光伏并网逆变器控制与仿真设计
光伏并网逆变器建模和仿真研究概要
东南大学硕士学位论文光伏并网逆变器建模和仿真研究姓名:唐金成申请学位级别:硕士专业:电机与电器指导教师:林明耀20080512摘要摘要随着I:业技术的迅猛发展,能源问题越米越受到人们的重视。
如何开发利用可再生资源以解决当前的能源危机成为一个热I’J话题。
人们普遍认为在目前可知的、并且已经得到比较广泛利用的可再生能源中,技术含量最高、最有发展前途的是太刖能。
太刖能利用的主流方向是光伏并网发电。
在光伏并网发电系统中,并网逆变器为核心。
因此,本文主要研究适用于光伏并网发电系统的逆变器。
论文首先描述了光伏电池的工作特性,研究了常见光伏阵列模型。
在此基础上,在MATLAB仿真环境F,开发了光伏阵列通片j仿真模型,分析了光伏阵列最人功率点的跟踪控制方法,最终采用干扰观测法实现了光伏阵列的最大功率点跟踪。
论文详细分析了Dc/Dc变换电路、DC/AC逆变电路的工作原理和r作特性。
光伏并网发电系统中主电路参数的选择对于系统能否正常工作、系统输出电流波形质量的好坏有着重要的作用。
使_}}j舭TLAB中的POWERSYSTEMBLOCKSETS工具软件建立了DC/DC变换电路、DC/AC逆变电路的动态模型.并进行了在开环和闭环谢种情况卜的仿真。
由DC/Dc变换电路、DC/AC逆变电路两个部分通过DCIink连接组成光伏并网逆变器。
通过对DC/DC变换电路的占空比调制实现了光伏阵列输出电压的控制,使光伏阵列运行在最大功率点。
通过对DC/AC逆变电路的舣环控制,以取得与电网电压同步的正弦电流输出和直流母线侧电压的稳定,其中电流内环采用滞环电流跟踪控制,电压外环采用PI控制。
最后,实验说明了仿真结果的止确性。
论文在给出孤岛效应危害的基础上,分析了目前常用的被动式、主动式孤岛检测方法,并采用并网电流幅值扰动法实现反孤岛效应。
【关键词】:建模,仿真,光伏并网,是大功率点跟踪,电流滞环控制,反孤岛效应AbstractAbstractWiththerapiddevelopmentoftechnology,peoplepaymoreandmoreattentiontotheproblemofenergy.Itbecomesahottopicthathowtoexploitanduserenewableresourcetoresolveenergycrisisrecently.Ongeneralview,amongtherenewableenergywhichpeoplehaveknownandusedextensively,solarenergyhasthemostteehnicalcontentandwoulddevelopbestinfuture.Themainphaseofutilizationofsolarenergyisphotovoltaic(PV)grid—connectedsystem,Thegrid-connectedinverteristhekeyforthePVsystem.TheefficientinverterforthePVsystemispresentedinthethesis.Firstly,theoperationpropertiesofPVcellareintroducedandthePVarraymodelisstudiedinthisthesis.Onthebasisofthestudy,aversatilesimulationmodeIforPVartayisdevelopedunderMATLABenvironment.Themaximumpowerpointtracing(MPPT)controlmethodofPVarrayisgiven,andtheperturbationandobservation(P&o)areadoptedtoachieveMPPTofPVarrayfinally.Secondly,theprinciplesandcharacteristicsofDC/DCconverter,DC/ACinverterareanalyzedindetailsinthisthesis.TheparameterselectionofmaincircuitinthePVgrid.connectedsystemwillconcemdirectlywhetherthesystemcanoperateproperly,andwillinfluencesthequailtyofoutputcurrent.TwodynamicmodelsofDC/DCconverter,DC/ACinverteraredevelopedusingPOWERSYSTEMBLOCKSETStooloftheMATLAB.Somesimulationresultsforopenloopandcloseloopconditionsaregiveninthisdissertation.Thirdly,thePVgdd.connectedjnverterconsistsofaDC/DCconverterandaDC/ACinverterandthetwopartsarecombinedbyaDClink.BymodulatingthedutycycleofDC/DCconverter,thePVarrayoutputvoltageiscontrolled,soPVarraycalf]operateonmaximumpowerpoint.DC/ACconverteradoptsdoubleloopcontrol,asaresult,thesinusoidalwaveoutputcurrentissynchronizedwithgridvoltageandDCbusvoltagecanleveloff.Currentandvoltageloopadoptshysteresis—bandcurrenttrackingcontrolandPIcon订olrespectively.Atlast,theexperimentresultsverifythesimulationanalysis.TheislandingeffectshouldbepreventedinPVgrid-connectedsystem.Theactiveandpassivedetectingmethodsareinves._tigatedinthisthesisKeyword:ModulingtSimulation,PVgad-connected,Maximumpowerpointtrackingcurrenthysteresiscontrol,Anti-islandingeffectlI东南大学学位论文独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
光伏并网逆变器的设计与控制
图 1 光 伏 发 电 系统 结构 简 图
中 图 分 类 号 : T l M6 5
文献标识码 : A
文章 编 号 : 29 -8 2( 0 1 0 - 8 -3 0 50 0 一2 1 )20 30 0
De i n a d Co r lo sg n nt o fPV i nv r e Gr d i e t r
2 1 年 第 2期 ( 第 6 01 总 5期 )
E EG N N R YC N E V T0 N R Y DE EG O SR A 1N A
钰 i 与 夏
稚
2 1 年 2月 01
墓
纛 誊
ห้องสมุดไป่ตู้
光 伏 并 网逆 变 器 的 设 计 与 控 制
潘 龙
( 苏 龙 腾 工 程 设 计有 限 公 司 , 苏 宜 兴 江 江 摘 指 出, 光伏 并 网 逆 变 器的 技 术 关键 在 于 对 电流 和 功 率 的控 制 。
・
为线 路 电阻 , 为 串 联 电抗 器 , 为 回馈 电 网 电 流 , 其 中 , 网回馈 电流 的相 位要 与 电 网电压 相位 一致 。 电
部 件 , 在 系统 中承 担着 两项 任 务 , ) 制 光伏 阵列 最 它 a控 大 功率点 运 行 ; ) 太 阳 能 电池 产 生 的 直 流 电转 换 成 b将 交 流 电并 输 入公 共 电 网 , 典 型 结 构 见 图 1 电路 原 理 其 ,
三电平光伏并网逆变器的设计和仿真
三电平光伏并网逆变器的设计和仿真三电平光伏并网逆变器是一种逆变器,可将光伏发电系统产生的直流电转换为交流电并注入电网中。
相较于传统的两电平逆变器,三电平逆变器具有较低的谐波畸变、较高的效率以及较低的损耗。
本文将主要介绍三电平光伏并网逆变器的设计和仿真。
首先,我们需要了解三电平光伏并网逆变器的工作原理。
该逆变器采用全桥拓扑结构,通过PWM控制技术将直流电转化为交流电。
在三电平拓扑中,单个逆变器开关可以处于三个可能的状态之一,产生三个不同的输出电平。
通过合理的控制逆变器开关状态,可以实现更接近纯正弦波形的输出。
接下来,我们需要进行三电平光伏并网逆变器的设计。
设计的关键步骤包括选择逆变器拓扑、选择开关器件以及设计控制策略。
逆变器拓扑的选择可以参考现有的研究成果和文献,如全桥拓扑、H桥拓扑等。
开关器件的选择需要考虑功率损耗、效率、成本等因素。
对于控制策略的设计,可以采用比例积分控制器,根据输入输出电流电压进行调节和控制。
设计完成后,我们可以使用电路仿真软件进行三电平光伏并网逆变器的仿真。
常用的电路仿真软件包括PSIM、Simulink等。
通过仿真,可以验证逆变器的性能以及输出波形是否满足要求。
在仿真过程中,需要输入逆变器的直流电源电压、负载的电阻值以及逆变器的控制信号等参数,以获取准确的仿真结果。
总结起来,三电平光伏并网逆变器的设计和仿真需要进行逆变器拓扑选择、开关器件选择以及控制策略设计等关键步骤,并可以通过电路仿真
软件进行验证。
这种逆变器在光伏发电系统中具有重要的应用价值,可以提高发电系统的效率和稳定性。
太阳能光伏系统的并网逆变器设计与控制研究
太阳能光伏系统的并网逆变器设计与控制研究近年来,随着环境保护意识的增强和可再生能源的发展,太阳能光伏系统作为一种清洁、可持续的能源供应方式得到了广泛的推广和应用。
而在光伏系统中,逆变器的设计与控制是其中关键的一环。
在太阳能光伏系统中,光伏电池将太阳辐射转化为直流电能,而光伏逆变器则负责将直流电转化为交流电,以满足家庭或工业用电的需求。
逆变器具有将直流电转为交流电的功能,同时还能实现电网注入和电网同步等功能。
在太阳能光伏系统中,逆变器的设计与控制是非常重要的,它直接关系到光伏系统的效率、功率因素和电网安全等方面。
首先,逆变器的设计要考虑到太阳能光伏系统的工作环境和特性。
由于光伏电池发电受到太阳辐射的影响,因此逆变器的设计要充分考虑到太阳能的辐射强度和角度等因素,以获得尽可能高的发电效率。
其次,逆变器的设计还要考虑到系统的安全性和可靠性。
在光伏系统中,逆变器需要将直流电转化为交流电并注入电网,因此逆变器的设计要符合国家相关标准和规定,确保系统的安全运行。
同时,逆变器还要具备过压、欠压和过流等保护功能,以保护系统的设备和电网的安全。
与逆变器的设计相比,逆变器的控制则更为复杂。
逆变器的控制主要包括功率控制、电流控制和频率控制等方面。
功率控制是指逆变器在不同负载条件下能够输出相应的功率,并实现最大功率点追踪,以提高系统的发电效率。
电流控制是指逆变器能够根据电网的需求实时调整输出电流,以满足电网的要求。
而频率控制则是指逆变器能够实现与电网同步运行,确保输出电流的频率与电网相匹配。
为了实现逆变器的控制,常常采用数字信号处理器(DSP)和微控制器(MCU)等集成电路设备,通过对光伏系统的监测和控制,实现对逆变器的精确控制。
同时,还可以利用复杂传感器和智能算法等技术手段,提高逆变器的控制精度和稳定性。
总之,太阳能光伏系统的并网逆变器设计与控制是太阳能光伏系统中至关重要的一环。
在逆变器的设计方面,要考虑到光伏电池的工作环境和特性,实现高效率的发电。
光伏发电并网逆变器设计及其控制实现
光伏发电并网逆变器设计及其控制实现光伏发电并网逆变器是一种将光伏电池组发出的直流电能转换为交流电能并与电网连接的装置。
它在光伏发电系统中起着重要的作用,能够将光伏电池组产生的直流电能转化为交流电能供电网使用,从而实现将太阳能转化为电能的目的。
本文将对光伏发电并网逆变器的设计原理及其控制实现进行详细介绍。
光伏发电并网逆变器的设计原理是将光伏电池组发出的直流电能经过逆变器的转换,变为符合电网要求的交流电能。
其主要功能包括功率调节、电网电压频率跟踪以及电网短路保护等。
在设计过程中,需要考虑逆变器的效率、可靠性以及控制精度等因素。
光伏发电并网逆变器的组成主要包括直流侧和交流侧两个部分。
直流侧主要由光伏电池组、直流输入滤波电路和直流侧逆变器构成。
交流侧主要由交流输出滤波电路、逆变桥和输出变压器构成。
在设计中,需要对每个部分进行设计和参数选择,以保证逆变器的正常运行。
光伏发电并网逆变器的控制实现主要包括两个方面:MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制和电网逆变控制。
MPPT控制是为了保证光伏电池组能够始终工作在最大功率点上,通过调整光伏电池组的工作电压和电流,以获得最大功率输出。
电网逆变控制是为了保证逆变器能够将直流电能转换为符合电网要求的交流电能,包括电压和频率的跟踪控制。
在MPPT控制方面,一般采用模拟控制和数字控制相结合的方式。
模拟控制主要通过比较光伏电池组输出电压和电流与最大功率点的关系,通过调整控制信号来实现。
数字控制是采用数字信号处理器(DSP)等处理器实现的,能够实时采集光伏电池组的输出电压和电流,并进行计算和调整。
在电网逆变控制方面,主要包括电网电压跟踪和频率控制两个方面。
电网电压跟踪是通过测量电网电压和逆变器输出电压的差值,并通过调整逆变器的控制信号来实现电网电压的稳定。
频率控制是通过测量电网频率和逆变器输出频率的差值,并通过调整逆变器的控制信号来实现电网频率的跟踪。
20kW并网型光伏发电系统的设计与仿真
20kW并网型光伏发电系统的设计与仿真引言光伏发电系统是一种通过光电效应将太阳能转换为电能的系统。
随着清洁能源的日益受到关注,光伏发电系统的应用越来越广泛。
本文将介绍一个20kW的并网型光伏发电系统的设计与仿真。
设计方案光伏阵列设计在设计光伏阵列时,需要考虑光伏电池的类型、工作温度和数量。
通常情况下,多晶硅太阳能电池是最常见和最经济的选择。
在确定数量时,需要根据地区的太阳辐射程度和发电容量来计算。
MPPT控制器设计最大功率点追踪(Maximum Power Point Tracking,简称MPPT)控制器是光伏发电系统中重要的一部分。
其主要功能是通过调整负载来使光伏阵列输出电压和电流达到最大值,从而提高发电效率。
MPPT控制器的设计需要考虑功率损失、响应速度和系统稳定性。
通常,可以使用模拟控制或数字控制来实现MPPT控制。
逆变器设计逆变器是将直流电转换为交流电的设备。
在光伏发电系统中,逆变器将光伏阵列输出的直流电转换为适用于并网的交流电。
逆变器的设计需要考虑输出功率、输出电压波形质量和系统保护功能。
常见的逆变器拓扑包括PWM逆变器和H桥逆变器。
并网连接设计并网型光伏发电系统将发电输出连接到公共电网中,从而实现发电量的出口和购电量的进口。
并网连接设计需要考虑系统对电网的影响、反向电流的防护和系统保护。
通常,可以使用电网保护装置和功率限制器来确保并网连接的安全性和稳定性。
此外,还需满足当地的并网规范和要求。
仿真实验在设计完成后,可以使用适当的仿真工具对光伏发电系统进行仿真实验。
常见的仿真工具包括MATLAB/Simulink、PSIM等。
在仿真实验中,可以验证设计的可行性,同时优化设计参数以提高系统性能。
通过仿真实验,还可以分析光伏发电系统的工作特性和响应。
结论本文介绍了20kW并网型光伏发电系统的设计与仿真。
通过合理的光伏阵列设计、MPPT控制器设计、逆变器设计和并网连接设计,可以实现高效、稳定和安全的光伏发电系统。
分布式光伏发电系统的并网型逆变器设计与控制
分布式光伏发电系统的并网型逆变器设计与控制摘要:随着可再生能源的快速发展,分布式光伏发电系统成为了一个受到广泛关注的领域。
在分布式光伏发电系统中,逆变器的设计与控制是关键的环节之一。
本文将介绍分布式光伏发电系统的基本原理,然后重点讨论并网型逆变器的设计与控制方法。
同时,将探讨当前存在的一些问题,并提出可能的解决方案。
1. 引言分布式光伏发电系统是一种将太阳能转化为电能的系统。
该系统将太阳能电池板转化的直流电能通过逆变器转化为交流电能,并输入到电网中。
逆变器是实现这一转换的核心设备之一。
并网型逆变器允许光伏发电系统与电网之间的双向电能流动。
当光伏发电系统产生的电能超过负载需求时,多余的电能将被输送到电网中,从而实现电能的共享与利用。
然而,为了确保安全稳定地将电能输送到电网中,逆变器的设计与控制变得尤为重要。
2. 分布式光伏发电系统的基本原理分布式光伏发电系统主要由太阳能电池板、逆变器、电网和负载组成。
太阳能电池板将太阳能转化为直流电能,逆变器将直流电能转化为交流电能,然后输入到电网中,最后供给负载使用。
光伏发电系统的工作过程如下:1) 太阳能电池板将太阳光转化为直流电能。
2) 逆变器将直流电能转化为交流电能。
3) 交流电能通过变压器升压之后,输入到电网中。
4) 电网将电能供给给负载使用。
3. 并网型逆变器的设计由于并网型逆变器需要将直流电能转化为交流电能并输入到电网中,因此其设计需要满足以下要求:1) 高效性:逆变器的转换效率应尽可能高,以最大程度地减少能源损耗。
2) 可靠性:逆变器需要具备稳定、可靠的运行能力,以确保电能的安全输送。
3) 控制性能:逆变器需要具备灵活、精确的控制能力,以应对电能输出的要求。
4. 并网型逆变器的控制并网型逆变器的控制包括全局控制和局部控制两个方面。
全局控制主要是通过监测电网的运行状态和负载需求来控制逆变器的电能输出,以实现对电网功率的调节。
局部控制主要是通过反馈控制回路来调整逆变器的输出特性,以保持稳定的输出电压和频率。
光伏并网逆变器控制的设计
光伏并网逆变器控制的设计
1 引言
21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。
在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。
因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。
太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。
文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。
2 系统工作原理及其控制方案
2.1 光伏并网逆变器电路原理
太阳能光伏并网逆变器的主电路原理图如图1所示。
在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。
系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。
图1 电路原理框图
2.2 系统控制方案
图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC变换器和后级的DC/AC 逆变器组成。
DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。
考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。
DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。
图2 主电路拓扑图。
单相光伏逆变器的并网控制仿真
收稿 日期 : 2 0 1 3— 0 4—2 5
网络 出版 日期 : 2 0 1 3— 0 6— 0 9
关键词 : 光伏逆 变器 ; 并 网; 电流跟 踪控 制 ; 电网电压前馈控制 中图分 类号 : T M 6 1 5ቤተ መጻሕፍቲ ባይዱ 文献标志码 : A 文章编号 : 1 0 0 4— 8 3 3 2 ( 2 0 1 3 ) 0 3— 0 1 1 6一 ( 】 4
并 网光 伏逆 变器要 将太 阳能 板产 生 的直流 电输 送 到 电网 , 其输 出控 制模式 有两 种 : 电流型控 制 和 电压 型 控制模式 I 2 ] . 在前一模式 中, 因光伏逆变器对电网呈现出一种相对的高阻抗特性 , 并网输出电流受控 , 故其 受到电网电压扰动的影响较小. 文献[ 3 ] 指出进 网电流总谐波失真度( t o t a l h a r m o n i c d i s t o r t i o n , T H D ) 和功率 因数 ( p o w e r f a c t o r , P F ) 是衡 量发 电质 量 的两项 重要技 术指 标. 本 文对 光伏 并 网逆 变器 的输 出采用 电流控 制 , 旨在使逆变器稳定地输出高质量 的正弦波交流电, 与 电网电压保持同频同相. 目前 实现并 网电流 闭环控 制 的方法 主要有 滞环 控制 、 无 差拍 控制 、 重 复控制 及 P I 控制等 , 均 具有 可数 字 控制 、 动态性能好和电压利用率高的特点 J . 一种实现 电流闭环控制 的常见方法 即 A . B . P l u n k e t t 提出的电 流滞环 , 把输出电流参考波形和实际波形通过滞环比较器进行 比较 , 其 比较结果决定逆变电路的桥臂上下开 关器 件 的通断 , 但滞 环宽 度一般 固定 , 故将 导致 开关 频率 不 固定 J , 在 调制 过程 中容 易 出现窄 脉 冲和 大 尖 峰 电流. 无差拍控制是在负载情况 已知和控制周期的开始 , 根据电流的当前值和这一周期结束时的参考值选择 个 使 电流 比较误 差趋 于零 的 电压 矢量 , 去控 制逆变 电路 的开 关器件 通 断 , 但是 这种控 制对 系统 变化 很 敏感 , 且 当采样频率不高时误差较大 , 限制了其应用范围. 文献 [ 8 ] 提出基于电网电压前馈和重 复控制相结 合的复合控制策略, 因该控制算法复杂, 目前并未应用于实际工程. 文献 [ 9 ] 通过采样反馈 电容 电压以一个 微 分环 节 间接得 到 电容 电流 , 但在 实 际工程 中微分 环 节难 以实 现 , 且未 对 并 网 电流进 行 直接 控 制 , 存在 着 与 电 网电流谐 振 的风险 . 除此 之外 , 近年来 还 出现 了一些 神经 网络 、 模 糊控 制 、 滑模 变结 构等 控制算 法 ” , 这
(完整word版)光伏并网建模与仿真
光伏发电并网系统建模与仿真【摘要】:为开展太阳能光伏发电并网系统的研究,本文通过电压空间矢量脉宽调制SVPWM 技术 其谐波小、直流侧电压利用率高、算法简单、等特点应用于光伏发电系统中的方法,能够提高对光伏电池输出直流电压的利用,从而达到改善整个光伏发电系统的性能。
【关键词】:光伏并网系统; SVPWM 技术1.光伏并网发电系统结构三相光伏并网发电系统包括以下三个部分:光伏阵列模块、逆变器、控制器和电网,图1是光伏并网发电系统结构图,图中光伏电池板接受太阳光照射,将太阳能转换成直流电,经并网逆变器逆变为交流电与配电网络并网运行。
图1 光伏并网发电系统结构图1.1.光伏电池数学模型光伏电池是光伏电源的最小单元,通常将一系列小功率的光伏电池组成光伏组件,再根据功率等级通过串并联形成光伏阵列、得到光伏电源。
光伏电池的基本结构是能够将光能转换为电能的PN 结,图2显示了其精确的等效模型,由光生电流源、二极管、串联和并联电阻组成。
光伏电池产生的光生电流Iph 与光照强度λ成正比,流经二极管的电流、I d 随着结电压Ud 及逆向饱和电流Isat 的不同而变化。
图2 光伏电池的等效电路相应的U -I 特性为:()[1]s q U IR sAkTph d shU IR I I I eR ++=---(1.1)式中,玻尔兹曼常数k=1.38×10-23J/K ;q=1.6×10-19C ,为电子的电荷量;T 为温度;R sh 和R s 为并联和串联电阻;A 为二极管的理想因子,1≤A ≤2,当光伏电池输出高电压时A =1,当光伏电池输出低电压时A =2;ph I 和d I 分别为光生电流和流过二极管的反向饱和漏电流,ph I 和d I 是随环境变化的量,需根据具体的光照强度和温度确定。
工程上光伏电池的应用模型通常只采用供应厂商提供的几个重要参数,包括标准参数(光照强度21000/b S W m =,环境温度25b T C =︒), sc I (光伏电池短路电流),m I (光伏电池最大功率点电流),oc V (光伏电池开路电压)m V (光伏电池最大功率点电压)。
单周期数字控制光伏并网逆变器的仿真与实验
c nn c e nv r e a e i d. S m ulton a x rm e e uls r e t att e ho s g d dy m i o e t d i e t rw s d sgne i a i nd e pe i nt r s t p ov h he m t d ha oo na c a t tc c r c e itc . nd sa i ha a t rsi s
CA IFe — ng hua ng ’ , ZH E N G — e ,W A N G u ’’ Biw i W 。
(. 1 Cole f Elc r c lEng ne rng a d Aut ma i n,Fu h n v r iy, lge o e t ia i ei n o to z ou U i e st
新型光伏并网逆变器的建模与控制方法
新型光伏并网逆变器的建模与控制方法姚乐乐;刘晓悦【摘要】将由对称Z源逆变器和三相对称LCL滤波器组成的光伏并网逆变器作为研究对象,对Z源网络和一相LCL滤波器建立数学模型.将模型参数看作系统参数,模型输入信号的变化看作扰动,根据模型的固有缺陷,结合前期成果,重点研究两种情况的系统改进策略:①系统参数未变化且扰动可测;②系统参数变化或扰动不可测.针对第1种情况,改进时主要采取加入"模拟模块"和"开关切换"的策略;针对第2种情况,改进策略是对系统加入稳定性鲁棒控制器.通过仿真实验验证,结果表明Z源网络和一相LCL滤波器的数学模型正确,在此基础上针对第1种情况采取的改进策略比改进前暂态性能得到提高,稳态性能与原系统一致;针对第2种情况采取的改进策略比改进前稳定性得到提高.%The photovoltaic grid inverter consisting of a symmetric Z source inverter and a three-phase symmetric LCL filter is taken as the study object of this paper,and a mathematical model of the Z source network and LCL one-phase filter is established.The model parameters and the change of input signal are regarded as system parameters and distur?bance,respectively.In light of the model's inherent defects and combined with previous results,the following two sys?tem improvement strategies are studied,i.e.,system parameters without change but with measurable disturbance(Case 1),and system parameters with change or unpredictable disturbance(Case 2).In Case 1,the addition of simulation module and switching are adopted as the improvement strategy.In Case 2,the addition of the stability of robust control?ler is adopted as the improvement strategy.Simulation experiments prove thatthe mathematical model of Z source net?work and one-phase LCL filter is correct,based on which the transient performance is promoted under the improvement strategy in Case 1,together with the steady-state performance that agrees with the original system;moreover,the stable performance under the improvement strategy in Case 2 is also enhanced.【期刊名称】《电力系统及其自动化学报》【年(卷),期】2018(030)005【总页数】13页(P98-110)【关键词】Z源网络;LCL 滤波器;数学模型;模拟模块;稳定性鲁棒控制器【作者】姚乐乐;刘晓悦【作者单位】天津大学电气自动化与信息工程学院,天津 300072;华北理工大学电气工程学院,唐山 063009【正文语种】中文【中图分类】TM464面对传统能源的日益枯竭和环境问题的日益加重,在电力行业中,采用新能源发电已经成为了一个新的方向。
光伏并网逆变器控制策略的仿真与试验研究
电送 入 电 网【 。 J J
光 伏 并 网发 电系 统 的 核 心 是 并 网逆 变 器 ,其 控 制 系 统 的好 坏 直 接 影 响 整 个 系 统 的 性 能 。为 了 达 到 并 网逆 变 器 输 出 电流 的 幅值 与 相位 可 控 并 可 快 速 跟 随 电 网 电压 实 现 能 量 回馈 的 目的 ,一 般 采 用 电流 内环 及 电压 外 环 的 双 闭环 控 制 结构 ,其 中 电压 外 环 用 于 控 制逆 变 器 的输 出 电压 , 电流 内环 实 现 网侧 电流 的 波 形 和 相位 控 制 , 电流 内环 的动 态 性 能 直 接 影 响 电压 外环 的控 制 性 能和 稳 定 性 。
Zh n o, Li e a Ja e a g Ha u W nd , ing W i
f h nI s tt o r eEet cPo uso . I , Wu a 3 0 4 C ia Wu a ntue f i Mai lcr rp l m CSC n i i h n4 0 6 , hn )
本 文 简 要 介 绍 了 光 伏 并 网 逆 变 器 系 统 的结 构 和 工 作 原 理 , 重 点 分 析 了 其 并 网 工 况 的 控 制 方 案 设 计 及 其 电 流 调 节 器 的 实 现 过 程 。 最 后 ,在 MAT A / I L B SMuLNK环 境 下 进 行 了 系 统 的 建 模 与 仿 真 ,仿 真 结 果 表 明 输 出 并 I
光伏并网逆变器整体建模及仿真
性 能都 有 重要 的影 响【 用 纯 电阻替 代 显然 欠 妥 当 ; 1 1 ,
律 , 别 建 立状 态 方 程 进行 组 合 ; 献[] 对 两 级 分 文 5针 式 光伏 并 网系统 .采用 开 关 函数 法 并结 合 K L与 C
K L定律 , 过状 态 变 量 的微 分 方 程 . 导 出矩 阵 V 通 推 形 式 的低频高 频数 学模 型 。以上两 种建 模方法 思路
到精确 控制 , 要建立 合 理 、 需 精确 的数 学模 型 。现阶 段 文 献 中 针对 两 级 式 光 伏 并 网系 统 所 提 出 的设 计
方 案 .通 常采 用 将 系统分 为 D / C和 D / C两 部 CD CA 分 , 用纯 电阻 替代 D / C变换 器输 出负 载 的设 计 并 CD 思路 。由于 P WM逆 变器 的输入 阻抗 具有 强非线 性 、 时变 等特 征 , 当它作 为 D / C的负载 , 直流侧 静 、 CD 其 动 态行 为 对前 端 系统 的建模 、 真控 制 以及 动 静态 仿
化设计 , 以及 研究 协调控 制算 法具 有重要 的意 义 。
针对 两级 式 光伏并 网系 统 的整 体建 模 , 内外 国
文献 中近 年来 主 要采 用 受控 源 模 型法 , 文献 『1 由 4将
光伏逆变器的设计与控制
光伏逆变器的设计与控制随着新能源的快速发展,光伏逆变器作为太阳能光伏发电系统的核心部件,扮演着重要的角色。
本文将详细介绍光伏逆变器的设计原理和控制方法。
一、光伏逆变器的基本原理光伏逆变器是将直流光伏电能转换为交流电能的电子设备。
其主要功能是将太阳能电池板输出的直流电转换成交流电供电给电网或负载使用。
逆变器的核心部分是功率变换电路,它通过控制开关管(如MOSFET)的开关时间和频率,实现直流电到交流电的转换。
二、光伏逆变器的设计要点1. 功率级别选择:光伏逆变器的功率级别应根据实际应用需求来选择,可以根据系统容量、太阳能电池板的支持功率、并网电网电压等因素综合考虑。
2. 逆变方式选择:根据光伏逆变器的输出电流波形和负载类型,可以选择谐振逆变、逆平波逆变等不同的逆变方式。
3. 电路拓扑设计:常见的光伏逆变器电路拓扑有全桥逆变器、半桥逆变器、多电平逆变器等,根据系统要求和成本效益进行选择。
4. 控制策略设计:逆变器的控制方式包括单闭环控制、双闭环控制、预测控制等,选择合适的控制策略能够提高逆变器的性能和稳定性。
三、光伏逆变器的控制方法1. 集中式控制:逆变器的控制器位于逆变器的核心部分,通过采集和处理逆变器的输入和输出电流、电压等参数,实现对逆变器的控制和保护。
2. 分布式控制:将逆变器的控制器分散在不同的功率电子模块上,各个模块之间通过通讯线路进行数据传输和同步,实现对整个逆变器系统的控制和管理。
3. 智能控制:利用现代控制算法和智能控制技术,将光伏逆变器的控制系统与电网和负载进行智能连接,实现对电能的优化调度和智能管理。
四、光伏逆变器的未来发展方向1. 提高功率密度:通过优化电路设计和封装技术,提高光伏逆变器的功率密度,实现更小体积、更高效率的逆变器产品。
2. 增强智能化水平:结合大数据和云计算技术,实现光伏逆变器的智能化监测和管理,提高逆变器系统的运行效率和可靠性。
3. 改进降噪技术:通过优化电路结构和控制策略,减少逆变器运行过程中的噪声和谐波污染,降低对电网和用户设备的影响。
光伏电站并网逆变器参数设计与分析
光伏电站并网逆变器参数设计与分析随着可再生能源的发展,光伏电站越来越成为人们广泛关注的话题。
而光伏电站的核心部件——并网逆变器,作为将直流电转换为交流电的关键设备,其参数设计对光伏发电系统的功率输出、效率和稳定性都有着至关重要的影响。
本文将对光伏电站并网逆变器参数设计与分析进行一些讨论。
一、并网逆变器概述并网逆变器,即将直流发电机产生的直流电转换为可在电网上供应的交流电的设备。
其工作原理是将光伏电池板直接输出的直流电,经过直流输入端子进入并网逆变器主电路,形成交流输出。
并网逆变器需要完成多个功能,包括最大功率追踪、干扰抑制、电网保护等。
二、逆变器参数设计光伏电站并网逆变器参数设计需要考虑多个因素,包括逆变器容量、直流输入电压范围、交流输出电压范围、最大功率点追踪、谐波抑制等。
以下分别进行讨论。
1、逆变器容量。
逆变器容量需要根据光伏电站的最大输出功率进行确定。
当光伏电池板所发出的直流电量超出逆变器容量时,穿透光伏电池板的直流电将形成损耗,使光伏电站的发电量降低。
2、直流输入电压范围。
在设计直流输入电压范围时,需要考虑光伏电池板的电池串并联情况、气温变化等因素,以确保逆变器能够合理工作。
3、交流输出电压范围。
交流输出电压范围需要与电网电压匹配,使得光伏电站输出的交流电能够直接进入电网。
4、最大功率点追踪。
最大功率点追踪技术是逆变器最重要的控制策略之一。
能够确保光伏电池板输出直流电的最大功率被充分利用。
因此,在设计逆变器的最大功率点追踪能力时,需要考虑其跟踪速度、跟踪精度等因素。
5、谐波抑制。
光伏电站并网逆变器产生的谐波会对电网产生干扰,甚至引起电网的振荡和系统损坏。
因此,逆变器需要具备谐波抑制能力。
在设计谐波抑制时,需要采用高效的滤波器和降噪装置,使阻抗等参数达到合适值。
三、逆变器参数分析逆变器参数分析是为了确定光伏电站并网逆变器的性能与特性,包括效率、稳定性、增益等。
以下分别进行讨论。
1、效率。
效率是一个逆变器的最重要特性指标之一。
无变压器结构光伏并网逆变器拓扑及控制研究
无变压器结构光伏并网逆变器拓扑及控制研究一、本文概述随着全球对可再生能源需求的持续增长,光伏发电技术因其清洁、可再生、无污染的特性,受到了广泛关注。
光伏并网逆变器作为光伏发电系统的核心设备,其性能直接影响到整个系统的运行效率和电能质量。
传统的光伏并网逆变器通常采用变压器结构,虽然这种结构在一定程度上能够实现电气隔离和电压匹配,但也存在体积大、成本高、效率低等问题。
因此,研究无变压器结构的光伏并网逆变器拓扑及其控制策略,对于提高光伏系统的整体性能、降低成本、推动光伏发电技术的广泛应用具有重要意义。
本文首先介绍了光伏发电系统的基本原理和并网逆变器的功能要求,阐述了无变压器结构光伏并网逆变器的研究背景和必要性。
随后,文章详细介绍了无变压器结构光伏并网逆变器的拓扑结构,包括其基本原理、电路构成以及与传统变压器结构逆变器的区别。
在此基础上,文章重点研究了无变压器结构光伏并网逆变器的控制策略,包括最大功率点跟踪控制、并网电流控制、孤岛效应检测与保护等方面。
通过理论分析和仿真实验,验证了所提控制策略的有效性和优越性。
文章对无变压器结构光伏并网逆变器的应用前景进行了展望,并指出了进一步研究的方向和可能的挑战。
本文的研究成果将为光伏发电技术的发展提供新的思路和方法,有助于推动可再生能源技术的快速发展和应用。
二、无变压器结构光伏并网逆变器拓扑随着可再生能源的日益普及,光伏(PV)技术已成为一种重要的清洁能源解决方案。
光伏并网逆变器是光伏系统的核心组成部分,其设计对于提高系统的效率和可靠性至关重要。
传统的光伏并网逆变器通常采用变压器结构,但近年来,无变压器结构的光伏并网逆变器因其高效率、低成本和紧凑的设计而受到了广泛关注。
无变压器结构光伏并网逆变器拓扑主要基于直接功率转换技术,省去了传统的工频变压器,从而降低了系统的体积和重量。
这种拓扑结构的关键在于使用高效的电力电子开关器件和先进的控制策略,实现直流(DC)到交流(AC)的直接转换。
基于Saber平台的光伏并网微逆变器建模及仿真分析
摘 要 :设计 了一种单级式微逆变器控制 系统,针对传 统 P I 控制不能实现 无静差控制 的缺 点,提 出
了一种 可实现并网电流无静差的准 P R 并 网控制策略 , 基于S a b e r 平 台建立 了光伏 并网微逆变器仿真系统 。
2 Y o n g z h o u Br a n c h o f Hu n a n El e c t r i c P o w e r C o m p a n y , Y o n g z h o u 4 2 5 0 0 0 , C h i n a)
Ab s t r a c t : A k i n d o fs i n g l e s t e p mi c r o — i n v e r t e r c o n t r o l s y s t e m wa s d e s i g n e d. Ai mi n g a t d i s a d v a n t a g e s o f t r a d i t i o n a l PI c o n ro t l wh i c h i s u n a b l e
r e n t s n o n s t a t i c e r r o r c o n ro t l a n d b u i l t a p h o t o v o l ai t c ri g d — c o ne c t e d mi c r o — i n v e te r r s i mul a t i o n s y s t e m b a s e d o n Sa b e r p l a t f o r m. Si mu l a t i o n r e s u l t
仿 真结果表 明 ,采用准 P R 控 制 的微 逆变器具 有很好 的输 出电压和 电流特性 ,总谐波畸变率 均低于公共
光伏并网多个逆变器并联运行控制及实现
摘 要 :传统 的 逆变器 并联 控制 方案 中各 个模 块相互 之 间存在 连线 。随 着模 块数 目的 增加 和模块 间距 离 的增
大, 各个 模 块之 间 的信 号容 易受 到 干扰 。根 据逆 变器 弗联 运 行 的原理 , 文分 析 了几 种 逆 变器 并联 的 控制 方 该 案, 比较 了几种 常见 的 P Q下 垂法 的优 缺 点 , 一步研 究 了无 互联 线 逆变 器并 联控 制策 略 , 进 介绍 了一 种 更 加适 合 光 伏并 网 系统 的无 置联 线逆 变 器并联 控 制方 案 , 方 案考 虑 了并 网线 路 电阻 以及谐 波 的影 响 , 该 提高 了系统 的动态 响应 能力 。通 过仿 真验证 了此 方案 的 可行性 。 关键 词 : 光伏并 网 ; 变器 并联 ;Q法 逆 P
m e h d t k s i t a co n i t o a e no c u to gr f d-c ne t d l e r ss a c n h pa a r  ̄csM e wh l, lo i pr v s t e d n on c e i e it n e a d t e i n m ct f o hr no an i i as m et o e h y am i c
中 图分 类 号 :M 6 T 44
文 献 标 识 码 : A
文 章 编 号 :0 300 ( 1)50 1— 4 10 - 172 1 -0 lo 0 0
Abs r ct T ad t aln e t rp r l n r l c em e hchha e t o ne t n a o g e h m o l i h n r as n t e n J — ta : r ion v re a al co to h i i el s sw i v he c n c i m n ac due W t t e i c e e i h L o h m be fmodue nd t e i c e s h sa ce a o g m o l , e sgn s a o g e ch m o l e v l r bl o s fe t re — ro ls a h n r a eso t e dit n m n f duest i al m n a h due 8r une a e t u ri e f r n e ceAcc r n t h rn i e o a al e  ̄ i n o n re st i p ay s s v r lpa a lliv t r c t c e e a d n o dig o t e p i cpl f p r l op r o ive t r , s pa eran lz e e a r l n er on r s h m s.n el f h e e ol c m p r dv n a s a d s d an a esof e e al o n onPQ o  ̄ h dsFu e .t y ft o to e hn l y o ar l o a esa a t ge n dia v t g v r r m s c dr op m o , Rh rsud s o he c n r l c oog fp al t el
多台小功率逆变器光伏并网设计与仿真
( 1 . 北 京 京 仪 绿 能 电力 系统 工程 有 限公 司 北 京 1 0 0 0 0 9 ; 2 . 北 京 市 光 伏 核 心 装 备 工 程 研 究 中心 北 京 1 0 2 1 0 0 )
摘要 : 文 中设 计 了一种 高 性 能 的 光 伏 并 网群 控 系统 装 置 。 此 装 置 包括 光 伏 阵列 板 , 多 台并 网 逆 变 器 和 中央 控 制 器。 基 于 最 大 效 率 问题 , 光 伏 阵 列 板 的 设 计 为 分布 式 连 接 , 多 台逆 变 器 以链 状控 制 法 作 为 控 制 策 略 。 在 系统 中各 逆 变 器 模 块
Ke y wo r d s :g r i d - c o n n e c t e d p h o t o v o h a i c ;i n v e te r r ;g r o u p c o n t ol r ;ma x e f i f c i e n c
近年 来 。作 为 可 再 生 能 源 的 太 阳能 赢 得 了社 会 的 关 注 。 光伏 组件 ( 也 叫 太 阳 能 电池 板 ) 是 太 阳 能 发 电 系 统 中 的 核 心 部分 。 也 是 太 阳 能 发 电系 统 中 最 重 要 的部 分 。 以光 伏 并 网系 统为 例 , 其 最 主 要 的 部 分 是 并 网 逆 变 器 系 统 。 此 系 统 可 分 为 两部分 : 光 伏 阵 列 和 并 网逆 变 器 组 。
第2 1卷 第 2 0期
Vo 1 . 21
No . 2 0
电 子 设 计 工 程
El e c t r o n i c De s i g n En g i n e e r i n g
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏并网逆变器控制与仿真设计
为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。
根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。
近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。
并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。
太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。
在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。
逆变器的主电路拓扑直接决定其整体性能。
因此,开发出简洁、高效、高性价比的电路拓扑至关重要。
1 逆变器原理
该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。
光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。
光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。
所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。
作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻。