高电压复习重点整理

合集下载

高电压技术总结复习资料

高电压技术总结复习资料

一、填空和概念解释1、电介质:电气设备中作为绝缘使用的绝缘材料。

2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。

3、击穿电压:击穿时对应的电压。

4、绝缘强度:电介质在单位长度或厚度上承受的最小的击穿电压。

5、耐电强度:电介质在单位长度上或厚度所承受的最大安全电压。

6、游离:电介质中带电质点增加的过程。

7、去游离:电介质中带电质点减少的过程。

8、碰撞游离:在电场作用下带电质点碰撞中性分子产生的游离。

9、光游离:中性分子接收光能产生的游离。

10、表面游离:电极表面的电荷进入绝缘介质中产生的游离。

11、强场发射:电场力直接把电极中的电荷加入电介质产生的游离。

12、二次电子发射:具有足够能量的质点撞击阴极放出电子。

13、电晕放电:气体中稳定的局部放电。

14、冲击电压作用下的放电时间:击穿时间+统计时延+放电形成时延15、统计时延:从间隙加上足以引起间隙击穿的静态击穿电压的时刻起到产生足以引起碰撞游离导致完全击穿的有效电子时刻。

16、放电形成时延:第一个有效电子在外电场作用下碰撞游离形成流注,最后产生主放电的过程时间。

17、50%冲击放电电压:冲击电压作用下绝缘放电的概率在50%时的电压值。

18、沿面放电:沿着固体表面的气体放电。

19、湿闪电压:绝缘介质在淋湿时的闪络电压。

20、污闪电压:绝缘介质由污秽引起的闪络电压。

21、爬距:绝缘子表面闪络的距离。

22、极化:电介质在电场的作用下对外呈现电极性的过程。

23、电导:电介质在电场作用下导电的过程。

24、损耗:由电导和有损极化引起的功率损耗。

25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。

26、吸收比:t=60s和t=15s时的绝缘电阻的比值。

27、过电压:电力系统承受的超过正常电压的。

28、冲击电晕:输电线路中由冲击电流产生的电晕。

29、雷暴日:一年中听见雷声或者看见闪电的天数。

30、雷暴小时:一年中能听到雷声的小时数。

31、地面落雷密度:每平方公里每雷暴日的落雷次数。

高电压重点知识复习

高电压重点知识复习

第一章 电介质的电气强度第一节平均自由行程长度:单位行程中的碰撞次数Z 的倒数λ。

影响因素:气体分子的半径、温度、气压。

迁移率:E vk =,表示带电粒子在单位场强(m /1V )下沿电场方向的漂移速度。

电离:产生带电粒子的物理过程,气体放电的首要前提。

使基态原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能,外界能量必须大于电离能才能使电离发生。

四种电离方式:光电离、热电离、碰撞电离、电极表面的电离其中引起碰撞电离的条件为i e W Ex q ≥。

电极表面的电离的四种方式:正离子撞击阴极表面、光电子发射、热电子发射、强场发射。

负离子的形成:当电子与气体分子碰撞时,有可能引起碰撞电离而产生出正离子和新电子,也可能会发生电子和中性分子结合形成负离子(称为附着)。

对放电的形成起什么作用及其原因:负离子的形成并没有使气体中的带电粒子数改变,但却能使自由电子数减少,因而对气体放电的发展起抑制作用。

带电粒子的消失三种形式:1.在电场驱动下作定向运动,到达电极时消失于电极上而形成外电路中的电流2.因扩散现象而逸出气体放电空间3.带电粒子的复合第二节发生电子崩后抵达阳极的电子数:d a e n n α0= 电子碰撞电离系数E BPApe -=α,表明该系数与场强和气压有关。

场强很大时,α急剧增大,气压过大或过小时α都较小。

(电子碰撞电离系数越大击穿电压越低)第三节汤逊放电的γ过程及汤逊放电全过程:(1)正离子撞击到阴极表面发生表面电离,使阴极释放出二次自由电子的过程称为γ过程(2)在电极的气隙中,因外界电离因子产生出自由电子,这些自由电子在电极两端电压的作用下向阳极移动,当空间的电场强度足够大,这些电子将引起碰撞电离,产生出新的电子,新的电子又将引发碰撞电离,如此持续就会产生电子崩。

在碰撞电离过程中产生的正离子在电场的作用下撞击阴极,当场强足够大时,初始电子崩的正离子能在阴极上产生的新电子数大于或等于由外界电离因子产生的电子,那么即使除去外界电离因子的作用,放电也能够自持。

高电压技术复习重点

高电压技术复习重点

高电压技术复习重点绪论1、输电电压一般分为高压,超高压,特高压。

高压指35~220kv,超高压指330~1000kv,特高压指1000kv及以上。

高压直流通常指±600kv及以下的直流输电电压,±600kv以上的称为特高压直流。

2、电介质的极化:通常电介质显中性,但是如果其处于电场中,则电荷质点将顺着电场方向产生位移。

极化时电介质内部电荷总和为零,但会产生一个与外施电场方向相反的内部电场。

3、流过介质中的电流可以分为三部分:纯电容电流分量,吸收电流,电导电流。

4、电介质损耗:处于电场中的绝缘介质,必然会存在一定的能量损耗,而这些由极化、电导等所引起的损耗就称为介质损耗。

5、介质损耗来源①由介质电导形成的漏电流在交变电压下具有有功电流的性质,由它所引起的功率损耗称为介质电导损耗;②由介质中与时间有关的各种极化过程所引起的损耗。

第一章1、电离方式可分为热电离,光电离,碰撞电离。

2、汤逊放电理论的适用范围:汤逊理论是在低气压、pd较小的条件下在放电实验的基础上建立的。

pd过小或过大,放电机理将出现变化,汤逊理论就不在再适用了。

3、电晕放电现象:在极不均匀场中,当电压升高到一定程度后,在空气间隙完全击穿之前,小曲率电极附近会有薄薄的发光层。

4、电晕放电的危害:①引起功率损耗②形成高频电磁波对无线电广播和电视信号产生干扰③产生噪声。

对策:采用分裂导线。

利用:①净化工业废气的静电除尘器②净化水用的臭氧发生器③静电喷涂。

5、下行的负极性雷通常可分为三个阶段:先导放电,主放电和余光。

6、提高气体击穿电压的措施:①电极形状的改进。

②空间电荷对原电场的畸变作用。

③极不均匀场中屏障的作用。

④提高气体压力的作用。

⑤高真空和高电气强度气体SF6的采用。

7、污闪:绝缘子表面污物受潮变成导电层,引发局部放电并发展成闪络。

8、污闪发展过程:①污秽层的形成②污秽层的受潮③干燥带形成与局部电弧产生④局部电弧发展成闪络。

高电压技术_自考复习重点总结

高电压技术_自考复习重点总结

第二章液体和固体电介质的绝缘特性电子式极化:电介质中的带电质点在电场作用下沿电场方向作有限位移。

夹层式极化:由两层或多层不同材料组成的不均匀电介质,叫做夹层电介质。

电介质的电导:介质在电场作用下,使其内部联系较弱的带电粒子作有规律的运动形成电流,即泄漏电流.这种物理现象称为电导。

“吸收现象”:固体电介质在直流电压作用下,观察到电路中的电流从大到小随时间衰减,最终稳定于某一数值,称为“吸收现象”。

吸收电流:有损极化所对应的电流,即夹层极化和偶极子极化时的电流,它随时间而衰减。

泄漏电流:绝缘介质中少量离子定向移动所形成的电导电流,它不随时间而变化.绝缘电阻:介质的电阻R=U/I是随时间而变化的。

通常以到达稳定的泄漏电流的电阻作为介质的绝缘电阻。

介质损耗角正切tgδ衡量材料本身在电场损耗能量并转变为热能的一个宏观的物理参数称之为介质损耗角正切。

绝缘的老化:固体和液体介质在长期运行过程中会发生一些物理和化学变化,导致其机械和电气性能的劣化。

1、提高液体电介质击穿电压的措施(1)过滤(2)防潮(3)脱气(4)覆盖层(5)绝缘层(6)屏障2、2.固体电介质的击穿影响因素(1).电压作用时间(2).电场均匀程度与介质厚度(3).电压种类(4).电压作用的累积效应(5).受潮3、提高固体电介质击穿电压的措施(1).改进制造工艺:尽可能清除介质中的杂质,可以通过精选材料、改善工艺、真空干燥、加强浸渍等方法。

(2).改进绝缘设计:尽可能使电场均匀(3).改善运行条件:注意防潮、尘污,加强散热冷却4、电介质绝缘老化的原因(1)局部放电老化 (2)热老化 (3)机械力的作用 (4)环境的影响5、为什么用介质损耗角的正切tgδ来表示介损答:由于:(1).P值与试验电压U的高低等因素有关;(2).tgδ是与电压、频率、绝缘尺寸无关的量,而仅取决于电介质的损耗特性。

(3)tgδ可以用高压电桥等仪器直接测量.所以表征介损用介质损失角的正切tgδ来表示,而不是用有功损耗P来表示.第3章电气设备绝缘试验耐压试验(破坏性试验):试验所加电压等价于或高于设备运行中可能受到的各种电压.1、西林电桥测量时的两种接线正接线适用:体积小,重量轻反接线适用:体积大,重量大,外壳接地2、西林电桥测量时防止外界电磁场对电桥的干扰措施有哪些?(1)加设屏蔽(消除电容的影响) (2)采用移相电源(3)倒相法3、西林电桥测量时注意事项有哪些(1)电桥本体必须加以屏蔽(2)被试品和标准无损电容器连到电桥本体的引线也要使用屏蔽导线(3)电桥本体接地良好(4)反接法时,三根引线处于高压,必须悬空(5)能分开测的试品尽量分开测(6)应保持试品表面干燥(7)试品设备有绕阻时,应首尾短接起来试验变压器得特点电压等级比电力变压器更高、容量不大,仅单相;工作在电容性负荷下;允许发生短时短路;工作时间短;漏磁通较大;温度比较低、无散热要求;绝缘裕度小工频高电压的测试方法有哪些用静电电压表测量工频电压的有效值用球隙进行测量工频电压的幅值用电容分压器配用低压仪表用电压互感器测量.直流高压的获得有:半波整流回路,倍压整流回路,串接直流发生器。

高电压技术总复习重点

高电压技术总复习重点
5、固体电介质的击穿 电击穿、热击穿、电化学击穿的击穿机理及特点
6、 影响固体电介质击穿电压的主要因素
电压作用时间 温度
电场均匀程度受潮来自累积效应 机械负荷第二篇 电气设备绝缘试验
第3章 绝缘的预防性试验
1、绝缘电阻与吸收比的测量
?用兆欧表来测量电气设备的绝缘电阻
?吸收比K定义为加压 60s时的绝缘电阻与 15s时的绝 缘电阻比值。
?K恒大于 1,且越大表示绝缘性能越好。
?大容量电气设备中,吸收现象延续很长时间,吸收 比不能很好地反映绝缘的真实状态,可用极化指数 再判断。
?测量绝缘电阻能有效地发现总体绝缘质量欠佳;绝 缘受潮;两极间有贯穿性的导电通道;绝缘表面情 况不良。
2、泄漏电流的测量
测量泄漏电流从原理上来说,与测量绝缘电阻是 相似的,能发现一些尚未完全贯通的集中性缺陷, 原因在于 :
若个别试验项目不合格,达不到规程的要求,可使 用三比较方法。 ?与同类型设备作比较
同类型设备在同样条件下所得的试验结果应该大 致相同 ,若差别很大就可能存在问题 ?在同一设备的三相试验结果之间进行比较
若有一相结果相差达 50%以上,该相很可能存在缺陷 ?与该设备技术档案中的历年试验数据进行比较
若性能指标有明显下降情况 ,即可能出现新的缺陷
11、气体的状态对放电电压的影响 湿度、密度、海拔高度的影响
12、气体的性质对放电电压的影响 在间隙中加入高电强度气体 ,可大大提高击穿电 压,主要指 一些含卤族元素的强电负性气体, 如SF6
13、提高气体放电电压的措施 ?电极形状的改进 ?空间电荷对原电场的畸变作用 ?极不均匀场中屏障的采用 ?提高气体压力的作用 ?高真空 ?高电气强度气体 SF6的采用
高电压技术各章 知识点

高电压技术复习资料要点

高电压技术复习资料要点

第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。

2.气体放电是对气体中流通电流的各种形式统称。

3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。

4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。

5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。

6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。

7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。

8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。

(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。

因此,在气隙的电极间施加电压时,可检测到微小的电流。

由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。

当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。

(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。

电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。

此时气隙转入良好的导电状态,即气体发生了击穿。

(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。

高电压技术复习总

高电压技术复习总

一:填空题1.电离是指电子脱离原子核的束缚而形成自由电子和正离子过程。

2.碰撞电离是气体放电过程中产生带电质点最重要的方式。

3.气体发生放电时,除不断形成带电质点的电离过程外,还存在相反的过程,即带电质点的消失过程,则带电质点的消失情况有:带电质点受电场力的作用流入电极;带电质点的扩散;带电质点的复合4.新电子在向阳极行进过程中会发生碰撞电离,产生两个新电子,电子总数增加到4个。

第三次碰撞增加到8个,即按几何数不断增加,因此将这一剧增的电子流称为:电子崩5.自持放电的条件为:r(ead-1)=1或read=16.汤逊放电理论的适用范围低电压、pd较小。

7.棒-板间隙中棒为正极性时电晕起始电压比负极性时略高。

8.在均匀电场中的击穿,若电极布置称,则无<有,无>击穿极性效应,当间隙距离d在1到10cm范围内时,击穿强度比约等于30kv/cm。

9.由于高场强下电极性不同,空间电荷极性不同,对放电发展的影响也不同,这就造成不同极性的高场强电极的电晕起始电压的不同以及间隙击穿电压的不同,称为极性效应。

10.解决电晕放的途径是限制导线的表面场强,最好解决方法是采用分裂导线。

1.国际上大多数国家对于不同极性的标准雷电波形可表示为+1.2|50us或-1.2|50us 。

2.空间电荷对原电场有畸变作用。

3.沿整个固体绝缘表面产生的放电称为闪络。

4.输电线路采用钢化玻璃绝缘子是由于它具有损坏后自爆的特性。

5.引入固体介质的闪络电压比气体的闪络电压低。

6.具有强垂直分量时的沿面放电对绝缘的危害比具有弱垂直分量时的沿面放电对绝缘的危害大。

7.出现滑闪放电的条件: 电场必须有足够的垂直分量, 电场必须有足够的水平分量,电压必须是交变的。

8.目前在世界范围内应用最广泛的划分污秽等级的方法是等值盐密法。

9.采用高电气强度气体 SF6 可削弱气体中的电离强度。

10.石蜡的闪络电压比电瓷高,因为石蜡具有憎水性质。

1.液体电介质有矿物绝缘油、合成绝缘油、植物油三大类。

高电压技术复习要点

高电压技术复习要点

第一章 电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。

2.气体放电是对气体中流通电流的各种形式统称。

3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。

4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。

5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。

6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。

7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。

8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。

(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2) 复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。

因此,在气隙的电极间施加电压时,可检测到微小的电流。

由图1-3可知:(1)在I-U曲线的OA段:气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。

当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。

(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。

电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。

此时气隙转入良好的导电状态,即气体发生了击穿。

(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。

高电压知识点汇总

高电压知识点汇总

高电压知识点汇总一、气体放电的基本概念。

1. 气体放电。

- 气体中流通电流的各种形式统称为气体放电。

在正常状态下,气体是良好的绝缘体,但在一定条件下(如高电压、强电场等),气体中会出现导电现象。

- 气体放电可分为自持放电和非自持放电。

非自持放电需要依靠外界电离因素(如紫外线、宇宙射线等)才能维持导电;自持放电一旦形成,即使外界电离因素消失,放电仍能持续。

2. 汤逊理论。

- 适用于低气压、短间隙均匀电场中的气体放电。

- 主要观点:电子崩和正离子撞击阴极产生二次电子发射是气体自持放电的主要机制。

- 汤逊第一电离系数α:表示一个电子在沿电场方向运动1cm的过程中与气体分子发生碰撞电离的次数。

- 汤逊第二电离系数β:表示一个正离子撞击阴极表面时产生的二次电子数。

- 根据汤逊理论,自持放电的条件为:e^α d=1+(α)/(β)(d为电极间距)。

3. 流注理论。

- 适用于高气压、长间隙、不均匀电场中的气体放电。

- 主要观点:电子崩发展到足够强时,电子崩中的空间电荷会使电场发生畸变,产生局部强电场,从而引发光电离,形成流注。

流注不断发展贯穿两极间的间隙,导致气体击穿。

- 与汤逊理论的区别:汤逊理论没有考虑空间电荷对电场的畸变作用,而流注理论强调了空间电荷和光电离在放电过程中的重要性。

二、液体和固体介质的电气特性。

1. 液体介质的电气特性。

- 极化。

- 液体介质在电场作用下会发生极化现象。

极化类型主要有电子式极化、离子式极化和偶极子极化。

- 电子式极化:电子云相对于原子核的位移产生的极化,其特点是极化建立时间极短(10^-15sim10^-16s),极化过程中不消耗能量。

- 离子式极化:离子晶体中正负离子在电场作用下的相对位移产生的极化,建立时间约为10^-13s,极化过程中也基本不消耗能量。

- 偶极子极化:极性分子在电场作用下沿电场方向取向产生的极化,建立时间较长(10^-10sim10^-2s),极化过程中消耗能量。

高电压技术重点知识整理

高电压技术重点知识整理

E U 1. 电介质的极化:1.)电子位移极化 电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化 有极微量的能量损耗3.)转向极化4.)空间电荷极化2. 电介质的介电常数代表电介质极化程度 (气体 D=1 水 D=81 蓖麻油 D=4.2 )3. 电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4. 影响液体介质电导的因素 :温度,电场强度。

5. 电介质中的能量损耗 :P pV E 2 tg V U 2Ctg6. tgδ :介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数7. 四种形式电离的产生 :撞击电离 光电离 热电离 表面电离 8. 气体中带电质点的消失 :1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9. 自持放电:当场强超过临界场强 值时,这种电子崩已可仅由电场的作用而自行维持和cr发展,不必再有赖于电离因素,这种性质的放电称为自持放电。

10. 汤森德理论 只是对较均匀电场和• S 较小的情况下适用。

11. 物理意义 :一个电子从阴极到阳极途中因为电子崩 (ɑ过程)而造成的正离子数为 e d1这批正离子在阴极上造成的二次自由电子数( r 过程)应为: r (ed1) 如果它等于 1 就意味着那个初始电子有了一个后继电子从而使放电得以自持。

12. 帕邢定律:在均匀电场中,击穿电压与气体相对密度 ,极间距离S 并不具有单独的 b函数关系,而是仅与他们的积有函数关系,只要S 的乘积不变, 也就不变。

b13. 流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强 电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极 (阳极流柱)或由阴极向阳极(阴极流柱)击穿14. 电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电 有本质的区别, 电晕放电的电流强度并不取决于电源电路中的阻抗, 而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。

(完整)高电压重点知识复习

(完整)高电压重点知识复习

第一章 电介质的电气强度第一节平均自由行程长度:单位行程中的碰撞次数Z 的倒数λ。

影响因素:气体分子的半径、温度、气压。

迁移率:E vk =,表示带电粒子在单位场强(m /1V )下沿电场方向的漂移速度。

电离:产生带电粒子的物理过程,气体放电的首要前提。

使基态原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能,外界能量必须大于电离能才能使电离发生。

四种电离方式:光电离、热电离、碰撞电离、电极表面的电离其中引起碰撞电离的条件为i e W Ex q ≥。

电极表面的电离的四种方式:正离子撞击阴极表面、光电子发射、热电子发射、强场发射。

负离子的形成:当电子与气体分子碰撞时,有可能引起碰撞电离而产生出正离子和新电子,也可能会发生电子和中性分子结合形成负离子(称为附着)。

对放电的形成起什么作用及其原因:负离子的形成并没有使气体中的带电粒子数改变,但却能使自由电子数减少,因而对气体放电的发展起抑制作用。

带电粒子的消失三种形式:1.在电场驱动下作定向运动,到达电极时消失于电极上而形成外电路中的电流2.因扩散现象而逸出气体放电空间3.带电粒子的复合第二节发生电子崩后抵达阳极的电子数:d a e n n α0= 电子碰撞电离系数E BPApe -=α,表明该系数与场强和气压有关。

场强很大时,α急剧增大,气压过大或过小时α都较小。

(电子碰撞电离系数越大击穿电压越低)第三节汤逊放电的γ过程及汤逊放电全过程:(1)正离子撞击到阴极表面发生表面电离,使阴极释放出二次自由电子的过程称为γ过程(2)在电极的气隙中,因外界电离因子产生出自由电子,这些自由电子在电极两端电压的作用下向阳极移动,当空间的电场强度足够大,这些电子将引起碰撞电离,产生出新的电子,新的电子又将引发碰撞电离,如此持续就会产生电子崩。

在碰撞电离过程中产生的正离子在电场的作用下撞击阴极,当场强足够大时,初始电子崩的正离子能在阴极上产生的新电子数大于或等于由外界电离因子产生的电子,那么即使除去外界电离因子的作用,放电也能够自持。

高电压技术考试复习知识点

高电压技术考试复习知识点

高电压技术考试复习知识点高电压技术复习资料1. 原子的电离:中性原子在外界因素作用下,获得足够大的能量,可使原子中的一个或几个电子完全摆脱原子核的束缚,形成自由的电子和正离子的过程。

2. 电离的条件:原子从外界获取的能量大于原子的电离能。

3. 气体原子电离的因素:电子或正离子与气体分子的碰撞、各种光辐射、高温下气体的热能。

4. 电离的形式:碰撞电离、光电离、热电离、表面电离(外界电离因素作用,电子从电极表面释放)。

5. 去电离过程:即带电粒子消失的过程,带电粒子从电离区消失,或者削弱其产生电离。

带电离子的运动、扩散、复合以及电子的附着作用都属于这样的作用。

6. 带电粒子的扩散:带电粒子不断从高浓度区域移向低浓度区域,使各种带电粒子浓度变得均匀的现象。

是由于热运动造成的。

7. 气体放电分类:自持放电与非自持放电。

8. 自持放电:由天然辐射作用产生电离形成正离子和电子,在高电场作用下,电子加速碰撞气体分子,产生新的电子和离子,电离过程像雪崩一样发展,称为电子崩。

正离子撞击阴极又产生新的电子崩,即使外界不传给起始电子,放电过程能持续下去的现象。

不需要其他任何外加电离因素而仅由电场的作用就能维持的放电。

9. 汤逊理论:当外加电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,因碰撞游离而产生的新的正离子在电场作用下向阴极运动,并撞击阴极,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电的过程。

10. 汤逊理论适用范围:均匀电场、低气压、Pd 较小的条件下在放电实验的基础上建立的。

11. 汤逊放电理论实质:碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极表面逸出电子,逸出电子是维持气体放电的必要条件,所逸出的电子是否能够接替起始电子是自持放电的判据。

12. 流注理论:解决汤逊理论不能解释的在高气压、Pd 大时的放电外形(具有分支的细通道,而按汤逊理论,整个电极空间连续进行)、放电时间(实测时间比计算值小得多)、击穿电压(击穿电压计算值与实验值不一致)、阴极材料(击穿电压与材料无关)等问题,并在总结这些实验现象的基础上形成。

高电压技术 自考复习重点总结

高电压技术 自考复习重点总结

第二章液体和固体电介质的绝缘特性电子式极化:电介质中的带电质点在电场作用下沿电场方向作有限位移。

夹层式极化:由两层或多层不同材料组成的不均匀电介质,叫做夹层电介质。

电介质的电导:介质在电场作用下,使其内部联系较弱的带电粒子作有规律的运动形成电流,即泄漏电流.这种物理现象称为电导。

“吸收现象”:固体电介质在直流电压作用下,观察到电路中的电流从大到小随时间衰减,最终稳定于某一数值,称为“吸收现象”。

吸收电流:有损极化所对应的电流,即夹层极化和偶极子极化时的电流,它随时间而衰减。

泄漏电流:绝缘介质中少量离子定向移动所形成的电导电流,它不随时间而变化.绝缘电阻:介质的电阻R=U/I是随时间而变化的。

通常以到达稳定的泄漏电流的电阻作为介质的绝缘电阻。

介质损耗角正切tgδ 衡量材料本身在电场损耗能量并转变为热能的一个宏观的物理参数称之为介质损耗角正切。

绝缘的老化:固体和液体介质在长期运行过程中会发生一些物理和化学变化,导致其机械和电气性能的劣化。

一、提高液体电介质击穿电压的措施(1)过滤(2)防潮(3)脱气(4)覆盖层(5)绝缘层(6)屏障二、2.固体电介质的击穿影响因素(1).电压作用时间(2).电场均匀程度与介质厚度(3).电压种类(4).电压作用的累积效应(5).受潮三、提高固体电介质击穿电压的措施(1).改进制造工艺:尽可能清除介质中的杂质,可以通过精选材料、改善工艺、真空干燥、加强浸渍等方法。

(2).改进绝缘设计:尽可能使电场均匀(3).改善运行条件:注意防潮、尘污,加强散热冷却四、电介质绝缘老化的原因(1)局部放电老化(2)热老化(3)机械力的作用(4)环境的影响五、为什么用介质损耗角的正切tgδ来表示介损答:由于:(1).P值与试验电压U的高低等因素有关;(2).t gδ是与电压、频率、绝缘尺寸无关的量,而仅取决于电介质的损耗特性。

(3)tgδ可以用高压电桥等仪器直接测量.所以表征介损用介质损失角的正切tgδ来表示,而不是用有功损耗P来表示.第三章电气设备绝缘试验耐压试验(破坏性试验):试验所加电压等价于或高于设备运行中可能受到的各种电压.一、西林电桥测量时的两种接线正接线适用:体积小,重量轻反接线适用:体积大,重量大,外壳接地二、西林电桥测量时防止外界电磁场对电桥的干扰措施有哪些?三、西林电桥测量时注意事项有哪些(1)电桥本体必须加以屏蔽(2)被试品和标准无损电容器连到电桥本体的引线也要使用屏蔽导线(3)电桥本体接地良好(4)反接法时,三根引线处于高压,必须悬空(5)能分开测的试品尽量分开测(6)应保持试品表面干燥(7)试品设备有绕阻时,应首尾短接起来试验变压器得特点电压等级比电力变压器更高、容量不大,仅单相;工作在电容性负荷下;允许发生短时短路;工作时间短;漏磁通较大;温度比较低、无散热要求;绝缘裕度小工频高电压的测试方法有哪些用静电电压表测量工频电压的有效值用球隙进行测量工频电压的幅值用电容分压器配用低压仪表用电压互感器测量.直流高压的获得有:半波整流回路,倍压整流回路,串接直流发生器。

高电压复习

高电压复习
· 具有弱垂直分量时的沿面放电 沿面闪络电压与空气击穿电压的差别比前述两种电场情况都要小得多。因此这种 情况下,为提高沿面放电电压,主要从改进电极形状以改善电极附近的电场着手.
4.4 受潮表面的沿面放电
· 表面凝露对沿面放电的影响:(1)在介质表面未发生凝露时,空气相对湿度 增大,绝缘子沿面闪络电压会略有提高(2)介质表面发生凝露时,沿面闪络电 压将明显下降 · 表面淋雨对沿面放电的影响:介质表面淋湿时,雨水形成连续的导电层,会 使泄露电流增大,闪络电压大大降低
2.3 电极表面的电子逸出获得能量的途径
(1)正离子撞击阴极 (3)强场发射
(2)光电子发射 (4)热电子发射
2.4 气体中负离子的形成过程:电子逸出后附着某一中性原子上后形成负
离子。
负离子形成途径:
2.5 带电质点的消失
(1)带电质点的扩散 带电质点从浓度较大的区域向浓度较小的区域的移动,从而使浓度变得
·极不均匀电场中的击穿 不对称布置的极不均匀场间隙的极性效应很明显, 而且其击穿的极性效应与稍不均匀场间隙相反。
3.2 标准雷电波的波形: T1=1.2μs±30%,T2=50μs±20%
对于不同极性:+1.2/50μs 或-1.2/50μs
3.3 操作冲击波的波形: T1=250μs±20%, T2=2500μs±60%
2.6 非自持放电和自持放电的概念
外施电压小于 U0 时的放电是非自持放电。 外施电压到达 U0 后的放电是自持放电。 U0 称为放电的起始电压。
2.7 电子崩的形成过程:电子碰撞电离,电子数如雪崩式增长,将这一剧增
的电子流称为电子崩。
n n n0 n0 (ed 1)
2.8 流注
·概念:pd 值较大时放电过程也是从电子崩开始的,但是当电子崩发展到一定 阶段后会产生电离特强,发展速度更快的新的放电区,这种过程称为流注放电。 ·流注的形成条件: 形成流注的必要条件是电子崩发展到足够的程度后,电子 崩中的空间电荷使原电场明显畸变,大大加强了崩头及崩尾处的电场。 电子崩 中电荷密度很大,所以复合过程频繁,放射出的光子在崩头或崩尾强电场区很容 易引起光电离。二次电子的主要来源是空间的光电离。

高电压复习提纲

高电压复习提纲

高电压复习提纲第2章气体放电的基本物理过程1. 2.1中,气体的带电质点的产生方式有哪四种?电子从电极表面逸出所需要的能量通过哪四种途径获得?负离子形成及影响、带电质点的消失方式?2. 2.2中自持放电和非自持放电的基本概念,电子崩形成过程及其示意图,碰撞电离系数的影响因素。

3. 2.3 自持放电的条件,汤逊放电理论与流注放电理论的基本原理、差异、适用范围及各自自持放电条件,会用汤逊及流注放电理论解释巴申曲线,从碰撞电离系数的角度解释电负性气体击穿场强高的原因。

4. 2.4 均匀场、稍不均匀场和极不均匀场的特点;极不均匀场电晕放电现象;极不均匀电场中放电的极性效应,会作图说明和论述。

第3章气体间隙的击穿强度1. 3.1、稳态电压下均匀场、稍不均匀场和极不均匀场击穿特点和差异,电晕与击穿场强差异。

棒棒和棒板间隙击穿电压区别。

2. 3.2、冲击电压标准波形(雷电: 1.2/50µs,操作250/2500µs),放电时延、U50、冲击系数、伏秒特性等的基本概念。

3. 3.3、解释操作冲击电压下击穿的U型曲线的原因4. 3.4、大气密度和湿度对击穿电压的影响及原因、大气校正系数,理解海拔的影响。

5. 3.6 提高气体间隙击穿电压的两种途径及其具体措施。

第4章气体中沿固体绝缘表面的放电1. 4.1、界面电场分布的典型情况。

2. 4.2、均匀场中沿面放电的基本原理、影响因素和改善措施。

3. 4.3、两种典型极不均匀场下沿面放电的基本原理、影响因素和改善措施。

4. 4.4、表面凝露和表面淋雨情况下沿面放电原理及影响因素。

5. 4.5 污闪的基本原理、影响因素及防污措施,污秽等级划分及爬电比距基本概念。

第5章液体和固体介质的电气特性1. 5.1、电介质的4个电气特性:极化、电导、损耗和击穿。

电介质的分类、电介质极化的5种基本形式;电导的基本概念及测量方法;电介质损耗的基本概念、测量方法和物理意义,介质损耗角正切表示能量损耗的原因,液体电介质损坏与温度和频率的关系。

高电压复习重点整理

高电压复习重点整理

高电压复习重点整理一、汤逊理论和流注理论1、具体内容汤逊理论:汤逊理论实质就是电子崩理论;书P8-P11第二节至第三节2、汤逊放电的实质是:电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件;所逸出的电子能否接替起始电子的作用是自持放电的判据;3、流注理论P13认为:在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场外施电压在气隙中产生的电场明显畸变,大大加强电子崩崩头和崩尾处的电场;另一方面,电子崩中电荷密度很大,所以复合过程频繁,放射出的光子在这部分强场区很容易成为引发新的空间光电离的辐射源,因此流注理论认为:二次电子的主要光源是空间的光电离;这时放电转入新的流注阶段;流注的特点是电离强度很大和传播速度很快,出现流注后,放电便获得独立继续发展的能力,而不再依赖外界电离因子的作用,可见这时出现流注的条件也是自持放电的条件;4、应用条件汤逊理论:应用于均匀电场,低气压,短气隙流注理论:应用于均匀电场,高气压,长气隙5、二者的区别与联系相同点:都有电子崩的产生不同点:流注的形成过程中有二次崩的形成、二次电离在气体击穿过程中起了重要作用;二、极性效应P18-20产生的条件在极不均匀电场中,放电一定从曲率半径较小的那个电极表面开始,与该电极极性无关;但后来的发展过程、气隙的电气强度、击穿电压等都与该电极的极性有密切的关系;极不均匀电场中的放电存在着明显的极性效应;书上没说具体产生条件是什么,根据这段话理解我猜条件是极不均匀的电场中的放电吧;三、标准雷电压雷电流波形标准雷电压 P21页图1-16,IEC和我国国家标准规定:T1=1.2μs,容许偏差±30%;T2=50μs,容许误差±20%,通常写成1.2/50μs;雷电流冲击波形四、污闪发生过程和预防措施1、污闪过程具体见P28:可分为积污、受潮、干区形成、局部电弧的出现和发展;在遇到毛毛雨、雾、露等不利天气时,污层被水分湿润,电导大增,在工作电压下泄漏电流大增;电流产生的焦耳热烘干污层,形成干区;干区电阻比较大,整个绝缘子上的电压都集中在干区上,电场强度很大,引起局部表面空气碰撞电离,产生局部电弧;随后弧后支撑点附近湿污层被很快烘干,干区扩大,电弧被拉长,一旦达到某一临界长度,弧道温度已很高,弧道的进一步伸长就不再需要更高的电压,而是自动延伸直至贯通两级,完成污闪;污闪的根本原因是积污;2、预防措施P30起:1调整爬距增大泄漏距离2定期或不定期的清扫3涂料憎水性涂料如硅油、硅脂4半导体釉绝缘子5新型合成绝缘子五、吸收比极化指数p78电气设备中多采用组合绝缘和层式结构,故在直流电压下均有明显的吸收现象,使外电路中有一个随时间衰减的吸收电流;在绝缘上施加一直流电压U,此电压与出现的电i之比即为绝缘电阻;极化比是令t=15s和t=60s瞬间的两个电流值I15和I60所对应的绝缘电阻值R 15和R60的比, .极化指数K2即指第10分钟和第1分钟时的绝缘电阻比值;六、液体介质击穿机理P60-61分为纯净液体击穿和工程用变压器油的击穿纯净液体击穿有两个理论,即电子碰撞电离理论和气泡击穿理论;而工程用变压器油的击穿用气泡击穿理论解释,此时分两种情况,一种是杂质小桥接通电极,一种是没有接通电极;七、高电压测量技术各高电压的产生原理,各种高压测试设备能测的电压类型直流,交流冲击电压1、高电压测量技术P109高电压试验除了要有产生各种试验电压的高压设备,还必须要有能测量这些高电压的仪器和设备;电力系统中,广泛应用电压互感器配上低电压表来测量高电压,但此法在试验室中用得很少;试验室条件下广泛应用高压静电电压表、峰值电压表、球隙测压器、高压分压器、高压脉冲示波器和新型冲击电压数字测量系统等仪器测量高电压;国标规定,高电压的测量误差一般应控制在±3%以内;现代高电压测量技术也向数字测量技术方向发展;各种设备能测的电压类型没找到2、各高电压的产生原理1工频高电压P93 采通常采用高压试验变压器或其串级装置来产生;对电缆、电容器等电容量较大的被试品,可采用串联谐振回路来获得试验用的工频高电压;高压试验变电器工作原理与电力变压器没有什么不同;2直流高电压P97将工频高电压经高压整流器而变换成直流高电压;利用倍压整流原理制成的直流高压串级装置或称串级直流高压发生器能产生出更高的直流试验电压;3冲击高电压P101单级冲击电压发生器:将能产生电压波前和电压波尾的回路结合起来组成回路,P102图5-17,常用回路P103图5-19单级冲击电压发生器能产生的最高电压一般不超过200~300kV;因而采用多级叠加的方法来产生波形和幅值都能满足需要的冲击高电压波;3、各种高压测试设备能测的电压类型1高压静电电压表不能测量一切冲击电压,能直接测量相当高的交流和直流电压2峰值电压表交流峰值电压表可用来测量交流电压的峰值,冲击峰值电压表可用来测量冲击电压的峰值3球隙测压器唯一能测量高达数兆伏的各类高电压峰值的测量装置八、试验变压器的六大特点;P931、试验变压器本身应有很好的绝缘,但绝缘裕度小,试验过程中要严格限制过电压;2、额定电压高而容量不大3、油箱本体不大而其高压套管又长又大4、连续运行时间不长,发热较轻,因而不需要复杂的冷却系统;5、漏抗大,短路电流较小,可降低机械强度方面的要求6、输出电压波形很难完美,需要采取措施加以修正;九、高压测量中有哪些类型的分压器分压器最重要的技术参数指标是什么P114-116电阻分压器、电容分压器、阻容分压器分压器最重要的技术参数指标P114 一是分压比的准确度和稳定性幅值误差要小二是分出的电压与被测高电压波形的相似性波形畸变要小十、伏秒特性的配合保护设备要保护被保护设备,其伏秒特性曲线必须完全位于被保护设备伏秒特性曲线的下面;伏秒特性的正确配合1-保护间隙 2-被保护设备伏秒特性的正确配合具有较陡伏秒特性曲线的保护设备不容易与具有平伏秒特性的被保护设备配合所以不能用保护间隙、管型避雷器来保护变压器;上面一条曲线为被保护,下面曲线为保护十一、什么是电介质的极化电介质极化的类型,介质损耗如何计算电介质的极化P50 是指电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象;电介质极化的类型P52 53 电子式极化、离子式极化、偶极子极化、夹层极化和空间电荷极化介质损耗P55-57 在电场作用下没有能量损耗的理想电介质是不存在的,实际电介质中总有一定的能量损耗,包括由电导引起的损耗和某些有损极化例如偶极子极化、夹层极化等引起的损耗总称介质损耗;具体计算见书p56页;十二、彼得逊法则的内容和应用条件P128-129 采用电压源的彼得逊法则和采用电流源的彼得逊法则应用条件:1、入射波必须是沿一条分布参数线路传输过来2、适用于节点A之后的任何一条线路末端反射波未达到A之前十三、波阻抗的定义物理意义,影响波阻抗大小的因素有哪些与集中参数电阻有何区别P122-123波阻抗Z是电压波与电流波之间的一个比例常数与集中参数电阻的区别P1231波阻抗只是一个比例常数,完全没有长度的概念,线路长度的大小并不影响波阻抗的数值;而一条长线的电阻是与线路长度成正比的;2波阻抗从电源吸收的功率和能量是以电磁能的形式存储在导线周围的媒质中,并未消耗掉;而电阻从电源吸收的功率和能量均转化为热能而散失掉了;十四、折射波和反射波的计算;P124-127此题即为最后一个计算题十五、雷暴日、落雷密度、绕击的定义1、雷暴日:雷暴日是一年中发生雷电的天数,以听到雷声为准,在一天内只要听到过雷声,无论次数多少,均计为一个雷暴日;2、落雷密度:表示每平方公里地面在一个雷暴日中受到的平均雷击次数;3、绕击:指雷闪绕过避雷线直接击中导线十六、雷击感应过电压与相邻导线感应电压有何不同 P161-162四点十七、防雷基本措施有哪些 P182起输电线路常采用避雷线、降低杆塔接地电阻、加强线路绝缘、耦合地线、消弧线圈、管式避雷器、线路阀式避雷器、不平衡绝缘、自动重合闸等措施来进行防雷;变电所中的雷电过电压有两个来源,一是雷电直击变电所,二是沿输电线路入侵的雷电过电压波;对于第一种雷电过电压,必须装设避雷针或避雷线对直击雷进行保护;按安装方式的不同,避雷针分为独立避雷针和构架避雷针两类;对于第二种,装设阀式避雷器是变电所对入侵雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值;但是还需要有“进线段保护”与之配合;进线段的作用:1雷电过电压波在流过进线段时因冲击电晕而发生衰减和变形,降低了波前陡度和幅值;2限制流过避雷器的冲击电流幅值;旋转电机的防雷保护措施:非直配电机所受到的过电压均须经过变压器绕组之间的静电和电磁传递;只要把变压器保护好了,不必对发电机再采取专门的保护措施;对于在多雷区的经升压变压器送电的大型发电机,仍宜装设一组氧化锌或磁吹避雷器加以保护,如果再装上并联电容C和中性点避雷器,那就可以认为保护已足够可靠;十八、电力系统中有哪些类型的操作过电压这些过电压产生原因是什么P205-2181.切断空载线路过电压切除空载线路过电压时切断的是电容电流,在介质的绝缘强度没有恢复的情况下,电弧的重燃导致电压的升高,产生过电压;2.空载线路合闸过电压产生的原因是合闸过程中电流无法突变,电路产生非周期分量,引起衰减性振荡,当时间达到某一值时,电压达到最大值,产生合闸过电压;3.切除空载变压器过电压切除空载变压器时切断的是电感电流,变压器的等效回路LT、CT中产生电磁振荡,而截流现象使空载电流未过零之前就因强制熄弧而切断,此时电流不能突变,造成电容电压继续升高,产生过电压;4.断续电弧接地过电压中性点不接地电网中的单相接地电流电容电流较大,接地点电弧将不能自熄,而以断续电弧的形式存在,就会产生另一种严重的操作过电压——断续电弧接地过电压;十九、什么叫绝缘配合 P226电力系统绝缘配合的根本任务是:正确处理过电压和绝缘这一对矛盾,以达到优质、安全、经济供电的目的; 更具体的说法是:根据电气设备所在系统中可能出现的各种电气应力工作电压和各种过电压,并考虑保护装置的保护性能和绝缘的电气特性,适当选择设备的绝缘水平,使之在各种电气应力的作用下,绝缘故障率和事故损失均处于经济上和运行上都能够接受的合理范围内;核心问题是确定各种电气设备的绝缘水平;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高电压复习重点整理一、汤逊理论和流注理论1、具体内容汤逊理论:汤逊理论实质就是电子崩理论。

书P8-P11第二节至第三节2、汤逊放电的实质是:电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。

所逸出的电子能否接替起始电子的作用是自持放电的判据。

3、流注理论(P13)认为:在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场(外施电压在气隙中产生的电场)明显畸变,大大加强电子崩崩头和崩尾处的电场。

另一方面,电子崩中电荷密度很大,所以复合过程频繁,放射出的光子在这部分强场区很容易成为引发新的空间光电离的辐射源,因此流注理论认为:二次电子的主要光源是空间的光电离。

这时放电转入新的流注阶段。

流注的特点是电离强度很大和传播速度很快,出现流注后,放电便获得独立继续发展的能力,而不再依赖外界电离因子的作用,可见这时出现流注的条件也是自持放电的条件。

4、应用条件汤逊理论:应用于均匀电场,低气压,短气隙流注理论:应用于均匀电场,高气压,长气隙5、二者的区别与联系相同点:都有电子崩的产生不同点:流注的形成过程中有二次崩的形成、二次电离在气体击穿过程中起了重要作用。

二、极性效应(P18-20)产生的条件在极不均匀电场中,放电一定从曲率半径较小的那个电极表面开始,与该电极极性无关。

但后来的发展过程、气隙的电气强度、击穿电压等都与该电极的极性有密切的关系。

极不均匀电场中的放电存在着明显的极性效应。

(书上没说具体产生条件是什么,根据这段话理解我猜条件是极不均匀的电场中的放电吧。

)三、标准雷电压雷电流波形标准雷电压 P21页图1-16,IEC和我国国家标准规定:T=1.2μs,容许偏1=50μs,容许误差±20%,通常写成1.2/50μs。

差±30%;T2雷电流冲击波形四、污闪发生过程和预防措施1、污闪过程(具体见P28):可分为积污、受潮、干区形成、局部电弧的出现和发展。

在遇到毛毛雨、雾、露等不利天气时,污层被水分湿润,电导大增,在工作电压下泄漏电流大增。

电流产生的焦耳热烘干污层,形成干区。

干区电阻比较大,整个绝缘子上的电压都集中在干区上,电场强度很大,引起局部表面空气碰撞电离,产生局部电弧。

随后弧后支撑点附近湿污层被很快烘干,干区扩大,电弧被拉长,一旦达到某一临界长度,弧道温度已很高,弧道的进一步伸长就不再需要更高的电压,而是自动延伸直至贯通两级,完成污闪。

污闪的根本原因是积污。

2、预防措施(P30起):(1)调整爬距(增大泄漏距离)(2)定期或不定期的清扫(3)涂料(憎水性涂料如硅油、硅脂)(4)半导体釉绝缘子(5)新型合成绝缘子五、吸收比极化指数(p78)电气设备中多采用组合绝缘和层式结构,故在直流电压下均有明显的吸收现象,使外电路中有一个随时间衰减的吸收电流。

在绝缘上施加一直流电压U,此电压与出现的电i之比即为绝缘电阻。

极化比是令t=15s和t=60s瞬间的两个电流值I15和I60所对应的绝缘电阻值R 15和R60的比, .极化指数K2即指第10分钟和第1分钟时的绝缘电阻比值。

六、液体介质击穿机理P60-61分为纯净液体击穿和工程用变压器油的击穿纯净液体击穿有两个理论,即电子碰撞电离理论和气泡击穿理论;而工程用变压器油的击穿用气泡击穿理论解释,此时分两种情况,一种是杂质小桥接通电极,一种是没有接通电极。

七、高电压测量技术?各高电压的产生原理,各种高压测试设备能测的电压类型(直流,交流冲击电压)1、高电压测量技术P109高电压试验除了要有产生各种试验电压的高压设备,还必须要有能测量这些高电压的仪器和设备。

电力系统中,广泛应用电压互感器配上低电压表来测量高电压,但此法在试验室中用得很少。

试验室条件下广泛应用高压静电电压表、峰值电压表、球隙测压器、高压分压器、高压脉冲示波器和新型冲击电压数字测量系统等仪器测量高电压。

国标规定,高电压的测量误差一般应控制在±3%以内。

现代高电压测量技术也向数字测量技术方向发展。

(各种设备能测的电压类型没找到)2、各高电压的产生原理(1)工频高电压P93 采通常采用高压试验变压器或其串级装置来产生。

对电缆、电容器等电容量较大的被试品,可采用串联谐振回路来获得试验用的工频高电压。

高压试验变电器工作原理与电力变压器没有什么不同。

(2)直流高电压P97将工频高电压经高压整流器而变换成直流高电压。

利用倍压整流原理制成的直流高压串级装置(或称串级直流高压发生器)能产生出更高的直流试验电压。

(3)冲击高电压P101单级冲击电压发生器:将能产生电压波前和电压波尾的回路结合起来组成回路,P102图5-17,常用回路P103图5-19 单级冲击电压发生器能产生的最高电压一般不超过200~300kV。

因而采用多级叠加的方法来产生波形和幅值都能满足需要的冲击高电压波。

3、各种高压测试设备能测的电压类型(1)高压静电电压表不能测量一切冲击电压,能直接测量相当高的交流和直流电压(2)峰值电压表交流峰值电压表可用来测量交流电压的峰值,冲击峰值电压表可用来测量冲击电压的峰值(3)球隙测压器唯一能测量高达数兆伏的各类高电压峰值的测量装置八、试验变压器的六大特点。

P931、试验变压器本身应有很好的绝缘,但绝缘裕度小,试验过程中要严格限制过电压。

2、额定电压高而容量不大3、油箱本体不大而其高压套管又长又大4、连续运行时间不长,发热较轻,因而不需要复杂的冷却系统。

5、漏抗大,短路电流较小,可降低机械强度方面的要求6、输出电压波形很难完美,需要采取措施加以修正。

九、高压测量中有哪些类型的分压器?分压器最重要的技术参数指标是什么?P114-116电阻分压器、电容分压器、阻容分压器分压器最重要的技术参数指标P114 一是分压比的准确度和稳定性(幅值误差要小)二是分出的电压与被测高电压波形的相似性(波形畸变要小)十、伏秒特性的配合保护设备要保护被保护设备,其伏秒特性曲线必须完全位于被保护设备伏秒特性曲线的下面。

伏秒特性的正确配合1-保护间隙 2-被保护设备伏秒特性的正确配合具有较陡伏秒特性曲线的保护设备不容易与具有平伏秒特性的被保护设备配合所以不能用保护间隙、管型避雷器来保护变压器。

(上面一条曲线为被保护,下面曲线为保护)十一、什么是电介质的极化?电介质极化的类型,介质损耗如何计算?电介质的极化P50 是指电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。

电介质极化的类型P52 53 电子式极化、离子式极化、偶极子极化、夹层极化和空间电荷极化介质损耗P55-57 在电场作用下没有能量损耗的理想电介质是不存在的,实际电介质中总有一定的能量损耗,包括由电导引起的损耗和某些有损极化(例如偶极子极化、夹层极化等)引起的损耗总称介质损耗。

具体计算见书p56页。

十二、彼得逊法则的内容和应用条件P128-129 采用电压源的彼得逊法则和采用电流源的彼得逊法则应用条件:1、入射波必须是沿一条分布参数线路传输过来2、适用于节点A 之后的任何一条线路末端反射波未达到A之前十三、波阻抗的定义物理意义,影响波阻抗大小的因素有哪些?与集中参数电阻有何区别?P122-123波阻抗Z是电压波与电流波之间的一个比例常数与集中参数电阻的区别P123(1)波阻抗只是一个比例常数,完全没有长度的概念,线路长度的大小并不影响波阻抗的数值;而一条长线的电阻是与线路长度成正比的;(2)波阻抗从电源吸收的功率和能量是以电磁能的形式存储在导线周围的媒质中,并未消耗掉;而电阻从电源吸收的功率和能量均转化为热能而散失掉了。

十四、折射波和反射波的计算;P124-127(此题即为最后一个计算题)十五、雷暴日、落雷密度、绕击的定义1、雷暴日:雷暴日是一年中发生雷电的天数,以听到雷声为准,在一天内只要听到过雷声,无论次数多少,均计为一个雷暴日。

2、落雷密度:表示每平方公里地面在一个雷暴日中受到的平均雷击次数。

3、绕击:指雷闪绕过避雷线直接击中导线十六、雷击感应过电压与相邻导线感应电压有何不同?P161-162四点十七、防雷基本措施有哪些?P182起输电线路常采用避雷线、降低杆塔接地电阻、加强线路绝缘、耦合地线、消弧线圈、管式避雷器、线路阀式避雷器、不平衡绝缘、自动重合闸等措施来进行防雷。

变电所中的雷电过电压有两个来源,一是雷电直击变电所,二是沿输电线路入侵的雷电过电压波。

对于第一种雷电过电压,必须装设避雷针或避雷线对直击雷进行保护。

按安装方式的不同,避雷针分为独立避雷针和构架避雷针两类。

对于第二种,装设阀式避雷器是变电所对入侵雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值。

但是还需要有“进线段保护”与之配合。

进线段的作用:1)雷电过电压波在流过进线段时因冲击电晕而发生衰减和变形,降低了波前陡度和幅值;2)限制流过避雷器的冲击电流幅值。

旋转电机的防雷保护措施:非直配电机所受到的过电压均须经过变压器绕组之间的静电和电磁传递。

只要把变压器保护好了,不必对发电机再采取专门的保护措施。

对于在多雷区的经升压变压器送电的大型发电机,仍宜装设一组氧化锌或磁吹避雷器加以保护,如果再装上并联电容C和中性点避雷器,那就可以认为保护已足够可靠。

十八、电力系统中有哪些类型的操作过电压?这些过电压产生原因是什么?P205-2181.切断空载线路过电压切除空载线路过电压时切断的是电容电流,在介质的绝缘强度没有恢复的情况下,电弧的重燃导致电压的升高,产生过电压。

2.空载线路合闸过电压产生的原因是合闸过程中电流无法突变,电路产生非周期分量,引起衰减性振荡,当时间达到某一值时,电压达到最大值,产生合闸过电压。

3.切除空载变压器过电压切除空载变压器时切断的是电感电流,变压器的等效回路LT、CT中产生电磁振荡,而截流现象使空载电流未过零之前就因强制熄弧而切断,此时电流不能突变,造成电容电压继续升高,产生过电压。

4.断续电弧接地过电压中性点不接地电网中的单相接地电流(电容电流)较大,接地点电弧将不能自熄,而以断续电弧的形式存在,就会产生另一种严重的操作过电压——断续电弧接地过电压。

十九、什么叫绝缘配合?P226电力系统绝缘配合的根本任务是:正确处理过电压和绝缘这一对矛盾,以达到优质、安全、经济供电的目的。

更具体的说法是:根据电气设备所在系统中可能出现的各种电气应力(工作电压和各种过电压),并考虑保护装置的保护性能和绝缘的电气特性,适当选择设备的绝缘水平,使之在各种电气应力的作用下,绝缘故障率和事故损失均处于经济上和运行上都能够接受的合理范围内。

核心问题是确定各种电气设备的绝缘水平。

相关文档
最新文档