进行了探讨。
提出了其他类型卫生整理剂并不具有的加工质量简易检测方法,并对卫生整理的健康发展,提出了看法。
一、前言近年来,纺织品卫生整理(又称抗菌防臭整理或抗微生物整理)在国内引起重视,并取得了比较迅速的发展。
截止八六年底,上海、江苏、河北、山东及北京等地都推出了自己的产品,受到了消费者的关注。
可以赋予纺织品抗菌防臭(或抗微生物)性能的化学制剂品种很多,大体可分为以下几类,1、有机重金属化合物,如β-羟基喹啉酮、二甲基苯基锡乙酸酯、苯基二辛汞、三丁基醋酸铅和烷酸锌等2、一些染料及助剂,如;三苯甲烷类染料、TMM-THPC等3、一些有机钛、有机铝、有机锆化合物与四环素等抗生素合用4、芳香族卤素化合物类,如;α-溴代肉桂醛、2,4,4'-三氯-2'羟基二苯醚、5-氯-2-(2,4-二氯苯氧基)苯酚等5、有机硅季胺盐类化合物,如;日本信越化学公司的Polon MF5O,美国道康宁公司的DC-5700等[1][2][3][4][5][6]。
但是,虽然一些化学制剂可使纺织品具有抗微生物的性能。
可是同时也有害于人体。
为此,日本在七十年代初确立"含有害物质的家庭用品规定法"、"生活消费品安全法",作为整理剂的有机汞等化合物被禁止使用[2]。
目前日本市场上主要是以有机硅季胺盐和芳香族卤素化合物类的整理剂加工的产品[1][7][8]。
而美国的有关法律则更为严格,美国道康宁公司于1975年开始生产的DC-5700得到了美国环境保护局(EPA)和美国食品医药品局(FDA)的批准。
据说,自1973年以来也只有DC-5700这一只卫生整理剂得到了EPA的认可[9]。
其他一些工业化生产卫生整理产品的国家,如加拿大、瑞士、英国、联邦德国等也都有相应的法律限制有害物质的使用[10]。
纺织品的抗菌性能与市场需求分析
纺织品的抗菌性能与市场需求分析在当今社会,人们对生活品质的追求日益提高,对于纺织品的要求不再仅仅局限于外观和舒适度,其抗菌性能也逐渐成为关注的焦点。
纺织品在我们的日常生活中无处不在,从衣物、床上用品到家居装饰,它们与我们的身体密切接触。
而随着健康意识的增强,具备抗菌性能的纺织品市场需求也在不断扩大。
首先,我们来了解一下纺织品抗菌性能的原理。
抗菌性能通常是通过抑制或杀灭微生物的生长来实现的。
这可以通过多种方式达到,比如在纤维制造过程中添加抗菌剂,或者对纺织品进行后整理处理,使其表面具有抗菌功能。
常见的抗菌剂包括银离子、季铵盐类化合物、壳聚糖等。
这些抗菌剂能够破坏微生物的细胞壁、细胞膜,干扰其代谢过程,从而达到抑制或杀灭细菌、真菌和病毒的效果。
具备抗菌性能的纺织品具有诸多优点。
一方面,它们能够有效地减少异味的产生。
我们都有过这样的经历,穿着的衣物或者使用的床上用品在经过一段时间后会产生难闻的气味,这往往是由于微生物的分解作用所致。
而抗菌纺织品可以抑制微生物的生长,从而减少异味的出现,保持衣物和用品的清新。
另一方面,抗菌纺织品有助于预防感染和疾病的传播。
特别是在医院、养老院等公共场所,使用抗菌纺织品可以降低交叉感染的风险,为人们的健康提供更好的保障。
此外,对于容易出汗或者皮肤敏感的人群来说,抗菌纺织品能够提供更加舒适和健康的使用体验,减少皮肤炎症和过敏反应的发生。
那么,市场对于具有抗菌性能的纺织品的需求情况究竟如何呢?从消费者的角度来看,随着人们对健康的重视程度不断提高,越来越多的消费者愿意为具有抗菌功能的纺织品支付更高的价格。
尤其是在经历了全球性的公共卫生事件之后,人们对于健康和卫生的关注度达到了前所未有的高度,这进一步推动了抗菌纺织品市场的发展。
在医疗领域,对抗菌纺织品的需求更是迫切。
医院中的医护人员穿着的工作服、患者使用的床单被褥等都需要具备良好的抗菌性能,以防止病菌的传播和交叉感染。
此外,一些医疗用品,如口罩、手术服等,也对抗菌性能有着严格的要求。
抗菌在纺织领域的应用
抗菌在纺织领域的应用随着人们对生活品质和健康的重视不断提升,抗菌纺织品作为一种新型的功能性材料,在纺织领域中逐渐受到人们的关注。
抗菌纺织品能够有效地抑制细菌和真菌的生长,减少细菌在纺织品上的滋生,从而提高纺织品的卫生性能,广泛应用于医疗、户外运动、家居等领域。
本文将就抗菌在纺织领域的应用进行探讨。
一、抗菌技术在纺织品中的应用1. 医疗抗菌纺织品医疗行业对抗菌纺织品的需求量较大。
目前,许多医疗用纺织品都采用了抗菌技术,比如手术衣、口罩、消毒巾等。
采用抗菌技术的医疗纺织品能够有效地减少交叉感染的风险,保障患者和医护人员的健康安全。
2. 家居用抗菌纺织品家居用抗菌纺织品主要应用于床上用品、浴巾、地毯等。
这些纺织品采用抗菌技术能够有效地抑制霉菌和细菌的滋生,保持家居环境的清洁卫生,减少细菌对人体的危害。
3. 运动户外用抗菌纺织品运动户外用抗菌纺织品主要应用于运动服装、运动鞋、背包等。
这些纺织品通常会在面料中添加抗菌剂,能够有效地抑制细菌生长,减少味道的产生,保持运动服饰的清洁和舒适性。
二、抗菌技术在纺织品中的实现方式1. 抗菌纤维抗菌纤维是将抗菌剂与纤维材料进行混合,使纤维具有抗菌功能的一种新型纤维材料。
采用抗菌纤维生产的纺织品能够在整个使用周期内保持较好的抗菌效果。
2. 抗菌涂层通过在纺织品表面涂覆一层抗菌涂层,能够使纺织品具有一定的抗菌功能。
这种方式操作简单,成本低廉,适用于大规模生产。
3. 微胶囊抗菌技术将微胶囊抗菌剂均匀地添加到纺织品中,微胶囊在织物摩擦或使用过程中破裂释放出抗菌剂,具有持久的抗菌效果。
这种技术的纺织品具有良好的耐洗性和持久性。
4.。
纺织品抗菌性能的研究进展
纺织品抗菌性能的研究进展在我们的日常生活中,纺织品无处不在,从衣物到床上用品,从窗帘到毛巾。
随着人们对健康和卫生的关注度不断提高,纺织品的抗菌性能逐渐成为研究的热点。
具有抗菌性能的纺织品能够有效地抑制细菌、真菌和其他微生物的生长和繁殖,从而减少感染和疾病传播的风险,为我们的生活提供更健康、更舒适的环境。
一、抗菌纺织品的作用及意义抗菌纺织品的主要作用是防止微生物在纺织品上的滋生和传播。
微生物如细菌和真菌在适宜的条件下会迅速繁殖,不仅会导致纺织品产生异味、变色和损坏,还可能引发人体的过敏反应和感染疾病。
例如,在医疗机构中,使用具有抗菌性能的纺织品可以降低交叉感染的风险;在运动服装中,抗菌功能可以减少汗水滋生的细菌,防止异味产生,保持衣物的清新;在家居用品中,抗菌的床上用品和毛巾能够提供更清洁、卫生的生活环境。
二、抗菌剂的种类及特点目前,用于纺织品的抗菌剂种类繁多,主要包括天然抗菌剂、有机抗菌剂和无机抗菌剂。
天然抗菌剂主要来源于植物、动物和微生物,如壳聚糖、芦荟提取物、茶树精油等。
这类抗菌剂具有良好的生物相容性和安全性,对环境友好,但抗菌效果相对较弱,且稳定性较差。
有机抗菌剂包括季铵盐类、双胍类、卤胺类等。
它们具有较强的抗菌活性,但其耐热性和耐久性往往不够理想,而且部分有机抗菌剂可能存在一定的毒性和刺激性。
无机抗菌剂主要有金属离子(如银、铜、锌等)及其化合物。
其中,银离子的抗菌性能尤为突出。
无机抗菌剂具有抗菌效果持久、耐热性好等优点,但成本相对较高。
三、抗菌纺织品的制备方法为了使纺织品获得抗菌性能,目前主要有以下几种制备方法:1、后整理法这是一种较为常见的方法,将纺织品浸泡在含有抗菌剂的溶液中,通过吸附、交联等作用使抗菌剂附着在纤维表面。
这种方法工艺简单、成本较低,但抗菌剂与纺织品的结合牢度往往不够理想,容易在使用过程中流失,从而影响抗菌效果的持久性。
2、共混纺丝法将抗菌剂与聚合物原料在熔融或溶液状态下共混,然后进行纺丝。
纺织品用抗菌剂的种类特性及使用方法
纺织用抗菌剂的种类、特性与使用方法纺织用抗菌剂可分为天然、有机和无机三大类。
每类抗菌剂各有其优缺点,有机类抗菌剂效果好,品种多,是目前使用最为广泛的一类抗菌剂,但存在耐高温稳定性差等问题,难以用于合成纤维纺丝工艺;天然类抗菌剂通常具有良好的安全性,但其应用X围窄,多数严重影响织物的色光;无机抗菌剂耐热性好,但用于纺织品后整理难以获得耐久的效果,并且大部分品种存在重金属的毒性问题。
1·1 有机抗菌整理剂有机类抗菌整理剂可以分为两大类,即溶出型与非溶出型。
溶出型抗菌整理剂与织物不是以化学方式相结合,因此能通过与水接触被带走,这类抗菌整理常剂主要用于用即弃类纺织品(一次性纺织品)上。
常见的溶出型抗菌剂主要有:醛类、酚类、醇类、某些表面活性剂(如季铵盐类)、有机杂环化合物(如吡唑类、嘧啶类、吡咯类)、有机金属化合物(如有机汞化合物、有机铜化合物、有机锌化合物、有机铅化合物、有机锡化合物以与一些其他有机金属化合物)等。
由于这类抗菌剂一经洗涤便会脱落,所以并不能用于需要多次洗涤、效果持久的纺织品。
非溶出型抗菌整理剂能与织物以化学键结合这种整理剂处理过的织物对于穿着和反复洗涤具有耐久性。
其方法是在纤维上接枝或聚合抗菌剂或在纺丝原液中混入抗菌剂,以达到控制释放活性物质从而获得耐久性的目的。
非溶出型抗菌剂与纤维通过牢固的化学键结合,一方面使药剂不能进入微生物的细胞内,对细胞核(遗传因子)没有影响,不会出现耐药菌;另一方面,抗菌剂还不会被人体的分泌物吸收而进入人体内,对人体和环境具有很高的安全性。
所以除了某些特定用途,非溶出型已经全面取代了溶出型抗菌整理剂。
常用的非溶出型抗菌整理剂主要有:有机硅季铵盐类、二苯醚类、有机氮类、硝基呋喃类、双胍类、氯苯咪唑类等。
1·2 无机抗菌整理剂无机抗菌剂是具有抗菌性的金属离子等无机物与其与无机载体的复合体。
它具有耐热加工性好的优点,可广泛用于塑料、合成纤维、建材、造纸等行业。
《N-卤胺聚合物的可控合成、抗菌性能及抗菌机理研究》范文
《N-卤胺聚合物的可控合成、抗菌性能及抗菌机理研究》篇一摘要:本文系统研究了N-卤胺聚合物的可控合成技术、抗菌性能及其抗菌机理。
通过精心设计的实验,我们实现了N-卤胺聚合物的可控合成,并对该类聚合物进行了抗菌测试,明确了其抗菌机理,为今后的实际应用提供了坚实的理论支持和实践基础。
一、引言近年来,随着人们对健康和卫生的日益关注,抗菌材料的研究与应用逐渐成为研究热点。
N-卤胺聚合物作为一种新型的抗菌材料,因其独特的化学结构和优异的抗菌性能而备受关注。
本文旨在通过对其可控合成技术的研究,明确其抗菌性能和抗菌机理,为进一步开发应用提供理论支持。
二、N-卤胺聚合物的可控合成1. 合成路线设计我们采用一步法合成N-卤胺聚合物,通过控制反应条件(如温度、时间、反应物比例等),实现对聚合物的可控合成。
2. 合成过程具体过程包括选择合适的起始原料,进行加成反应、缩合反应等步骤,最终得到目标产物N-卤胺聚合物。
在合成过程中,我们严格控制了每个步骤的反应条件,以确保合成出具有优异性能的聚合物。
三、N-卤胺聚合物的抗菌性能1. 测试方法我们采用标准的抗菌测试方法,对N-卤胺聚合物的抗菌性能进行了测试。
测试菌种包括大肠杆菌、金黄色葡萄球菌等常见细菌。
2. 测试结果实验结果表明,N-卤胺聚合物对常见细菌具有优异的抗菌性能,且抗菌效果持久。
此外,该聚合物对不同种类的细菌具有广谱抗菌作用。
四、N-卤胺聚合物的抗菌机理我们通过微观分析和理论计算,揭示了N-卤胺聚合物的抗菌机理。
研究表明,该聚合物通过与细菌细胞膜发生作用,破坏细胞膜的完整性,进而导致细菌死亡。
此外,N-卤胺聚合物在抗菌过程中产生的活性卤素物质也起到了重要作用。
五、结论本文通过研究N-卤胺聚合物的可控合成技术、抗菌性能及抗菌机理,明确了该类聚合物的优异性能和潜在应用价值。
该类聚合物具有广谱抗菌作用、持久抗菌效果等优点,在医疗、卫生、环保等领域具有广阔的应用前景。
同时,我们揭示了其抗菌机理,为进一步优化该类聚合物的性能提供了理论依据。
抗菌纺织品的指标
抗菌纺织品的指标抗菌纺织品是一种具有抗菌功能的纺织品,其主要目的是抑制或杀灭细菌、病毒和真菌的生长。
这些纺织品是现代科技的产物,通过在纤维中添加抗菌剂或采用特殊的纺织技术来实现抗菌效果。
抗菌纺织品在医疗、卫生、餐饮、运动等领域具有广泛的应用。
抗菌纺织品的指标主要包括抗菌性能、持久性、安全性和环境友好性。
首先,抗菌性能是衡量抗菌纺织品优劣的重要指标。
优质的抗菌纺织品应能有效抑制细菌、病毒和真菌的生长,具有广谱抗菌作用。
其次,持久性是指抗菌纺织品的抗菌效果在多次使用和清洗后能够保持稳定和持久。
抗菌纺织品应具有抗洗涤、耐磨损和抗老化等特性,以确保其长期抗菌效果。
此外,抗菌纺织品的安全性也是不可忽视的指标。
抗菌剂应符合国家相关标准,不得含有对人体有害的物质,避免对人体健康造成不良影响。
最后,抗菌纺织品的环境友好性是指其生产过程不会对环境造成污染,且废弃后能够进行有效的处理和回收利用。
为了确保抗菌纺织品的质量,相关的标准和测试方法也应得到遵守和执行。
一般来说,抗菌纺织品的抗菌性能可以通过菌落计数法、抑菌率法和扩散法等进行测试。
这些测试方法可以评估抗菌纺织品对细菌、病毒和真菌的抑制效果。
此外,还可以通过洗涤耐久性测试、磨损测试和老化测试等方法评估抗菌纺织品的持久性能。
对于抗菌剂的安全性评估,可以通过化学分析和毒理学评估等方法进行。
同时,生产抗菌纺织品应遵循环保要求,减少对环境的影响。
抗菌纺织品的应用领域广泛,特别是在医疗卫生领域具有重要意义。
医疗抗菌纺织品可以用于制作医用口罩、手术衣、护理垫等,有效预防感染的传播。
此外,抗菌纺织品还可以应用于家居用品、运动服饰和餐具等,提高生活质量和卫生安全性。
抗菌纺织品的指标包括抗菌性能、持久性、安全性和环境友好性。
通过合理的测试方法和标准,可以评估和保证抗菌纺织品的质量。
抗菌纺织品的广泛应用将为人们的生活带来更多的便利和健康保障。
抗菌在纺织领域的应用
抗菌在纺织领域的应用
抗菌在纺织领域的应用主要体现在以下几点:
1. 抗菌纺织品:通过在纺织品生产过程中添加具有抗菌功能的原料,如抗菌纤维或抗菌剂,使纺织品具有抗菌性能。
这类纺织品广泛应用于内衣、袜子、毛巾、床上用品等日常用品,有助于减少细菌滋生,保持卫生。
2. 医疗纺织品:抗菌纺织品在医疗领域的应用具有重要意义。
抗菌手术服、抗菌口罩、抗菌护理垫等医疗纺织品可以有效降低病菌传播风险,保护医护人员和患者的安全。
3. 抗菌面料处理:部分面料在生产过程中经过抗菌处理,如抗菌整理剂处理,使其具备抗菌功能。
这类面料广泛应用于服装、家纺等领域,提供抗菌保护。
4. 抗菌纺织品研发:随着科学技术的进步,越来越多的抗菌新材料被应用于纺织领域,如纳米银抗菌纤维、复合抗菌纤维等。
这些新材料为实现高效抗菌功能提供了可能。
5. 抗菌纺织品的检测与评价:为了确保抗菌纺织品的性能,我国制定了相应的抗菌标准,对纺织品的抗菌性能进行检测和评价。
这有助于规范抗菌纺织品市场,保障消费者权益。
总之,抗菌在纺织领域的应用旨在提供健康、安全的纺织品,保护人们的生活品质。
随着科技的不断发展,抗菌纺织品在未来的应用将更加广泛。
纺织品常用的抗菌整理剂的应用综述
第31卷㊀第3期2023年5月现代纺织技术Advanced Textile TechnologyVol.31,No.3May.2023DOI :10.19398∕j.att.202210015纺织品常用的抗菌整理剂的应用综述陆嘉渔1,蔡国强2,3,高宗春4,宋江晓1,张㊀艳1,3,戚栋明1,3(1.浙江理工大学先进纺织材料与制备技术教育部重点实验室,杭州㊀310018;2.纳爱斯浙江科技有限公司,杭州㊀310051;3.浙江省绿色清洁技术及洗涤用品重点实验室,浙江丽水㊀323000;4.浙江传化智联股份有限公司,杭州㊀311217)㊀㊀摘㊀要:近年来,由于新型冠状病毒㊁甲流等多种传染病频发,抑制和切断病菌的传播成为人们密切关注的焦点㊂纺织品在使用过程中能够为病菌的生长和繁殖提供有利环境,对人类健康产生极大的影响㊂提升纺织品的抗菌性能是切断或减缓病菌传播的重要手段,因此抗菌纺织品的研究和应用得到了广泛关注㊂对纺织品进行抗菌整理是开发抗菌纺织品的常用方法,本文总结了纺织品抗菌整理常用的无机抗菌剂㊁有机抗菌剂及天然抗菌剂等三类抗菌剂的抗菌作用机理㊁优缺点以及应用,并对每种抗菌材料的抗菌效果进行了评价㊂也介绍了纺织品抗菌整理常用的原纤维法和后整理法等两种方法,并总结了纺织品抗菌评价的主要测试手段㊂最后,本文对纺织品上抗菌整理剂的发展趋势进行展望㊂关键词:纺织品;抗菌整理剂;抗菌机理;抗菌整理;抗菌测试中图分类号:TS101.8㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009-265X(2023)03-0251-12收稿日期:20221011㊀网络出版日期:20230106基金项目:浙江省重点研发计划项目(2022C01174);浙江省自然科学基金项目(LQ22E030007);浙江理工大学科研启动项目(2020YBZX24,20202291-Y)作者简介:陆嘉渔(1999 ),女,浙江湖州人,硕士研究生,主要从事功能纺织品开发方面的研究㊂通信作者:张艳,E-mail:zy52360@㊀㊀纺织品主要涉及服用㊁装饰和产业用三大类型,广泛应用于医疗㊁卫生㊁防护㊁交通㊁建筑等诸多领域㊂常用的纺织品一般是由天然纤维和合成纤维组成,天然纤维中的纤维素和蛋白质组分可以为微生物生长提供营养物质,且存在大量的非晶结构,具有良好的亲水性,利于微生物的滋生和扩散[1];合成纤维通常是通过聚合制备而成的聚合物,如锦纶,腈纶等,微生物可以通过降解这些聚合物转化为自己生存必需的营养物质,形成菌落㊂微生物生命活动代谢会产生酶,酶会导致纤维中的聚合物键的水解,从而引发纺织品的霉变㊁虫蛀㊁力学性能损伤等㊂纺织品的重复使用,使其成为致病微生物的载体和某些传染病的重要传播途径㊂近年来,由于各类传染病频发,人们对纺织品的抗菌需求急剧增加,对纺织品进行抗菌整理非常必要㊂抗菌剂对微生物的有效性㊁纺织加工的适用性㊁耐用性以及良好的安全性和环境特性都是需要考虑的因素[2]㊂纺织品上常用的抗菌整理剂根据其成分组成和抗菌原理,大致分为无机抗菌剂㊁有机抗菌剂和天然抗菌剂三类[3]㊂本文针对纺织品常用抗菌剂的类型㊁特点㊁作用机理㊁抗菌功能化整理方法以及抗菌测试方法进行了介绍,对抗菌材料的抗菌效果进行了评价,同时展望纺织品抗菌整理剂的未来发展方向㊂1㊀无机抗菌剂无机抗菌剂成分稳定,具有广谱抗菌性能,是现在市场上使用最多的抗菌剂,主要有金属纳米颗粒㊁金属氧化物纳米颗粒和碳纳米材料等㊂1.1㊀金属纳米颗粒目前,常见的用于抗菌的金属纳米颗粒有纳米金㊁纳米银㊁纳米铜等㊂这些金属纳米颗粒具有抗细菌㊁抗真菌㊁抗病毒㊁抗氧化和抗炎等生物活性特性[4],其较高的比表面积和表面能,可以增强与细菌之间的相互作用力,提高抗菌活性;然而,金属纳米颗粒存在稳定性差㊁易团聚㊁洗涤时浸出㊁纺织品附着力差㊁成本高㊁机械性能的边际降低及对人类和生态的未知毒性等问题,限制了金属纳米颗粒在抗菌领域的应用㊂1.1.1㊀纳米银在金属纳米颗粒中,银被认为是对抗细菌和其他微生物最有效的纳米颗粒㊂纳米银的抗菌机制尚未明确,目前文献报道的抗菌机理主要有3种:第一种认为,纳米银的抗菌行为发生在膜水平,纳米银能够穿透细菌外膜积累在内膜,其黏附使得细胞不稳定而产生损伤,使得微生物细胞膜的渗透性增加,内部营养物质渗出而死亡[2];与此同时,纳米银可以与细菌细胞壁中的含硫蛋白产生相互作用,这种相互作用可能导致细菌因细胞壁结构破裂而死亡[5]㊂第二种提出,由于纳米银具有一定的亲和力,可以与细胞中的含硫和磷基团相互作用,可以穿透细胞膜并且进入细胞内部,从而改变细胞内部的DNA㊁蛋白质结构和功能[6];同时纳米银可以通过和细胞中酶的巯基相互作用,在内膜中形成链活性氧(ROS)和自由基,从而改变细胞膜内的呼吸系统,激活凋亡机制[7]㊂第三种是认为两种机制一起发生,在作用过程中纳米银会释放银离子,正电荷会与细胞上的负电荷产生电荷作用相结合[8],从而改变微生物的细胞膜代谢途径甚至遗传物质[9]㊂有文献还报道,在光催化的作用下,银纳米粒子产生ROS等活性物质[10]㊂纳米银在纺织品抗菌上也有一定的应用㊂Zhang等[11]在蚕丝纤维表面原位均匀生长银纳米颗粒,通过抑菌圈测试发现其对金黄色葡萄球菌和大肠杆菌具有优良的抗菌性能,并且通过洗涤50次后,对金黄色葡萄球菌和大肠杆菌的抑菌率均超过97.43%和99.86%㊂Zhang等[12]将纳米银制成胶体,得到纳米银胶体溶液,并通过浸轧的方式将其整理在棉织物上,其抗菌率可以达到99.01%㊂1.1.2㊀纳米金纳米金的抗菌机理主要分为两个步骤:首先是使细胞膜破裂,抑制ATP酶活性用来降低ATP水平;第二是通过抑制核糖体亚基与tRNA的结合,来达到抗菌效果㊂细菌细胞壁的功能依赖于蛋白质和细胞质,而纳米金可以破坏细菌的蛋白质合成功能,导致细菌无法获得足够蛋白质而死亡㊂Zhang 等[13]将纳米金处理在丝织物上,结果发现功能化蚕丝织物经复合着色后的抗菌效果接近99.6%,且传统染料的加入并不妨碍纳米金的抗菌作用㊂1.1.3㊀纳米铜铜的抗菌作用主要以 接触杀死 机制为主㊂纳米级铜由于其增强的物理化学特点和独特的功能性质,对各种致病微生物表现出很强的杀菌性能[14]㊂Eremenko等[6]在棉织物表面浸渍双金属银-铜纳米颗粒,以评估其对多种细菌和真菌的抗菌性能,研究发现,经过双金属纳米颗粒处理过的织物对实验的大肠杆菌㊁金色葡萄球菌㊁白色念珠菌等都表现出较高的抗菌性能,其中对大肠杆菌的抑菌圈宽度可达24mm㊂1.2㊀金属氧化物氧化锌㊁二氧化钛㊁氧化铜㊁氧化铁等金属氧化物稳定性好,具有一定的抗菌活性,也常常被用于纺织品抗菌整理,其抗菌效果仅次于金属纳米颗粒[15]㊂金属氧化物的抗菌机理主要有3种:光催化产生活性氧抗菌作用㊁金属离子作用㊁细胞机械损伤㊂1.2.1㊀二氧化钛二氧化钛在自然界中存在金红石型㊁锐钛矿型和板钛矿型3种晶体结构,其中锐钛矿相是一种广泛应用于光降解的材料㊂锐钛矿型通过吸收紫外区域的光子,激发价电子,产生电子空穴对,并在二氧化钛纳米颗粒表面进行重组和吸收㊂被激发的电子和空穴具有较高的氧化还原活性,与水和氧反应产生ROS,如超氧阴离子(O2-)和羟基自由基(㊃OH)[16]㊂二氧化钛的抗菌机制目前研究尚未完全阐述,其抗菌机制主要认为是依赖于ROS的产生诱导细菌细胞膜破裂产生抗菌作用[16]㊂Raeisi等[17]使用壳聚糖∕二氧化钛纳米复合材料制备了超疏水棉织物,在超疏水涂层的情况下,织物的表面完全被纳米颗粒覆盖,形成了高度堆积的纳米级结构,壳聚糖和二氧化钛的组合对大肠杆菌和金黄色葡萄球菌具有很高的抗菌性能,并且还向织物诱导了超疏水性,使其对大肠杆菌和金黄色葡萄球菌的细菌的抗菌率分别提高至99.8%和97.3%㊂1.2.2㊀氧化锌氧化锌在近紫外光谱中存在直接的带宽,在室温下具有较高的结合能[18]㊂纳米尺寸的氧化锌可以与细菌表面作用或其进入细胞内的细菌核心而产生相互作用,表现出显著的抗菌活性[19]㊂氧化锌的抗菌机制尚未完全阐明,仍然存在争议㊂目前文献中提出的抗菌机理是氧化锌受到光催化的作用,产生ROS与细菌细胞壁直接接触,破坏了细菌细胞完㊃252㊃现代纺织技术第31卷整性[18-20],同时释放抗菌离子Zn2+,并有活性氧的形成[21]㊂Ghasemi等[22]将纳米氧化锌和十八烷硫醇沉积在棉织物表面,在提高织物疏水性的同时,可以减少其对金黄色葡萄球菌和大肠杆菌两种细菌的黏附㊂1.2.3㊀氧化镁氧化镁纳米颗粒有高的热稳定性㊁低热容㊁化学惰性和光学透明性等优良性能,是目前应用广泛的无机金属氧化物纳米颗粒之一[23]㊂研究发现氧化镁纳米颗粒对细菌㊁真菌和少数病毒有广谱活性[23],其抗菌机理是在光催化的作用,激发电子跃迁和产生空穴,生成活性氧以此来抗菌㊂Nguyen 等[24]研究发现,将MgO和CuO纳米颗粒通过3-氨丙基三乙氧基硅烷的增强固定在活性炭纤维上,纤维样品在处理24h后显示出对大肠杆菌和金黄色葡萄球菌仍具有较高的抗菌活性(<90%)㊂1.3㊀碳纳米材料碳原子之间能够形成各种共价键(sp㊁sp2㊁sp3),产生具有不同物理和化学性质的晶体结构,主要包括金刚石㊁石墨㊁富勒烯和碳纳米管等[25]㊂碳基纳米材料的抗菌应用得到了研究人员的广泛关注,研究发现不同维度的碳纳米材料在其抗菌活性和作用机制上存在显著差异,同时其抗菌活性也受到其他因素的影响[26]㊂1.3.1㊀石墨烯石墨烯是一种由sp2杂化碳原子组成的单原子厚薄片,具有较高的比表面积㊁特殊的电子迁移率和优异的机械强度[27]㊂石墨烯材料抗菌活性的机制主要包括膜应激㊁氧化应激[28]和电子转移:a)膜应激:细菌膜与二维石墨烯纳米片之间存在较大的相互作用力,石墨烯纳米片可以对细菌膜造成物理损伤,同时可以切割并插入细胞膜并提取磷脂,导致细菌活力的损失[29];b)氧化应激:石墨烯产生的ROS 使细菌的脂质和蛋白质失活,细菌不能再增殖[30]㊂c)电子转移:石墨烯可以充当电子受体,并将电子从细菌膜上吸引走,破坏细胞膜的完整性㊂研究发现,将石墨烯及其氧化物与金属或金属氧化物纳米颗粒结合,不仅可以制备导电织物,还可以获得抗菌性能㊂Ghosh等[31]将氧化石墨烯-银纳米颗粒嵌入在棉织物中,导电的纳米复合涂层织物具有对大肠杆菌独有的抗菌活性,其抑制圈宽度可达到1cm㊂1.3.2㊀氧化石墨烯氧化石墨烯比石墨烯的亲水性更佳,具有良好的生物相容性[22]㊂当亲水性和分散性提高时,其与细菌接触的概率和相互作用的强度增强,从而提高抗菌活性㊂研究认为,氧化石墨烯纳米片极锋利的边缘可能对细菌膜造成物理损伤,引起细胞内基质泄漏,最终导致细菌失活[33-34];同时氧化石墨烯悬浮液会产生ROS等损伤细胞成分,如脂质㊁蛋白质; ROS被细胞内化后,会导致线粒体功能障碍和DNA损伤[35-36]㊂Zhao等[36]制备了氧化石墨烯∕壳聚糖复合材料,并将其用作压缩衣面料的抗菌剂,然后使用硅烷偶联剂对其进行改,得到了耐久性好㊁生物安全性高的抗菌整理织物,对大肠杆菌和革兰氏阳性菌金黄色葡萄球菌的抑菌率分别为92.09%和99.33%㊂与还原氧化石墨烯相比,氧化石墨烯能产生更多的ROS,从而具有较高的杀菌活性㊂此外,氧化石墨烯和还原氧化石墨烯的抗菌活性与时间和浓度有关[37]㊂Pan等[38]将纳米银在共还原过程中沉淀在还原氧化石墨烯(rGO)纳米片的表面上,然后使用分段静电纺丝方法将混合物静电纺成纤维膜, rGO-Ag的掺入提高了纤维膜的导电性,增加了溶液的电荷和拉伸力,并缩小了纤维的平均直径和尺寸分布,同时大大增强了混合纤维膜的抗菌活性,其对金黄色葡萄球菌和大肠杆菌的抗菌率分别达到了99.55%和99.46%㊂1.3.3㊀碳纳米管碳纳米管具有大的比表面积和多变可调的结构,同时其体积比微生物体积小得多,可以较容易地进入微生物体内,进而通过相互作用使细胞膜损伤,引发细胞质外流,从而产生抗菌作用[39]㊂碳纳米管的抗菌机理尚未得到明确解释,目前最为认可的机理是细胞膜损伤机理㊂Kang等[40]通过多项研究发现,当碳纳米管与微生物接触时,细胞会产生畸变,进而细胞膜损伤,细胞内物质外流细胞死亡,同时通过扫描电镜观察经碳纳米管处理的大肠杆菌细胞,进一步验证得到,细胞完整性破坏㊂Shi等[41]通过超声技术将碳纳米管原位生长至热塑性聚氨酯纳米纤维上,对大肠杆菌的抑菌率可达到91.5%㊂Jatoi 等[42]将载有银纳米颗粒的多壁碳纳米管沉积在醋酸纤维上,制备了一种纳米纤维复合材料,对其进行抗菌测试,结果发现对大肠杆菌和金黄色葡萄球菌的抑菌圈宽度分别达到了0.90mm和0.92mm㊂2㊀有机抗菌剂有机抗菌剂在市场占主体地位,主要是有机酸㊁有机醇㊁酚等物质,现在使用较广的有季铵盐类㊁卤胺类㊁三氯生㊁胍类等㊂㊃352㊃第3期陆嘉渔等:纺织品常用的抗菌整理剂的应用综述2.1㊀季铵盐类季铵盐具有制备简单㊁抗菌性能好和广谱抗菌等优点,广泛应用于医疗卫生领域㊂季铵盐的结构通式如图1所示,根据R基链长是否在C8―C18之间的个数分为单链季铵盐和双链季铵盐[43],其中双链季铵盐较单链季铵盐多一个N+,带有的正电荷密度更高,可以更多地吸附在细胞表面,经过渗透和扩散进入细胞膜,改变膜的通透性,导致胞内物质泄漏㊁内部酶发生钝化和蛋白质变性,从而使得菌体死亡[44],同时亲水基和疏水基可以进入细胞类脂层和蛋白层,使酶失活和蛋白质变性,从而杀灭细菌[8]㊂季铵盐类抗菌剂由于与纺织品之间没有直接的化学键结合,耐久性㊁耐水洗性差,洗涤或者长时间使用后对细菌的抑制作用下降明显[45]㊂针对上述问题, Gao等[46]合成了一种有机硅季铵盐的纳米复合材料,并将其处理在棉织物上,能够与棉纤维间形成化学键,处理后的棉织物抑菌率可达90%以上;洗涤10次后,对大肠杆菌和金黄色葡萄球菌的抑菌率均保持在85%以上㊂Zhu等[47]合成了一种新型聚硅氧烷季铵盐,用作棉织物的抗菌和疏水整理,研究发现经过此种季铵盐整理后棉织物对革兰氏阳性菌金黄色葡萄球菌和革兰氏阴性菌大肠杆菌的抗菌率分别高达98.33%和99.52%㊂该研究表明季铵盐具有良好的抗菌作用,但增加其浓度以提高其抗菌性能的方法,也可能导致其对环境和人类细胞产生毒性㊂图1㊀季铵盐的结构通式Fig.1㊀Structural formula of quaternary ammonium compounds 2.2㊀卤胺类卤胺类具有稳定性好和广谱抗菌性强等[48]特点,被认为是最有效的抗菌药物,如对革兰氏阳性和革兰氏阴性细菌㊁酵母㊁真菌和病毒等都有作用㊂现在使用最广泛的卤胺类抗菌剂是含N Cl 或者N Br类的物质,其抗菌主要是通过所释放卤素离子(如Cl-等)的强氧化性,快速有效杀死细菌㊂卤代胺最大的优点是可以通过人工氯化,实现循环灭菌功能其机理如图2所示㊂但是N-卤胺抗菌处理之后会增加织物上氯的负载量,导致异味的出现以及织物的黄变现象的发生[49]㊂Chen 等[50]将季铵化N-卤胺涂覆于纤维素纤维上,对纤维素纤维进行抗菌测试,实验结果发现该纤维在十分钟内对金黄色葡萄球菌和大肠杆菌的抑制率分别达到了83.44%和75.89%,都具有较高的抗菌活性㊂Zhu等[47]通过静电纺丝技术和两亲性N-卤胺结合,制备了一种新型抗菌纤维,研究人员将20mg∕mL的抗菌纤维加入到细菌悬液中,处理15min后,金黄色葡萄球菌的细菌减少率高达99%,大肠杆菌达95%㊂图2㊀卤胺抗菌剂循环抗菌机制Fig.2㊀Cyclic antibacterial mechanism of halomideantibacterial agent2.3㊀三氯生三氯生,其结构通式如图3所示,对原核细胞和真核细胞具有杀菌作用,几十年来已广泛用于个人卫生和消毒剂,三氯生的抗菌作用主要是通过次价键,如范德华力㊁氢键等与细胞结合,阻断脂质的形成,如磷脂㊁脂多糖和脂蛋白的合成,通过停止脂肪酸的生物合成来抑制细菌㊂此外,三氯生还具有抑制细菌烯酰基载体蛋白还原酶(ECR)的能力,而且会破坏真核生物的细胞膜,表现出潜在的抗菌效果和毒性[51]㊂Orhan等[52]将棉织物使用三氯生处理,研究发现三氯生对细菌具有良好的抗菌和杀生物活性,并且对金黄色葡萄球菌(抑菌率95.42%)也比大肠杆菌(91.21%)具有更高的效率,经过10次洗涤后,对金黄色葡萄球菌和大肠杆菌的抑菌率分别下降至91.60%和87.91%,具有一定的耐水洗性㊂然而,有文献研究发现,三氯生的使用会增加人类患癌风险[53],因此不适合大规模使用㊂图3㊀三氯生结构式Fig.3㊀Structural formula of triclosan2.4㊀胍类胍类物质易溶于水㊁杀菌效果好㊁毒性小㊁使用方便是一类很好的杀菌物质㊂胍基来自于亚胺脲,㊃452㊃现代纺织技术第31卷其结构式如图4所示,图4中虚线框选部分为胍基㊂胍类容易接受质子形成稳定的阳离子[54],因此其抗菌机理与季铵盐相似,主要通过正负电荷静电引力,吸附在细胞上,从而破坏细胞膜,使细胞质外流,达到让有害微生物死亡的目的㊂Han 等[55]制备了一种具有持久的抗菌和抗粘着性能的胍基纳米水凝胶,用纳米水凝胶整理的棉织物疏水性增加,减少细菌黏附,同时抗菌面料机械洗涤50次后,金黄色葡萄球菌和大肠杆菌的抑菌率仍超过86%㊂Shentu 等[56]以戊二醛为偶联剂将聚五亚甲基胍盐接枝接枝到羽绒纤维上,通过化学键合在羽绒纤维上的接枝效率达到80%以上,改性后其对大肠杆菌和金黄色葡萄球菌的抑制率均达到99.9%以上㊂图4㊀亚胺脲和胍基结构式Fig.4㊀Structural formula of iminourea and guanidinium groups2.5㊀其他聚多巴胺(Polydopamine,PDA)具有制备工艺简单㊁光热传递效率高㊁生物相容性好㊁药物结合能力强㊁黏附性强等特点,广泛应用于生物医学领域,其结构式如图5所示㊂聚多巴胺的抗菌机理主要有两方面,首先是PDA 中含有大量的邻苯二酚,它可以通过酚类醌异构引起的电子转移产生ROS,从而使微生物细胞膜上的蛋白质变性,破坏细胞膜结构,导致细菌的死亡[57-58];其次是聚多巴胺有丰富的化学反应位点可以进行改性处理,与其他抗菌剂联用达到抗菌效果[59]㊂Li 等[60]通过聚多巴胺与环三磷腈水解缩合,在没有任何外部还原剂的情况下,还通过硝酸银与聚多巴胺上的儿茶酚进行原位反应,将银纳米粒子引入涂层,实验发现对金黄色葡萄球菌和大肠杆菌表现出良好的抗菌活性(99.99%)㊂图5㊀聚多巴胺结构式Fig.5㊀Structural formula of polydopamine3㊀天然抗菌剂近年来,随着生态环境问题的出现,天然抗菌剂因其丰富的可利用性㊁生物相容性和生物降解性等特点[45],在纺织品抗菌整理上得到了越来越多的关注㊂3.1㊀壳聚糖壳聚糖(CS)是通过甲壳素去乙酰化作用,从甲壳类动物外骨架中提取出来的一种天然阳离子聚合物,具有生物相容性㊁无毒性和生物可降解的特点㊂壳聚糖上氨基的存在使其带正电荷,可以与细菌细胞膜(带负电)之间产生静电相互作用而结合,改变细胞膜通透性,进而使细胞内物质外流,导致细胞死亡[61-63]㊂Tang 等[64]通过活性蓝与预先经过双氧水水解的壳聚糖反应,制备了一种新的低分子量抗菌染料,其中壳聚糖染料的溶解度由壳聚糖的分子量控制,与活性蓝相比,该染料对金黄色葡萄球菌和大肠杆菌均具有更强的抗菌性能,抑菌率大于99%㊂Yu 等[65]采用原位聚合法将壳聚糖∕聚苯胺(CTS∕PANI)一步法沉积在羊毛织物表面,制备的复合导电织物表现出高电导率㊁均匀的颜色以及良好的抗菌性能,对大肠杆菌和金黄色葡萄球菌的抗菌效果即使在洗涤10次后仍达99.99%以上㊂然而,壳聚糖的抑菌效率强烈地依赖于其浓度,只有在高浓度下才对细菌有效,这使得壳聚糖在织物表面的沉积和积累形成了厚层或薄膜,会降低了织物的透气性[66];此外,表面涂层壳聚糖后,织物变得比普通织物硬得多,上述缺点限制了壳聚糖在纺织品中的应用[67]㊂3.2㊀姜黄素姜黄是一种姜科草本植物,其主要活性成分姜黄素(Curcumin,Cur )具有直接的广谱抗菌活性[68]㊂姜黄素的结构如图6所示,有研究发现姜黄素的亲脂性结构可以直接插入到脂质体的双分子层中,从而增强了双分子层的通透性,同时姜黄素可以用抗氧化剂破坏革兰氏阳性和阴性细菌细胞膜的通透性和完整性,干扰细胞代谢,抑制细菌分裂,最终导致细菌细胞死亡[68];此外姜黄素在激光的照射下可以产生ROS,进一步起到抗菌的目的㊂Mahmud 等[69]通过静电纺丝工艺制备了负载不同浓度姜黄素的聚乙烯醇纳米纤维,实验采用了数菌落数的方法对该纤维的抗菌性能进行评价,金黄色葡萄球菌㊃552㊃第3期陆嘉渔等:纺织品常用的抗菌整理剂的应用综述和大肠杆菌的所有菌落均在6h 内被杀死㊂增加细菌细胞膜的通透性也是姜黄素与其他抗菌剂协同杀菌的关键机制㊂Wang 等[70]采用同轴静电纺丝技术制备负载姜黄素和银纳米粒子的核壳结构纳米纤维膜,Cur∕Ag 纤维膜对金黄色葡萄球菌抑菌率高达93.04%,与单负载姜黄素的纤维膜抑菌率45.65%和单负载AgNPs 的纤维膜抑菌率66.96%相比,Cur∕Ag 纤维膜的抑菌率显著提高,实验表明姜黄素和AgNPs 表现出明显的协同抑制作用㊂图6㊀姜黄素结构式Fig.6㊀Structural formula of curcumin3.3㊀大蒜素大蒜素是从大蒜中提取出来的一种含氧硫化物[71],不易溶于水且具有一定的挥发性[72]㊂大蒜素具有高反应活性㊁显著的抗氧化活性和高的膜通透性,使其能够快速穿透不同的细胞[73]㊂大蒜素的抗菌机制尚不明确,但已知大蒜在受到挤压或者切割时,蒜氨酸等会水解生成蒜素等硫代亚磺酸酯,酯水解成硫代亚磺酸盐可以与细菌中的半胱氨酸蛋白酶㊁乙醇脱氢酶和硫氧还蛋白还原酶等快速反应,而这些酶对维持微生物的新陈代谢和平衡很重要快速反应,从而影响细菌的正常生命活动,以此来达到抗菌效果[74-76]㊂Edikresnha 等[77]使用静电纺丝将大蒜素和甘油封装在聚乙烯吡咯烷酮(PVP)和醋酸纤维素(CA)的复合纤维中,大蒜素包裹在纤维中并没有消除大蒜素的抗菌活性,培养24h 后该纤维对金黄色葡萄球菌每平方厘米减少0.4759的菌落数,对铜绿假单胞菌每平方厘米减少0.9316的菌落数㊂Hussian 等[78]通过静电纺丝制备了一种超细尼龙-6纳米纤维,后浸渍不同浓度的大蒜溶液,实验结果表明,大蒜溶液对该纤维抗菌活性起着至关重要的作用,浸渍在大蒜酸液中的纳米纤维垫具有良好的抑菌活性,对大肠杆菌和金黄色葡萄球菌的抑菌效果均在99%以上㊂3.4㊀植物多糖多糖可以从不同类型的植物㊁植物的不同部位中提取,植物多糖也常具有抗菌活性[79]㊂一些研究发现,植物多糖对革兰氏阳性菌和革兰氏阴性菌均具有抗菌活性,由于革兰氏阴性菌的细胞壁比革兰氏阳性菌的更薄,因此对革兰氏阴性菌的抗菌活性更强[80]㊂植物多糖可以通过疏水作用㊁静电吸附或糖蛋白受体这几种方式与细胞膜相互作用,植物多糖被动地通过细胞质膜双分子层的脂质层扩散到细菌的胞质中去,导致细菌细胞内成分泄露和细菌酶系统的改变[81]㊂植物多糖吸附在细胞膜表面后,主要的抗菌机制是增加细胞膜的通透性,抑制致病菌对宿主细胞的吸附,或阻断营养物质或能量物质的跨膜转运[82]㊂Lin 等[83]对来自蒲公英的水溶性抗菌多糖(PD)进行化学修饰,以获得其羧甲基化衍生物(CPD),将PD 和CPD 掺入聚环氧乙烷(PEO)纳米纤维基质中以制造抗菌纳米纤维,进行抗菌测试,测试3h 时,该纤维对李斯特菌菌落数减少了2.77CFU∕mL㊂Liang 等[84]先将纤维素氧化使其带有羧基,然后与白桦脂醇进行酯化反应,表面改性的纤维素纺织纤维显示出显著改善的疏水性,同时,在革兰氏阳性和革兰氏阴性细菌检测中,该材料表现出优异的抗菌性能,抑菌率可达99%㊂4㊀纺织品抗菌整理方法4.1㊀原纤维法原纤维法是指在纺丝过程中直接将抗菌剂添加到纺丝液中制成抗菌纤维,再通过织造成抗菌织物,主要分为混合纺丝和复合纺丝2种㊂混合纺丝是指将抗菌剂和成纤混合物混合后再熔融纺丝[85],通过该方法抗菌剂可以均匀地分布在纤维中,主要适用于无活性侧链基团的化纤如涤纶㊁丙纶;复合纺丝是指将抗菌剂与其他不同的纺丝流体进行不同比例的复合纺丝所制备的纤维,适用于天然纤维和化学纤维㊂虽然原纤维法抗菌效率高㊁耐久性好,但是制备难度大,对抗菌剂的选择较为严苛,适用于耐高温的抗菌剂如金属氧化物㊁金属纳米粒子等㊂4.2㊀后整理法后整理法是指在织物表面使用抗菌剂进行功能整理获得抗菌织物,主要有以下4种:第一种是表面涂层法,即将抗菌剂通过表面涂覆的方式获得抗菌织物;第二种是浸轧法,即将抗菌剂制成乳液状,通过浸轧㊁焙烘整理到织物上,此方法一般将整理剂溶于树脂或其他黏合剂中,使抗菌剂牢固吸附于织物㊃652㊃现代纺织技术第31卷。
一种以卤胺类化合物及银离子制备抗菌涤纶的方法[发明专利]
专利名称:一种以卤胺类化合物及银离子制备抗菌涤纶的方法专利类型:发明专利
发明人:任学宏,张淑敏,刘颖,李蓉,栗志广
申请号:CN201810101896.0
申请日:20180201
公开号:CN108221371A
公开日:
20180629
专利内容由知识产权出版社提供
摘要:本发明提供了一种采用卤胺化合物及银离子共同制备抗菌涤纶的方法,制备方法为:将涤纶织物经氢氧化钠处理后浸入以卤胺化合物及丙烯酸配制的抗菌整理液中,浸轧后织物置于高能电子束下辐射,辐射后织物经焙烘、洗涤、烘干,置于一定浓度的硝酸银溶液中一定时间,再将浸渍后织物经烘干处理,制得抗菌涤纶织物。
本发明解决了涤纶织物亲水性差的缺点,采用电子束辐射的整理方式,将卤胺化合物与涤纶相结合,攻克了卤胺化合物对涤纶织物难以改性的难题。
整理后涤纶亲水性能大大提升,使用卤胺化合物和银离子共同抗菌,所制得抗菌涤纶织物具有优异的抗菌性能,展现出重要的工业应用价值。
申请人:江南大学
地址:214122 江苏省无锡市滨湖区蠡湖大道1800号
国籍:CN
代理机构:南京经纬专利商标代理有限公司
代理人:张素卿
更多信息请下载全文后查看。
电子束辐照制备卤胺抗菌棉织物
Antibacterial f inish C I C TI,】3
纺织 品属 于 多孔 性材料 ,在使 用过 程 中,容 易 滋 生和 吸 附细 菌 ,影 响纺 织 品的性 能 ,进而 危及 人 体 健康 。为 了改善 纺 织 品服 用 性能 , 防止微 生物 对
电 子 束 辐 照 制 备 卤 胺 抗 菌 棉 织 物
马志鹏 丁 放 林兴焕 任学宏
(江 南 大 学 生 态 纺 织 教 育 部重 点 实验 室 无 锡 214122)
摘要 选用 (3-丙烯酰胺 丙基 )三 甲基氯化铵(AAPTAC)为 卤胺抗菌单体 ,采用共辐照工艺制备抗菌棉织物 。 研究 了吸收剂量对 织物 含氯量和断裂强力 的影 响。结果表 明,织物含 氯量随吸收剂量 的增加而增 多,织物断 裂强力随吸收剂量 的增加而下 降。傅里叶红外光谱证 明 AAPTAC己成功接枝到棉织物上 ,扫描 电子显微镜分 析 表 明, 棉 织 物 的 表 面 具 有 覆 盖 物 。吸 收 剂 量 为 43.3 kGy时 , 氯 化 后 的 棉 织 物 可 在 5 min内杀 灭 100% 的金 黄 色葡萄球菌和大肠杆菌 。 关键 词 电子束辐照, (3一丙烯酰胺 丙基)三 甲基氯化铵,棉织物 ,抗 菌整理 中图分类号 TL13 DoI:10.11889/j.1000—3436.2018.rrj.36.040302
the absorbed dose on the chlorine content and breaking strength w ere studied.The results show ed that the chlorine content and breaking strength of the treated fabrics increased and decreased,respectively,with the increasing
卤胺抗菌原理
**卤胺抗菌原理**卤胺抗菌技术是一种重要的抗菌方法,广泛应用于医疗卫生、纺织、塑料、涂料等众多领域。
该技术主要依赖于卤素(如氯、溴)与特定胺类化合物之间的反应,形成具有强抗菌活性的卤胺化合物。
**一、卤胺化合物的形成**卤胺抗菌技术的核心在于卤素与胺类化合物之间的反应。
通常,这一反应是在一定条件下,如适当的温度、pH值和反应时间下进行的。
卤素原子与胺类化合物中的氮原子结合,形成稳定的N-Hal键(N代表氮,Hal代表卤素),从而生成卤胺化合物。
**二、抗菌机理**卤胺化合物的抗菌作用主要是通过卤素原子实现的。
当卤胺化合物与微生物接触时,卤素原子能够穿透微生物的细胞壁,进而与细胞内的生物分子(如蛋白质、核酸等)发生反应,破坏微生物的生理结构和功能,从而达到抗菌的目的。
此外,卤胺化合物还具有持续抗菌的能力。
这是因为在抗菌过程中,卤素原子可以从死亡的微生物中释放出来,并与周围的胺类化合物重新结合,形成新的卤胺化合物,继续发挥抗菌作用。
**三、优点与应用**卤胺抗菌技术具有以下优点:1. 广谱抗菌:卤胺化合物对多种细菌、真菌和病毒都具有良好的抗菌效果。
2. 持久性强:卤胺化合物能够持续释放卤素原子,保持长期的抗菌活性。
3. 安全性高:卤胺化合物在正常使用条件下对人体和环境无害。
基于这些优点,卤胺抗菌技术被广泛应用于医疗卫生领域,如手术服、口罩、敷料等医疗用品的抗菌处理;同时,也用于纺织、塑料、涂料等领域,以提高产品的抗菌性能和使用寿命。
**四、总结与展望**卤胺抗菌技术作为一种有效的抗菌方法,在多个领域发挥着重要作用。
随着科学技术的不断发展,卤胺抗菌技术有望在抗菌效率、安全性、环保性等方面实现进一步优化和提升,为人类社会带来更多的健康和福利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卤胺抗菌类纺织品
作者:杨智超班级:B轻化122 学号:1210802225
摘要;卤胺类抗菌剂具有广谱杀菌,无毒,环境友好等特点同时它们的抗菌性具有可再无毒,环境友好等特点同时它们的抗菌性具有可再无毒,环境友好等特点同时它们的抗菌性具有可再生性和持久性。
本文主要是对卤胺剂抗菌纺织品的抗菌性能和实用性进行探讨。
关键词;卤胺类抗菌剂环境友好可再生性
引言
人体皮肤和与之接触的纺织品上的湿度、温度和营养物(皮肤分泌物)能够为细菌的迅速繁殖提供适宜的条件。
细菌可以分解各种有机物,产生令人不愉悦的气味,不仅如此,还会导致纺织品颜色改变,强力下降,从而使纺织品的外观品质下降。
近年来,随着人们物质生活水平的不断提高,纺织品的抗菌性能渐渐受到人们重视,赋予纺织品抗菌功能是其服用性能升级的重要手段。
大多数纺织品不具有抗菌性,不能成为保护人们健康的屏障。
棉织物作为与人体接触最直接、最多的一类织物,人体的皮脂、汗液以及其他的一些分泌物,在一定条件下能够为微生物的生长繁殖提供适宜的环境,而且棉纤维中的糖类在一定条件下能够为微生物的生存提供能量,因此棉织物的抗菌整理有着极其重要的意义。
2.1 抗菌剂的抗菌的作用机理和分类
卤胺化合物是指分子结构中含有N-X键(其中X可以为C1、Br)的化合物,它是由含有胺、酰胺或者酰亚胺基团的化合物经氧化剂如次卤酸盐作用后得到的。
(1)这类型化合物中的N-X键在水分子的作用下会缓慢分解,释放出具有氧化作用的卤正离子,同时化合物中的N-X键被还原为N-H键。
(2)由于N-Br键不稳定,容易分解,因此实际使用中常用的卤胺化合物为氯胺化合物。
与水分子作用后释放出的氯正离子具有氧化作用,可以杀死病菌等微生物。
杀死病菌后,化合物经漂白粉(有效成分为次氯酸盐)漂洗后,其中的N-H键又可以被氧化为N-Cl键,重新获得杀菌功能。
卤胺化合物中的活性单体包括游离的卤素阳离子和以化学键结合在卤胺化合物中N-X中的卤素,这种卤素表现出很强的正电性,这两种活性单体都具有氧化性,可以与微生物中的某些活性官能团发生反应。
Worley等认为,卤胺化合物的抗菌机理与其他卤素释放剂的抗菌机理相似,只有氧化性卤素是活性单体,而自由卤素不是活性单体,以化学键固定在卤胺化合物分子中的卤素直接转移到微生物表面以达到杀菌的目的。
卤胺化合物的抗菌机理大致包括如下几个步骤:(1)改变细胞膜的完整性;
(2)破坏细胞的关键酶系统;
(3)阻碍核酸。
2.2卤胺化合物的稳定性
卤胺化合物分子结构中的胺、酰胺和酰亚胺结构及其分解常数,这种卤胺结构在不释放自由氯的情况下,本身也具备抗菌功能。
事实上,根据表1中的解离常数看,胺类卤胺化合物只可释放微量自由氯。
根据卤胺化合物的抗菌机理可知,分解常数越大,抗菌活性越好。
因此,卤胺化合物的抗菌活性遵循如下顺序:酰亚胺结构的卤胺化合物>酰胺结构的卤胺化合物>胺结构的卤胺化合物。
另一方面,分解常数越大说明其稳定性越差,因此,卤胺化合物的储存稳定性遵循如下顺序:亚酰胺结构的卤胺化合物<酰胺结构的卤胺化合物<胺结构的卤胺化合物。
卤胺化合物的稳定性主要受以下3个因素的影响:(1)N-X基团旁边是否存在氢原子,如果有氢原子存
在,可以发生如图1所示的反应,然而,如果由烷基取代氢所在的位置,则可以阻止该反应的发生,而达到稳定N-X键的目的;(2)N-X键旁边接存在吸电子基团或者供电子基团也会影响N-X键的稳定性,如果N-X键附近连接有供电子基团,例如甲基,可以阻止N-X键的分解;相反地,如果N-X键附近连接有吸电子基团,例如羰基,则可以促进N-X键的分解;(3)空间位置效应也会影响N-X键的稳定性。
因此,可以根据不同的需求设计出不同结构的卤胺化合物。
2.3卤胺类纺织品的发展现状
20世纪80年代,国内才开始进行抗菌织物的研究及应用,1982年江苏某袜厂开始采用中国医科院皮肤病研究所提供的“806”防脚癣剂生产防臭袜;1984年上海树脂厂试制出SAQ-1抗菌织物整理剂;1985年山东大学与山东省纺织研究所合作制出STU-AM101抗菌整理剂,再由河北省纺织研究院与石家庄第四印染厂合作,将其在酸性焙烘条件下通过交联剂结合在棉织品上;1986年山东荷泽印染厂配制HP-1水溶性协同抗菌剂,能与纤维生成络合物,抗菌性能与DC-5700水平相当,北京印染厂采用军事医学科学院微生物流行病研究所的抗癣药ME8560生产内裤;1988年山东海洋大学研制α-溴代肉桂醛用于胶鞋防臭,纱布袜厂采用咪唑抗菌剂处理袜子;1989年中国纺织大学推出腈纶织物抗菌产品AB布。
1990年山东纺织工学院和中国纺织大学分别研制出SFR-1羟基氯代二苯醚非离子型抗菌整理剂;20世纪90年代后期,天津大学材料科学与工程学院研制出具有新型生物抗菌纤维之称的壳聚糖混合纤维。
2007年海尔科化工程塑料国家工程研究中心股份有限公司开发出专利号为ZL 200720304803.1的抗菌卫生巾,并已成功推入市场。
2.4卤胺类纺织品的前景
对天然纺织品的处理方法大致分为两种,第一种是抗菌剂分子结构中含有羟基,对于这一类型的抗菌剂,Sun 把N-halamine前驱体(1,3-二羟甲基-5,5-二甲基海因(DMDMH)),通过整理以共价键的方式连接在棉纤维上,从结构上看,DMDMH上无空位氮原子来形成N-Cl键,但实际上在整理过程中会发生脱甲醛作用从而提供了可氯化处理的位置。
经DMDMH处理的织物具有快速杀菌效果,但酰亚胺结构最活泼,在织物上也就最不稳定,因此其机洗稳定性有待提高。
经DMDMH处理的织物可应用于个人防护,可抵御细菌、病毒、真菌、霉菌及芽孢等。
经DMDMH处理的织物在2min内能将病原菌全部杀死。
经50次机洗后,抗菌效果仍可回复。
而且经过氯水漂洗后,织物就获得了抗菌功能。
Ren等成功的合成了3-(2,3-丙二醇)-5,5-二甲基咪唑烷-2,4-二酮,并以1,2,3,4-丁烷四羧酸为交联剂处理到棉织物上。
该棉织物具有很好的抗菌性、耐水洗性和耐紫外性,5min左右就能完全杀死107 CFU的大肠杆菌和金黄色葡萄球菌,经过50次水洗后抗菌活性基团可恢复75%以上,且经过24h的紫外光照射后抗菌活性基团可恢复70%以上。
第二种是有机硅系列的卤胺化合物。
Ren等将含有不同结构的N-halamine有机硅烷涂层到棉纤维上,处理后的纤维对大肠杆菌具有很好的杀菌效果。
3-(3-乙氧基硅烷丙基)-7,7,9,9-四甲基-1,3,8-三唑螺环[4,5]癸烷-2,4-二酮处理的抗菌织物经UV光照后其大部分氧化性氯可以再生,但是5,5-二甲基-3-(3′-三乙氧基硅烷)海因和4-[3-三乙氧基硅烷丙基]-2,2,6,6-四甲基哌啶醇处理的抗菌织物大部分氯经UV 光照后不能回复。
既含有N-halamine化合物又含有季铵盐基团的有机硅系列对棉织物的整理过程,这类型的化合物的一个最大的优势是由于季铵盐基团的存在,增加了化合物的水溶性,避免了纺织品整理过程中有机溶剂的使用。
总之,随着研究的深入,卤胺化合物在抗菌纺织品方面的应用技术越来越成熟。
目前,美国的HaloSource,Inc公司已经对这类型的纺织品进行工业化生产,主要包括厨房抹布、厨房毛巾、浴室毛巾、床上用品、内衣和内裤、袜子、清洁用擦布等。
3.总结
抗菌纺织品市场广阔, 我国在这方面研究起步较晚, 但发展迅速。
抗菌纺织品对提高我国卫
生保健水平和降低公共环境交叉感染率具有重要的实用价值。
但目前国内抗菌产品的质量体系尚未健全, 还没有相关的技术质量监督部门对抗菌产品性能进行检测, 消费者也无法从外观上鉴别抗菌性能。
因此需要建立产品质量监督和管理体系使纺织品抗菌整理得到健康的发展。
参考文献;
(1)龚兴建, 陆凯.抗菌材料的发展及其在纺织上的应用[J].上海纺织科技, 2005, 33( 1) : 22- 24.
(2)俞行,刘艾平.纺织专用功能纳米材料及其应用.纺织科学研究,2001.3:
(3)秦少雄, 傅和青, 陈焕钦.光触媒及其在纺织中的应用[J].合成纤维工业, 2005, 28( 2) : 44-46.
(4)张晓红, 黄小军, 苏开第. 改性氨基硅油季铵盐类抗菌卫生整理剂HK—2002 的应用研究[J].印染助剂, 2003, ( 10) : 29- 30.
(5)商成杰, 邹承淑, 张洪杰. 织物耐久抗菌整理的研究[J].染整技术.2003( 10) : 6- 13.
(6)邹永淑, 商成杰.织物的高效耐久抗茵卫生整理[J].印染译丛, 1997, 23( 1) : 30- 34.
(7)何中琴.棉纺织用品用新的耐久性抗微生物整理剂[J].印染译丛, 1997, ( 1) : 47- 51.
(8)王留阳, 顾利霞.卤胺化合物在制备抗菌纤维中的应用[J].上海纺织科技, 2005, 33( 1) : - 25-26.
(9)亚麻抗菌性能的实验研究[J] .黑龙江纺织, 2003.9(3).
(10)民,张建国.对抗菌织物的全面评价[ J].中国纤检. 2003(1).
(11)平.抗菌纤维的最新进展[ J].产业用纺织品,1998(11).
(12)忠,等.抗菌织物的加工方法极其发展趋势[ J].广东化纤, 1999(3).。