多元统计分析第二章

合集下载

多元统计分析:第二章 多元正态分布及

多元统计分析:第二章   多元正态分布及
17
1 2 exp( it ) exp( s j ) 2 j 1
) E(e
isqU q
)
第二章 多元正态分布及参数的估计
§2.2
记Σ=AA′,则有以下定义。 定义2.2.2 若p维随机向量X的特征函数 t ' t 为:
X (t ) exp[ it '
,d为s×1常向量,令Z=BX+d,则
Z~Ns(Bμ+d , BΣB ).
该性质指出正态随机向量的任 意线性组合仍为正态分布.
19
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质2
证明 因Σ ≥0, Σ可分解为Σ=AA ,其中A 为p×q 矩阵.已知X~Np(μ,Σ),由定义 2.2.1可知 X = AU+μ
是对称非负定阵. 即 =´ , ´ ≥0 (为任给的p维常量).
7
第二章 多元正态分布及参数的估计
§2.1 随机向量—
(4) Σ=L2 ,其中L为非负定阵.
由于Σ≥0(非负定),利用线性代数中实对称阵的对角化定理,存 在正交阵Γ,使
1 0 LL

1 0 ' 0 p
并设:
i 0(i 1,, q), q1 0,, p 0.
10
第二章 多元正态分布及参数的估计
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
如例2.1.1,证明了X1,X2均为一元正态 分布,但由(X1,X2) 联合密度函数的形式易见 它不是二元正态.

应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt

应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt

4 3
u1u2
1
2
exp[
1 2
(2u12
u22
2u1u2 )]du1du2
1
2
u12
u1e 2
1
2
u2e
1 2
(
u2
u1
)
2
du2
du1
1
2
u12
u1e 2
1
2
(u2
u1
)e
1 2
(u2
u1
)
2
du2
u1
e
1 2
(
u2
u1
)
2
du2
du1
1
2
u e
2
u12 2
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
X
X X
(1) (2)
~
N
2
p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,

多元统计分析第2章

多元统计分析第2章

2.7 矩阵不等式和极大化

现在,令 易证,

是一个椭圆。 满足 ,同样, 给出了沿e2方向的适当距离。 因此,距离为c的点落在椭圆上,它的轴由A的特征 向量给出,其长度与特征值得平方根的倒数成比例

如果p>2,到原点距离为常数 的点 落在超椭圆球 上,其轴由A的特征向量给出。沿ei方向的半轴长等 于 ,其中λ i为A的特征值。

例如,当k =4
对称阵和逆矩阵
对于一个方阵A,如果A=A’,则称此方阵为对称阵。 当两个方阵A和B维数相同时,两个乘积AB和BA均有 定义,尽管它们未必相等。 单位矩阵I,表示主对角线元素均为1,其余元素均为 0的方阵。


如果存在矩阵B,使得

则称B为A的逆矩阵,并记作A-1
特征值和特征向量

引入两个向量的内积,

根据内积定义和式(2-3),有

利用内积,就能将n个分量的向量的长度和夹角自然 地推广为,

仅当
,即x与y相互垂直。

如果存在不全为零的常数,使得
就说这对向量线性相关。
投影

向量x在向量y上的投影为

其中向量
的长度为1,投影的长度为

其中是x与y间的夹角(见图2.5)
矩阵
2.4 平方根矩阵

设A是k×k正定矩阵,有谱分解 化特征向量是另一矩阵的列向量
。设标准 ,有

其中
,且∧为如下对角矩阵

因为
,有
平方根矩阵
2.5 随机向量和矩阵
随机向量是元素为随机变量的向量。类似地,随机 矩阵是元素为随机变量的矩阵。 随机矩阵X的期望值E(X),如下

应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料

应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料

1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]

多元统计分析第二章 多元正态分布

多元统计分析第二章 多元正态分布

第2章 多元正态分布多元正态分析是一元正态分布向多元的自然推广。

多元正态分布是多元分析的基础,多元分析的许多理论都是建立在多元正态总体基础上的。

虽然实际的数据不一定恰好是多元正态的,但是正态分布常常是真实的总体分布的一种有效的近似。

所以研究多元正态分布在理论上或实际上都有重大意义。

限于篇幅,本章仅简介多元正态简单理论,细节可参看王学民(2004),张尧庭(2002),余锦华(2005),Richard (2003),朱道元(1999)等。

现实世界的许多问题都可以纳入正态理论的范围内,正态分布可以作为许多统计量的近似的抽样分布。

2.1随机向量2.1.1随机向量定义2.1.1:称每个分量都是随机变量的向量为随机向量。

类似地,所有元素都是随机变量的矩阵称为随机矩阵。

设()1,,p X X X '= 是1p ⨯随机向量,其概率分布函数定义为:(){}111,,,,p p p F x x P X x X x =≤≤ ,1,,p x x 为任意实数多元分布函数()1,,p F x x 有如下性质: (1)()10,,1p F x x ≤≤ ;(2)()1,,p F x x 是每个变量,1,2,,i x i p = 的非降右连续函数; (3)(),,1F ∞∞= ;(4)()()()211,,,,,,,0p p F x x F x x F x -∞=-∞==-∞= 。

多元分布和一元分布一样也分为离散型和连续型。

连续型随机向量()1,,pX X X '= 的分布函数可以表示为 : ()()1111,,,,px x p p p F x x f t t dt dt -∞-∞=⎰⎰,()1,,pp x x R ∈ (2.1)称()1,,p f x x 是()1,,p X X X '= 的多元联合概率密度,简称多元概率密度或多元密度。

多元概率密度()1,,p f x x 有以下性质: (1)()1,,p f x x 非负; (2)()11,,1p p f x x dx dx ∞∞-∞-∞=⎰⎰ ;(3)()()111,,,,p p p nF x x f x x x x ∂=∂∂2.1.2边缘分布、条件分布和独立性 边缘分布设()1,,p X X X '= 是p 维连续型随机向量,由其q 个分量组成的向量()1X (不妨设()()11,,q X X X '= )的分布称为的边缘分布,其边缘概率密度为:()()()1111,,,,X q p q p f x x f x x dx dx ∞∞+-∞-∞=⎰⎰ (2.2)条件分布设()1,,p X X X '= 是p 维连续型随机向量,()()11,,q X X X '= ,()()()()2112,,,,,0q p X q p X X X f x x ++'=> ,在给定()2X 的条件下,()1X 的条件概率密度函数为:()()()()21111,,,,,,,,p q q p X q p f x x f x x x x f x x ++=(2.3)独立性设()1,,n X X 是连续型随机向量,则1,,n X X 相互独立当且仅当()()()111,,n n X X n f x x f x f x = 对任意1,,n x x 成立。

应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中

第二章 多元正态分布 《应用多元统计分析》 ppt课件

第二章 多元正态分布 《应用多元统计分析》 ppt课件
写字母表示; 随机变量用大写字母表示,其实现值用小写字母表示。
1
一、随机向量
在理论上,对多维随机向量的研究和对一维随机 变量的研究思路是类似的,通过分布及其特征进 行刻画。不同的是,可能要考虑变量之间的相关 关系。
在统计应用上,对多维随机向量的研究和对一维 随机变量的研究思路也是一样的,要通过样本资 料来推断总体。
19
二、多元正态分布的数字特征
若 X ~ Np μ, Σ ,则 E(X) μ,D(X) Σ ,即 μ 恰好是
多维随机向量 X的均值向量, Σ 恰好是多维随机 向量 X 的协差阵。其中,
1
μ
2

p
11 12
Σ
21
22
p1 p2
1p
2
p
pp
20
三、多元正态分布的参数估计
若 X 的联合分布密度为 f (x1, x2 , , xp ),则 X(1) 的边缘 密度函数为:
f (x1, x2 , , xq )
f (x1, x2 ,
, xq , xq1,
, xp )dtq1
dt,p (2.3)
多维随机向量的独立性。若 p个随机变量
X1, X 2 ,, X p的联合分布密度等于各自边缘分布的 乘积,则称 X1, X 2 ,, X p是互相独立的。
1
x)(x( )
x)
n
(x1 x1)2
1
1 n
n
(x1 x1)(x 2 x2 )
1
n
(x 2 x2 )2
1
n
x 2
1
n
x
p
1
n
( x 1
x1)(x p
xp

应用多元统计分析课后习题答案高惠璇第二章部分习题解答

应用多元统计分析课后习题答案高惠璇第二章部分习题解答

22 14
12
2 2
22
2 1
21 212
65
2
4211
22 22
22 14
12
4 3
13
第二章 多元正态分布及参数的估计
故X=(X1,X2)′为二元正态随机向量.且
E(
X
)
4 3
,
D(
X
)
1 1
21
解三:两次配方法
(1)第一次配方: 2x12 2x1x2 x22 (x1 x2 )2 x12
2
]
g( y1, y2 )
设函数 g( y1, y2 ) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
Y
YY12
~
N2
7 4
,
I2
(4) 由于
X
X X
1 2
0 1
11
Y1 Y2
CY
0 1
11 74
34
,
0 1
11
I
2
0 1
11
1 1
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面

多元统计分析第二章部分课后习题

多元统计分析第二章部分课后习题

第二章课后习题1.现选取内蒙古、广西、贵州、云南、西藏、宁夏、新疆、甘肃和青海等9个内陆边远省区。

选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等五项能够较好的说明各地区社会经济发展水平的指标,验证一下边远及少数民族聚居区的社会经济发展水平与全国平均水平有无显著差异。

边远及少数民族聚居区社会经济发展水平的指标数据地区人均GDP(元)三产比重(%)人均消费(元)人口增长(%)文盲半文盲(%)内蒙古506831.121418.2315.83广西407634.220409.0113.32贵州234229.8155114.2628.98云南435531.3205912.125.48西藏371643.5155115.957.97宁夏427037.3194713.0825.56新疆622935.4274512.8111.44甘肃345632.8161210.0428.65青海436740.9204714.4842.92资料来源:《中国统计年鉴(1998)》,北京,中国统计出版社,1998。

五项指标的全国平均水平为:)15.789.5297232.8701.6212(0'=μ解:(1)先利用SPSS软件检验各变量是否遵从多元正态分布(见输出结果1-1)输出结果1-1上表给出了对每一个变量进行正态性检验的结果,因为该例中样本数n=9,所以此处选用Shapiro-Wilk 统计量。

则Sig.值分别为0.781、0.437、0.131、0.682、0.242均大于显著性水平,由此可以知道,人均GDP 、三产比重、人均消费、人口增长、文盲半文盲这五个变量组成的向量均服从正态分布,即我们认为这五个指标可以较好对各地区社会经济发展水平做出近似的度量。

(2)提出原假设及备选假设0:μμ=H 01:μμ≠H (3)做出统计判断,最后对统计判断作出具体的解释SPSS 的GLM 模块可以完成多元正态分布有关均值与方差的检验。

多元统计分析第二章多元正态分布

多元统计分析第二章多元正态分布

多元统计分析第二章多元正态分布多元正态分布(Multivariate Normal Distribution),是指多个随机变量服从正态分布的情况。

在统计学中,多元正态分布是一个重要的概率分布,广泛应用于多个领域,如经济学、金融学、生物学、工程等。

多元正态分布的概率密度函数可以表示为:f(x;μ,Σ) = (2π)^(-k/2) ,Σ,^(-1/2) exp(-(x-μ)'Σ^(-1)(x-μ)/2)其中,x表示一个k维向量(k个随机变量),μ是一个k维向量,表示均值向量,Σ是一个k*k维协方差矩阵,Σ,表示协方差矩阵的行列式,'表示向量的转置,Σ^(-1)表示协方差矩阵的逆矩阵,exp表示指数函数。

多元正态分布具有以下特点:1.对称性:多元正态分布的密度函数是关于均值向量对称的。

2.线性组合:多元正态分布的线性组合仍然服从正态分布。

3.条件分布:给定其他变量的取值,多元正态分布的边缘分布和条件分布仍然服从正态分布。

4.独立性:多元正态分布的随机变量之间相互独立的充要条件是它们的协方差矩阵为对角矩阵。

对于多元正态分布,可以使用协方差矩阵来描述不同随机变量之间的相关程度。

协方差矩阵的对角线元素表示各个随机变量的方差,非对角线元素表示各个随机变量之间的协方差。

多元正态分布的参数估计也是统计学中一个重要的问题。

通常可以使用最大似然估计方法来估计均值向量和协方差矩阵。

在实际应用中,多元正态分布可以用来描述多个相关变量的联合分布。

例如,在金融学中,可以使用多元正态分布来建模多个股票的收益率。

在生物学中,可以使用多元正态分布来建模多个基因的表达水平。

除了多元正态分布,还存在其他的多元分布,如多元t分布、多元卡方分布等。

这些分布可以用来处理更一般的随机变量,具有更广泛的应用领域。

总之,多元正态分布是统计学中一个重要的概率分布,具有许多重要的性质和应用。

通过对多元正态分布的研究,可以更好地理解和分析多个相关变量的联合分布,推断和预测相关变量的取值,并为实际问题提供可靠的解决方案。

应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)

应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)

2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1

《多元统计分析2》ppt课件

《多元统计分析2》ppt课件
元素之间亲疏关系的统计量,然后根据这种 统计量把元素分成假设干类。常用的聚类统 计量有间隔 系数和相似系数2类。间隔 系数
一般用于对样品分类,而相似系数一般用于 对变量聚类。间隔 的定义很多,如极端间隔 、 明考斯基间隔 、欧氏间隔 、切比雪夫间隔 等。
相似系数有相关系数、夹角余弦、列联络数 等。
用VARCLUS过程实现变量聚类分析
┌ Z1=b11x1+b12x2+…+b1mxm │ Z2=b21x1+b22x2+…+b2mxm │…………………………… └ Zm=bm1x1+bm2x2+…+bmmxm
〔2〕
┌ Z1=c11x1+c12x2+…+c1mxm │ Z2=c21x1+c22x2+…+c2mxm 〔3〕 │ …………………………… └ Zm=cm1x1+cm2x2+…+cmmxm
2.旋转后的因子模型
xi=∑bijGj+CiUi 〔i=1,2,…,m;j=1,2,…,p;p<m〕
3.因子得分模型
Gj=∑dijxi 〔i=1,2,…,m;j=1,2,…,p; p<m〕。
第3章 对应分析
第1节 方法的概述
主成分分析、因子分析、变量聚类分析 都是研究变量之间的互相关系。有时,在某 些实际问题中,既要研究变量之间的关系、 还要研究样品之间的关系。不仅如此,人们 往往还希望能在同一个直角坐标系内同时表 达出变量与样品两者之间的互相关系。实现 这一目的的方法,称为对应分析。
因子分析〔Factor Analysis〕就是要找出 某个问题中可直接测量的、具有一定相关性 的诸指标,如何受少数几个在专业上有意义, 又可直接测量到,且相对独立的因子支配的 规律,从而可用诸指标的测定值来间接确定 诸因子的状态。

《多元统计分析》第二章 随机向量和多元正态分布

《多元统计分析》第二章  随机向量和多元正态分布

《多元统计分析》MOOC2.1 多元分布王学民一、多元概率分布函数v随机向量:一个向量,若它的分量都是随机变量。

v 随机变量x 的分布函数:v 随机变量x 1和x 2的联合分布函数:v 随机向量的分布函数:v本课程主要讨论连续型的分布。

()12,,,p x x x '=x ()()F a P x a =≤()()121122,,,,,,p p p F a a a P x a x a x a =≤≤≤ ()()121122,,F a a P x a x a =≤≤二、多元概率密度函数v一元的情形:v二元的情形:vp 元的情形:v概率密度函数,简称概率密度或密度函数或密度。

()()d a F a f x x -∞=⎰12121212(,)(,)d d a a F a a f x x x x -∞-∞=⎰⎰1111(,,)(,,)d d pa a p p pF a a f x x x x -∞-∞=⎰⎰分布函数的概念主要用于理论上的讨论,本课程仅在此提一下,后面将不再提及。

分布用密度来描述较为方便。

概率密度的性质v一元密度f (x )的性质:v多元密度f (x 1,⋯,x p )的性质:1111(,,)0,,(,,)d d 1p p p p f x x x x f x x x x ∞∞-∞-∞≥=⎰⎰(1),对一切实数;(2)。

()0()d 1f x x f x x ∞-∞≥=⎰(1),对一切实数;(2)。

三、边缘分布v 边缘分布:p 维随机向量 的任意子向量的分布。

v边缘分布可以是关于一个变量,两个变量,…,p −1个变量的边缘分布。

()12,,,p x x x '=x四、条件分布v条件分布:在一些已知条件下的分布。

v例1研究某人群,x1——身高,x2——体重,该人群中x2的分布为f(x2)。

如果已知某人的x1=1.80(米),则对该人体重的推断应依据f(x2|x1=1.80),而不是f(x2)。

多元统计分析-均值向量和协方差阵检验

多元统计分析-均值向量和协方差阵检验

81
60.8
84
59.5
上半壁围(cm) 16.5 12.5 14.5 14.0 15.5 14.0
3.独立样本检验
• 即对相互独立的两个样本的均值进行比较,看二者 是否有显著的差异。与单一样本T检验的原理相同, 采用小概率反证法。
• 首先假设:H0两个样本来自同一总体,u1=u2 • 独立样本t检验的前提: (1)两个样本相互独立 (2)两个样本来自正态总体 若违反这一假设,应采用非参数检验或变换变量使适
6r2 (n 1)2
1 }, nr n1 n2
至少有一对ni nr
nj
检验的基本步骤:
一.提出待检验的假设H0和H1
二.给出检验的统计量及它服从的分布 三.给定检验水平 ,查统计量的分布表,确定临界值,从而得到否定域 四.根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待
(1)当 已知时,用统计量 x 0 n
其中:
1 n
x n i1 xi
为样本均值。
当假设成立时, ~N(0,1),否定域为| | /2 , / 2 为 N (0,1) 的上 / 2 分位点。
n
(2)当 未知时,用 S 2 (xi x )2 /(n 1) 作为 2 的估计,用统计量 i 1
02
如在医学研究中, 分析几中药物对某 种疾病的疗效;
为什么多样本均值检验不采 用两两样本的t检验,而一定 要采用方差分析
统计结论都是概率性的。假 设实际情况是H0成立,那么 根据设置的显著性水平如 0.05, 平均每100次检验中 有5次会得出拒绝H0的错误 结论。
设有4个样本,若采用两两样本的t检验,共要进行4!/[2!(42)!]=6次,
由 的函数的近似分布进行检验

多元统计分析---第二章 抽样分布_OK

多元统计分析---第二章 抽样分布_OK
第2章 抽样分布
Sampling Distributions
§1 ห้องสมุดไป่ตู้本的联合概率密度函数
设x ~ N p (,), 0, 则总体的密度函数为
f
( x1 ,
x2 ,,
xp
)
(2
)
p
2
1
2
exp[
1 2
(x
) 1 ( x
)]
X1,X2,……,Xn是从总体中抽取的一个简单随机样本,满足X1,
X2,……,Xn相互独立,且同正态分布 设x ~ N p (,).
X
n1
X n2
X
np
n
p
X
(n)
独立同分布于
N p (μ,)
,则随机矩阵
n
i
i
i1
5
A X X
x11 x21 xn1 x11 x12 x1p
x12
x22
xn 2
x21
x22
x2
p
x1
p
x2 p
xnp
xn1
xn 2
xnp
n
X il X lj
l 1
服从自由度为 n 的非中心维斯特分布,记为 ~ Wp (n,,。μ)
(Xi )1(Xi
)]
为样本联合密度函数。
3
§2 样本分布
一、维希特(Wishart)
1、定义随机矩阵的分布
x11 x12 x1p
设随机矩阵X
x21
x22
x2
p
xn1
xn2
xnp
矩阵中的每一个元素均为随机变量,则矩阵X的分布是其列 向量拉长,组成一个长向量
x x11

多元统计分析讲义(第二章)

多元统计分析讲义(第二章)

Equation Chapter 1 Section 1 Array《多元统计分析》Multivariate Statistical Analysis主讲:统计学院薛伟统计学院应用统计学教研室School of Statistics2004年9月第二章聚类分析【教学目的】1.让学生了解聚类分析的背景、基本思想;2.掌握聚类分析的基本原理与方法;3.掌握聚类分析的操作步骤和基本过程;4.学会应用聚类分析解决实际问题。

【教学重点】1.分类的统计量;2.各种聚类分析方法的阐述。

§1 概述一、什么是聚类分析1.研究背景在实际问题中,经常要遇到分类的问题。

例如,在考古学中,要将某些古生物化石进行科学的分类;在生物学中,要根据各生物体的综合特征进行分类;在经济学中,为了研究不同地区城镇居民的收入及消费情况,往往需要划分为不同的类型去研究;在产品质量管理中,也要根据各产品的某些重要指标而将其分为一等品,二等品等等。

总之,科学的分类方法无论在自然科学,还是在社会科学中,都有着极其广泛的应用。

俗语说,物以类聚、人以群分。

但什么是分类的根据呢?比如,要想把中国的县分成若干类,就有很多种分类法;可以按照自然条件来分,比如考虑降水、土地、日照、湿度等各方面;也可以考虑收入、教育水准、医疗条件、基础设施等指标;既可以用某一项来分类,也可以同时考虑多项指标来分类。

随着人类社会的发展与科学技术的进步,对分类学的要求也越来越高。

有时,只凭经验和专业知识还不能进行科学有效的分类,于是数学这一有力的工具被逐渐引入到分类学中,形成了一门新兴的学科——数值分类学。

后来,随着多元分析方法的引进,从数值分析学中逐渐分离出了聚类分析这个分支。

对于一个数据,人们既可以按照观测值对变量(或指标)进行分类(相当于对数据中的列分类),也可以按照变量对观测值(事件,样品)来分类(相当于对数据中的行分类)。

比如利用学生成绩数据就可以对学生按照理科或文科成绩(或者综合考虑各科成绩)分类。

多元统计分析课件PPT 2 联合分析

多元统计分析课件PPT 2 联合分析

效用的加法模型
• 假设一种产品或服务有m 种属性,每种属性有n 种水平,则通常所用的模型可表示为:产品i ,j ,. . . n的总效用= 因子1 水平i 的效用+ 因子2 水平j 的效用+ ⋯+ 因子m 水平n 的效用。
• 假设产品是因子1 的水平i ,因子2 的水平j , ⋯,因 子m 的水平n 组合而成。
关于联合分析的初步总结(2)
• 仍存在的问题:
请同学们先讨论一下,你认为这一方法还有 哪些问题:可如何做改善? 1.实践中受测者排序困难(曹政,统计08) 2.加法模型的合理性(曹政,统计08) 3.效用弥补的合理性(徐特,统计08) 4.只适用少量因素及水平的情形。(万俊,统计 08)
作业
本章后P44练习的第4题
(1) 计算各因子水平的秩(rank)
• B - G栏是在不同受测体中相同因子水平的 秩;
• H 栏指各因子水平的平均秩,比如因子1 水平 1 的平均秩为(1 + 3 + 2 + 16 + 13 +6) / 6 = 6. 833 ;
(2)计算秩( rank) 的偏差及其平方和
• I 栏指各因子水平平均秩的偏差,由于我们一 共选16549.02取了18 个水平,因此各因子水 平的期望秩应为(1 + 2 + ⋯+ 18) / 18 = 9. 5 ,也 就是说全部因子水平的期望秩为9.5 ,则I =H 9. 5;
数据收集方法示例
联合分析的分析过程 —以整体轮廓法为例
• 所带来的现实问题与解决办法 调查中若采取因子设计,将有729 种组合,受
测者无法对729 种组合作出理性判断并一一排 序。
此时我们需要找到一个合适的子集来代替 全集,并要求保持全集的某些性质.通常采用对 称正交设计(一个因子中的每个水平出现相同的 次数,且水平与属性间无相关关系)

多元统计分析 课后部分习题答案 第二章

多元统计分析 课后部分习题答案 第二章
2 1
1 1 2 2 u1u2 exp[ (2u1 u2 2u1u2 )]du1du2 2u 2 1


1 2

u1e

2 u1 2

2
( u 2 u1 ) 2 1 2 u2e du2 du1 2
1 2


u e
1
1 1 2 1 1 1 因ΣY CC 1 1 1 1 1 0 2 1 1 1 1 2 2(1 ) 1 1 0 2(1 ) 1 1
由定理2.3.1可知X1 +X2 和X1 - X2相互独立.
4
第二章
(2) 因
多元正态分布及参数的估计
1 2 2 2(1 ) 0 X1 X 2 Y ~ N 2 , 0 2(1 ) 2 X1 X 2 1
10
第二章
多元正态分布及参数的估计
u1 x1 4 令 u 2 x2 3
12 Cov( X 1 , X 2 ) E[( X 1 E ( X 1 ))( X 2 E ( X 2 )]
E[( X 1 4)( X 2 3)] ( x1 4)( x2 3) f ( x1 , x2 ) dx1dx2
3 解三:两次配方法
2 1 2 2
(1)第一次配方 : 2 x12 2 x1 x2 x22 ( x1 x2 ) 2 x12 2 1 x1 2 1 1 1 1 1 因2 x 2 x1 x2 x ( x1 , x2 ) x , 而 1 1 1 0 1 0 BB, 1 1 2 y1 1 1 x1 x1 x2 令y , 则2 x12 2 x1 x2 x22 y12 y22 y2 1 0 x2 x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章主成分分析
一、填空题
1.主成分分析是通过适当的变量替换,使新变量成为原变量的线性组合,并寻求降维的一种方法。

2.主成分分析的基本思想是_将原来众多具有一定相关性的指标重新组合成一组新的相互无关的综合指标来代替原指标_____________。

3.主成分的协方差矩阵为____对称_____矩阵。

4.主成分表达式的系数向量是______相关矩阵特征值_________的特征向量。

5.原始变量协方差矩阵的特征根的统计含义是___主成分的方差_____________。

6.原始数据经过标准化处理,转化为均值为0____,方差为__1__的标准值,且其____协方差____矩阵与相关系数矩阵相等。

7.因子载荷量的统计含义是__第k个样本主成分与第j个变量样本之间的相关系数___(根号下懒么大*u下标kj)________________________。

10.SPSS中主成分分析采用___因子分析_命令过程。

二、简答题
4.简述主成分分析的适用范围及基本步骤。

利用较少主成分,得到较多的信息量;以各个主成分为分量,就得到一个更低维的随机向量;主成分分析的作用就是在较低数据“维数”的同时又保留了原数据的大部分信息;
相关系数矩阵特征值和特征向量主成分选取和建立主成分模型综合评价。

三、计算题
1.在一项研究中,测量了376只鸡的骨骼,并利用相关系数矩阵进行主成分分析,见下表:
(1)计算前三个主成分各自的贡献率和累积贡献率。

(2) 对于y4,y5,y6的方差很小这一点,你怎样对实际情况作出推断。

主成分中舍弃,方差小,包含信息量少 2.在一项对杨树的性状的研究中,测定了20株杨树树叶,每个叶片测定了四个变量:叶长(x1),2/3处宽(x2),1/3处宽(x3),1/2处宽(x4)。

这四个变量的相关系数矩阵的特征根和标准正交特征向量分别为:
)
7930.0,5513.0,2519.0,0612.0(007
.0)
1624.0,5589.0,7733.0,2516.0(049.0)
0824.0,2695.0,0984.0,9544.0(024.1)
5814.0,5577.0,5735.0,1485.0(920.244332211--='=--='=-='=---='=U U U U λλλλ
写出四个主成分,计算它们的贡献率。

Z1=0.1485x1-0.5735x2-0.5577x3-0.5814x4(以下类似) Z2=0.9544x1-0.0984x2+0.2695x3+0.0824x4 Z3= Z4=
贡献率:w=lanmeda(1-4)求和 1的贡献率=2.920/(2.920+1.024+0.049+0.007)(以下类似)
3.对纽约股票市场上的五种股票的周回升率x1,x2,x3,x4,x5进行了主成分分析,其中x1,x2,x3分别表示三个化学工业公司的股票回升率,x4,x5表示两个石油公司的股票回升率,主成分分析是从相关系数矩阵出发进行的,前两个特征根和对应的标准正交特征向量为:
)582.0,526.0,260.0,509.0,240.0(809.0)
421.0,421.0,470.0,457.0,464.0(857.22
211--='=='=U U λλ
(1) 计算这两个主成分的方差贡献率。

同上问
(2) 能否对这两个主成分的意义作一个合理的解释,并给两个主成分命名。

1反应的是
命名:一,化学工业公司股票回升率
二 石油公司股票回升率
四、SPSS 操作题
3.根据下列某地区11年数据
(1) 计算地区总产值、存储量和总消费的相关系数矩阵。

相关矩阵a
(2)求特征根及其对应的特征向量。

(3)求出主成分及每个主成分的方差贡献率;
(4)利用主成分方法建立y与x1,x2,x3的回归方程(取两个主成分)。

相关文档
最新文档