因式分解-人大附中内部资料
因式分解讲义精讲
教育教学讲义
学员姓名:年级:学科教师:
上课时间:辅导科目:数学课时数:2
课题因式分解
教学目标讲解因式分解的三种方法 1 提取公因式法2用乘法公式因式分解3特殊的因式分解
教学内容
课前检测
知识梳理
6.1因式分解
谁能以最快速度求:当a=101,b=99时,a2-b2的值?
概念.像这样,把一个多项式化成几个整式的积的形式叫因式分解,有时,也把这一过程叫分解因式.
①左边是多项式,右边是整式;②右边是整式的乘积的形式.
1.填空(整式乘法,因式分解)
2.这两种运算是什么关系?(互逆)
图示表示:。
第四章因式分解
第四章因式分解第四章因式分解1.因式分解一、基本知识点1、因式分解:把一个多项式化成几个整式的积的形式,这种变形叫因式分解。
(1).因式分解是恒等变形;(2)因式分解的对象是多项式;(3)结果是乘积形式;(4)分解后的每一个因式必须是整式;(5)分解到不能再分为止。
2、因式分解与整式乘法的关系:互逆过程。
(整式乘法可以验证因式分解的正确与否)二、知识拓展与应用1、下列由左到右的变形属于因式分解的是()22221(a+3)(3)9;1(1)();2x 3)(32)A a aB x x xC a b a bD y -=-+=++=++-、、、、6xy-4x+9y-6=( 2、已知多项式x 4+2x 3-x+m 能因式分解,且有因式x+1. (1)当x=-1时,求多项式x 4+2x 3-x+m 的值。
(2)求m 的值。
3、如图4.1.1是由一个正方形和两个长方形组成的一个大矩形,根据图形,写出一个因式分解的等式。
4、证明:一个三位数的百位上的数字与个位上的数字交换位置,则原数与新数之差能被99整除。
5、多项式x 2-3x -10因式分解的结果是() A 、(x+2)(x-5)B 、(x+2)(x+5)C 、(x-2)(x-5)D 、(x-2)(x+5)6、已知关于x 的二次三项式3x 2+mx -n=(x+3)(3x -5),求:m 、n 的值。
7、关于x 的多项式6x 2-11x+m 因式分解后有一个因式2x -3,试求m 的值。
8、试说明817-279-913能被45整除。
2.提起公因式法一、基本知识点1、公因式:多项式各项中都含有的相同的因式(包括数)。
2、公因式的确定:(1)系数(第一项是负数时,提出负号);确定数字因数;(2)找各项都有的字母;(3)各项都有的字母的最小指数。
3、提公因式法分解因式:(1)确定公因式;(2)用公因式去除这个多项式,所得的商作为另一个因式;(3)把多项式写成这两个因式的积的形式。
北师大版八年级下册数学[《因式分解》全章复习与巩固(基础)知识点整理及重点题型梳理]
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《因式分解》全章复习与巩固(基础)【学习目标】1.理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算;2.掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法;3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b-=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、(2016•长春模拟)先将代数式因式分解,再求值:()()222x a y a ---,其中05152a .,x .,y ===-.【思路点拨】原式变形后,提取公因式化为积的形式,将字母的值代入计算即可.【答案与解析】解:原式=()()()()22222x a y a a x y -+-=-+,当05152a .,x .,y ===-时,原式=()()0523215..-⨯-=-.【总结升华】此题主要考查了提取公因式法分解因式.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值.【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解.【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--,=249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0. 【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解.举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+ B .229a y -+ C .229a y - D .229a y -- 【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码.【答案与解析】解:()()()32224422x xy x x y x x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.举一反三:【变式】利用因式分解计算(1)16.9×18+15.1×18(2) 22683317-【答案】解:(1)16.9×18+15.1×18=()116.915.18⨯+ =13248⨯= (2)22683317-=()()683317683317+⨯-=1000×366=366000.4、因式分解:(1)()()269a b a b ++++;(2)222xy x y--- (3)()()22224222x xy y x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x yx y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+=()()24222x xy y x y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a 2+b 2)2﹣4a 2b 2=(a 2+b 2+2ab )(a 2+b 2﹣2ab )=(a+b )2(a ﹣b )2;(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1=(x ﹣y )2﹣2(x ﹣y )+1 =(x ﹣y ﹣1)2.5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答.【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x x x x +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______; (2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+. 【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答;(2)根据(1)的结论直接作答.【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++ ②()()271234y y y y -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2.(1)求证:B -A >0,并指出A 与B 的大小关系;(2)指出A 与C 哪个大?说明理由.解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-,=()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .。
初三数学讲义 因式分解
初三数学讲义——因式分解【提公因式法】如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同的字母,而且各字母的指数取次数最低的;(3)取相同的多项式,多项式的次数取最低的;(4)如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a 2+1/2变成2(a 2+1/4)不叫提公因式例1、把下列格式因式分解(1)-+--+++a x abx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222例2、已知:x bx c 2++(b 、c 为整数)是x x 42625++及3428542x x x +++的公因式,求b 、c 的值。
变式1、分解因式:(1)mn n m n m 21242332-+-(2)a x abx acx adx n n n n 2211++-+--(n 为正整数)(3)a a b a b a ab b a ()()()-+---322222变式2、证明:812797913--能被45整除。
【公式法】平方差公式:a 2-b 2=(a+b)(a-b);完全平方公式:a 2±2ab+b 2=(a±b) 2;【注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
】立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2);立方差公式:a 3-b 3=(a-b)(a 2+ab+b 2);完全立方公式:a 3±3a 2b +3ab 2±b 3=(a±b) 3.欧拉公式:a 3+b 3+c 3+3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)特别地:(1)当a b c ++=0时,有a b c abc 3333++=例如:a 2 +4ab+4b 2 =(a+2b) 2。
因式分解讲义(适合0基础的)
因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。
要灵活运用“补、凑、拆、分”等技巧。
4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。
北师大数学八年级下册第四章-因式分解进阶经典讲义
第02讲_因式分解进阶知识图谱因式分解的高级方法知识精讲一.十字相乘法二.分组分解法分组分解法分解因式常用的思路有:十字相乘法 2(0)ax bx c a ++≠ 若a 1 c 2+a 2 c 1 =b ,则 21122()()ax bx c a x c a x c ++=++ 分解思路为“看两端,凑中间” 21232x x ++21232=(8)(4)x x x x ++++a 1a 2c 2c 1a 1c 2 + a 2c 1分组分解法(1)适用场景:不能直接运用提公因式法和公式法(2)方法:把这个多项式分成几组,对各组分别分解因式,然后再对整体作因式分解四项=二项+二项(按字母分组、按系数分组、符合公式的两项分组)四项=三项+一项(先完全平方公式后平方差公式)五项=三项+二项(完全平方公式)六项=三项+三项(完全平方公式)六项=二项+二项+二项(各组之间有公因式)六项=三项+二项+一项(完全平方公式)三.换元法四.拆、添项法三点剖析一.考点:1.十字相乘法;2.分组分解法;3.换元法;4.拆、添项二.重难点:十字相乘法;分组分解法;换元法;拆、添项.三.易错点:(1)正确的十字相乘必须满足以下条件:在上式中,竖向的两个数必须满足关系12a a a =,12c c c =;斜向的两个数必须满足关系1221a c a c b +=,分解思路为“看两端,凑中间.”(2)换元法换元分解因式后,一定要记得将原有的字母换回来,并最终对每一项都彻底因式分解.c 1c 2a 2a 1换元法将一个较复杂的代数式中的某一部分看作一个整体,用一个新字母替代它,简化运算过程设, 则原式易错点:换元分解因式后,一定要记得将原有的字母换回来。
并再次对每一项彻底的因式分解拆、添项(1)在多项式中添上两个符号相反的项,再使用分组分解法进行分解因式(2)将多项式中的某一项拆成两项或多项,再使用分组分解法十字相乘法例题1、 如果把多项式x 2﹣8x+m 分解因式得(x ﹣10)(x+n ),那么m+n=_____________. 【答案】 -18【解析】 ∵x 2﹣8x+m=(x ﹣10)(x+n ), ∴x 2﹣8x+m=x 2+(﹣10+n )x ﹣10n , ∴﹣10+n=﹣8,m=﹣10n , 解得:n=2,m=﹣20, m+n=﹣20+2=﹣18.例题2、 因式分解:﹣2x 2y+8xy ﹣6y=_______. 【答案】 ﹣2y (x ﹣1)(x ﹣3)【解析】 原式=﹣2y (x 2﹣4x+3)=﹣2y (x ﹣1)(x ﹣3)例题3、 甲、乙两个同学分解因式x 2+ax+b 时,甲看错了b ,分解结果为(x+2)(x+4);乙看错了a ,分解结果为(x+1)(x+9),则a=__,b=__. 【答案】 6;9【解析】 分解因式x 2+ax+b ,甲看错了b ,但a 是正确的, 他分解结果为(x+2)(x+4)=x 2+6x+8, ∴a=6,同理:乙看错了a ,分解结果为(x+1)(x+9)=x 2+10x+9, ∴b=9,例题4、 因式分解:221999199911999x x .【答案】 ()()199911999x x +- 【解析】 该题考查的是因式分解.十字相乘可得原式()()199911999x x =+- 例题5、 把下列多项式因式分解 (1)22273x xy y -+(2)22675x xy y --【答案】 (1)(3)(2)x y x y --(2)(2)(35)x y x y +-【解析】 (1)22273(3)(2)x xy y x y x y -+=--(2)22675(2)(35)x xy y x y x y --=+- 例题6、 把下列多项式因式分解 (1)2532x x -- (2)2568x x +- (3)26525x x -- (4)26113x x -+【答案】 (1)(52)(1)x x +- (2)(54)(2)x x -+(3)(25)(35)x x -+(4)(23)(31)x x --【解析】 利用十字相乘法进行因式分解可得(1)2532(52)(1)x x x x --=+- (2)2568(54)(2)x x x x +-=-+ (3)26525(25)(35)x x x x --=-+ (4)26113(23)(31)x x x x -+=-- 例题7、 分解因式:2214425x y xy +- 【答案】 ()212x -【解析】 略例题8、 仔细阅读下面例题,解答问题:例题:已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值. 解:设另一个因式为(x +n ),得 x 2-4x +m =(x +3)(x +n )则x 2-4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩.解得:n =-7,m =-21 ∴另一个因式为(x -7),m 的值为-21 问题:仿照以上方法解答下面问题:已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值. 【答案】 另一个因式为(x +4),k =20 【解析】 设另一个因式为(x +a ),得2x 2+3x -k =(2x -5)(x +a ) 则2x 2+3x -k =2x 2+(2a -5)x -5a ∴2535a a k -=⎧⎨-=-⎩解得:a =4,k =20故另一个因式为(x +4),k 的值为20. 随练1、 如果x 2-px +q =(x +1)(x -3),那么p 等于( ) A.-2 B.2 C.-3 D.3【答案】 B【解析】 已知等式整理得:x 2-px +q =(x +1)(x -3)=x 2-2x -3, 可得-p =-2,q =3, 解得:p =2.随练2、 分解因式:22268x y x y -++- 【答案】 (4)(2)x y x y -++-【解析】 ()()22222682169x y x y x x y y -++-=++--+()()()()22131313x y x y x y =+--=++-+-+ 随练3、 阅读下列材料,并解答相应问题:对于二次三项式x 2+2ax+a 2这样的完全平方式,可以用公式法将它分解成(x+a )2的形式,但是,对于一般的二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x 2+2ax ﹣3a 2=x 2+2ax+a 2﹣a 2﹣3a 2=(x+a )2﹣(2a )2=(x+3a )(x ﹣a ) (1)像上面这样把二次三项式分解因式的数学方法是 ; A .提公因式法 B .十字相乘法 C .配方法 D .公式法 (2)这种方法的关键是 ;(3)用上述方法把m 2﹣6m+8分解因式. 【答案】 (1)B ;(2)利用完全平方公式及平方差公式变形 (3)(m ﹣2)(m ﹣4)【解析】 (1)像上面这样把二次三项式分解因式的数学方法是十字相乘法; (2)这种方法的关键是利用完全平方公式及平方差公式变形; (3)原式=m 2﹣6m+9﹣1=(m ﹣3)2﹣1=(m ﹣3+1)(m ﹣3﹣1)=(m ﹣2)(m ﹣4), 故答案为:(1)B ;(2)利用完全平方公式及平方差公式变形 随练4、 把下列多项式因式分解 (1)2232x xy y ++ (2)2276x xy y -+ (3)22421x xy y --(4)22215x xy y +-【答案】 (1)()(2)x y x y ++(2)()(6)x y x y --(3)(3)(7)x y x y +-(4)(3)(5)x y x y -+【解析】 (1)()()22322x xy y x y x y ++=++(2)2276()(6)x xy y x y x y -+=-- (3)22421(3)(7)x xy y x y x y --=+-(4)22215(3)(5)x xy y x y x y +-=-+ 随练5、 把下列多项式因式分解 (1)2383x x +- (2)2352x x -+ (3)42627x x -- (4)2236a b a ab +--【答案】 (1)(31)(3)x x -+(2)(32)(1)x x --(3)2(3)(3)(3)x x x -++(4)(2)(13)a b a +-【解析】 (1)2383(31)(3)x x x x +-=-+ (2)2352(32)(1)x x x x -+=--(3)()()()()()4222262793333x x x x x x x --=-+=+-+ (4)()()()()2236232213a b a ab a b a a b a b a +--=+-+=+- 随练6、 把下列多项式因式分解 (1)2273x x -+ (2)2675x x -- (3)4268x x ++(4)2()4()3a b a b +-++【答案】 (1)(3)(21)x x --(2)(21)(35)x x +-(3)22(2)(4)x x ++(4)(1)(3)a b a b +-+- 【解析】 (1)利用十字相乘法进行因式分解得(1)2273(3)(21)x x x x -+=-- (2)2675(21)(35)x x x x --=+- (3)422268(2)(4)x x x x ++=++(4)2()4()3(1)(3)a b a b a b a b +-++=+-+-分组分解法例题1、 已知:a 2+b 2+c 2-ab -ac -bc =0,则a 、b 、c 的大小关系为________. 【答案】 a =b =c【解析】 ∵a 2+b 2+c 2-ab -bc -ac =0, ∵2a 2+2b 2+2c 2-2ab -2bc -2ac =0,a 2+b 2-2ab +b 2+c 2-2bc +a 2+c 2-2ac =0, 即(a -b )2+(b -c )2+(c -a )2=0, ∵a -b =0,b -c =0,c -a =0, ∵a =b =c .例题2、 已知a=998,b=997,c=996,则a 2﹣ab ﹣ac+bc=______________. 【答案】 2【解析】 原式=a (a ﹣b )﹣c (a ﹣b ) =(a ﹣b )(a ﹣c ) =(998﹣997)(998﹣996) =1×2 =2,例题3、 分解因式a 2﹣b 2﹣2b ﹣1=__________. 【答案】 (a+b+1)(a ﹣b ﹣1). 【解析】 a 2﹣b 2﹣2b ﹣1 =a 2﹣(b 2+2b+1) =a 2﹣(b+1)2 =(a+b+1)(a ﹣b ﹣1).例题4、 把下列多项式因式分解 (1)224484a b a b ab +-+-(2)222xy xz y yz z --+-【答案】 (1)(2)(24)a b a b ---(2)()()y z x y z --+【解析】 (1)()()()()()()2222244844448242224a b a b ab a ab b a b a b a b a b a b +-+-=-+--=---=---(2)()()()()2222xy xz y yz z x y z y z y z x y z --+-=---=--+例题5、 仔细阅读下列解题过程:若a 2+2ab +2b 2-6b +9=0,求a 、b 的值. 解:∵a 2+2ab +2b 2-6b +9=0 ∴a 2+2ab +b 2+b 2-6b +9=0 ∴(a +b )2+(b -3)2=0 ∴a +b =0,b -3=0 ∴a =-3,b =3根据以上解题过程,试探究下列问题:(1)已知x 2-2xy +2y 2-2y +1=0,求x +2y 的值; (2)已知a 2+5b 2-4ab -2b +1=0,求a 、b 的值;(3)若m =n +4,mn +t 2-8t +20=0,求n 2m -t 的值. 【答案】 (1)3 (2)a =2;b =1 (3)1【解析】 (1)∵x 2-2xy +2y 2-2y +1=0 ∴x 2-2xy +y 2+y 2-2y +1=0 ∴(x -y )2+(y -1)2=0 ∴x -y =0,y -1=0, ∴x =1,y =1, ∴x +2y =3;(2)∵a 2+5b 2-4ab -2b +1=0 ∴a 2+4b 2-4ab +b 2-2b +1=0 ∴(a -2b )2+(b -1)2=0 ∴a -2b =0,b -1=0 ∴a =2,b =1; (3)∵m =n +4,∴n (n +4)+t 2-8t +20=0 ∴n 2+4n +4+t 2-8t +16=0 ∴(n +2)2+(t -4)2=0 ∴n +2=0,t -4=0 ∴n =-2,t =4 ∴m =n +4=2∴n 2m -t =(-2)0=1.例题6、 阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法称作分组分解. 例如:以下两个式子的分解因式的方法就称为分组分解法.(1)am+an+bm+bn=(am+bm )+(an+bn )=m (a+b )+n (a+b )=(a+b )(m+n ); (2)x 2﹣y 2﹣2y ﹣1=x 2﹣(y 2+2y+1)=x 2﹣(y+1)2=(x+y+1)(x+y ﹣1) 试用上述方法分解因式: (1)a 2+2ab+b 2+ac+bc (2)4a 2﹣x 2+4xy ﹣4y 2. 【答案】 (1)(a+b )(a+b+c )(2)(2a+x ﹣2y )(2a ﹣x+2y )【解析】 (1)原式=(a 2+2ab+b 2)+(ac+bc )=(a+b )2+c (a+b )=(a+b )(a+b+c ); (2)原式=4a 2﹣(x 2﹣4xy+4y 2)=4a 2﹣(x ﹣2y )2=(2a+x ﹣2y )(2a ﹣x+2y ). 例题7、 把下列多项式因式分解 (1)251539a m am abm bm -+-(2)432x x x x +++(3)432433x x x x ++++ (4)22ax bx bx ax a b -+-+-(5)2223(1)()22x x xy y x y xy +-+++(6)222x x y xy x y y -+-+-【答案】 (1)()()353m a a b -+;(2)()()211x x x ++;(3)()()2213xx x +++;(4)()()21a b x x --+;(5)()222(1)x x xy y +++;(6)()()21y x x y --+【解析】 (1)()()()()2515395333353a m am abm bm m a a b a m a a b -+-=-+-=-+⎡⎤⎣⎦ (2)()()()()432321111x x x x x x x x x x x +++=+++=++ (3)()()()43243222243333313x x x x x x x x x xx x ++++=+++++=+++(4)()()()()22221ax bx bx ax a b x a b x a b a b a b x x -+-+-=---+-=--+(5)()()2223222222(1)()22(1)2(1)x x xy y x y xy x x xy y xy x x xy y +-+++=+-++=+++ (6)()()()()()222221111x x y xy x y y x y x y y y y x x y -+-+-=---+-=--+ 随练1、 分解因式:y+y 2+xy+xy 2=______. 【答案】 y (1+y )(1+x )【解析】 先进行分组,再用提公因式法进行因式分解,即可解答. 解:y+y 2+xy+xy 2=(y+y 2)+(xy+xy 2) =y (1+y )+xy (1+y ) =(1+y )(y+xy ) =y (1+y )(1+x ).随练2、 分解因式:3232x x y y +-- 【答案】 22()()x y x x xy y y -++-+【解析】 原式33222222()()()()()()()()x y x y x y x xy y x y x y x y x x xy y y =-+-=-++++-=-++-+ 随练3、 分解因式:43221x x x x ++++ 【答案】 22(1)(1)x x x +++【解析】 原式432222222()(1)(1)(1)(1)(1)x x x x x x x x x x x x x =+++++=+++++=+++ 随练4、 把下列多项式因式分解 (1)2214497x xy y x y -++- (2)222(2)123(3)m n mn n m +--- 【答案】 (1)(7)(71)x y x y --+ (2)(23)(23)m n m n mn --+【解析】 (1)()()()()2221449777771x xy y x y x y x y x y x y -++-=-+-=--+ (2)()()2222222(2)123(3)234129m n mn n m m n mn m mn n +---=-+-+()()()()223232323mn m n m n m n mn m n =-+-=-+-随练5、 把下列多项式因式分解(1)2222x x y xy x y y -+-+- (2)222ax by cx ay bx cy ++--- (3)222221a b c c ab +---- (4)222494126x y z xy yz xz ++--+ 【答案】 (1)()(1)(1)x y y x ---(2)()(2)a b c x y -+-(3)(1)(1)a b c a b c -++---(4)2(23)x y z -+ 【解析】 (1)()()()22222222x x y xy x y y x y x y xy x y -+-+-=-----()()()()()()()11x y x y xy x y x y x y x y y =+-----=----⎡⎤⎣⎦()()()11x y y x =---(2)()()222222ax by cx ay bx cy ax bx cx by ay cy ++---=-++--()()()()22x a b c y a b c a b c x y =-+--+=-+-(3)()()()()222222222212211a b c c ab a ab b c c a b c +----=-+-++=--+(1)(1)a b c a b c =-++--- (4)()222249412623x y z xy yz xz x y z ++--+=-+随练6、 把下列多项式因式分解 (1)222xy xz y yz z --+- (2)222222x y xz z a ay --+-- (3)22(3)(34)a b b a --- (4)2(1)1x x x ----【答案】 (1)()()y z x y z --+(2)()()x z a y x z a y -++---(3)(2)(32)a b a -+(4)2(1)(1)x x -+ 【解析】 (1)()()()()2222xy xz y yz z x y z y z y z x y z --+-=---=--+ (2)()()()()22222222222222x y xz z a ay x xz z y ay a x z y a --+--=-+-++=--+ ()()x z a y x z a y =-++---(3)()()2222(3)(34)62346342a b b a a b ab a a ab a b ---=--+=-+-()()()()3222232a a b a b a b a =-+-=-+(4)()()()()()()2233222(1)1111111x x x x x x x x x x x x x x ----=-++-=-+-=-+-=-+ 随练7、 把下列多项式因式分解 (1)23442x x x -+- (2)24263a ab a b +++ (3)2244a b a b -+- (4)22944a ab b ---(5)2221693025m a ab b -+-(6)22194m n mn -++(7)224252036x y xy +--【答案】 (1)()()()2212x x x x --+-+(2)(23)(2)a a b ++(3)()(4)a b a b -++(4)(32)(32)a b a b ++--(5)(435)(435)m a b m a b +--+ (6)11(3)(3)22m n m n +++-(7)(256)(256)x y x y -+-- 【解析】 (1)()()()()()()2234222242422212x x x x x x x x x x x xx -+-=--=+--+=--+-+(2)()()()()242632232223a ab a b a a b a b a b a +++=+++=++ (3)()()()()()224444a b a b a b a b a b a b a b -+-=+-+-=-++(4)()()()222944923232a ab b a b a b a b ---=-+=++--(5)()()()2222216930251635435435m a ab b m a b m a b m a b -+-=--=+--+ (6)222111199334222m n mn m n m n m n ⎛⎫⎛⎫⎛⎫-++=+-=+++- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ (7)()()()22=256256256x y x y x y --=-+--换元法例题1、 若实数a ,b 满足(2a +2b )(2a +2b -2)-8=0,则a +b =________. 【答案】 -1或2【解析】 设a +b =x ,则由原方程,得 2x (2x -2)-8=0,整理,得4x 2-4x -8=0,即x 2-x -2=0, 分解得:(x +1)(x -2)=0, 解得:x 1=-1,x 2=2.则a +b 的值是-1或2.例题2、 分解因式:22()(32349)x x x x -+--+ 【答案】 223()1x x -- 【解析】 22222223234()()(9326329())3(1)x x x x x x x x x x -+--+=-+--++=-- 例题3、 分解因式:(1)2(3)5(3)14p p ---- (2)()()224341256xx x x -+--+【答案】 (1)(10)(1)p p --(2)2(1)(5)(44)x x x x +---【解析】 (1)()()()()()()2235314353143732p p p p p p ----=----=---+()()101p p =-- (2)()()()()22222434125649420x x x x x x x x -+--+=---+()()()()()22244455144x x x x x x x x =----=-+--例题4、 分解因式:(1)2(3)5(3)14p p ----(2)()()224341256x x x x -+--+(3)22(815)(87)15x x x x +++++(4)22(1)(2)12x x x x ++++- 【答案】 (1)(10)(1)p p --(2)2(1)(5)(2)x x x +--(3)2(2)(6)(810)x x x x ++++(4)2(1)(2)(5)x x x x -+++ 【解析】 (1)()()()()()()2235314353143732p p p p p p ----=----=---+()()101p p =--(2)()()()()22222434125649420x x x x x x x x -+--+=---+()()()()()22244455144x x x x x x x x =----=-+--(3)()()()()2222281587158228120x x x x x x x x +++++=++++()()()()()22281081226810x x x x x x x x =++++=++++(4)()()()()222221212310x x x x x x x x ++++-=+++-()()()()()22252215x x x x x x x x =+++-=+-++随练1、 已知实数x ,y 满足(x 2+y 2)(x 2+y 2-12)=45,求x 2+y 2的值. 【答案】 15【解析】 设x 2+y 2=a ,则a (a -12)=45, a 2-12a -45=0, (a -15)(a +3)=0, a 1=15,a 2=-3, ∵x 2+y 2=a≥0, ∴x 2+y 2=15.随练2、 (2013初二上期中人民大学附属中学)因式分解:222618680x xx x【答案】 ()()()224410x x x x ++++. 【解析】 该题考查的是因式分解. 令26x x a +=,则原式21880a a =++ ()()810a a =++()()2268610x x x x =++++()()()224410x x x x =++++随练3、 因式分解:222618680x xx x【答案】 ()()()224410x x x x ++++.【解析】 该题考查的是因式分解. 令26x x a +=, 则原式21880a a =++ ()()810a a =++()()2268610x x x x =++++ ()()()224410x x x x =++++ 随练4、 分解因式:(1)22(815)(87)15x x x x +++++ (2)22(1)(2)12x x x x ++++-【答案】 (1)2(2)(6)(810)x x x x ++++(2)2(1)(2)(5)x x x x -+++ 【解析】 (1)()()()()2222281587158228120x x x x x x x x +++++=++++()()()()()22281081226810x x x x x x x x =++++=++++(2)()()()()222221212310x x x x x x x x ++++-=+++-()()()()()22252215x x x x x x x x =+++-=+-++拆、添项例题1、 分解因式441x +【答案】 22(221)(221)x x x x ++-+ 【解析】()()()()224422222414414212212212x x x x x x x x x x +=++-=+-=+++-例题2、 分解因式:42471x x -+ 【答案】 22(71)(71)x x x x ++-+【解析】 ()()()()22424222224712149171717x x x x x x x x x x x -+=++-=+-=+++-例题3、 分解因式:841x x ++【答案】 2242(1)(1)(1)x x x x x x ++-+-+【解析】 原式844424424221(1)(1)(1)x x x x x x x x x =++-=+-=++-+2242(1)(1)(1)x x x x x x =++-+-+例题4、 分解因式:32265x x x +-- 【答案】 (1)(3)(2)x x x ++-【解析】 3232226566(1)(3)(2)x x x x x x x x x x x +--=+++--=++-例题5、 分解因式)()()(222y x z x z y z y x -+-+- 【答案】 ))()((z x y x z y ---【解析】 22222222()()()=()()()=()()()x y z y z x z x y x y z z x y x y z z y y z x y x z -+-+--+-+----随练1、 分解因式:343a a -+【答案】2(1)(3)a a a -+- 【解析】 332224333(1)(3)a a a a a a a a a a -+=-+--+=-+-随练2、 分解因式:224414x y x y -++【答案】 2222(4)(4)x y xy x y xy +++-【解析】 ()()22224442242222142164x y x y x x y y x y x y xy -++=++-=+-()()222244x y xy x y xy =+++-随练3、 分解因式:4414x y +【答案】 222211()()22x y xy x y xy +++- 【解析】 ()224442242222111442x y x x y y x y x y xy ⎛⎫+=++-=+- ⎪⎝⎭22221122x y xy x y xy ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭随练4、 分解因式:4231x x -+【答案】22(1)(1)x x x x +--- 【解析】 拆项法:原式=422222[()(1)](1)(1)x x x x x x x x ----=+--- 随练5、 分解因式:4224a ab b ++【答案】 2222()()a ab b a ab b ++-+【解析】 添项法:原式=2422422a a b b a b ++-随练6、 分解因式:432234232a a b a b ab b ++++【答案】222()a ab b ++ 【解析】 43223443222234232222a a b a b ab b a a b a b a b ab b ++++=+++++()()4224222222a a b b ab a b a b =+++++()()()22222222222a b ab a b a b a b ab =++++=++随练7、 分解因式:(1)()()22ax by bx ay ++-(2)()(2)(1)(1)x y x y xy xy xy +++++-【答案】 (1)2222()()a b x y ++(2)(1)(1)(1)x y x y xy ++++-【解析】 (1)()()222222222222ax by bx ay a x abxy b y b x abxy a y ++-=+++-+()()()()2222222222x a b y a b a b x y =+++=++(2)()()()()211x y x y xy xy xy +++++-()()()()222211x y xy x y xy x y xy =++++-=++-()()()()()11111x y xy x y xy x y x y xy =+++++-=++++-拓展1、 因式分解 (1)3x ﹣12x 2 (2)x 2﹣9x ﹣10(3)x 2﹣2xz+z 2﹣4y 2(4)25(m+n )2﹣4(m ﹣n )2. 【答案】 (1)3x (1﹣4x )(2)(x ﹣10)(x+1)(3)(x ﹣z+2y )(x ﹣z ﹣2y )(4)(7m+3n )(3m+7n ) 【解析】 (1)原式=3x (1﹣4x ); (2)原式=(x ﹣10)(x+1);(3)原式=(x ﹣z )2﹣4y 2=(x ﹣z+2y )(x ﹣z ﹣2y );(4)原式=[5(m+n )+2(m ﹣n )][5(m+n )﹣2(m ﹣n )] =(7m+3n )(3m+7n ). 2、 因式分解 ①3p 2﹣6pq ②2x 2+8x+8③a 2(x ﹣y )+16(y ﹣x ) ④x 2﹣2x ﹣15.【答案】 ①3p (p ﹣2q ), ②2(x+2)2 ③(x ﹣y )(a+4)(a ﹣4) ④ (x ﹣5)(x+3)【解析】 ①3p 2﹣6pq=3p (p ﹣2q );②2x 2+8x+8=2(x 2+4x+4)=2(x+2)2; ③a 2(x ﹣y )+16(y ﹣x ) =(x ﹣y )(a 2﹣16) =(x ﹣y )(a+4)(a ﹣4); ④x 2﹣2x ﹣15=(x ﹣5)(x+3). 3、 因式分解:3232x x x ++. 【答案】 ()()12x x x ++【解析】 该题考查的是因式分解.把一个多项式化为几个最简整式的积的形式,这种变形叫做因式分解,也叫做分解因式. 3232x x x ++()232x x x =++()()12x x x =++4、 分解因式:22672x xy y -+ 【答案】 (3x -y )(x -2y ) 【解析】 (3x -y )(x -2y )5、 把下列多项式因式分解 (1)22568x xy y +- (2)2232x xy y -+ (3)2263x x +-(4)2815x x -+【答案】 (1)(2)(54)x y x y +-(2)()(2)x y x y --(3)(9)(7)x x +-(4)(3)(5)x x -- 【解析】 (1)22568(2)(54)x xy y x y x y +-=+-(2)()()22322x xy y x y x y -+=-- (3)()()226397x x x x +-=+-(4)()()281535x x x x -+=--6、 分解因式:x 3﹣5x 2y ﹣24xy 2= . 【答案】 x (x+3y )(x ﹣8y ) 【解析】 x 3﹣5x 2y ﹣24xy 2 =x (x 2﹣5xy ﹣24y 2) =x (x+3y )(x ﹣8y ) 故答案为:x (x+3y )(x ﹣8y ).7、 分解因式:2212x x y ---+ 【答案】 (1)(1)y x y x ++--【解析】 原式2222(12)(1)(1)(1)y x x y x y x y x =-++=-+=++--8、 把22222222448a b c d a c b d abcd +--+因式分解. 【答案】 (22)(22)ab cd ac bd ab cd ac bd ++-+-+【解析】 ()()22222222222222224484444a b c d a c b d abcd a b abcd c d a c abcd b d +--+=++--+ ()()2222(22)(22)ab cd ac bd ab cd ac bd ab cd ac bd =+--=++-+-+9、 分解因式:3254222x x x x x --++- 【答案】 42(2)(1)x x x -+-【解析】 原式32542442(2)(2)(2)(2)(2)(2)(2)(1)x x x x x x x x x x x x x =---+-=---+-=-+- 10、 把下列多项式因式分解(1)224484a b a b ab +-+-(2)4322221a a a a ++++【答案】 (1)(2)(24)a b a b ---(2)22(1)(1)a a ++【解析】 (1)()()222244844448a b a b ab a ab b a b +-+-=-+--()()2242a b a b =---()()224a b a b =---(2)()()()()243242222221212111a a a a a a a a a a ++++=++++=++11、 把下列多项式因式分解(1)22ax bx bx ax a b -+-+-(2)432433x x x x ++++(3)2222424a b c d ab cd +--++(4)2269261x xy y x y ++--+ 【答案】 (1)()()21a b x x --+;(2)()()2213x x x +++;(3)(2)(2)a b c d a b c d ++-+-+;(4)2(31)x y +-【解析】 (1)()()()()22221ax bx bx ax a b x a b x a b a b a b x x -+-+-=---+-=--+ (2)()()()43243222243333313x x x x x x x x x x x x ++++=+++++=+++ (3)()()()()222222424222a b c d ab cd a b c d a b c d a b c d +--++=+--=++-+-+(4)()()()222269261323131x xy y x y x y x y x y ++--+=+-++=+- 12、 把下列多项式因式分解(1)242363ax bx x ay by y -+-+- (2)224484a b a b ab +-+- (3)5432221x x x x x +--++(4)228166249x xy y x y -++-+ 【答案】 (1)(21)(23)a b x y -+-(2)(2)(24)a b a b ---(3)32(1)(1)x x +-(4)2(43)x y -+ 【解析】 (1)()()()()2423632213212123ax bx x ay by y x a b y a b a b x y -+-+-=-+--+=-+-(2)()()()()()()2222244844448242224a b a b ab a ab b a b a b a b a b a b +-+-=-+--=---=---(3)()()()()()2543242232221121111(1)(1)x x x x x x x x x x x x x x +--++=+-+++=+-=+-(4)()()()22228166249464943x xy y x y x y x y x y -++-+=-+-+=-+13、 把下列多项式因式分解 (1)1xy x y --+ (2)325153x x x --+ (3)27321x y xy x -+- (4)(1)(2)6x x x --- (5)222(1)()ab x x a b +++(6)215430bm bn am an -+-(7)233a a ab b --+【答案】 (1)()()11y x --;(2)()()2351x x --;(3)()()37x x y -+;(4)()()232x x -+;(5)()()ax b bx a ++;(6)()()2215b a m n +-;(7)()()3a b a -- 【解析】 (1)()()()()()()111111xy x y xy x y x y y y x --+=---=---=-- (2)()()()()()()32322251535153533351x x x x x x x x x x x --+=---=---=-- (3)()()()()()()227321721373337x y xy x x x xy y x x y x x x y -+-=-+-=-+-=-+(4)()()()()()()323222(1)(2)632632632332x x x x x x x x x x x x x x ---=-+-=-+-=-+-=-+ (5)()()()()()()222222(1)()ab x x a b abx b x a x ab bx ax b a ax b ax b bx a +++=+++=+++=++ (6)()()215430241530bm bn am an bm am bn an -+-=+-+ ()()()()221522215m b a n b a b a m n =+-+=+-(7)()()()()()()22333333a a ab b a ab a b a a b a b a b a --+=---=---=--14、 把下列多项式因式分解(1)2c abcd ac bd -+-(2)5432222a a a a a +++++ (3)54ax ax ax a -+-(4)2ax ay a bx by ab -++-+ (5)2293x x y y ---(6)2222x y z yz --+【答案】 (1)(1)(1)ac bd +-(2)23(1)(2)a a a +++(3)4(1)(1)a x x -+ (4)()()x y a a b -++(5)(3)(31)x y x y +--(6)()()x y z x y z +--+【解析】 (1)()()()()21c abcd ac bd c bd ac c bd c bd ac -+-=-+-=-+ (2)()()()()54323222322212112a a a a a a a a a a a a a +++++=+++++=+++ (3)()()()()54441111ax ax ax a ax x a x a x x -+-=-+-=-+(4)()()()()()2ax ay a bx by ab x a b y a b a a b a b x y a -++-+=+-+++=+-+(5)()()()()()()()22229393333331x x y y x y x y x y x y x y x y x y ---=--+=+--+=+-- (6)()()()()2222222222x y z yz x y yz z x y z x y z x y z --+=--+=--=+--+ 15、 若m =4n +3,则m 2-8mn +16n 2的值是________. 【答案】 9【解析】 ∵m =4n +3, ∴m -4n =3,则原式=(m -4n )2=32=9.16、 分解因式:()()x x x x 2232349-+--+【答案】 ()2231x x --【解析】 2222222(32)(34)9(32)6(32)9(31)x x x x x x x x x x -+--+=-+--++=--17、 因式分解:()()222618680x x x x ++++【答案】 ()()()224610x x x x ++++.【解析】 令26x x a +=,则原式21880a a =++()()810a a =++()()2268610x x x x =++++()()()224610x x x x =++++18、 分解因式41)42)(52(22++---x x x x 【答案】 ()()()21322x x x x +--+ 【解析】 本题考查的是因式分解. 设22y x x =-,上式()()5414y y =-++, 整理得:上式26y y =--十字相乘法得:上式()()32y y =-+.把22y x x =-代入得:()()222322x x x x ---+十字相乘法得:上式()()()21322x x xx =+--+19、 因式分解: (1)222618680x xx x(2)()()x x x x 2232349-+--+【答案】 (1)()()()224610x x x x ++++;(2)()2231x x --【解析】 (1)令26x x a +=,则原式21880a a =++()()810a a =++()()2268610x x x x =++++=()()()224610x x x x ++++(2)2222222(32)(34)9(32)6(32)9(31)x x x x x x x x x x -+--+=-+--++=--20、 分解因式:(1)224414x y x y -++(2)841x x ++【答案】 2222(4)(4)x y xy x y xy +++-;2242(1)(1)(1)x x x x x x ++-+-+ 【解析】 (1)()()22224442242222142164x y x y x x y y x y x y xy -++=++-=+-()()222244x y xy x y xy =+++-(2)848442242121(1)(1)(1)x x x x x x x x x x x ++=++-=++-+-+21、 分解因式:464x +【答案】22(84)(84)x x x x +++- 【解析】()()()()22442222264166416848484x x x x x x x x x x +=++-=+-=+++-22、 分解因式:3234x x +-【答案】 2(1)(2)x x --【解析】 323222344444(1)(2)x x x x x x x x x +-=-+-+-=--23、 分解因式:12631x x -+ 【答案】 6363(1)(1)x x x x -+++【解析】()()()()2212612666363633121111x x x x x x x x x x x -+=-+-=--=-+++24、 分解因式:444222222222a b c a b b c c a ---+++ 【答案】 ()()()()c a b c a b a b c a b c -+--++++- 【解析】 444222222222a b c a b b c c a ---+++ 22444222222222222222222222242224()(2)(2)()()()()a b a b c b c c a a b a b a b c a b a b c a b a b c c a b c a b a b c a b c =---++-=-+-=++---+=-+--++++-25、 分解因式:3)5)(3(22-----x x x x 【答案】 (1)(2)(2)(3)x x x x ++-- 【解析】22222(3)(5)3(3)2(3)3(1)(2)(2)(3)x x x x x x x x x x x x -----=------=++-- 26、 分解因式2222(48)3(48)2x x x x x x ++++++【答案】 ()()()22458x x x x ++++【解析】()()()()22222248348248482x x x x x x x x x x x x ++++++=++++++()()()22458x x x x =++++。
专题4.5 因式分解章末八大题型总结(拔尖篇)(北师大版)(解析版)
专题4.5因式分解章末八大题型总结(拔尖篇)【北师大版】【题型1利用整体思想分解因式】 (1)【题型2利用拆项法分解因式】 (6)【题型3利用添项法分解因式】 (8)【题型4利用因式分解的结果求参数】 (10)【题型5利用因式分解进行有理数的简算】 (12)【题型6利用因式分解探究三角形形状】 (14)【题型7与因式分解有关的探究题】 (16)【题型8因式分解的应用】 (22)【题型1利用整体思想分解因式】【例1】(2024八年级下·山东东营·期中)[阅读材料]因式分解:+2+2++1.解:将“+”看成整体,令+=,则原式=2+2+1=+12.再将“A”还原,原式=++12.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.[问题解决](1)因式分解:1+4−+4−2;(2)因式分解:2−62−6+18+81;(3)证明:若n为正整数,则代数式+1+22+3+1的值一定是某个整数的平方.【答案】(1)1+2−22(2)−34(3)见解析【分析】(1)用换元法设−=,将原式化为1+4+42,再利用完全平方公式得出1+22,再将A还原即可;(2)设2−6=,则原式=+92后,再将B还原后,最后再利用完全平方公式即可;(3)先计算+1+2=2+3+2,再利用完全平方公式即可.【详解】(1)解:令−=,原式=1+4+42=1+22=1+2−22;(2)令2−6=,则2−62−6+18+81=+18+81=2+18+81=+92=2−6+92=−34;(3)+1+22+3+1=2+3+22+3+1=2+32+22+3+1=2+3+12,∵n为正整数,∴2+3+1正整数.∴+1+22+3+1=2+3+12,即代数式+1+22+3+1的值一定是某个整数的平方.【点睛】本题考查换元法、提公因式法、公式法分解因式,理解“换元法”的意义,掌握完全平方公式的结构特征是正确解答的关键.【变式1-1】(2024八年级下·山西运城·期中)(1)2+2−+22;(2)−−2−+1.【答案】(1)3(+p(−p;(2)(−−1)2.【分析】(1)设=2+s=+2,先利用平方差公式进行因式分解,再将s换回去,计算整式的加减即可得;(2)设=−,先计算整式的乘法,再利用完全平方公式进行因式分解,然后将换回去即可得.【详解】解:(1)设=2+s=+2,则原式=2−2=(+p(−p,将s换回去得:原式=(2+++2p2+−(+2p,=(3+3p(−p,=3(+p(−p;(2)设=−,则原式=−2+1,=2−2+1,=(−1)2,将换回去得:原式=(−−1)2.【点睛】本题考查了因式分解,熟练掌握因式分解的方法和“整体思想”是解题关键.【变式1-2】(2024八年级下·福建漳州·期中)(1)因式分解:2−4+12−4+7+9;(2)因式分解:+−2B+−2+B−12;(3)求证:多项式+1+2+3+6+2的值一定是非负数.【答案】(1)(1)−24(2)−121−2(3)见解析【详解】(1)解:解法一:设2−4=,则原式=+1+7+9=2+8+16=+42=2−4+42=−24;方法二:设2+1=,−4=,则原式=+++6+9=+2+6++9=++32=2+1−4+32=2−4+42=−24;(2)解:设+=,B=,则原式=−2−2+−12=2−2B−2+4+2−2+1=2−2B−2+−12=2−2+1++12=−−12=+−B−12=−121−2;(3)解:+1+2+3+6+2=2+7+62+5+6+2,设2+6=,=,则原式=+7+5+2=2+12B+362=+62=2+6+62,∵2+6+62≥0,∴+1+2+3+6+2≥0,∴多项式+1+2+3+6+2的值一定是非负数.【点睛】本题主要考查了因式分解,正确理解题意是解题的关键.【变式1-3】(2024八年级下·河南洛阳·期中)整体思想是数学解题中常见的一种思想方法.下面是对多项式(2+2p(2+2+2)+1进行因式分解的解题思路:将“2+2”看成一个整体,令2+2=,则原式=o+2)+1=2+2+1=(+1)2.再将“x”还原为“2+2”即可.解题过程如下:解:设2+2=,则原式=+2+1(第一步)=2+2+1(第二步)=(+1)2(第三步)=2+2+12(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式2−42−4+8+16进行因式分解;(2)请你模仿以上方法尝试计算:(1−2−3−⋯−2023)×(2+3+⋯+2024)−(1−2−3−⋯−2024)×(2+3+⋯+2023).【答案】(1)①该同学没有完成因式分解;最后的结果为(+1)4;②(−2)4(2)2024【分析】本题考查公式法分解因式,理解整体思想是解决问题的前提,掌握完全平方公式的结构特征和必要的恒等变形是正确解答的关键.(1)①根据因式分解的意义进行判断,再利用完全平方公式分解因式即可;②利用换元法进行因式分解即可;(2)设=1−2−3−⋯−2023,=2+3+⋯+2024,则原式=B−(−2024)(−2024),整体代入计算即可.【详解】(1)①该同学没有完成因式分解;设2+2=,则原式=+2+1(第一步)=2+2+1(第二步)=(+1)2(第三步)=2+2+12(第四步)=(+1)22=(+1)4.∴最后的结果为(+1)4.②设2−4=,原式=o+8)+16=2+8+16.=(+4)2=2−4+42=(−2)4;(2)设=1−2−3−⋯−2023,=2+3+⋯+2024,则1−2−3−⋯−2023−2024=−2024,2+3+⋯+2023=−2024,+=1+2024=2025,原式=B−(−2024)(−2024)=B−B+2024(+p−20242=2024×2025−20242=2024×(2024+1)−20242=20242+2024−20242=2024.【题型2利用拆项法分解因式】【例2】(2024八年级下·山东济宁·期中)观察下面因式分解的过程:4+3+22+3−3=4+3−2+32+3−3=22+−1+32+−1=2+32+−1上面因式分解过程的第一步把22拆成了−2+32,这种因式分解的方法称为拆项法.请用上面的方法完成下列题目:(1)2−2+2+6−8;(2)4−232+1.【答案】(1)+−2−+4(2)2+1+52+1−5【分析】本题考查因式分解,理解题中拆项法是解答的关键.(1)将−8拆成1−9,然后重新组合,利用完全平方公式和平方差公式分解因式即可;(2)将−232拆成22−252,然后重新组合,利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:2−2+2+6−8=2−2+2+6+1−9=2+2+1−2−6+9=+12−−32=+1+−3+1−+3=+−2−+4;(2)解:4−232+1=4+22−252+1=4+22+1−252=2+12−52=2+1+52+1−5.【变式2-1】(2024八年级下·陕西榆林·期中)(1)分解因式:2−6+5;(2)分解因式:2+4B−52.【答案】(1)−1−5(2)+5−【分析】(1)将5拆解成9−4,再根据完全平方公式得−32−22,然后利用平方差公式进一步分解.(2)将−52拆解成42−92,再根据完全平方公式得+22−92,然后利用平方差公式进一步分解.【详解】(1)原式=2−6+9−4=−32−22=−3−2−3+2=−1−5(2)原式=2+4B+42−92=+22−92=+2+3+2−3=+5−【点睛】本题考查了因式分解的应用,解题时要注意在变形的过程中不要改变式子的值.【变式2-2】(2024八年级下·黑龙江鸡西·期中)(1)分解因式:x2﹣6x﹣7;(2)分解因式:a2+4ab﹣5b2【答案】(1)(x+1)(x-7);(2)(a+5b)(a-b)【分析】(1)仿照例题方法分解因式即可;(2)仿照例题方法分解因式即可;【详解】解:(1)x2﹣6x﹣7=x2﹣6x+9-16=(x-3)2-42=(x-3+4)(x-3-4)=(x+1)(x-7);(2)a2+4ab﹣5b2=a2+4ab+4b2﹣9b2=(a+2b)2-(3b)2=(a+2b+3b)(a+2b-3b)=(a+5b)(a-b).【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键.【变式2-3】(2024八年级下·上海嘉定·期中)把多项式4+322+44分解因式.【答案】2+22+B2+22−B【分析】把原式中的第二项的系数3变为4−1,化简后三项结合构成完全平方式,剩下的一项写成平方形式,然后再利用平方差公式即可分解因式.【详解】解:4+322+44=4+422+44−22=2+222−B2=2+22+B2+22−B.【题型3利用添项法分解因式】【例3】(2024八年级下·山西·期中)阅读与思考任务:(1)请根据以上阅读材料补充完整对3+3因式分解的过程.(2)已知a+b=2,ab=-4,求3+3的值.【答案】(1)+2−B+2(2)3+3=32【分析】(1)在题干的基础上再提取公因式+,整理即可;(2)由(1)可知求出2−B+2的值即可求出3+3的值.将2−B+2变形为+2−3B,再代入+和B的值即得出2−B+2的值,由此即得出结果.【详解】(1)3+3=3+2−2+3=3+2−2−3=+⋅2−+⋅−=+⋅2−−.=+2−B+2;(2)∵2−B+2=+2−3B=22−3×−4=16∴3+3=+2−B+2=2×16=32.【点睛】本题考查因式分解,代数式求值.读懂题干,理解题意,掌握因式分解的方法是解题关键.【变式3-1】(2024八年级·全国·合肥期中)将下列式子因式分解:4+44【答案】(x2+2y2+2xy)(x2+2y2﹣2xy)【分析】运用添项法因式分解,根据完全平方公式和平方差公式进行因式分解;【详解】解:x4+4y4=x4+4x2y2+4y2﹣4x2y2,=(x2+2y2)2﹣4x2y2,=(x2+2y2+2xy)(x2+2y2﹣2xy);【点睛】本题考查了添项法因式分解,理解完全平方公式和平方差公式是解答关键.【变式3-2】(2024八年级下·甘肃兰州·期中)分解因式:−2−2−4−3.【答案】++1−−3【详解】解:2−2−2−4−3=2−2+1−1−2−4−4−3+4=−12−+22=−1++2−1−−2=++1−−3.【点睛】本题主要考查了分解因式,熟知乘法公式分解因式是解题的关键.【变式3-3】(2022·广西柳州·八年级期中)分解多项式5−1的结果是.【答案】−14+3+2++1【分析】直接根据添项方法进行因式分解即可.【详解】解:5−1=5−4+4−3+3−2+2−+−1=4−1+3−1+2−1+−1+−1=−14+3+2++1,故答案为:−14+3+2++1【点睛】本题考查添项法对多项式进行因式分解,解题的关键是熟练运用提公因式法,也考查了学生的观察能力和整体思想.【题型4利用因式分解的结果求参数】【例4】(2024八年级下·浙江宁波·期中)因为2+2−3=+3−1,这说明多项式2+2−3有一个因式为−1,我们把=1代入此多项式发现=1能使多项式2+2−3的值为0.利用上述阅读材料求解:(1)若+3是多项式2+B+12的一个因式,求的值;(2)若−3和−4是多项式3+B2+12+的两个因式,试求,的值.(3)在(2)的条件下,把多项式3+B2+12+因式分解.【答案】(1)=7(2)=−7,=0(3)o−3)(−4)【分析】(1)将=−3代入多项式并使多项式等于0,求;(2)将=3和=4分别代入多项式并使多项式等于0,解二元一次方程组,求,;(3)将(2)中解得的,的值代入多项式,然后进行因式分解即可.【详解】(1)解:∵+3是多项式2+B+12的一个因式,∴当=−3时,2+B+12=9−3+12=0,解得=7;(2)∵(−3)和(−4)是多项式3+B2+12+的两个因式,∴33+×32+12×3+=043+×42+12×4+=0,解得=−7=0.∴=−7,=0.(3)解:由(2)得3+B2+12+即为3−72+12,∴3−72+12=o2−7+12)=o−3)(−4).【点睛】本题考查因式分解的创新应用,熟练掌握因式分解的原理是解题的关键.【变式4-1】(2024八年级下·安徽合肥·期中)已知关于的二次三项式2−B+可分解为+2−3,则3−的值为.【答案】9【分析】把+2−3展开,求出、的值,计算即可.【详解】解:∵+2−3=2+2−3−6=2−−6,∴2−B+=2−−6,∴=1,=−6,∴3−=3×1−−6=3+6=9,故答案为:9.【点睛】本题考查了整式的乘法和因式分解,解题关键是熟练运用整式乘法法则进行计算.【变式4-2】(2023八年级下·江苏·专题练习)已知多项式4+B+能分解为(2+B+p(2+2−3),则=,=.【答案】−2;7.【分析】把2+B+2+2−3展开,找到所有z和y的项的系数,令它们的系数分别为0,列式求解即可.【详解】解:∵2+B+2+2−3=4+B3+B2+23+2B2+2B−32−3B−3=4++23++2−32+2−3−3=4+B+.∴展开式乘积中不含3、2项,∴+2=0+2−3=0,解得:=−2=7.故答案为:−2,7.【点睛】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.【变式4-3】(2024八年级下·江苏苏州·期中)已知多项式2+B+36能分解为两个整系数一次式的乘积,则k的值有()个.A.10B.8C.5D.4【答案】A【分析】设2+B+36能分解成++,根据整式的乘法化简,得到+=s B=36,根据s为整数求解即可.【详解】设2+B+36=++=2+++B,则+=s B=36∴=1=36,=2=18,=3=12,=4=9,=6=6,=−1=−36,=−2=−18,=−3=−12,=−4=−9,=−6=−6∴=+=37,20,15,13,12,−37,−20,−15,−13,−12,共10个故选A【点睛】本题考查了因式分解,整式的乘法,掌握之间的关系是解题的关键.【题型5利用因式分解进行有理数的简算】【例5】(2024八年级下·上海青浦·【答案】2021.【分析】此题考查了因式分解的应用,先设2020=,然后通过十字相乘法因式分解进行解答即可,解题的关键是熟练掌握十字相乘法因式分解的应用.【详解】解:设2020=,则原式===+1,∴原式=2020+1=2021.【变式5-1】(2024八年级下·重庆·期中)简便计算:(1)9999×10001−100002;(2)999992+199999.【答案】(1)−1(2)10000000000【分析】本题考查了因式分解的应用,平方差公式.(1)利用平方差公式进行计算,即可解答;(2)利用因式分解进行计算,即可解答.【详解】(1)解:原式=10000−1×10000+1−100002=100002−12−100002=−1;(2)解:原式=999992+99999+100000=99999×99999+1+100000=99999×100000+100000=100000×99999+1=100000×100000=10000000000.【变式5-2】(2024八年级下·山东烟台·期中)下列算式不正确的是()A.999×1001=1000−1×1000+1=10002−1B.802−160×78+782=80−782 C.257−512=514−512=51252−1D.1992=200−12=2002−1【答案】D【分析】本题主要考查了运用平方差公式和完全平方公式进行简便运算,灵活运用平方差公式和完全平方公式是解答本题额关键.【详解】解:A、999×1001=1000−1×1000+1=10002−1,选项正确,不符合题意;B、802−160×78+782=80−782,选项正确,不符合题意;C、257−512=514−512=51252−1,选项正确,不符合题意;D、1992=200−12=2002−2×200×1+1,选项错误,符合题意.故选:D.【变式5-3】(2024八年级下·四川遂宁·期中)已知=999999,=1110990,那么、的大小关系为()A.>B.<C.=D.不确定【答案】B【分析】本题考查了因式分解的应用,以及积的乘方逆用,根据作差法比较两个数的大小即可.【详解】解:−=999999−1110990=999−1110×99999=999−11×999999=999×1−11999=−10×999999<0,∴<.故选:B.【题型6利用因式分解探究三角形形状】(2024八年级下·山东泰安·阶段练习)已知s s为三角形三边,且满足2+2+2−B−B−B=0.【例6】试说明该三角形是等边三角形.【答案】见解析【分析】可将题目所给的关于、、的等量关系式进行适当变形,转换为几个完全平方式,然后根据非负数的性质求出、、三边的数量关系,进而可判断出△B的形状.【详解】解:∵2+2+2−B−B−B=0,∴22+22+22−2B−2B−2B=0,∴(2−2B+2)+(2−2B+2)+(2−2B+2)=0,∴(−p2+(−p2+(−p2=0,∴−=0,−=0,−=0,∴==,∴△B为等边三角形.【点睛】本题考查了配方法的应用,关键是对要求的式子进行变形和因式分解,将已知的等式转化为偶次方的和,根据非负数的性质解答.【变式6-1】(2024八年级下·福建福州·期中)已知△B的三边a,b,c满足−+−=0,则△B 是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【分析】本题考查了因式分解的应用,等腰三角形的定义,解题的关键是能够对题目提供的式子进行因式分解.先提取公因式,得到−−=0,进而得出−=0或−=0,即可判断△B的形状.【详解】解:∵−+−=0,∴−−−=−−=0,∴−=0或−=0,∴=或=,∴△B的形状为等腰三角形,故选:B.【变式6-2】(2024八年级下·四川内江·阶段练习)若a、b、c是△B的三边,且满足2+B−B−B=0,2+B−B−B=0,则△B的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【答案】D【分析】根据2+B−B−B=0,2+B−B−B=0,分别提取公因式即可得到(+p(−p=0,(+p(−p=0,再根据+≠0,+≠0,得到−=0,−=0,据此即可判定该三角形的形状.【详解】解:∵2+B−B−B=0,2+B−B−B=0,∴(+p(−p=0,(+p(−p=0,又∵、b、c是△B的三边,∴+≠0,+≠0,∴−=0,−=0,∴=,=,∴==,∴该三角形是等边三角形,故选:D.【点睛】本题考查了因式分解的应用,解题的关键是能够对题目提供的式子进行因式分解【变式6-3】(2024八年级下·重庆北碚·期中)已知△B三边长、、满足32+2B=32+2B,试判定△B的形状.【答案】△B为等腰三角形.【分析】根据分组分解法对式子进行因式分解,即可判断.此题考查了因式分解的应用、等腰三角形的定义等知识,利用因式分解对原式进行变形是解题的关键.【详解】解:∵32+2B=32+2B,∴32+2B−32−2B=0,∴3+−+2−=0,∴−3+3+2=0∵a,b,c是△B的三边长,∴3+3+2≠0,∴−=0∴=∴△B为等腰三角形.【题型7与因式分解有关的探究题】【例7】(2024八年级下·山东淄博·期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,两个正整数为它的“智慧分解”.例如,因为16=52−32,所以16就是一个智慧数,而5和3则是16的智慧分解.那么究竟哪些数为智慧数?第2022个智慧数是否存在,若存在,又是哪个数?为此,小明和小颖展开了如下探究.小颖的方法是通过计算,一个个罗列出来:3=22−12,5=32−22,7=42−32,9=52−42,…小明认为小颖的方法太麻烦,他想到:设两个数分别为+1,,其中≥1,且为整数.则(+1)2−2=(+1+p(+1−p=2+1.(1)根据上述探究,可以得出:除1外,所有都是智慧数,并请直接写出11,15的智慧分解;(2)继续探究,他们发现8=32−12,12=42−22,所以8和12均是智慧数,由此,他们猜想:4o≥2,且为整数)均为智慧数请证明他们的猜想;(3)根据以上所有探究,请直接写出第2023个智慧数,以及它的智慧分解.【答案】(1)奇数,11的智慧分解:5、6,15的智慧分解:7、8(2)见解析(3)第2023个智慧数是2700,2700=6762﹣6742=(676+674)(676﹣674)【分析】(1)由小明的探究可得,2+1(≥1,且为整数)是除1外,所有的奇数.根据探究可求得11、15的智慧分解;(2)借助小明的探究思路,可证猜想;(3)根据探究,前四个正整数只有3是智慧数,后面的正整数每连续四个中就有三个是智慧数,由此可得第2023个智慧数.【详解】(1)解:∵(+1)2−2=(+1+p(+1−p=2+1(≥1,且为整数),∴智慧数是除1外所有的奇数,(5+1)2−52=62−52=(6+5)(6−5)=11,(7+1)2−72=82−72=(8+7)(8−7)=15,故答案为:奇数,11的智慧分解:5、6,15的智慧分解:7、8;(2)证明:设≥2,且为整数,∵8=32−12=(2+1)2−(2−1)2=(2+1+2−1)(2+1−2+1),12=42−22=(3+1)2−(3−1)2=(3+1+3−1)(3+1−3+1),∴(+1)2−(−1)2=(+1+−1)(+1−+1)=4,∴除4外,所有能被4整除的偶数都是智慧数.∴4o≥2且为整数)均为智慧数;(3)解:据探究得,智慧数是奇数时≥1,且为整数,智慧数是4的倍数时,≥2且为整数,∴正整数中前四个正整数只有3为智慧数,此后每连续四个数中有三个智慧数,(2023−1)÷3=674,4×(674+1)=2700,∴第2023个智慧数是2700,∵2700能被4整除,∴2700=6762−6742=(676+674)(676−674).【点睛】本题考查了对因式分解的推理,掌握对因式分解的反推是本题的关键.【变式7-1】(2024八年级下·吉林长春·期中)探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:2+6+9=__________;2−4+4=________;42−20+25=________;(2)探究发现:观察以上三个多项式的系数,我们发现:62=4×1×9;(−4)2=4×1×4;(−20)2=4×4×25;归纳猜想:若多项式B2+B+o>0,>0)是完全平方式,猜想:系数a,b,c之间存在的关系式为_____________________.(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论.(4)解决问题:若多项式(+1)2−(2+6)+(+6)是一个完全平方式,利用你猜想的结论求出n的值.【答案】(1)+32;−22;2−52(2)2=4B(3)见解析(4)=3【分析】(1)可用完全平方公式进行分解因式;(2)根据问题情境,式子中的系数关系,可猜想2=4B;(3)可用完全平方公式进行验证;(4)多项式ax2+bx+c(a>0)是完全平方式,则系数a,b,c存在的关系为b2=4ac,可列[−(2n+6)]2=4(n+1)(n+6),进而求出n的值.【详解】(1)解:2+6+9=+32;2−4+4=−22;42−20+25=2−52.故答案为:+32;−22;2−52.(2)由情境中给的式子系数关系,可归纳猜想:2=4B.故答案为:2=4B.(3)验证结论:可用x2+4x+4,验证:∵b2=42=16,4ac=4×1×4=16,∴2=4B.(4)根据题意可得:−2+62=4+1+642+24+36=42+7+642+24+36=42+28+244=12=3【点睛】本题主要考查了学生的归纳总结能力和完全平方公式的综合应用,以及对因式分解的理解和应用,综合性较强.【变式7-2】(2024八年级下·湖南长沙·期中)阅读理解并填空:(1)为了求代数式2+2+3的值,我们必须知道x的值.若=1,则这个代数式的值为________﹔若=2,则这个代数式的值为_______;……可见,这个代数式的值因x的取值不同而变化,尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)把一个多项式进行部分因式分解可以解决求代数式的最大(或最小)值问题.例如:2+2+3=2+2+1+2=+12+2,因为+12是非负数,所以这个代数式的最小值是______,此时相应的x的值是______.(3)求代数式−2−6+12的最大值,并写出相应的x的值.(4)试探究关于x、y的代数式52−4B+2+6+25是否有最小值,若存在,求出最小值及此时x、y的值;若不存在,请说明理由.【答案】(1)6,11(2)2,−1(3)代数式−2−6+12的最大值是21,相应的x的值是−3(4)代数式52−4B+2+6+25有最小值是16,相应的=−3,=−6【分析】(1)把=1和=2分别代入代数式2+2+3中,再进行计算即可得出答案;(2)根据非负数的性质即可得出答案;(3)根据完全平方公式把给出的式子进行整理,即可得出答案;(4)先把代数式化成完全平方的形式,再根据非负数的性质求出最小值及此时x、y的值.【详解】(1)解:把=1代入2+2+3中,得:12+2+3=6;若=2,则这个代数式的值为22+2×2+3=11;故答案为:6,11;(2)解:根据题意可得:2+2+3=2+2+1+2=+12+2,∵+12是非负数,∴这个代数式2+2+3的最小值是2,相应的x的值是−1;故答案为:2,−1;(3)解:根据题意得:∴−2−6+12=−+32+21,∴代数式−2−6+12的最大值是21,相应的x的值是−3;(4)解:代数式52−4B+2+6+25有最小值是16,相应的=−3,=−6,理由如下:52−4B+2+6+25=42−4B+2+2+6+9+16=2−2++32+16,∵2−2及+32都是非负数,当2−=0,+3=0时,代数式有最小值是16,相应的=−3,=−6.【点睛】此题考查了因式分解的应用,用到的知识点是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的性质进行解答.【变式7-3】(2024八年级下·黑龙江哈尔滨·期中)在学习《因式分解》)时,邹老师给同学们发了很多硬纸片(×的正方形A,×的正方形B,×的长方形C.(1)在探究中,小明用1张A和1张C组成如图1所示的长方形可以说明2+B可以分解为______;(2)继续探究中,小明用1张A,2张B和3张C再次拼得一个长方形,请在框1中画出示意图,并将长方形面积表达式的因式分解结果写在横线上(3)尝试应用:请你仿照小明同学的探究方法,尝试用1张A,4张B和若干张C拼成一个长方形或者正方形,请你设计两种不同的拼法,在框2和框3中分别画出示意图,并在相应的横线上写出所拼长方形的面积表达式及因式分解的结果.【答案】(1)o+p;(2)2+3B+22=(+2p(+p;(3)2+5B+42=(+4p(+p或2+4B+42=(+2p2.【分析】(1)根据这个图形的面积有直接求和间接求两种方法,即可写出分解因式的结果.(2)先画出图形,再根据面积法写出分解因式的结果.(3)先画出图形,再根据面积法写出分解因式的结果.【详解】(1)由图知长方形的面积还可表示为o+p,因此2+B可以分解为o+p.故答案为:o+p(2)如图1张A,2张B和3张C可拼成一个长方形,由此得2+3B+22=(+2p(+p.故答案为:(+2p(+p.(3)如图,用1张A,4张B,5张C可拼成一个长方形,由此可得2+5B+42=(+4p(+p.如图,用1张A,4张B,4张C可拼成一个正方形,由此可得2+4B+42=(+2p2.故答案为:2+5B+42=(+4p(+p或2+4B+42=(+2p2.【点睛】本题考查了因式分解的应用,利用面积法写出一个多项式因式分解的结果,能够正确的列出等式是解题的关键.【题型8因式分解的应用】【例8】(2024八年级下·湖北恩施·期中)在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式4−4,因式分解的结果是−+2+2,若取= 9,=9,则各个因式的值是:−=0,+=18,2+2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式3−B2,取=52,=28,用上述方法产生的密码不可能是()A.528024B.522824C.248052D.522480【答案】B【分析】本题主要考查提公因式法分解因式、平方差公式分解因式,熟记公式结构是解题的关键.先提公因式,然后根据平方差公式因式分解,进而代入字母的值即可求解.【详解】解:∵3−B2=2−2=+−,∵=52,=28,则各个因式的值为=52,+=80,−=24,∴产生的密码不可能是522824,故选:B.【变式8-1】(2024八年级下·湖南湘西·期中)如图,某养鸡场老板准备用20米的篱笆围成一个边长为、的长方形场地,已知2+B2=240,则这个长方形场地的面积为()平方米.A.32B.24C.16D.12【答案】B【分析】本题考查了因式分解的应用.由题意得+=10,再由已知变形得到B=24,即可求解.【详解】解:由题意得+=202=10(米),2+B2=240,∴B+=240,解得B=24,∴个长方形场地的面积为24平方米.故选:B.【变式8-2】(2024八年级下·吉林·期中)如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为vm的大正方形,2块是边长为vm的小正方形,5块长是vm,宽为vm的相同的小长方形,且>(1)观察图形,可以发现代数式22+5B+22可以因式分解为;(2)若图中阴影部分的面积为34cm2,大长方形纸板的周长为30cm.①求+的值;②求图中空白部分的面积.【答案】(1)+2+2(2)①5;②20cm2【分析】本题考查了因式分解的应用.(1)题目中给的代数式是图形的面积,因式分解恰好是长方形形长与宽的乘积从而得出答案;(2)①根据长方形的周长是23+3=30即可得出+的值;②由图可得空白部分的面积是5B,故我们可以根据第一步中求出的+的值,以及阴影部分的面积,即可推出空白部分的面积.【详解】(1)解:通过观察图形可以得出图形的面积是:22+5B+22cm2,长方形的长是2+cm,宽是+2cm,由此可得:22+5B+22=+2+2,故答案为:+2+2;(2)解:①根据长方形的周长为30cm,可得:22+++2=30,23+3=30,6+=30,+=5.答:+的值为5.②空白部分的面积为5Bcm2,根据②得:+=5,∵阴影部分的面积为34cm2,且阴影部分的面积表示为22+22,故2+2=17,∵+2−2B=2+2,∴52−2B=17,∴B=4,∴5B=20.答:空白部分的面积为20cm2.【变式8-3】(2024八年级下·福建泉州·期中)【实践探究】小青同学在学习“因式分解”时,用如图1所示编号为①②③④的四种长方体各若干块,进行实践探究:(1)现取其中两个拼成如图2所示的大长方体,请根据体积的不同表示方法,写出一个代数恒等式:;(2)【问题解决】若要用这四种长方体拼成一个棱长为+2的正方体,其中②号长方体和③号长方体各需要多少个?试通过计算说明理由;(3)【拓展延伸】如图3,在一个棱长为的正方体中挖出一个棱长为的正方体,请根据体积的不同表示方法,直接写出3−3因式分解的结果,并利用此结果解决问题:已知与2分别是两个大小不同正方体的棱长,且3−83=−24−4B,当−2为整数时,求B的值.【答案】(1)+·b=B2+3;(2)②号长方体需要6个,③号长方体需要12个,+23=3+32·2+3b22+23=3+62+12B2+83,(3)B=0.3.【分析】(1)根据图2立方体的体积求法即可;(2)根据题中的给定的长方体组合把+23计算即可;(3)先把3−3因式分解,然后据此分解3−83=3−23=−22+2B+22=−22+2B+42=−24−4B即可;此题考查了因式分解的应用,解题的关键是利用几何体的体积进行因式分解及数形结合思想的应用.【详解】(1)根据题意可知:+·b=B2+3,故答案为:+·b=B2+3;(2)②号长方体需要6个,③号长方体需要12个,+23=3+32·2+3b22+23=3+62+12B2+83;(3)由题意得:3−3=−2+B+2,由上可知:3−83=3−23=−22+2B+22=−22+2B+42=−24−4B,∴−22+2B+42−4+4B=0,整理得:−22+6B+42−4=0,∵且与2两个大小不同正方体的棱长,∴−2≠0,∴2+6B+42−4=0,则−22=4−10B,∵−2为整数,则4−10B为平方数,∴4−10B=1,∴B=0.3.。
因式分解专题复习及讲解(很详细)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
2020版八年级数学下册第四章因式分解4.2提公因式法课件(新版)北师大版
【我要做学霸】 确定多项式中各项的公因式,可概括为三“定”:①定 系数,即确定各项系数的___最__大__公__约__数____;②定字母, 即确定各项的___相__同__字__母____因式(或相同多项式因式); ③定指数,即确定各项___相__同__字__母____因式(或相同多项 式因式)的指数的最___低____次幂.
结论:提公因式法 如果一个多项式的各项含有_公__因__式__, 那么就可以把这个_公__因__式__提出来,从而将多项式化成 _两__个__因__式__乘__积__的形式,这种因式分解的方法叫做提公因 式法.
【基础小练】 请自我检测一下预习的效果吧! 1.找出下列各整式的公因式: (1)4kx,8ky. (2)5y3,20y2.
解:原式=x2(b+c-d)+4x(b+c-d)+4(b+c-d) =(b+c-d)(x2+4x+4) =(b+c-d)(x+2)2.
【变式二】(变换条件和问法) (1)因式分解:(x-y)(3x-y)+2x(3x-y). (2)设y=kx,是否存在实数k,使得(1)式的化简结果为x2? 求出所有满足条件的k的值.若不能,请说明理由.
D.a+b
★3.(2019·汶上期中)如图,长、宽分别为a,b的长方 形的周长为14,面积为10,则a3b+ab3的值为___2_9_0___.世 纪金榜导学号
★★4.(2019·南岸区月考)因式分解:mn(m-n)-m(nm)2 解:mn(m-n)-m(n-m)2 =mn(m-n)-m(m-n)2 =m(m-n)[n-(m-n)] =m(m-n)(2n-m).
2 提公因式法
【知识再现】 1.a(b+c)=_a_b_+_a_c_,ab+ac=_a_(_b_+_c_)_. 2.因式分解概念:把一个多项式化成_几__个__整__式__的__积__的形 式,这种变形叫做因式分解,因式分解也可称为分解因 式.
北师大版八年级数学(下)第四章 因式分解 第2节 提公因式法(一)
第四章 因式分解
4.2 提公因式法(一)
温故知新
一、因式分解的概念 把一个多项式化成几个整式的积的形式,这种
变形叫做把这个多项式因式分解. 二、整式乘法与分解因式之间的关系.
互为逆运算
公因式的定义
多项式ab+bc各项都含有相同的因式吗?多项式3x2+x 呢?多项式mb2+nb-b呢? 公因式的定义:
3.把多项式 3ax2+6axy+30ay2 分解因式,结果为
.
解:原式=3a(x2+2xy+10y2),故答案为:3a(x2+2xy+10y2)
4.分解因式:﹣2x2+18x2y﹣4xy2
解:﹣2x2+18x2y﹣4xy2=﹣2x(x﹣9xy+2y2);
5. 已知 ab=﹣3,a+b=5,则 10+a2b+ab2=
.
解:原式=a(a2+b3﹣2a2b)故答案为:a(a2+b3﹣2a2b)
例 4:分解因式:﹣12x3﹣6x2﹣9x.
解:﹣12x3﹣6x2﹣9x=﹣3x(4x2+2x+3).故答案为:(4x2+2x+3).
练习:因式分解:﹣6nm3+4n2m﹣2nm
解:﹣6nm3+4n2m﹣2nm=﹣2nm(3m2﹣2n+1).
字母:字母取多项式各项中都含有的相同的字母;
指数:相同字母的指数取各项中最小的一个,即字母最低次幂;
提公因式法因式分解
(1)多项式2x2+6x3中各项的公因式是什么? (2)你能尝试将多项式2x2+6x3因式分解吗?与同伴交流.
如果一个多项式的各项含有公因式,就可以把这 个公因式提出来,将多项式写成公因式与另一个因式 的乘积的形式,这种因式分解的方法叫做提公因式法.
八年级因式分解专题(内部资料)
优学教育 YOUXUE
例1:分解因式:(1) 【答案】解:(1)
(2) (2)
例2:分解因式: x2 x2 8 x2 x 12
C.-m2-n2
D.4m2- 1 n2
9
例2:下列各式中,可用平方差公式分解因式的有( B ) ①-a2-b2;②16x2-9y2;③(-a)2-(-b)2;
④-121m2+225n2;⑤(6x)2-9(2y)2.
A.5个
B.4个
C.3个 D.2个
优学教育 YOUXUE
例3:将(a-1)2-1分解因式,结果正确的是( B )
例2:式子15a3b3(a-b),5a2b(b-a)的公因式是( C )
A.5ab(b-a)
B.5a2b2(b-a)
C.5a2b(b-a)
D.以上均不正确
优学教育 YOUXUE
知识点3:提公因式法分解因式
1.提公因式法: 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而 将多项式化成两个因式乘积的形式。这种因式分解的方 法叫做提公因式法。用字母表示:ma+mb+mc=m(a+b+c). 要点: (1)把公因式提到括号外面,与剩下的多项式写成积的形式。 (2)实质上是逆用乘法的分配律. (3)把一个多项式分解成两个因式积的形式,其中的一个因式是各项的公
因式,另一个因式是多项式除以这个公因式所得的商。 (4)提公因式法的一般步骤:第一步找出公因式;第二步确定另一个因式;
第三步写成积的形式。
因式分解(二)
因式分解(二)一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 熟练使用提公因式法、公式法、十字相乘法、分组分解法进行多项式的因式分解;● 熟练使用因式分解进行简便运算;● 了解使用配方法、添项(拆项)法、待定系数法来分解因式;● 会利用因式分解解决有关的综合题目。
重点难点:● 重点:熟练运用十字相乘法、分组分解法、配方法进行多项式的因式分解;● 难点:利用因式分解解决有关的综合题目。
学习策略:● 在因式分解最基本的两种方法:提公因式法和公式法的基础上,继续学习根据多项式的特点,选择适当的方法进行因式分解,培养逆向思维的意识。
二、学习与应用(一)把一个多项式化成几个的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式 .(二)把多项式ma mb mc ++分解成两个因式的 的形式,其中一个因式是各项的公因式 ,另一个因式是 ,即 ,而()a b c ++正好是 除以 所得的商,这种因式分解的方法叫提取公因式法.(三)公式法因式分解(1)用平方差公式因式分解:“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?两个数的等于这两个数的与这两个数的的乘积.如:22____________a b-=;(2)用完全平方公式因式分解:两个数(整式)的加上(减去)这两个数(整式)的的倍,等于这两个数(整式)的和(差)的平方.如:2222()a ab b a b±+=±.知识点一:十字相乘法在二次三项式ax2+bx+c(a≠0)中,如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式ax2+bx+c的一次项系数,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式__________与__________之积,即ax2+bx+c=_______________________.要点诠释:(1)正确的十字相乘必须满足以下条件:在上式中,竖向的两个数必须满足关系,;斜向的两个数必须满足关系a1c2+a2c1=b,分解思路为“看两端,凑中间.”(2)二次项系数a一般都化为正数,如果是负数,则提出,分解括号里面的二次三项式,最后结果不要忘记把提出的添上.(3)形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式.这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,x2+2x-15______________.知识点二:分组分解法知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
因式分解(全)——人大附中练习题讲解
5.4选主元【例1】 分解因式:1a b c ab bc ca abc +++++++.5.5分组分解法【例2】 分解因式:⑴ ax ay bx cy cx by -++--;⑵221x ax x ax a +++--;【例3】 分解因式:54321x x x x x +++++【变式】分解因式:3254222x x x x x --++-【例4】 分解因式:2222223x y xy x z xz y z yz xyz ++++++【例5】 分解因式:251539a m am abm bm -+-【变式】分解因式:27321x y xy x -+-【变式】分解因式:222332154810ac cx ax c +--【例6】 分解因式:⑴43221x x x x ++++; ⑵2222()()()()a b a c c d b d +++-+-+;⑶33x x y y -+-【例7】 分解因式2244243x xy y x y ++---.5.6拆添项法【例8】 分解因式432433x x x x ++++【变式】因式分解343a a -+.【变式】 分解因式:310x x ++【例9】 分解因式:⑴4231x x -+; ⑵42231x x -+【变式】分解因式:421x x ++【变式】分解因式:841x x ++【变式】在m 、n 都是大于l 的整数时,444m n +是合数.【例10】 分解因式:()()()222241211y x y x y +-++-【变式】分解因式:42222222()()x a b x a b -++-【例11】 分解因式:444222222222a b c a b b c c a ---+++【例12】 分解因式:323233332a a a b b b ++++++【例13】 求证:3332223()()a b c abc a b c a b c ab bc ca ++-=++++---.【变式】 分解因式:()()()33222222x y z x y z ++--+【变式】分解因式:()()()33311a b c b c a -+-+-+-【变式】分解因式:()()()3332332125x y x y x y -+---【变式】若3x y z ++=,且x 、y 、z 均不为1.求:333(1)(1)(1)3(1)(1)(1)x y z x y z -+-+----的值.【变式】已知:1x y +=,求证:3331x y xy ++=【例14】 分解因式:432234232a a b a b ab b ++++=_______.【变式】若1x y +=-,则43222234585x x y x y x y xy xy y ++++++的值等于( )A.0B.1-C.1D.3【例15】 分解因式:51x x ++【变式】分解因式:541a a ++【例16】 分解因式:267x x +-5.7十字相乘法对于二次三项式2ax bx c ++的因式分解,最简单有效的方法是十字相乘.注:若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解【例17】 用十字相乘法分解因式:⑴26x x --;⑵2922x x --;⑶212x x +-⑷42730x x +-;⑸2376a a --;⑹2273320x x --【变式】用十字相乘法分解因式:⑴22672x xy y -+;⑵2214425x y xy +-;⑶222064xy y x -++;⑷4224109x x y y -+【例18】 已知2232a b ab -=,0a >,0b >,求证:252a b a b +=-【变式】已知221547280x xy y -+=,求x y的值.【例19】 分解因式:⑴2(2)8(2)12a b a b ---+; ⑵2212()11()()2()x y x y x y x y +++-+-【变式】分解因式:(1) 4222(1)x x a a -++; (2) 2222()abcx a b c x abc +++;(3)2()2a b x ax a b -+++【变式】 分解因式:()()()222221a a x a x a a ---++【变式】 分解因式:()()()2691171554k k x k x ----+【变式】 分解因式:22(1)6(31)72k x k x ---+【变式】 分解因式:()()2222682644k k x k k x k -++--+-【变式】 分解因式:2222(48)3(48)2x x x x x x ++++++【变式】 分解因式:2222222(61)5(61)(1)2(1)x x x x x x ++++++++【变式】 分解因式()()()()2212112x y x y x y x y +++-+-.【例20】 分解因式:()()()2442111x x x ++-+-5.8重组重解【例21】 分解因式:(6114)(31)2a a b b b +++--【变式】分解因式:22(1)(1)(221)y y x x y y +++++【例22】 分解因式:()()126x x x ---【变式】 ()()2221ab x x a b +++【变式】分解因式:()()222222ax by ay bx c x c y ++-++【变式】分解因式:⑴()()()211y y m m ---+;⑵()()()2a c a c b b a +-+-.【变式】分解因式:()()22114m n mn --+【例23】 分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++5.9双十字相乘法双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。
七年级下-数学-因式分解-讲义
定义:把一个多项式化成几个整式的积的形式因式分解的意义与整式乘法的关系:互逆提取公因式法:)(c b a m mc mb ma ++=++因式分解的主要方法 平方差公式:()()b a b a b a -+=-22 因式分解 公式法完全平方公式:()2222b ab a b a +±=±因式分解的一般步骤:先看能否用提取公因式,再看能否用公式法因式分解的应用4.1 因式分解知识点:一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,也叫分解因式。
考点①:判断因式分解。
关键:1、等式右边是几个整式乘积的形式2、是否分解彻底;3、用整式乘法来检验因式分解的正确性。
例1:下列各式从左到右的变形中,是因式分解的是()A. ()2132-22+-=+x x x B. ()()111222-+=-+xy xy xy y x C. ()x x y xy y x -=-2233 D. ()()y x y x y x 32329422++-=+- 例2:检验下列因式分解是否正确.(1) ()()1212122+-=-a a a(2) ()()3393-+=-x x x x x(3) ()()3824112++=+-m m m m(4) ()()y x y x y xy x +-=-+2222 考点②:已知因式或其中一个因式,求原多项式的系数。
关键:1、将因式的乘积用整式乘法做化简,再与原多项式一项一项对比。
2、若只知一个因式,则将另一个因式设为类似mx-n 的形式,再与已知因式相乘做化简,最后与原多项式对比。
例1:若()()43--x x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例2:若()3-x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例3:若()3-x 是多项式a x x +-72分解因式的结果,则a 的值是______.例4:甲、乙两名同学分解因式b ax x++2时,甲看错了b ,分解结果为()()42++x x ;乙看错了a ,分解结果为()()91++x x ,则.____=-b a考点③:将考点②反过来,已知原多项式和它的因式分解的其中一个因式,求另一个因式.例1:()ab aby abx ab 749147-=+--,括号里应填()A . y x 721++- B. y x 72-1+- C. y x 7-2-1 D. y x 721-+例2:已知将122-+x x 因式分解得到的一个因式是()3-x ,另一个因式是_________.考点④:利用因式分解简单计算.例1:(1)2012012- (2)223565-4.2 提取公因式法知识点一:公因式1. 一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.2. 多项式各项的公因式应是各项系数的最大公约数与各项都含有的相同字母的最低次幂的积.知识点二:提取公因式法3. 如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解,这种方法叫做提取公因式法。
1、因式分解
1、因式分解第1讲因式分解(1)【竞赛导航】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
本讲主要涉及用提公因式法和公式法分解因式.一、提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数取各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
二、把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式:a 2-b 2=(a +b )(a -b )完全平方公式:a 2 ±2a b+b 2=(a ±b )2推广公式:a 2+b 2+c 2+2ab+2ac+2bc=(a+b+c)2立方和、立方差公式: a 3±b 3=(a ±b )( a 2 μa b+b 2)和(差)的立方公式:33223)(33b a b ab b a a ±=±+±补充:欧拉公式: a 3+b 3+c 3= (a +b +c )(a 2+b 2+c 2-ab -ac -bc ) +3abc ])()())[((21222a c c b b a c b a -+-+-++=+3abc 特别地:(1)当a +b +c =0时,有a 3+b 3+c 3=3abc(2)当0=c 时,欧拉公式变为两数立方和公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。
但有时需要经过适当的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。
因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。
【典例解析】例1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213;(2))(2)(2)(223a b ab a b a b a a ---+-例2. 计算:1368987521136898745613689872681368987123?+?+?+?例3. 不解方程组23532x y x y +=-=-,求代数式()()()22332x y x y x x y +-++的值。
因式分解经典讲义(精)
第二章 分解因式【知识要点】1.分解因式(1)概念:把一个________化成几个___________的形式,这种变形叫做把这个多项式分解因式。
(2)注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2.分解因式与整式乘法的关系整式乘法是____________________________________________________; 分解因式是____________________________________________________; 所以,分解因式和整式乘法为_______关系。
3.提公因式法分解因式(1)公因式:几个多项式__________的因式。
(2)步骤:①先确定__________,②后__________________。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“-”号。
4.运用公式法分解因式(1)平方差公式:_________________________ (2)完全平方公式:_________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用 【例1】分解因式:(1)3241626m m m -+- (2)2()3()x y z y z +-+(3)2()()()x x y x y x x y +--+ (4)(34)(78)(1112)(78)a b a b a b a b --+--解析:(1)题先提一个“-”号,再提公因式2m ;(2)题的公因式为y z +;(3)题的公因式为()x x y +; (4)题的公因式为78a b -。
答案:(1)22(2813)m m m --+; (2)()(23)y z x +-;(3)2()xy x y -+; (4)22(78)a b -。
八年级数学下册第四章因式分解提公因式法教学课件北师大版
正确找出多项式各项公因式的关键是什么?
1.系数:公因式的系数是多项式各项系数的最大公 约数.
2.字母:字母取多项式各项中都含有的相同的字母.
3.指数:相同字母的指数取各项中最小的一个,即 相同字母的最低次幂.
多项式各项的公因式可以是单项式,也可以是多项 式.
正直的人并不是渺小的,不要把谦虚和 渺小、妄自菲薄混为一谈。 ——契诃夫
3.已知x+y=6,xy=-3,则x2y+xy2=________. 【解析】如果想从已知条件中直接求出x、y的具体 数值,理论上是可行的,但以我们目前的知识是办 不到的.观察所求代数式发现,先将所求代数式因 式分解,然后再将条件等式代入即可. 原式=xy(x+y), 当x+y=6,xy=-3时, 原式=-3×6=-18. 答案:-18
912 45,
所 以817 279 913能 被 45整 除 .
1.(南通·中考)因式分解:ax2-ax=________. 【解析】提公因式ax,ax2-ax=ax(x-1). 答案:ax(x-1) 2.(宿迁·中考)若2a-b=2,则6+8a-4b=______. 【解析】6+8a-4b=6+4(2a-b)=14. 答案:14
【归纳】
分两步:第一步,找出公因式; 第二步,提公因式 ,即用多项式除以公因式.
【跟踪训练】
把 -24x3 +12x2 -28x 因式分解.
解:-24x3 +12x2 -28x
=-(24x3 -12x2 +28x) =-(4x· 6x2-4x·3x+4x·7) =-4x(6x2 -3x+7)
当多项式第一项系数是 负数,通常先提出“-” 号,使括号内第一项系 数变为正数,注意括号 内各项都要变号.
因式分解(海淀)(学生版)+(详解版)
C.
D.
8 2017~2018学年北京海淀区101中学初二上学期期中第11题
因式分解
.
9 2017~2018学年北京海淀区101中学初二上学期期中第12题3分
点
关于 轴的对称点是
.
10 2017~2018学年北京海淀区师达中学初二上学期期中第12题3分
因式分解
.
11 2017~2018学年北京海淀区育英学校初二上学期期中第16题
A.
B.
C.
D.
答案 B
解析
.
考点 式 > 因式分解 > 因式分解综合应用
二、提取公因式与公式法
6 2017~2018学年北京海淀区101中学初二上学期期中第4题
下列多项式,能用公式法分解因式的有( ).
①
②
③
④
⑤
⑥
A. 个
B. 个
C. 个
答案 A
解析 只有②
⑥
能用公式法分解因式,
D. 个
. 考点 式 > 因式分解 > 提公因式法与公式法
阅读:把多项式
分解因式得
,由此对于方程
可以变形为
,解得 或
.
观察多项式
的因式
、
,与方程
的解 或
之间的
关系.可以发现,如果 、
是方程
的解,那么
、
是多项式
的因式.这样,若要把一个多项式分解因可以通过其对应方程的解来确定其中的
因式.
例如:对于多项式
.观察可知,当 时,
,则
,其中 为整
是多项式
的一个因式.若要确定整式 ,则可用竖式除法:
因式分解(海淀)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字相乘法分解,如还不能,就试用分组分解法或其它方法.
注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;
②结果一定是乘积的形式;
③每一个因式都是要求:
5.1
因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.
因式分解与整式乘法互为逆变形:
式中 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式
因式分解的常用方法:
提取公因式法、运用公式法、分组分解法、十字相乘法.
分解因式的一般步骤: