非线性控制系统

合集下载

非线性控制系统理论与应用

非线性控制系统理论与应用

非线性控制系统理论与应用第一章线性控制系统概述线性控制系统是一类基于线性系统理论的控制系统。

线性系统是指系统的输入与输出成比例的关系,即如果输入信号增加一倍,输出信号也会增加一倍。

线性系统具有稳定性和可控性的优点,因此在控制系统设计中有广泛的应用。

线性控制系统分为时不变系统和时变系统两种。

在时不变系统中,系统参数固定不变。

在这种情况下,可以针对系统的等效传递函数或状态方程进行设计和分析。

时变系统中,系统参数随时间变化。

需要对系统进行时变分析,以便针对不同时间点设计控制器。

第二章非线性控制系统概述非线性系统是指系统的输入与输出不成比例的关系。

非线性系统不同于线性系统的特点是可能出现复杂的动态行为和稳定性问题。

因此,非线性系统的控制设计比线性系统更加复杂,需要更高级的系统理论和控制方法。

非线性控制系统包括分段线性系统、滞后系统、时变系统和混沌系统等。

非线性控制系统设计需要掌握许多高级数学工具,如微积分、变分法、拓扑学、非线性动力学和控制理论等。

第三章非线性控制系统的分析由于非线性系统比线性系统更为复杂,因此非线性控制系统的分析也更加困难。

但是,通过一些数学工具和技术,可以对非线性系统进行分析和解决。

非线性系统最重要的特征之一是稳定性。

非线性系统有时会出现不稳定的情况。

在设计非线性控制系统时,需要对系统的稳定性进行分析,以便在设计和实现控制器时考虑哪些因素会对稳定性产生影响。

另外一个重要的因素是动态行为。

非线性系统可能显示出复杂的动态行为,如周期性行为或混沌行为。

在非线性控制系统设计中,控制器必须能够应对这些复杂的动态行为。

第四章非线性控制系统的设计在非线性控制系统设计中,需要考虑许多因素。

首先,需要选择适当的控制策略,如状态反馈、输出反馈、模糊控制或神经网络控制。

其次,需要选择适当的控制器类型,如比例控制器、PID控制器或先进控制器。

最后,在设计非线性控制系统时,需要注意以下几个方面:1、控制器必须能够适应系统的非线性特性。

自动控制原理第十章非线性控制系统

自动控制原理第十章非线性控制系统

自动控制原理第十章非线性控制系统非线性控制系统是指系统动态特性不能用线性数学模型表示或者用线性控制方法解决的控制系统。

非线性控制系统是相对于线性控制系统而言的,在现实工程应用中,许多系统经常具有非线性特性,例如液压系统、电力系统、机械系统等。

非线性控制系统的研究对于实现系统的高效控制和稳定运行具有重要意义。

一、非线性控制系统的特点1.非线性特性:非线性控制系统的动态特性往往不能用线性方程或者线性微分方程描述,经常出现非线性现象,如饱和、死区、干扰等。

2.多变量关联:非线性系统动态关系中存在多个变量之间的相互影响,不同变量之间存在复杂的耦合关系,难以分离分析和解决。

3.滞后响应:非线性系统的响应时间较长,且在过渡过程中存在较大的像后现象,不易预测和控制。

4.不确定性:非线性系统通常存在参数变化、外部扰动和测量误差等不确定性因素,会导致系统性能变差,控制效果下降。

二、非线性控制系统的分类1.反馈线性化控制:将非线性系统通过适当的状态反馈、输出反馈或其它形式的反馈转化为线性系统,然后采用线性控制方法进行设计。

2.优化控制:通过建立非线性系统的数学模型,利用优化理论和方法,使系统达到其中一种性能指标最优。

3.自适应控制:根据非线性系统的参数变化和不确定性,设计自适应控制器,实时调整控制参数,以适应系统的动态变化。

4.非线性校正控制:通过建立非线性系统的映射关系,将测量信号进行修正,以减小系统的非线性误差。

5.非线性反馈控制:根据非线性系统的特性,设计合适的反馈控制策略,使得系统稳定。

三、非线性控制系统设计方法1.线性化方法:通过将非线性系统在其中一工作点上线性化,得到局部的线性模型,然后利用线性控制方法进行设计和分析。

2.动态编程方法:采用动态系统优化的方法,建立非线性系统的动态规划模型,通过求解该模型得到系统的最优控制策略。

3.反步控制方法:通过构造适当的反步函数和反步扩散方程,实现系统状态的稳定和输出的跟踪。

自动控制原理第八章非线性控制系统

自动控制原理第八章非线性控制系统
稳定性定义
如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03

非线性控制系统的研究及应用

非线性控制系统的研究及应用

非线性控制系统的研究及应用随着人类科技的不断发展,非线性控制系统已经成为了重要的研究领域。

相比于线性控制系统,非线性控制系统能够更加准确地描述复杂系统的动态行为,因此在很多实际应用场景中具有得天独厚的优势。

一、非线性控制系统的定义及特点非线性控制系统是指控制对象或控制器的函数不符合线性原理的控制系统。

它具有以下特点:1.非线性控制系统是一个典型的时变系统,复杂的非线性控制系统具有高度的不确定性和不可预测性。

2.非线性控制系统通常具有的动态性、复杂性和分析难度高。

3.非线性控制系统在实际应用中非常广泛,例如,飞行器、导弹、卫星、工业过程和人体等控制对象都是非线性的。

总之,非线性控制系统可以看作是一类负责区分和控制系统各种输入、输出量之间非线性关系的控制器。

二、非线性控制系统的研究随着非线性控制系统的实际应用,非线性控制系统研究的重要性日益显现,使得非线性控制系统的理论和应用有很大的进展。

非线性控制系统研究主要包括四个方面:分析、设计、实现和优化。

1.非线性控制系统的分析非线性控制系统的分析主要包括对非线性控制系统的动态性、稳定性和可控性的分析,以及非线性控制系统遇到固有模数或增益的饱和的情况下的问题。

2.非线性控制系统的设计非线性控制系统的设计主要是在非线性模型基础上进行,通过确定控制器的函数,得到非线性控制器的设计方案。

3.非线性控制系统的实现非线性控制系统的实现一般分为两种方法:数学模型仿真和真实系统的实验验证。

模型仿真是通过控制系统的数学模型进行仿真试验,以检查控制系统的性能。

真实系统的实验验证是将非线性控制器部署到实际系统中,对控制器进行实时监控和调节。

4.非线性控制系统的优化非线性控制系统的优化是指通过一系列技巧和方法来改善控制系统的性能和质量。

三、非线性控制系统的应用非线性控制系统的应用非常广泛,如机器人控制、智能交通、航天器控制、化工过程控制、医疗技术等领域均可应用。

以下分别介绍一下其中一些领域的应用。

自动控制原理-第8章非线性控制系统

自动控制原理-第8章非线性控制系统

8非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。

本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。

8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。

严格来讲,所有的控制系统都是非线性系统。

例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。

当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。

实际上,所有的物理元件都具有非线性特性。

如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。

图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u为电机的控制电压,纵坐标为电机的输出转速,如果伺服电动机工作在A1OA2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。

但如果电动机的工作区间在B1OB2区段•那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。

8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。

例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。

实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。

常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。

自动控制原理第九章非线性控制系统PPT课件

自动控制原理第九章非线性控制系统PPT课件
02
非线性系统的数学描述
01
02
04
非线性微分方程
非线性微分方程是描述非线性系统动态行为的数学模型之一。
它通常表示为自变量和因变量的函数,其中包含未知函数的导数。
非线性微分方程的解可以描述系统的输出响应与输入信号之间的关系。
解决非线性微分方程的方法通常包括数值解法和解析解法。
03
非线性传递函数是描述非线性系统的另一种数学模型。
非线性系统的特点
研究非线性系统的方法包括解析法、数值法和实验法等。
总结词
解析法是通过数学推导和求解方程来研究非线性系统的行为和特性。数值法则是通过数值计算和模拟来研究非线性系统的行为和特性。实验法则是通过实际实验来研究非线性系统的行为和特性,通常需要设计和构建实验装置和测试系统。
详细描述
非线性系统的研究方法
它类似于线性系统的传递函数,但包含非线性项和饱和项。
非线性传递函数可以表示系统的输入输出关系,并用于分析系统的性能和稳定性。
分析非线性传递函数的方法包括根轨迹法和相平面法等。
01
02
03
04
非线性传递函数
非线性状态方程是描述非线性系统动态行为的另一种数学模型。
非线性状态方程可以用于分析系统的稳定性和动态行为,并用于控制系统设计。
非线性系统仿真软件
非线性系统仿真实例是通过计算机仿真技术对实际非线性系统进行模拟和分析的实例,它可以帮助用户更好地理解非线性系统的特性和行为,并验证仿真模型的正确性和有效性。
常见的非线性系统仿真实例包括电机控制系统、飞行器控制系统、机器人控制系统等,这些实例可以帮助用户更好地了解非线性系统的控制方法和优化策略。
飞行器控制系统
化工过程控制系统

自动控制原理第八章非线性控制系统分析

自动控制原理第八章非线性控制系统分析

第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。

本质非线性和非本质非线性。

典型非线性特性。

非线性系统的特点。

两种分析非线性系统的方法——描述函数法和相平面法。

(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。

谐波线性化的概念。

描述函数定义和求取方法。

描述函数法的适用条件。

(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。

借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。

(5)相平面法的基本概念非线性系统的数学模型。

相平面法的概念和内容。

相轨迹的定义。

(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。

(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。

(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。

用相平面法分析非线性系统,非线性系统相轨迹的组成。

改变非线性特性的参量及线性部分的参量对系统稳定性的影响。

2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。

8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。

应用线性系统控制理论,能够方便地分析和设计线性控制系统。

如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。

线性系统控制理论不能很好地分析非线性系统。

因非线性特性千差万别,无统一普遍使用的处理方法。

非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。

非线性系统:含有非线性环节的系统。

非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。

非线性控制系统

非线性控制系统
中, 令斜率为某一指定的常数
a ,则可得:
, x) f (x a x
上式表示一条曲线,该曲线上每一点处的相轨迹的
切线斜率都是
a ,这样的曲线称为 等倾线 。
48
x
0
x
等倾线 切线方向 斜率固定
相轨迹
49
[例7-7]
画出二阶线性系统的相轨迹。
x 0 x 2n x
第七章
7.1 引言
非线性控制系统
非线性系统在实际物理系统中大量存在。 本章主要讨论两种经典的方法: 相平面法 描述函数法
1
7.1.1 非线性系统
非线性系统 运动规律要用非线性代数方程或
不能用 非线性微分方程、非线性差分方程来描述,
线性方程描述的系统。
另外,控制系统中若含有非线性环节,则称为 非线性系统。 非线性系统一般不满足叠加原理。
15
3
非线性控制系统的频率响应
非线性系统 正弦输入信号 含有高次谐波分量 的非正弦周期函数
不能用频率特性或传递函数方法来分析和综合
非线性系统。
16
4
非线性控制系统的其他特性
跳跃共振
次谐波振荡
异步抑制
分形现象
混沌现象
17
7.1.3 非线性系统的分析方法
1
2 3 4 5
线性近似方法
分段线性化方法 相平面方法 描述函数法 李雅普诺夫直接法
y(t ) Y sin t
系统的输出也是一种等幅振荡。
13
临界稳定线性系统 的等幅振荡输出
两者之间 完全不同!
非线性系统的 等幅振荡极限环
14
不同点
极限环自激振荡的幅值与初始条件无关; 而临界稳定线性系统的等幅振荡幅值由初始条件

§7.1 非线性控制系统概述

§7.1 非线性控制系统概述

第7章 非线性控制系统分析在构成控制系统的环节中,如果有一个或一个以上的环节具有非线性特性,则此控制系统就属于非线性控制系统。

本章涉及的非线性环节是指输入、输出间的静特性不满足线性关系的环节。

由于非线性问题概括了除线性以外的所有数学关系,包含的范围非常广泛,因此,对于非线性控制系统,目前还没有统一、通用的分析设计方法。

本章主要介绍工程上常用的相平面分析法和描述函数法。

7.1 非线性控制系统概述7.1.1 非线性现象的普遍性组成实际控制系统的元部件总存在一定程度的非线性。

例如,晶体管放大器有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输入超过启动电压后,电动机才会转动,存在不灵敏区,而当输入达到饱和电压时,由于电动机磁性材料的非线性,输出转矩会出现饱和,因而限制了电动机的最大转速;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙;开关或继电器会导致信号的跳变;等等。

实际控制系统中,非线性因素广泛存在,线性系统模型只是在一定条件下忽略了非线性因素影响或进行了线性化处理后的理想模型。

当系统中包含有本质非线性元件,或者输入的信号过强,使某些元件超出了其线性工作范围时,再用线性分析方法来研究这些系统的性能,得出的结果往往与实际情况相差很远,甚至得出错误的结论。

由于非线性系统不满足叠加原理,前六章介绍的线性系统分析设计方法原则上不再适用,因此必须寻求研究非线性控制系统的方法。

7.1.2 控制系统中的典型非线性特性实际控制系统中的非线性特性种类很多。

下面列举几种常见的典型非线性特性。

1.饱和非线性特性只能在一定的输入范围内保持输出和输入之间的线性关系,当输入超出该范围时,其输出限定为一个常值,这种特性称为饱和非线性特性,如图7-1所示。

图中,x ,分别为非线性元件的输入、输出信号,其数学表达式为y()()()()()sgn ()()⎧≤⎪=⎨>⎪⎩Kx t x t a y t Ka x t x t a (7-1) 式中 —线性区宽度; a K —线性区的斜率。

自动控制原理第8章非线性控制系统

自动控制原理第8章非线性控制系统

自动控制原理第8章非线性控制系统在自动控制系统中,线性控制系统一直被广泛应用,因为线性系统的行为可预测且易于分析。

然而,在实际的控制系统中,往往存在着一些非线性特性,如非线性环节、非线性传感器和非线性负载等。

非线性系统的行为往往更为复杂,因此需要采用特殊的控制方法来进行控制。

8.1非线性系统的特性非线性系统与线性系统相比,具有以下几个特点:1.非线性特性:非线性系统的输入和输出之间的关系不符合线性定律,而是非线性关系。

这种非线性关系可能是由于系统内部的非线性元件或非线性行为导致的。

2.非线性行为:在非线性系统中,系统的行为经常出现不可预测的情况。

当输入信号的幅值较小时,系统的行为可能是线性的,但是当幅值增大时,系统的行为可能会发生剧烈的变化。

3.非线性耦合:在非线性系统中,不同输入变量之间可能存在耦合关系。

当一个输入变量发生改变时,可能会影响到其他输入变量的行为。

4.非线性稳定性:在非线性系统中,稳定性分析比线性系统更为困难。

非线性系统可能存在多个平衡点或者极限环,而且稳定性分析需要考虑到非线性因素的影响。

8.2非线性系统的建模对于非线性系统的控制,首先需要对系统进行建模,以便进行后续的分析和设计。

非线性系统的建模可以采用两种常用的方法:数学建模和仿真建模。

1.数学建模:数学建模是利用数学模型来描述非线性系统的行为。

非线性系统的数学建模可以采用微分方程、差分方程、泰勒级数展开、输入输出模型等多种方法。

2.仿真建模:仿真建模是利用计算机仿真软件来模拟非线性系统的行为。

通过建立系统的数学模型,并利用计算机进行仿真,可以得到系统的输出响应和稳定性分析。

8.3非线性控制方法在非线性控制系统中,常用的控制方法包括自适应控制、模糊控制和神经网络控制等。

1.自适应控制:自适应控制用于处理未知或难以测量的非线性系统。

自适应控制方法通过不断调整控制器的参数,以适应系统的变化。

2.模糊控制:模糊控制利用模糊逻辑和模糊推理来处理非精确和不确定的输入量。

非线性系统控制

非线性系统控制

非线性频域控制理论
对线性控制系统最初也是在时域内研究的,但由于当时解高阶微分方程是很困难的事,人们采用拉普拉斯变 换和傅里叶变换作为数学工具,将微分方程变成代数方程,然后在频域内进行控制系统的分析与设计。频域法实 际物理意义明确,计算简便,而且控制器设计具有鲁棒性,因此在实际中得到了广泛的使用。G. Zames于1981年 提出了H∞控制的思想,其主要思路是一系统某些信号间的传递函数的H∞范数为优化指标,对于跟随问题希望干 扰频谱对输出产生的频率响应为最小。H∞控制理论从现在的研究情况来看主要是在时域内讨论H∞的求解方法, 但它所揭示的思想是一种频域综合法,并可用来进行非线性控制系统的综合。在多维频域空间内,基于广义频率 响应函数描述,研究非线性控制系统H∞控制的求解问题是一个重要的研究方向。
非线性控制
非线性控制系统,是这样的控制系统,它的运动微分方程是由非线性的常微分方程描述的。
最早出现的控制系统大都被视为线性的,如液面高度调节器、瓦特蒸汽调节器。这就是说,我们采用了系统 的一个线性模型来代替真实的系统。真实的系统中,某些非线性被人们用线性关系代替了,另外一些非线性则被 忽略掉了,于是建立起了系统的线性模型。
谢谢观看
由此,韩志刚教授提出一种不依赖于系统的数学模型就可以设计系统的有效的控制律途径。像经典的PID调 节器那样,仅从系统的某些动态特性出发,构造不依赖于系统的模型但可用于非线性、多输入情形的调节器,称 之为无模型控制器。这种调节器具有良好的输出跟踪性能,大量的仿真计算和实际应用进一步说明了这种调节器 的有效性。
非线性系统控制
系统的状态与输出变量在外部条件的影响下,不能用线性关系来描 述的系统
01 基本概念
03 方法
目录
02 研究现状 04 局限性

非线性控制系统分析

非线性控制系统分析

第一张
上一张 下一张 最后一张
结束授课
非线性系统响应还有其他与线性 系统不同的现象,无法用线性系统的 理论来解释。在一些情况下,引入某 些非线性环节,使系统获得比线性系 统更为优异的性能。实际上大多数智 能控制都属于非线性控制范畴。
应当明确指出的是:非线性系统 分析中不能使用叠加原理,也不能使用 线性系统分析中传递函数、频率特性 数学模型。
上一张 下一张 最后一张
结束授课
三、自持振荡
线性二阶系统只在阻尼比=0时给予阶跃作用,将产生周期性响应过程, 这时系统处于临界稳定状态。
实际上,一旦该系统参数发生微小变化,该周期性状态就无法维持,要么 发散至无穷大,要么衰减至零。
而非线性系统在没有外作用时,有可能产生频率和振幅一定的稳定周期 性响应。该周期响应过程物理上可实现并可保持,通常将其称为自持振荡或 自振荡,如下图所示。
但当系统的非线性特征明显且不能进行线性化处理时,就必须采用非 线性系统理论来分析。这类非线性称为本质非线性。
第一节 非线性系统的基本概念
如果一个控制系统包含一个或一个以上具有非线性特性的元件或环节, 则此系统即为非线性系统。
如系统不能进行线性化处理,或其时域响应不能用线性微分方程(一 般只能用非线性微分方程来描述,具有非线性数学模型)来描述,则称为非 线性系统,或称为本质非线性系统。这样的系统有以下特点:
如果自振荡的幅值在允许范围内, 按照李雅普诺夫关于稳定性的定义,系 统是稳定的。
自振荡是人们特别感兴趣的一个问 题,对它的研究有很大的实际意义。在 多数情况下,正常工作时不希望有振荡 存在,必须设法消除它。但在某些情况 下,特意引入自振荡,使系统有良好的稳 态、暂态性能。
第一张
上一张 下一张 最后一张

非线性控制系统分析教学课件

非线性控制系统分析教学课件

航天器控制系统
航天器控制系统是一个高度复杂的非线性控制系统,它涉及到轨道控制、姿态控制和推进系 统控制等多个方面。
航天器控制系统需要处理各种动态特性和非线性特性,如气动力、引力扰动和热效应等,以 确保航天器能够精确地完成预定任务。
航天器控制系统的设计需要运用非线性控制理论和方法,如自适应控制、鲁棒控制等,以提 高航天器的稳定性和精度。
非线性控制系统分析 教学课件
contents
目录
• 非线性控制系统概述 • 非线性控制系统的基本理论 • 非线性控制系统的分析与设计 • 非线性控制系统的应用实例 • 非线性控制系统的发展趋势与挑战
CHAPTER 01
非线性控制系统概述ห้องสมุดไป่ตู้
非线性控制系统的定义与特点
总结词
非线性、动态、输入与输出关系复杂
详细描述
反馈线性化方法是一种通过引入适当的反馈控制律,将非线性系统转化为线性系统的设 计方法。它通过调整系统的输入和输出,使得系统的动态行为变得线性化,从而可以利
用线性控制理论进行设计和分析。
滑模控制方法
总结词
一种用于处理非线性控制系统不确定性 的方法
VS
详细描述
滑模控制方法是一种通过设计滑模面和滑 模控制器,使得系统状态在滑模面上滑动 并达到期望目标的方法。它利用滑模面的 设计,使得系统对不确定性具有鲁棒性, 能够有效地处理非线性系统中的不确定性 和干扰。
非线性控制系统的基本理论
状态空间模型
状态空间模型是描述非线性控制系统动态特性的数学模型,由状态方程和输出方程 组成。
状态变量是描述系统内部状态的变量,输出变量是描述系统外部输出的变量。
建立状态空间模型需要考虑系统的非线性特性,包括死区、饱和、非线性函数等。

非线性控制系统设计和分析

非线性控制系统设计和分析

非线性控制系统设计和分析一、引言非线性控制系统是一类关于非线性系统的控制理论,具有一定的广泛性和复杂性。

在现代控制理论中,非线性控制系统一直是研究的热点,得到了广泛的应用。

本文旨在探讨非线性控制系统的设计和分析方法,对其进行深入剖析和研究。

二、非线性系统的基本概念1.非线性系统的概念非线性系统指的是一个不满足线性叠加原理的动态系统,即其输入和输出之间的关系不是简单的比例关系。

在现实中的很多系统,如电机、飞行器、化学反应、金融市场等,都是非线性系统。

2.非线性系统的分类按照系统的状态和输入可以将非线性系统分为时变和时不变两类。

按照系统的动态特性可以分为不稳定、稳定和渐进稳定三类。

按照系统的性质可以分为连续和离散两类。

三、非线性系统的数学模型非线性系统的数学模型可以用微分方程、差分方程、偏微分方程等方式表示,采用状态方程、输入-输出方程、状态-输出方程等方式描述。

若系统的动态方程可以表示为:$$\frac{dx}{dt}=f(x,u)$$其中$f(x,u)$是非线性函数,则上式就是非线性系统的微分方程。

四、非线性控制系统的设计方法1.线性化设计法线性化是将非线性动态系统在一个操作点附近,通过Taylor级数展开为线性动态系统。

因此,线性化设计法可以将非线性动态系统的设计问题转化为线性动态系统的设计问题。

线性化方法主要有两种:一是状态反馈线性化法;二是输出反馈线性化法,两种方法可以互相转化。

线性化方法的优点是简单易行,缺点是受到线性化误差的影响。

2.非线性控制设计法非线性控制设计法是基于非线性系统控制理论进行的,包括经典的反馈线性化控制法、滑模控制法、自适应控制法、模糊控制法和神经网络控制法等。

反馈线性化控制法:反馈线性化法是一种将非线性系统转化为线性系统的控制方法,它通过反馈来改变系统的输入来实现控制。

反馈线性化控制法有很好的稳定性和鲁棒性。

滑模控制法:滑模控制法是一种常用的非线性控制方法,具有较好的容错能力和鲁棒性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

部分混沌吸引子
1. He non 映

「2
X n^ = _pX n 十y n 十1
=qx n
当参数p =1.4,q =0.3时,Henon系统可产生混沌现象,对其进行Matlab仿真,可得Henon映射的吸引子如图:
0.6
0.5
0.4
0.3
0.2
0.1
-0.1
-0.2
-0.3
-0.5
图.1 Henon映射的混沌吸引子
九=_pXn| “ +1
y n1 二qX n
当参数p =1.7,q =0.5时,Lozi 系统表现为混沌,对其进行Matlab 仿真,可得Lozi 映射的吸引子如图:
0.8
0.6
0.4
0.2
-0.2
-0.4
-0.6
-0.8 L -1.5
3. Lorenz 方程
2.Lozi 映射
-0.5
X [二X 〔 * X ? X ?二—X ? 1
'X 〔 - X i X 3
X 3 二一 :X 3 X 1X 2
当参数匚=10, =28「=8/3时,Lorenz 系统出现混沌现象,对其进行 Matlab 仿
真,可得Lorenz 系统的混沌吸引子如图:
图3.1 Lorenz 系统的混沌吸引子(x-y-z )
30 20
图3.2 Lorenz 系统的混沌吸引子(x-y )
50「 45 - 40「 35・ 30「
z
25・ 20・ 15 - 10 - 5 - 0 -20
-30
20
10
y 0 -10
-20
-15 -10 -5 0 5 10 15 -20
20
-15 -10 -5
0 x
5 10 15 20
图3.4 Lorenz 系统的混沌吸引子(y-z )
捲=_ax<i 十 ax 2
« x 2 = cx 2 + (c - a * - 捲 x 3 X 3 =Xi X 2 -bx 3
当参数a =35,b =3,c =28时,Chen 电路系统出现混沌现象,对其进行 Matlab 仿 真,可得Chen 电路系统的混沌吸引子如图:
40
-30
-20 -10 0 10 20 30
4. Chen 电路
图4.1 Chen 电路系统的混沌吸引子(x-y-z)
图4.2 Chen 电路系统的混沌吸引子(x-y)
60 z 40 20 0 40 y
-40
-40
x
20
20
-20 -20
40
5. Rossler
60・
50・
40・
z
30 -
20 -
10
0 L
-30
70
60・
50 -
40 -
z
30 -
20・
10 -
-40
系统
-20 -10 0 10
x
20 30
图4.3 Chen电路系统的混沌吸引子(x-z)
-30 -20 -10 0 10 20 30
y
X
1
-X2 X3
40
40
X2
X3
当参数二=0.2j =5.7, =0.2时,Rossler 系统出现混沌现象,对其进行Matlab 仿 真,可得Rossler 系统的混沌吸引子如图
25 20
图5.2 Rossler 系统的混沌吸引子(x-y)
15 10
0 20
10
图5.1
Rossler 系统的混沌吸引子(x-y-z)
12
10
-5
-10
x
-10
-15
x
图5.3 Rossler系统的混沌吸引子(x-z)
25
20
15
z
10
5
-8 -6 -4 -2 0 2 4 6 8 10 12
y
6. Chua'sCircuits
■»:t = p( r2—h(巧
—— i -2十
岛=一眄
ivlu ir />, q> 0, A(j'i) is H pirt'cuiwc linear F UIK tiuu with “ < (), b> I). <■=> l t
乩门一广)* .r t
> 1 mi < 1 亠C), X\
0—1.
Onl can easily obtain that the system has thr^ equilibrium points at (0.0b 0), (c. 0, —c), and ( —c.O. r). Define M o= —c). (0,0.0).(—CjD, e)}.
A hiinjjlc fccdl.Kkik (.xjLitrol hm r is pru^?s<d wit h k - —> 0
{
Case 1.
Case 2.
丄V V
z.. ..................... - -1 ・L・£j-八--1...................1............. *- - - -■ t.............. 〔■ -■--下…«
^1.5 -1-1£-I1 -as H IE 1
Case 3.。

相关文档
最新文档