人教版初中数学不等式与不等式组知识点及习题总汇-

合集下载

(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结

(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结

(文末附答案)人教版初中数学不等式与不等式组常考必考知识点总结单选题1、不等式3x −2<4中,x 可取的最大整数值是( )A .0B .1C .2D .32、若关于x 的不等式mx - n >0的解集是x <15,则关于x 的不等式(m +n)x >n −m 的解集是( ) A .x >−23B .x <−23C .x <23D .x >233、已知非负数 x ,y ,z 满足.3−x 2=y+23=z+54.,设 W =3x −2y +z ,则 W 的最大值与最小值的和为( )A .−2B .−4C .−6D .−84、已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤75、如果关于x 的不等式组{13(2x +5)>x −512(x +3)<x +a只有5个整数解,则a 的取值范围是( ) A .−6<a <−112B .−6≤a <−112C .−6≤a ≤−112D .−6<a ≤−112 6、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个7、已知x =m +15,y =5−2m ,若m >−3,则x 与y 的关系为( )A .x =yB .x >yC .x <yD .不能确定8、小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下,那么本场比赛特里、纳什各得了()分?A.23,25B.25,35C.35,25D.23,35 填空题9、已知实数x满足{5(x+1)≥3x−112x−1≤7−32x,若S=|x﹣1|+|x+1|的最大值为m,最小值为n,则mn=_____.10、(1)已知x<a的解集中的最大整数为3,则a的取值范围是________.(2)已知x>a的解集中最小整数为-2,则a的取值范围是________.11、不等式−5x>11的解集是__________.12、不等式4(x+1)≤16的正整数解是_____.13、不等式4x﹣6≥7x﹣12的非负整数解为________________.解答题14、(1)解二元一次方程组:{x−y=2x−y=y+1.(2)解不等式:x−2≥x+12+3.15、小明距书店8 km,他上午8∶30出发,以15 km/h的速度行驶了xh之后,又以18 km/h的速度行驶,结果在9∶00前赶到了书店,请列出不等式.(文末附答案)人教版初中数学不等式与不等式组_009参考答案1、答案:B解析:首先解不等式,再从不等式的解集中找出适合条件的最大正整数即可.解:3x−2<4,3x<4+23x<6x<2,∴最大整数解是1.故选为:B.小提示:本题考查解一元一次不等式,一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.2、答案:B解析:可判断m、n都是负数,且可得到m、n之间的数量关系,再解不等式(m+先解不等式mx- n>0,根据解集x<15n)x>n−m可求得解不等式:mx- n>0mx>n∵不等式的解集为:x<15∴m<0解得:x<nm∴nm =15,∴n<0,m=5n∴m+n<0解不等式:(m+n)x>n−mx<n−mm+n将m=5n代入n−mm+n得:n−m m+n =n−5n5n+n=−4n6n=−23∴x<−23故选:B小提示:本题考查解含有参数的不等式,解题关键在在系数化为1的过程中,若不等式两边同时乘除负数,则不等号需要变号.3、答案:C解析:首先设3−x2=y+23=z+54=k,求得x=−2k+3,y=3k−2,z=4k−5,又由x,y,z均为非负实数,即可求得k的取值范围,则可求得W的取值范围.解:设3−x2=y+23=z+54=k,则x=−2k+3,y=3k−2,z=4k−5,∵x,y,z均为非负实数,∴{−2k+3⩾03k−2⩾04k−5⩾0,解得54⩽k⩽32,于是W=3x−2y+z=3(−2k+3)−2(3k−2)+(4k−5)=−8k+8,∴−8×32+8⩽−8k+8⩽−8×54+8,即−4⩽W⩽−2.∴W的最大值是−2,最小值是−4,∴W的最大值与最小值的和为−6,故选:C.小提示:此题考查了最值问题.解此题的关键是设比例式:3−x2=y+23=z+54=k,根据已知求得k的取值范围.此题难度适中,注意仔细分析求解.4、答案:A解析:先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.解:解不等式3x﹣m+1>0,得:x>m−13,∵不等式有最小整数解2,∴1≤m−13<2,解得:4≤m<7,故选A.小提示:本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.5、答案:D解析:解不等式组得解集,根据解集可确定这5个整数解,从而可关于a的不等式,解不等式即可得a的取值范围.解不等式组得{x<20x>3−2a,∴3−2a<x<20,∴5个整数解为19,18,17,16,15,∴14≤3−2a<15,∴−6<a≤−112.故选:D小提示:本题考查了解一元一次不等式组,关键是根据不等式组的整数解得到不等式.6、答案:C解析:A、B、D正确,C. 不等式-3x>9的解集是x<-3.故选C.7、答案:B根据题意,直接利用作差法进行计算,得x−y=3m+10,比较3m+10与0的大小,即可得到答案.解:∵x−y=m+15−(5−2m)=3m+10,∵m>−3,∴3m>−9.∴3m+10>1>0.∴x>y.故选:B.小提示:本题考查了有理数的比较大小,以及代数式的变形和不等式的解法,难度适中.解题的关键是熟练掌握作差法比较大小.8、答案:D解析:关键描述语是:特里得分的两倍与纳什得分的差大于10,纳什得分的两倍比特里得分的三倍还多.不等关系为:特里得分×2−纳什得分>10;纳什得分×2>特里得分×3.根据这两个不等关系就可以列出不等式组,从而求解.解:设本场比赛特里得了x分,则纳什得了(x+12)分,根据题意,得{2x−(x+12)>102(x+12)>3x.解得22<x<24.因为x为整数,故x=23,23+12=35.23>20.答:小牛队赢了,特里得了23分,纳什得了35分.D小提示:解决本题的关键是读懂题意,找到符合题意的不等式组.并且要注意未知数的取值是正整数.9、答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x﹣1,得:x≥﹣3,解不等式12x−1≤7−32x,得:x≤4,则﹣3≤x≤4,当﹣1≤x≤1时,S=|x﹣1|+|x+1|取得最小值,最小值n=2,当x=4时,S=|x﹣1|+|x+1|取得最大值,最大值m=8,∴mn=2×8=16,所以答案是:16.小提示:本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式.10、答案:3<a≤4−3≤a<−2解析:(1)根据不等式的解集中最大的整数是3,可得答案.(2)根据不等式的解集中最小整数为-2,可得答案.解:(1)∵x<a的解集中的最大整数为3,∴3<a≤4,所以答案是:3<a≤4.(2)∵x>a的解集中最小整数为-2,∴−3≤a<−2,所以答案是:−3≤a<−2.小提示:本题考查了不等式的解集,熟练掌握不等式的解集是解题关键.11、答案:x<−115解析:根据不等式的性质求出不等式的解集即可.∵−5x>11,两边同除以-5,不等式方向改变,得x<−11.5.故填:x<−115小提示:本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.12、答案:1,2,3解析:首先确定不等式组的解集,然后再找出不等式的特殊解.移项得:4x≤16﹣4,合并同类项得:4x≤12,系数化为1得:x≤3,所以不等式4(x+1)≤16的正整数解为1,2,3.所以答案是:1,2,3.小提示:本题考查不等式的整数解问题,关键是先求出不等式的解,再找满足条件的解,掌握解不等式要点.13、答案:0,1,2解析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.解:移项得:4x-7x≥-12+6,合并同类项得:-3x≥-6;化系数为1得: x≤2;因而不等式的非负整数解是:0,1,2.小提示:正确解不等式,求出解集是解决本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14、答案:(1){x=3y=1;(2)x≥11解析:(1)利用加减消元法求解即可;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得答案.解:(1){x −y =2①x −y =y +1②, ①﹣②得:0=2−(y +1),解得y =1,把y =1代入①可得:x =3,所以方程组的解为{x =3y =1; (2)去分母,得:2(x −2)≥x +1+6,去括号,得:2x −4≥x +7,移项、合并同类项,得:x ≥11.小提示:本题考查解二元一次方程组和一元一次不等式,解题的关键是熟练掌握解解二元一次方程组和一元一次不等式的方法步骤.15、答案:15x +18(12-x)>8解析:根据题意,可得不等关系为以15 km/h 的速度行驶xh 的路程+以18 km/h 的速度行驶(12-x) h 的路程>8 km . 小明上午8∶30出发, 在9∶00前赶到了书店,路途共用了不到12h, 由题意得15x +18(12-x)>8.所以答案是:15x +18(12-x)>8.小提示:此题主要考查列一元一次不等式,找到实际问题的不等关系是解题的关键.。

人教版七年级数学下不等式与不等式组知识点与试题

人教版七年级数学下不等式与不等式组知识点与试题

不等式与不等式组本章知识点:1、不等式:用>或<号表示大小关系的式子叫做不等式。

Shu 532、不等式的解:把使不等式成立的未知数的值叫做不等式的解。

3、解集:使不等式成立的x 的取值范围叫做不等式解的集合,简称解集。

4、不等式的性质:1、不等式两边同时加〔或减〕同一个数〔或式子〕,不等号的方向不变。

a+c>b+c,a-c>b-c2、不等式两边同乘〔或除以〕同一个正数,不等号的方向不变。

如果a>b,并且c>0,ac>bc,a/c<b/c3、不等式两边同乘〔或除以〕同一个负数,不等号的方向改,a>b,c<0,ac<bc a/c<b/c5、一元一次不等式:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。

6、一元一次不等式组:把几个不等式合起来,组成一个一元一次不等式组。

7、不等式组的解集:不等式组中每一个解集的公共部分叫做不等式组的解集。

记:同大取大,同小取小,大小小大取中间,大大小小无解。

练习:1.用不等号填空:〔1〕假设b a -<π,则a π- b 〔2〕假设b a >,当bc ac <时,c 0 〔3〕假设b a >,则c a - c b - 〔4〕假设b a -<2,则a 2- b〔5〕假设0,0<>a ab ,则b 0 〔6〕a b a >-,则b 0〔7〕假设a b a ><,0,则ab 2a 〔8〕假设b a <,则3a b a 2一、画出数轴,在数轴上表示出以下不等式的解集:(1)⋅>213x (2)x ≥-4.(3)⋅≤51x (4) -2x<5 解以下不等式,并把它们的解集在数轴上表示出来。

1、3(x+2)>4(x-1)+72、 312-x ≤643-x二、选择1、以下数中是不等式x 32>50的解的有〔 〕76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、以下各式中,是一元一次不等式的是〔 〕A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、假设b a ,则以下不等式中正确的选项是〔 〕A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的选项是〔 〕A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为〔 〕 A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为〔 〕A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有〔 〕 A 、1个 B 、2个 C 、3 个 D 、4个8、以下图所表示的不等式组的解集为〔 〕-2A 、x 3B 、32 x -C 、 2- xD 、32 x -1.以下各数,,3,2.50421,,,,π-其中使不等式2-x >1成立有( ). A.–4,2.5,πB.3,2.5,πC.3,0,21 D.2.5,π 2.在以下数学表达式中,–3<0.4,32,5,,1,0322+>+≠+=>+y x x xy x x y x 其中不等式 有( ).A.1个B.3个C.4个D.5个3.“y 的2倍与3的差小于或等于4”,以下各式中表示正确的选项是( ).A.432<-yB.2y –3=4C.2y –3≤4D.2y –3>44.以下按要求列出的不等式中正确的选项是( ).A.“a 不是负数”即a >0B.“b 是不大于零的数”即b<0C.“m 是不小于–2的数”即m>–2D.“P+Q 是正数”即P+Q>05.有以下数字表达式,〔1〕,2)4(,32)3(,3)2(,04322y xy x y a y y x ++<+≠<+其中属于不等式的有〔 〕.A.1个B.2个C.3个D.4个6.“a 的3倍与21的和不大于4”,以下各式表示正确的选项是( ). A.4213≤+a B.4213<+a C.4213≥+a D.4213>+a7.以下按要求列出的不等式中不正确的选项是( ).A.“b 的相反数是正数”即–b>0B.“a 是不小于零的数”即a >0C.“k 不大于3”即k ≤3D.“m+n 是正数”即m+n>0三、填空题9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:假设a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出以下不等式〔组〕的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是四、解以下不等式,并把解集在数轴上表示出来: 1.2231061-+>-x x 2.17)10(2283--≤--x x x 3.4238171->--x x 4.)23(6)1(3)1(2+-≥+--x x x 5.413121+>+--y y y 6.1257433-≤--y y y 五、解答题19、代数式2131--x 的值不大于321x -的值,求x 的范围 五、解答题:1.x 取何值时,3)34(2-x 的值不大于6)125(5+x 的值. 2.已知)1(645)25(3+-<++x x x ,化简:x x 3113--+.3.已知0)24(1832=--++k y x x ,当k 为何值时,y 的值为非负数.七、求不等式95)1(3-≥+x x 的正整数解?4.求不等式25+>x kx 的解集.5.有个两位数的十位数字与个位数字的和大于11,如果这个两位数减去18后得到的数是原两位数的数字位置互换的两位数,求这个两位数.6.在爆破时,如果导火索燃烧的速度是每秒钟0.8厘米,人跑开的速度是每秒钟4米,为了使点导火索的人在爆破时跑到100米以外的安全地区,这个导火索的长度应有什么限制?六、列不等式〔组〕解应用题某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。

七年级不等式知识点及题型总结(新)

七年级不等式知识点及题型总结(新)

不等式与不等式组知识要点:不等式定义:用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式不等式的解:使不等式成立的未知数的值,叫做不等式的解。

不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

不等式的基本性质:1.不等式两边加(或减)同一个数(或式子),不等号的方向不变。

如果那么2.不等式两边相乘(或除以)同一个正数,不等号的方向不变。

如果那么或3.不等式两边相乘(或除以)同一个负数,不等号的方向改变。

如果那么或延伸:1.若a>b,b>c,则a>c (不等式的传递性)2.若a>b,c>d,则a+c>b+d (同向不等式相加性质)3.若a>b>0,c>d>0,则ac>bd (同向不等式相乘性质)4.若a>b>0,则0<1a <1b(不等式的倒数性质)5.若a>b>0,则a n>b n (n∈N*) (不等式的乘方性质)6.若a>b>0 (n∈N*,n>1) (不等式的开方性质)一元一次不等式定义:只含一个未知数,并且未知数的次数是1,类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

解不等式:移项,合并同类项,系数化为一,在数轴上表示出解集去分母,去分子,去括号,移项,合并同类项,系数化为一,在数轴上表示出解集联系实际:注意“不大于”“不小于”“不超过”“超过”。

解一元一次不等式组 :不等式组的解集:同大取大,同小取小,大小小大取中间,大大小小无解。

步骤:标序号①②,解不等式,将两式的解集在数轴上表示出来,写出解集题型:一.画数轴,表示出不等式解集:二.求不等式的解:三.判定一系列式子哪些是不等式:四.利用不等式的性质答题:例题1:不等号填空:若a<b<0 ,则5a- 5b-;a 1 b 1;12-a 12-b五.求解不等式及不等式组:例题1:⎪⎩⎪⎨⎧-++≤--)12(23134122x x x x x六.数解的个数:例题1:不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D、4个七.根据文字描述写出不等式:例题1:“x 的一半与2的差不大于1-”所对应的不等式是 ( )。

人教版七年级数学下册不等式与不等式组知识点及习题

人教版七年级数学下册不等式与不等式组知识点及习题

三 不等式与不等式组1. 不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。

不等式的解集:1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数 的值,都叫做这个不等式的解。

2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式 的解的集合,简称这个不等式的解集。

3)求不等式的解集的过程,叫做解不等式。

用数轴表示不等式的方法,2.不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

3. {4. 一元一次不等式➢ 一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

➢ 解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为14. 一元一次不等式组➢ 一元一次不等式组:1)几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2)几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不 等式组的解集。

[如果a >b, 那么a ±c >b ±c < 如果a >b, c >0,那么ac >bc (或b >a ) 如果a >b, c <0,那么ac <bc (或cb c <a )3)求不等式组的解集的过程,叫做解不等式组。

当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

➢一元一次不等式组的解法:1)分别求出不等式组中各个不等式的解集2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

四不等式与不等式组1.全面调查:考察全体对象的调查方式叫做全面调查。

—2.抽样调查:一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

人教版初中数学不等式与不等式组基础知识点归纳总结

人教版初中数学不等式与不等式组基础知识点归纳总结

人教版初中数学不等式与不等式组基础知识点归纳总结单选题1、不等式组{3(x −1)>x −72x +2⩾3x的解集是( ) A .﹣2<x≤2B .x <﹣2C .x≥2D .无解答案:A解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解不等式3(x ﹣1)>x ﹣7,得:x >﹣2,解不等式2x+2≥3x ,得:x≤2,则不等式组的解集为﹣2<x≤2,故选:A .小提示:本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、下列说法中错误的是( )A .不等式x +2≤3的整数解有无数个B .不等式x +4<5的解集是x <1C .不等式x <3的正整数解有限个D .0是不等式2x <−1的解答案:D解析:逐一对选项进行分析即可.A. 不等式x +2≤3的解集为x ≤1 ,所以整数解有无数个,故正确;B. 不等式x +4<5的解集是x <1,故正确;C. 不等式x <3的正整数解为1,2,是有限个,故正确;D. 0不是不等式2x <−1的解,故错误;故选:D .小提示:本题主要考查不等式的解集及解的个数,会解不等式是解题的关键.3、“x 的2倍与3的和是非负数”列成不等式为( )A .2x +3≥0B .2x +3>0C .2x +3≤0D .2x +3<0答案:A解析:非负数就是大于或等于零的数,再根据x 的2倍与3的和是非负数列出不等式即可.解:“x 的2倍与3的和是非负数”列成不等式为:2x +3≥0,故选:A.小提示:本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键.4、关于x 的方程4x-2m+1=5x-8的解是负数,则m 的取值范围是( )A .m>92B .m<0C .m<92D .m>0 答案:A解析:解:方程4x -2m +1=5x -8的解为x =9-2m .由题意得:9-2m <0,则m >92.故选A .5、下列式子:①3>0;②4x +5>0;③x <3;④x 2+x ;⑤x ≠﹣4;⑥x +2>x +1,其中不等式有( )个A .3B .4C .5D .6答案:C解析:根据不等式定义可得答案.①3>0;②4x +5>0;③x <3;⑤x ≠﹣4;⑥x +2>x +1是不等式,共5个,故选C .小提示:本题考查不等式的定义,熟练掌握不等式的定义是解题的关键.6、关于x 的一元一次方程4x-m+1=3x-1的解是负数,则m 的取值范围是( ).A .m=2B .m >2C .m <2D .m≤2答案:C解析:∵方程x ﹣m +2=0的解是负数,∴x =m ﹣2<0,解得:m <2,故选C .7、下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A .{x −1<3x +1<3B .{x −1<3x +1>3C .{x −1>3x +1>3D .{x −1>3x +1<3答案:B分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.详解:A、此不等式组的解集为x<2,不符合题意;B、此不等式组的解集为2<x<4,符合题意;C、此不等式组的解集为x>4,不符合题意;D、此不等式组的无解,不符合题意;故选B.点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.8、不等式3x−1>x+1的解集在数轴上表示为( )A.B.C.D.答案:C解析:试题解析:由3x﹣1>x+1,可得2x>2,解得x>1,所以一元一次不等式3x﹣1>x+1的解在数轴上表示为:故选C.点睛:首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.9、用不等式表示:x 减去2的差的绝对值不大于32_________________. 答案:|x −2|≤32解析:根据题意以及不等式的定义列不等式.解:x 减2的绝对值不大于32,列式:|x −2|≤32.故答案是:|x −2|≤32. 小提示:本题考查列不等式,解题的关键是根据不等式的定义,找到题目中的不等关系进行列式.10、一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有______ 人.答案:22解析:解:设得5分的人数为x 人,得3分的人数为y 人.则可得{x +y +3=265x +3y +12>26×4.8,解得:x >21.9. ∵一共26人,最低的得3分,至少有3人得4分,∴得5分最多22人,即x ≤22.∴21.9<x ≤22且x 为整数,所以x =22.故得5分的人数应为22人.故答案为22.点睛:此题考查不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.解题过程中一定要符合题目的意思,以事实为依据.11、已知不等式组{x >1x <a −1无解,则a 的取值范围为__.答案:a⩽2解析:求出不等式组中每个不等式的解集,根据已知即可得出关于a的不等式,即可得出答案.解:∵不等式组{x>1x<a−1无解,∴a−1⩽1,解得:a⩽2,所以答案是:a⩽2.小提示:本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a的不等式,题目比较好,难度适中.12、不等式组{2x−1<3−12x−1≤0的整数解的和为________.答案:-2解析:先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值,再相加.解:{2x−1<3①−12x−1≤0②,解不等式①得,x<2;解不等式②得,x≥-2,∴不等式组的解集是:-2≤x<2,∴不等式组的整数解是:-2,-1,0,1,∴整数解的和为-2-1+0+1=-2,所以答案是:-2.小提示:本题考查了解一元一次不等式组,不等式组的整数解的应用,解题的关键是能根据不等式的解集求出不等式组的解集.13、已知关于x的不等式3x-5k>-7的解集是x>1,则k的值为________.答案:2解析:试题分析:不等式可变形为:3x>5k-7,x>5k−7,3∵关于x的不等式3x-5k>-7的解集是x>1,∴5k−7=1,3解得:k=2.故答案为2.点睛:本题考查了不等式的解集,利用不等式的解集得出关于k的方程是解题关键.解答题14、在平面直角坐标系中,若P、Q两点的坐标分别为P(x1,y1)和Q(x2,y2),则定|x1−x2|和|y1−y2|中较小的一个(若它们相等,则任取其中一个)为P、Q两点的“直角距离小分量”,记为d min(P,Q).例如:P(−2,3),Q(0,2),因为x1=−2,x2=0,|x1−x2|=|−2−0|=2;y1=3,y2=2,|y1−y2|=|3−2|=1,而|3−2|<|−2−0|,所以d min(P,Q)=|3−2|=1.(1)请直接写出A(3,−2)和B(−1,1)的直角距离小分量d min(A,B)=_________;(2)点D是坐标轴上的一点,它与点C(3,−1)的直角距离小分量d min(C,D)=2,求出点D的坐标;(3)若点M(m+1,2m−2)满足以下条件:a)点M在第一象限;b)点M与点N(5,0)的直角距离小分量d min(M,N)<2c)∠MON>45°,O为坐标原点.请写出满足条件的整点(横纵坐标都为整数的点)M的坐标_______.答案:(1)3;(2)D(0,1)或D(0,−3);(3)M(5,6)或(6,8)解析:(1)根据新概念求得即可;(2)分两种情况,根据“直角距离小分量”的定义得出即可;(3)根据题意得出{m+1>02m−2>0,解出m的取值范围,再由∠MON>45°可推导出K OM =2m−2m+1>1,解出m的取值范围,根据横纵坐标都为整数的点取m的值即可.解:(1)∵A(3,−2),B(−1,1),∴|3+1|=4>|−2−1|=3,∴d min(A,B)=3;故答案为3;(2)∵点D是坐标轴上的一点,若D在x轴上,设D(a,0),由于|0+1|=1<2与题意矛盾,故点D是在y轴上的一点,设D(0,b),|0−3|=3>2,∴|b+1|=2,解得:b=1或−3,∴D(0,1)或D(0,−3);(3)由题意得:{m+1>02m−2>0,解得m>1,|m+1−5|=|m−4|,|2m−2−0|=2|m−1|,∴(m−4)2−[2(m−1)]2=−3m2+12,当1<m<2时,d min(M,N)=2|m−1|<2,解得:0<m<2,当m≥2时,d min(M,N)=|m−4|<2,解得:2<m<6,∴m的取值范围是:0<m<2或2<m<6,∵∠MON>45°恰好为l OM的倾斜角,∴K OM>1,K OM=2m−2m+1>1,解得:m<−1或m>3综上:m的取值范围是:3<m<6,∵横纵坐标都为整数,∴m=4和5,∴M(5,6)或(6,8),所以答案是:M(5,6)或(6,8).小提示:本题考查了坐标与图形的性质,解一元一次不等式组,解题的关键是根据新概念列出不等式组.15、求不等式2x+13≤3x−25+1的非负整数解.答案:不等式的非负整数解为0、1、2、3、4.解析:去分母,去括号,移项,合并同类项,即可得出不等式的解集.去分母得:5(2x +1)≤3(3x -2)+15,去括号得:10x +5≤9x -6+15,移项得:10x -9x ≤-5-6+15,合并同类项得x ≤4,∴不等式的非负整数解为0、1、2、3、4.小提示:考查了不等式的性质和解一元一次不等式,主要考查学生运用不等式的性质解一元一次不等式的能力.。

七年级数学第9章不等式与不等式组(整章知识详解)

七年级数学第9章不等式与不等式组(整章知识详解)

X>-3
2、不等式组
X<2 X<5
的非负整数解是__0_,1____
方法:先求不等式(组)的解集,再确定整数解问题
七年级数学第9章不等式与不等式组
考点三:不等式(组)的特殊解
3.(烟台)不等式4-3x≥2x-6的非负整数
解是___0_,1__,2.
x 3≥0,
4.
(苏州)不等式组

x
2
考点四:求字母的取值范围
1. 如- -果- -不- - 等- - -式- -xxm5 有解,那么m的取值范围是
_m__<_5___.若 无解 , 则m的 取值 范 围是_m__≥_5___.
2.如




组xx
m m

1的 2


是x
-
1,
则m的 取 值 范 围 是______.
.
不等式组的解集是x>m+2,有因解集是x>-1
所以 m+2= -1,即 m = -3
(较小)
(1)若不等式组
xm1 (较大无) 解,则
x 2 m 1
m的取值范围为___m_____3_______
2m 2 m 1
(2)若不等式组
xБайду номын сангаас(1 较小的)解集为x>3,
x3 (较大)

3
的所有整数
解有( B )个
A、2

B、3
C、4
D、5
方法:先求不等式(组)的解集,再确定整数解的问题
(2 x-6)<3-x

求不等式组

新人教版七年级数学下册《不等式与不等式组》知识点归纳

新人教版七年级数学下册《不等式与不等式组》知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ;不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

不等式的基础知识点与习题(含答案)

不等式的基础知识点与习题(含答案)

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

不等式(组)的知识点

不等式(组)的知识点

不等式与不等式组知识点总结一、知识导航图二、课标要求一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组三、知识梳理考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;②确定方向:大向右,小向左。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

如果a>b,那么a+c>b+c,a-c>b-c.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

如果a >b ,并且c >0,那么a c >b c3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

如果a >b ,并且c <0,那么a c <b c4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号)合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

一元一次不等式与一元一次不等式组一、不等式考点一、不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。

不等号包括.题型一会判断不等式下列代数式属于不等式的有 .22①-X > 5 ② 2x-y V 0 ③2 5 3 ④-3 V 0 ⑤ x=3 ⑥ x xy y⑦x工5⑧ x2-3x 2>0 ⑨ x y 0题型二会列不等式根据下列要求列出不等式①.a是非负数可表示为 .―②.m的5倍不大于3可表示为③.x与17的和比它的2倍小可表示为.④.x和y的差是正数可表示为3⑤.x的-与12的差最少是6可表示为.5考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数基本训练:若a>b, ac>be,则c 0.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。

基本训练:若a>b, ae V be,贝U e 0.4、如果不等式两边同乘以0,那么不等号变成等号,不等式变成等式。

练习:1、指出下列各题中不等式的变形依据①.由3a>2得a> 3理由: _________________________________ _______________________________a>-7 理由:5③ .由-5a<1得a>④ .由4a>3a+1得a>1理由:-) C. x+3 > y+3 D.-3x > -3y))))()式的解。

练习:1、判断下列说法正确的是( )A. x=2是不等式x+3v 2的解B.x =3是不等式3x v 7的解。

C.不等式3x v 7的解是x v 2D.x=3是不等式3x> 9的解2.下列说法错误的是( )A.不等式x v 2的正整数解只有一个B. -2是不等式2x-1 v 0的一个解C.不等式-3x > 9的解集是x >-3D.不等式x v 10的整数解有无数个不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

人教版初中数学不等式与不等式组知识点总结全面整理

人教版初中数学不等式与不等式组知识点总结全面整理

人教版初中数学不等式与不等式组知识点总结全面整理单选题1、已知关于x的不等式2x+a≤1与−2x≥2的解集相同,则a的值为()A.3B.2C.1D.无法确定答案:A解析:求出不等式−2x≥2的解集,对应2x+a≤1即可得出答案.解:2x+a≤1,,解得x≤1−a2−2x≥2,解得x≤−1,∴1−a=−1,2∴a=3,故选:A.小提示:本题考查了解一元一次不等式以及解一元一次方程,解题的关键是根据两不等式解集相同得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,能够熟练的运用解不等式的知识解出不等式是关键.2、下列说法中错误的是()A.不等式x+2≤3的整数解有无数个B.不等式x+4<5的解集是x<1C.不等式x<3的正整数解有限个D.0是不等式2x<−1的解答案:D逐一对选项进行分析即可.A. 不等式x+2≤3的解集为x≤1,所以整数解有无数个,故正确;B. 不等式x+4<5的解集是x<1,故正确;C. 不等式x<3的正整数解为1,2,是有限个,故正确;D. 0不是不等式2x<−1的解,故错误;故选:D.小提示:本题主要考查不等式的解集及解的个数,会解不等式是解题的关键.3、若关于x的不等式3-x>a的解集为x<4,则关于m的不等式2m+3a<1的解集为()A.m<2B.m>1C.m>-2D.m<-1答案:A解析:试题解析:解不等式3−x>a,得x<3−a,又∵此不等式的解集是x<4,∴3−a=4,∴a=−1,∴关于m的不等式为2m−3<1,解得m<2.4、ax>b的解集是()A.x>ba B.x<baC.x=baD.无法确定答案:D解析:根据不等式的性质,先确定a的符号,再确定不等号的方向即可解答.解:由于a的符号不能判断,所以不等号的方向也不确定,所以解集无法确定.故选D.小提示:本题考查了不等式的性质:在不等式两边同加或减一个数或式子,不等号方向不变;在不等式两边同乘或除以一个正数或式子,不等号的方向不变;在不等式两边同乘或除以一个负数或式子不等号方向改变.5、某城市的出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.5元(不足1千米按1千米计),小王乘这种出租车从甲地到乙地支付车费18元,设他乘坐的路程为x千米,则x的最大值为().A.7B.9C.10D.11答案:D解析:根据题意18>6判断小王行驶路程x>3千米,再由出租车从甲地到乙地支付车费18元,列一元一次不等式6+1.5(x−3)≤18,解此不等式即可解题.解:∵18>6∴x>3设小王从甲地到乙地经过的路程是x千米,根据题意得:6+1.5(x−3)≤18,解得x≤11,∴小王从甲地到乙地经过的路程的最大值为11千米,故选:D.小提示:本题考查一元一次不等式的运用,是基础考点,掌握相关知识是解题关键.6、3x−8的值不大于8−x的值,x的取值范围是()A.x≥4B.x≤4C.x≥−2.5D.x≤−2.5答案:B解析:先根据语句列不等式,然后解不等式即可.解:∵3x−8的值不大于8−x的值,∴3x−8≤8−x,移项合并得4x≤16,解得x≤4.故答案为B.小提示:本题考查列不等式,和解不等式,根据语句列不等式是关键.7、若3x>−3y,则下列不等式中一定成立的是()A.x+y>0B.x−y>0C.x+y<0D.x−y<0答案:A解析:根据不等式的性质,可得答案.解:两边都除以3,得x>−y,两边都加y,得x+y>0,故选:C.小提示:本题考查了不等式的性质,解题的关键是熟记不等式的性质并根据不等式的性质求解.8、不等式x+2≥3的解集在数轴上表示正确的是()A.B.C.D.答案:D解析:先求出不等式的解集,再根据数轴的特点表示解集即可.解:x+2≥3,解得x≥1,在数轴上表示解集为:,故选:D.小提示:此题考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.填空题9、x 的 13 与 2 的差不小于 5,用不等式表示为________________.答案:13x −2≥5解析:直接利用“x 的13”即13x ,再利用差不小于5,即大于等于5,进而得出答案.解:由题意可得:13x −2≥5. 所以答案是:13x −2≥5.小提示:本题考查了由实际问题抽象出一元一次不等式,正确理解题意是解题的关键.10、已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____. 答案:16解析:解不等式组得-3≤x≤4,根据两点间的距离的公式知当-1≤x≤1时,S=|x-1|+|x+1|取得最小值;当x=4时,S=|x-1|+|x+1|取得最大值,继而可得答案.解不等式5(x+1)≥3x ﹣1,得:x≥﹣3,解不等式12x −1≤7−32x ,得:x≤4, 则﹣3≤x≤4,当﹣1≤x≤1时,S =|x ﹣1|+|x+1|取得最小值,最小值n =2,当x =4时,S =|x ﹣1|+|x+1|取得最大值,最大值m =8,∴mn =2×8=16,所以答案是:16.小提示:本题主要考查解一元一次不等式组,解题的关键是掌握熟练掌握解不等式组的能力和数轴上两点间的距离公式.11、定义:[x]表示不大于x 的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a ﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a ,使得a 2=2[a].其中正确的是_____.(写出所有正确结论的序号)答案:①②③.解析:根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.①[﹣1.2]=﹣2,故①正确;②[a ﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a =0时,a 2=2[a]=0;当a =√2时,a 2=2[a]=2;原题说法是错误的.故答案为①②③.小提示:本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.12、若不等式组{2x −b ≥0x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为____. 答案:x >32## x >1.5 解析:解:解{2x −b ≥0x +a ≤0得b 2≤x ≤−a .∵不等式组{2x−b≥0x+a≤0的解集为3≤x≤4,∴{b2=3−a=4⇒{b=6a=−4.∴不等式ax+b<0为﹣4x+6<0,解得x>32.13、不等式组{x+1⩾12(x+3)−3>3x的解集是_____.答案:0≤x<3解析:{x+1≥1①2(x+3)−3>3x②,解①得x≥0;解②得x<3;∴不等式组的解集是0≤x<3.故答案为0≤x<3.解答题14、为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?答案:(1)购买A型学习用品400件,B型学习用品600件.(2)最多购买B型学习用品800件解析:(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得{x +y =100020x +30y =26000 ,解得:{x =400y =600. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤28000,解得:a≤800.答:最多购买B 型学习用品800件15、已知b =4√3a −2+2√2−3a +2,求1a +1b 的算术平方根. 答案:√2.解析:根据算术平方根的定义可得{3a −2≥0,2−3a ≥0.解不等式组,求出a,b ,代入求值即可. 解:根据题意,得{3a −2≥0,2−3a ≥0.则a =23,∴b =2,∴1a +1b =32+12=2,∴1a +1b 的算术平方根为√1a +1b =√2.小提示:本题考核知识点:算术平方根,解不等式组.理解算术平方根定义和解不等式组方法是关键.。

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

第九章 不等式与不等式知识点归纳一、不等式及其解集和不等式的性质用不等好表示不等关系的式子叫做不等式。

常见不等号有:“<” “>” “≤” “≥”“ ≠ ”。

一个不等式所有解组成的这个不等式的解的集合,简称解集。

不等式有三个性质:①②③; 注:①在数轴上表示不等式解集时,有等号用实心,无等号用空心圆点。

②方向:大向右。

小向左。

例1 、用不等式表示下列式子。

(1)a 与1的和是正数; (2)x 的21与y 的31的差是非负数;(3)x 的2倍与1的和大于3; (4)a 的一半与4的差的绝对值不小于a .(5)x 的2倍减去1不小于x 与3的和; (6)a 与b 的平方和是非负数; 例2、写出下图所表示的不等式的解集(用x 表示)..(3)______________________。

例3、写出满足条件的解。

(1)满足5.2≤x 的非负整数解是____________,(2)满足32<≤-x 的整数解是 _____________。

例4、若a<b ,用不等号填空 ①a -b 0 ; ②a -5 b -5 ; ③-2a -2b ; ④31+a 21+b ;⑤22___bm am 例5、①由a ax <,可得1>x 可得____a ,②由122-≥-≤-x m x mx 可得,那么______m 。

③已知33-m 是一个负数,那么____m , 例6、使不等式x-5>4x-1成立的值中的最大整数是 _________________。

例7、.不等式x x 228)2(5-≤+的非负整数解的个数是__________________。

例8、已知方程012=+ax 的解是3=x ,则不等式6)2(-<+x a 的解集为_____________。

例9 、已知点P (x ,y )位于第二象限,并且y x x y ,4,+≥为整数,写出一个符合上述条件P 点坐标___________。

人教版七年级数学下册 第九章 不等式与不等式组 知识点总结及典型例题 (25张PPT)

人教版七年级数学下册 第九章  不等式与不等式组  知识点总结及典型例题 (25张PPT)

字母表示:(1)如果a>b,那么a+c>b+c; (2)如果a<b,那么a+c<b+c.
注:不等式的性质1是对不等式的两边同时进行加减,所加或所减的数 (或式子)要相同,不等号的方向不变.
例:填空: (1)已知a>b,则a+1___b+1,根据:________________; (2)已知a<b,则a-3___b-3,根据:________________; (3)已知a>b,则2a___a+b,根据:________________;
故x=3是不等式的解,同理可知,x=π也是不等式的解;把X=0代入不等
知识点 2 不等式的解、解集与解不等式
式的左边,得3x-1=-1<2,所以不等式不成立,故x=0不是不等式的解。 同理可知,x=-2,x= 1 也不是不等式的解。
2
(2)根据不等关系,易知不等式的解集为x>3,在数轴上表示时,要 注意表示3的点上画空心圆圈。 答案:(1)A (2)x>3 如图:
“公共部分”是指解集中同时满足不等式组中每一个不等式的 那部分解集.若组成不等式组的各个不等式的解集没有公共部 分,则这个不等式组无解.
2.特别提醒:数轴是确定一元一次不等式组解集的有效工具,要注意“两定”: (1)定边界点:一般在数轴上只标出原点和边界点即可.定边界点时要注意点
是实心圆点还是空心圆圈,若边界点含于解集则为实心圆点;若边界点 不
第九章 不等式与不等式组 知识点梳理
知识点 1 不等式的概念
1.不等式:用符号“>”“<”(或“≠”)表示大小(或不等)关系的式子.
2.注意:
(1)“>”是大于号,读作“大于”;“<”是小于号,读作“小于”.

新人教版七年级数学下册不等式与不等式组知识点归纳总结

新人教版七年级数学下册不等式与不等式组知识点归纳总结

不等式与不等式组1不等式及其解集1、用“<”或“>”号表示大小关系的式子叫做不等式。

(有些含有未知数,不含未知数。

)2、不等式的符号统称不等号,有“>” “<” “≠”. 其中“≤” “≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。

3、使不等式成立的未知数的值叫做不等式的解。

4、一个含有未知数的不等式的所有的解,组成这个不等式的解集。

5、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。

6、用数轴表示解集:在数轴上标出某一区间,其中的点对应的数值都是不等式的解。

①方向线向左表示小于,方向线向右表示大于;②空心圆圈表示不包括;③实心圆圈表示包括。

7、用数轴表示解集的步骤:①画数轴;②找点;③定向;④画线。

8、求不等式的解集的过程叫做解不等式。

9、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

2不等式的性质1、不等式的性质1 不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。

如果a >b ,那么a ±c >b ±c 。

不等式的性质2 不等式两边同乘(或除以)同一个正数,不等号的方向不变。

如果a >b,c >0,那么ac >bc (或c a >c b )。

不等式的性质3 不等式两边同乘(或除以)同一个负数,不等号的方向改。

如果a >b,c <0,那么ac<bc (或c a <c b )。

2、解未知数为x 的不等式,就是要使不等式逐步化为x >a 或x <a 的形式。

3、解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。

4、解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。

5、解一元一次方程,要根据等式的性质,将方程逐步化为x =a 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x <a (或x >a )的形式。

3一元一次不等式组1、把几个不等式合起来,就组成了一个一元一次不等式组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

戴氏教育开县校区年级:初一教师:张苏初中数学七年级知识点总结09不等式与不等式组(含答案)【编者按】本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

一.知识框架二、知识概念1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

6.不等式:用不等号将两个解析式连结起来所成的式子。

在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x <3,5x≠5等。

不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。

7.解不等式可遵循的一些同解原理戴氏教育开县校区年级:初一教师:张苏主要的有:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。

③如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x)同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。

④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解8.定理与性质不等式的性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z。

⑥如果x>y,m>n,那么x+m>y+n(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)戴氏教育开县校区 年级:初一 教师:张苏x x D C B A 333-1-1-1□□▲▲○○○一、 选择题(本大题共12小题,每小题2分,共24分)1.下列不等式是一元一次不等式的是( )A. x 2-9x ≥x 2+7x -6B. x + <0C. x +y >0D. x 2+x +9≥02.x 的2倍减3的差不大于1,列出不等式是( )A. 2x -3≤1B. 2x -3≥1C. 2x -3<1D. 2x -3>13.根据下列数量关系,列出相应的不等式,其中错误的是( )A. a 的与2的和大于1:a +2>1B. a 与3的差不小于2:a -3>2C. b 与1的和的5倍是一个负数:5(b +1)<0D. b 的2倍与3的差是非负数:2b -3≥04.如图,在数轴上表示-1≤x <3正确的是( )5.若a 为有理数,则下列结论正确的是( )A. a >0B. -a ≤0C. a 2>0D. a 2+1>06.下列四个命题中,正确的有( )①若a <b ,则a +1<b +1;②若a <b ,则a -1<b -1;③若a <b ,则-2a >-2b ; ④若a <b ,则2a >2b.A. 1个B. 2个C. 3个D. 4个7.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小的顺序排列为( )A.○□△B.○△□C.□○△D.△□○8.若不等式ax >b 的解集是x > ,则a 的取值范围是( )A. a ≥0B. a ≤0C. a >0D. a <09.若a >b ,且c 是有理数,则下列各式正确的是( )戴氏教育开县校区 年级:初一 教师:张苏③②①① ac >bc ②ac <bc ③ac 2>bc 2 ④ac 2≥bc 2 ⑤ >A. 1个B. 2个C. 3个D. 4个10.3x -7≥4(x -1)的解集是( )A. x ≥3B. x ≤3C. x ≥-3D. x ≤-311.若不等式组 的解集为x >a ,则a 的取值范围是( )A. a <3B. a =3C. a >3D. a ≥312.已知不等式①、②、③的解集在数轴上表示如图所示,则它们公共部分的解集是( )A.-1≤x <3B. 1≤x <3C. -1≤x <1D. 无解 二、填空题(本大题共8小题,每小题3分,共24分)13.不等式1-2x <6的负整数解为 .14.若mx >my ,且x >y 成立,则m 0.15.下列结论:①若a >b ,则ac 2>bc 2;②若ac >bc ,则a >b ;③若a >b ,且c =d ,则ac >bd ;④若ac 2>bc 2,则a >b.其中正确的有 (填序号).16.三角形三边长分别为4,a ,7,则a 的取值范围是 .17.不等式5x -9≤3(x +1)的解集是 .18.不等式1≤3x -7<5的整数解是 .19.一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了 道题.20.如果一元一次不等式组 的解集为x >3,则a 的取值范围是 .三、解答题(本大题共52分)21.(本小题5分)x 是什么值时,代数式5x +15的值不小于代数式4x -1的值?22.(每小题3分,计12分)解下列不等式,并把它们的解集在数轴上表示出来: ⑴ 3(2x +5)>2(4x +3) ⑵ 10-4(x -4)≤2(x -1)26.(本小题5分)星期天,小华和7名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.有几种购买方式?每种方式可乐和奶茶各多少杯?27.(本小题4分)先阅读,再练习.⑴ ① 如果a -b <0,那么a <b ;② 如果a -b =0,那么a =b ;③ 如果a -b >0,那么a >b.⑵由⑴中的结论你能归纳比较a ,b 大小的方法吗?请你用文字语言叙述出来.⑶试用⑴中的方法比较 3x 2-2x +7与4x 2-2x +7的大小.戴氏教育开县校区 年级:初一 教师:张苏1、不等式组12x x <⎧⎨>-⎩的解集是2、将下列数轴上的x 的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。

7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。

8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。

在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x 2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<- 13、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为( )A 、 ○□△B 、 ○△□C 、 □○△D 、 △□○14、天平右盘中的每个砝码的质量都是1g ,则物体A戴氏教育开县校区 年级:初一 教师:张苏的质量m(g)的取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个 17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是( ).1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( )A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是( )A. a>4B. a>2C. a=2D.a≥220、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是( ).4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题1、解下列不等式(或不等式组),并在数轴上表示解集。

(1)2x -3<6x +13; (2)2(5x -9)≤x+3(4-2x ).0 0 1 2 B 0 A A 0 1 2 A 2 1 C 1 D 2戴氏教育开县校区 年级:初一 教师:张苏(3) ⎩⎨⎧>-+->-01243273x x x (4)()43321311522x x x x -<+⎧⎪⎨->-⎪⎩2、在下列解题过程中有错,请在出错之处打个叉,并给予纠正。

相关文档
最新文档