直角三角形的边角关系专题复习
中考数学专题复习:直角三角形的边角关系
中考数学专题复习:直角三角形的边角关系一、选择题1.在直角三角形ABC中,sinA的值为12,则cosA的值等于()A.12B.√22C.√32D.√32.如图,在Rt△ABC中,BC=4,AC=3,∠C=90∘,则sinB的值为()A.45B.34C.35D.433.如图,在平面直角坐标系xOy中,点P(4,3),OP与x轴正半轴的夹角为α,则tanα的值为()A.35B.45C.34D.434.如图,为方便行人推车过天桥,市政府在10m高的天桥两端分别修建了50m长的斜道,用科学计算器计算斜道的倾斜角,下列按键顺序正确的是()A.sin0⋅2=B.2ndF sin0⋅2=C.tan0⋅2=D.2ndF tan0⋅2=5.在锐角△ABC中,(tanC−√3)2+∣∣√2−2sinB∣∣=0,则∠A=()A.30∘B.45∘C.60∘D.75∘6.如图,在8×8的网格中,点A,B,C都在格点上,每个小正方形的边长为1,则sin∠ABC的值为()A.√22B.√105C.√23D.13√10507.如图,在Rt△ABC中∠CAB=90∘,AD⊥BC于点D,BD=2,tanC=12,则线段AC 的长为()A.10B.8C.8√5D.4√58.如图,大坝横截面的迎水坡AB的坡比为1:2,即BC:AC=1:2,若坡面AB的水平宽度AC为12米,则斜坡AB的长为()A.4√3米B.6√3米C.6√5米D.24米9.如图,在四边形ABCD中,∠DAB=90∘,AD∥BC,BC=12AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.14B.√24C.√22D.1310.钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB的坡度为1:2.4,AB长为3.9米,钓竿AC与水平线的夹角是60∘,其长为 4.5米,若钓竿AC与钓鱼线CD的夹角也是60∘,则浮漂D与河堤下端B之间的距离约为(参考数据:√3≈1.732)()A.1.732米B.1.754米C.1.766米D.1.823米二、填空题11.计算:cos230∘−tan60∘=__________.12.如图,在Rt△ABC中,∠C=90∘,BC=5,AC=12,则cosB=__________.,则13.如图,在直角三角形ABC中,点D是AC边的中点,∠C=90∘,sin∠DBC=35 sin∠ABC的值为__________.14.如图,在△ABC中,tanB=2,∠ACB=45∘,AD⊥BC于点D,CE⊥AB于点E,AD,CE交于点F,若AC=5√10,则线段EF的长为__________.15.如图是某种晾衣架的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角α=60∘,若AO=85cm,BO=DO=65cm,则较长支撑杆的端点A离地面的高度ℎ(单位:cm)约为__________.(结果精确到0.01,√3≈1.732),延长BC至点D,使CD:AC=1:3,则16.如图,在△ABC中,AB=AC,sinB=45tan∠CAD=__________三、解答题17.计算:(1) 2sin30∘−√12+tan60∘;(2) sin260∘+∣tan45∘−√2∣−2cos45∘.18.如图,在Rt△ABC中,设a,b,c分别为∠CAB,∠B,∠C的对边,∠C=90∘,b=8,△ABC的角平分线AD=16√3,求∠B,a,c的值.319.某校改造教室照明设备,在黑板前加装三盏带有灯罩的荧光灯(如图①),图①是荧光灯的安装截面图.黑板的高度BC=1.2米,黑板的下沿C与地面HG的距离CG=1米,天花板EF与地面HG的距离FG=3.2米,荧光灯A发出的光线夹角∠BAC=30∘,∠ACB=45∘.若使荧光灯发出的光线刚好覆盖黑板的上下沿,则电工师傅在安装荧光灯时,荧光灯A与墙面CF的距离AD是多远?固定荧光灯的吊绳AE的长度是多长?(结果精确到0.1m)(参考数据:tan15∘≈0.27,tan30∘≈0.58)20.2019年12月17日,国产航母山东舰正式交付中国海军,中国海军建设迈上了一个新台阶.如图,在一次训练中,笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=(12+4√3)海里,山东舰在点P处,从A测得山东舰在北偏西60∘的方向,从B测得山东舰在北偏东45∘的方向.(1) 求B,P两点之间的距离;(结果保留根号)(2) 山东舰从点P处沿射线AP的方向航行,航行30分钟后到达点C处,此时,从B测得山东舰在北偏西15∘的方向.在这次训练中,山东舰的航行速度是多少?参考答案一、选择题 1. 【答案】C【解析】因为在直角三角形 ABC 中,sinA 的值为 12, 所以 ∠A =30∘, 所以 cosA =cos30∘=√32. 2. 【答案】C【解析】由勾股定理得 AB =√AC 2+BC 2=5, ∴sinB =ACAB =35. 3. 【答案】C【解析】过 P 作 PN ⊥x 轴于 N ,PM ⊥y 轴于 M ,则 ∠PMO =∠PNO =90∘, ∵x 轴 ⊥y 轴,∴∠MON =∠PMO =∠PNO =90∘, ∴ 四边形 MONP 是矩形, ∴PM =ON ,PN =OM , ∵P (4,3),∴ON =PM =4,PN =3, ∴tanα=PNON =34.4. 【答案】B【解析】 sinA =1050=0.2,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为2ndF sin 0 ⋅ 2 =.故选B . 5. 【答案】D【解析】 ∵(tanC −√3)2+∣∣√2−2sinB ∣∣=0, ∴tanC =√3,sinB =√22,∴∠C=60∘,∠B=45∘,∴∠A=75∘.故选:D.6. 【答案】D【解析】如图,过点C作CD⊥AB于点D,易得S△ABC=5×6−6−5−6=13,AB=√32+42=5,∴AB边上的高CD=265,在Rt△CBD中,BC=√22+62=2√10,∴sin∠ABC=CDBC =2652√10=13√1050.7. 【答案】D【解析】∵∠CAB=90∘,AD⊥BC,∴∠B+∠C=90∘,∠B+∠BAD=90∘,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90∘,BD=2,∵tan∠BAD=BDAD =12,∴AD=2BD=4,∴AB=√BD2+AD2=2√5.在Rt△ABC中,∠CAB=90∘,AB=2√5,∵tanC=ABAC =12,∴AC=2AB=4√5.8. 【答案】C【解析】∵大坝横截面的迎水坡AB的坡比为1:2,AC=12米,∴BCAC =12=BC12,∴BC=6,∴AB=√AC2+BC2=√122+62=6√5(米).9. 【答案】C【解析】∵AD∥BC,∠DAB=90∘,∴∠ABC=180∘−∠DAB=90∘,∠BAC+∠EAD=90∘,∵AC⊥BD,∴∠AED=90∘,∴∠ADB+∠EAD=90∘,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴ABDA =BCAB,∵BC=12AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=√2BC,在Rt△ABC中,tan∠BAC=BCAB =√2BC=√22.10. 【答案】C【解析】如图,延长CA交DB的延长线于点E,过点A作AF⊥BE于点F,则∠CED=60∘,∵河堤AB的坡度为1:2.4,∴AFBF =12.4=512,设AF=5x米,则BF=12x米,∵AB=3.9米,∴在直角△ABF中,由勾股定理得3.92=25x2+144x2,解得x=310(舍负).∴AF=32米,BF=185米.∴EF=AFtan60∘=32√3=√32(米),AE=AFsin60∘=32√32=√3(米),∵∠C=∠CED=60∘,∴△CDE是等边三角形,∵AC=4.5米,∴DE=CE=AC+AE=(4.5+√3)米,则BD=DE−EF−BF=4.5+√3−√32−185≈1.766(米).二、填空题11. 【答案】34−√3【解析】原式=(√32)2−√3=34−√3.12. 【答案】513【解析】在Rt△ABC中,∠C=90∘,BC=5,AC=12,∴AB=√52+122=13,∴cosB=BCAB =513.13. 【答案】3√1313【解析】在Rt△BCD中,sin∠DBC=DCDB =35,设DC=3x,则BD=5x,根据勾股定理可得BC=4x,∵点D是AC的中点,∴AC=6x,∴AB=√AC2+BC2=√(6x)2+(4x)2=2√13x,∴sin∠ABC=ACAB =2√13x=3√1313.14. 【答案】52【解析】∵∠ACB=45∘,AD⊥BC,∴△ADC为等腰直角三角形,∴AD=CD,∵AC=5√10,∴AD=CD=AC⋅sin45∘=5√10×√22=5√5,∵AD⊥BC,CE⊥AB,∴∠B+∠BAD=∠AFE+∠BAD=90∘,∴∠DFC=∠AFE=∠B,∵tanB=2,∴tan∠DFC=2,∴CDDF=2,∴DF=CD2=5√52,∴AF=AD−DF=5√5−5√52=5√52,∵tan∠AFE=tanB=2,∴设AE=2x,则EF=x,由勾股定理得AF=√5x,∴√5x=5√52,∴x=52,∴EF=52,故答案为52.15. 【答案】129.90【解析】过点A作AE⊥直线BD于点E,如图所示,在△BOD中,∠BOD=α=60∘,BO=DO,∴△BOD为等边三角形,∴∠OBD=60∘,在Rt△ABE中,∠AEB=90∘,∠ABE=60∘,AB=AO+OB=150cm,∴AE=AB⋅sin∠ABE=150×√32≈129.90(cm).16. 【答案】29【解析】过点D作DE⊥AC,与AC的延长线交于点E,因为AB=AC,所以∠B=∠ACB,因为∠DCE=∠ACB,所以∠DCE=∠B,因为sinB=45,所以sin∠DCE=DECD =45,不妨设DE=4x,则CD=5x,所以CE=√CD2−DE2=3x,因为CD:AC=1:3,所以AC=3CD=15x,所以AE=AC+CE=18x,所以tan∠CAD=DEAE =4x18x=29.故答案为29.三、解答题17. 【答案】(1) 原式=2×12−2√3+√3=1−√3.(2) 原式=(√32)2+√2−1−2×√22 =34+√2−1−√2=−14.18. 【答案】∵∠C=90∘,b=8,△ABC的角平分线AD=163√3,∴cos∠CAD=ACAD =16√33=√32,∴∠CAD=30∘,∴∠CAB=60∘,∴∠B=30∘,∴c=2b=16,a=btan30∘=√33=8√3,即∠B=30∘,a=8√3,c=16.19. 【答案】由题意知AD⊥FG,∴∠CAD=45∘=∠ACB,∴AD=DC,∠BAD=∠CAD−∠CAB=45∘−30∘=15∘,在Rt△ADB中,tan∠BAD=BDAD,∴BD=AD⋅tan∠BAD≈0.27AD=0.27CD,∴BC=CD−BD=CD−0.27CD=0.73CD=1.2米,∴CD≈1.64米,∴AD=CD≈1.6米,AE=DF=FG−CD−CG=3.2−1.64−1=0.56≈0.6(米).答:荧光灯A与墙面CF的距离AD约是 1.6米,固定荧光灯的吊绳AE的长度约是0.6米.20. 【答案】(1) 如图,过点P作PH⊥AB于点H,设PH=x海里,在Rt△PBH中,∠BHP=90∘,∠PBH=90∘−45∘=45∘,∴BH=PH=x海里,PB=√2x海里,在Rt△PAH中,∠AHP=90∘,∠PAB=90∘−60∘=30∘,∴AH=√3PH=√3x海里,∵BH+AH=AB,∴x+√3x=12+4√3,解得x=4√3,∴BP=√2x=4√6(海里).答:B,P两点之间的距离为4√6海里.(2) 如图,过点P作PM⊥BC于点M,在Rt△BPM中,∠PMB=90∘,∠PBM=45∘+15∘=60∘,∴PM=PBsin∠PBM=4√6×√32=6√2(海里).在Rt△PMC中,∠PMC=90∘,易得∠CPM=45∘,∴PC=PMcos∠CPM =√2√22=12(海里),∴航行速度为12÷0.5=24(海里/时).答:在这次训练中,山东舰的航行速度是24海里/时.。
中考数学综合题专题复习【直角三角形的边角关系】专题解析附答案解析
中考数学综合题专题复习【直角三角形的边角关系】专题解析附答案解析一、直角三角形的边角关系1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m.【解析】试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.试题解析:解:设DF=,在Rt△DFC中,∠CDF=,∴CF=tan·DF=,又∵CB=4,∴BF=4-,∵AB=6,DE=1,BM= DF=,∴AN=5-,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,EN=4-,AN=5-,tan==0.60,解得=2.5,答:DM和BC的水平距离BM为2.5米.考点:解直角三角形.4.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.5.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数6.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.7.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG ⊥AC , ∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.8.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q .(1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值;(3)在直线l 移动过程中,是否存在t 值,使S =320ABCDS 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OB BC B∴==8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0),∴点A 的坐标为(4,0).分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0, ∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.当0≤t ≤4时,4t =12,解得:t =3;当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.9.关于三角函数有如下的公式: sin (α+β)=sinαcosβ+cosαsinβ①cos (α+β)=cosαcosβ﹣sinαsinβ②tan (α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如: tan105°=tan (45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题: 如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α=60°,底端C 点的俯角β=75°,此时直升飞机与建筑物CD 的水平距离BC 为42m ,求建筑物CD 的高.【答案】建筑物CD 的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.10.如图,正方形ABCD的边长为2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB2﹣1;(3)PE+PF的最小值为22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形ABCD 是正方形,∴∠ACE =∠ABF =∠CAB =45°,∵AE 平分∠CAB ,∴∠EAC =∠BAF =22.5°,∴△ABF ∽△ACE .(2)解:如图1中,作EH ⊥AC 于H .∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB ,∴BE =EB ,∵∠HCE =45°,∠CHE =90°,∴∠HCE =∠HEC =45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC 2,∵BC 2+1,∴x+x 2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221BE AB == 1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =2, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =22+ •(2﹣1)=2, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】 本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.11.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o =8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF , ∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.12.如图所示,小华在湖边看到湖中有一棵树AB ,AB 与水面AC 垂直.此时,小华的眼睛所在位置D 到湖面的距离DC 为4米.她测得树梢B 点的仰角为30°,测得树梢B 点在水中的倒影B′点的俯角45°.求树高AB (结果保留根号)【答案】AB=(3)m .【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴DE=B′E=x+8,∵∠BDE=30°,∴tan30°=383BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。
中考数学复习指导:《直角三角形的边角关系》专题专练及答案
《直角三角形的边角关系》专题专练专题一:锐角三角函数考点分析:在理解三角函数定义的基础上,理解并掌握三角函数有关的概念及性质; 典例剖析例1. 如图1,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .分析:先用勾股定理求出第三边,再利用三角函数的定义求解 解:根据点P 的坐标利用勾股定理可以求得OP=2243+=5. 所以sin α=54=斜边的对边α. 点评:过已知点向坐标轴引垂线构造直角三角形,利用这点的坐标求出对应线段的长度,便可计算要求的锐角的三角函数值.例2.在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .分析:由于正切与两条直角边有关,故直接利用三角函数的定义求解 解:因为tan A =122a ab a == 点评:本题重点考查学生对正切定义的理解和运用情况,只要记住定义,就可以把边的比转化为正切了专练一:1、在△ABC 中,∠C=90°,则cosB 的值为( ) A.1D.122、若且α为锐角,则cos α等于( ) A.12B.23、在△ABC 中,若21sin tan 02A B ⎫-+-=⎪⎪⎝⎭,则∠C 的度数为( ) A.30° B.60° C.90° D.120°图14、把Rt △ABC 的三边都扩大十倍,关于锐角A 的正弦值:甲同学说扩大十倍;乙同学说不变;丙同学说缩小十倍.那么你认为正确的说法应是A.甲B.乙C.丙D.都不正确5、(1)已知tan α则锐角α的度数为_____; (2)若cos 0α,则锐角α的度数为_____. 6、在Rt △ABC 中,∠C =900,AC =12,BC =15。
(1)求AB 的长; (2)求sinA 、cosA 的值; (3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小。
《直角三角形的边角关系》复习课件
(1)2 3 2 0 2sin 30 3
2
题型2 解直角三角形
1∠.如AD图E4=,a,在且矩c形osAαB=CD3 中,DE⊥A B )
A.3
B.16
3
C. 20 3
D.16 5
2.2002年8月在北京召开的国际数学家大会会标
如图5所示,它是由四个相同的直角三角形与中
间的小正方形拼成的一个大正方形. 若大正方形
的面积是13,小正方形的面积是1,直角三角形 的较长直角边为a,较短直角边为b,
则a+b的值为( B )
A.35 B.43 C.89 D.97
题型3 解斜三角形
1.如图所示,已知:在△ABC中,∠A=60°, ∠B=45°,AB=8, 求△ABC的面积(结果可保留根 号).
AC=12,则cosA等于( D )
A. 2 , B. 5 , C.12 , D.12 12 13 5 13
4. 如图,在Rt△ABC中,∠ACB =90°, CD⊥AB于点D,已知AC= 5 ,
BC=2,那么sin∠ABC=( A )
A. 5
B. 2
C. 2 5
D. 5
3
3
5
2
5.计算:
.
|- 2 |+(cos60°-tan30°)+ 8
3.已知∠A,b. 解直角三角形
4. 已知∠A,c. 解直角三角形
【热点试题归类】
题型1 三角函数 1. 在Rt△ABC中,∠C=90°,AB=5,AC=4, 则sinA的值为_______. 2. 在Rt△ABC中,∠C =90°,BC=4,AC=3, 则cosA的值为______. 3. 如图,在△ABC中,∠C =90°,BC=5,
直角三角形边角关系知识点
直角三角形边角关系专题复习一. 知识体系:1. 三种三角函数与直角三角形中边与角的关系,在Rt△中在此应注意的问题是无论是求哪一个角的三角函数,一定要先把这个角放在直角三角形中 2. 特殊角的三角函数值3. 三角函数的有关计算(对于一般角的三角函数值可利用计算器)41 2 3 4.三角函数的应用()测山的高度()测楼的高度()测塔的高度()其它⎧⎨⎪⎪⎩⎪⎪题型一:三角形内的计算问题(计算三角函数值、面积等) 例1.在ABC Rt ∆中,∠C=90° ,且21sin =A ,AB=3,求BC ,AC 及B ∠.例2.已知,四边形ABCD 中,∠ABC = ∠ADB =090,AB = 5,AD = 3,BC = 32,求四边形ABCD 的面积。
例3.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,5,4BC CD ==,求AC 的长。
B变式训练:1、ABC Rt ∆中,∠C=90°,AC=4,BC=3,B cos 的值为…………………【 】 A 、51 B 、53 C 、 34 D 、 432、在菱形ABCD 中,∠ABC=60° , AC=4,则BD 的长是…………………【 】 A 、 38 B 、34 C 、32 D 、83、在ABC Rt ∆中,∠C=90° ,A tan =3,AC=10,则S △ABC 等于………【 】 A 、 3 B 、300 C 、350D 、150 4、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化5、在ABC Rt ∆中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c 三边,则下列式子一定成立的是………………………………………………………………【 】 A 、B c a sin ⋅= B 、B c a cos ⋅= C 、Bac tan =D 、A a c sin ⋅= 6、等腰三角形的腰长为10cm ,顶角为120,此三角形面积为 。
中考数学专题复习:直角三角形的边角关系
中考数学专题复习:直角三角形的边角关系一.选择题(共13小题)1.如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()A.B.C.D.2.如图,在平面直角坐标系内有一点P(3,4),连接OP,则OP与x轴正方向所夹锐角α的正弦值是()A.B.C.D.3.如图,在Rt△ABC中,∠B=90°,AB=BC,延长BC到D,使CD=AC,则tan22.5°=()A.B.C.+1 D.﹣14.如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有()A.h1=h2B.h1<h2C.h1>h2D.以上都有可能5.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan∠OBD 的值是()A.B.2 C.D.6.如图是某一段索道的示意图.已知A、B两点间的距离为30米,∠A=α,则缆车从A点到达B点,上升的高度(BC的长)为()A.30sinα米B.米C.30cosα米D.米7.如图所示为该地区某滑雪场的一段赛道示意图,AB段为助滑段,长为12米,坡角α为16°,一个曲面平台BCD连接了助滑坡AB与着陆坡DE.已知着陆坡DE的坡度为i=1:2.4,DE长度为19.5米,B,D之间的垂直距离为5.5米,则一人从A出发到E处下降的垂直距离约为(参考数据sin16°≈0.28,cos16°≈0.96,tan16°≈0.29,结果保留一位小数)()A.15.9米B.16.0米C.16.4米D.24.5米8.小宇和小轲两位同学准备利用所学数学知识对某亭的高度进行测量.他们在临时搭建的一个坡度为12:5的钢板斜坡上的F点测得亭顶A点的仰角为13°,F点到地面的垂直高度FG=1.8米,从钢板斜坡底的E点向前走16.2米到D点,测得亭前阶梯CD的长度为2.5米,坡度为3:4.C点到亭中心O点的距离为1米.根据测量结果,该亭的高度AO大约为()米.(参考数据:sin13°≈0.22,cos13°≈0.97,tan13°≈0.23,A,B,C,D,E,F,G各点均在同一平面内)A.4.9 B.4.6 C.6.4 D.6.19.如图,某栋教学楼AB顶部竖有一块宣传牌BC,某同学从建筑物底端A点出发,沿水平方向向右走12米到达D点,在D处测得宣传牌底部B点的仰角是54°,再经过一段坡比为1:2.4,坡长为6.5米的斜坡DE到达E点(A,B,C,D,E均在同一平面内).在E 处测得宣传牌的顶部C点的仰角是45°,则宣传牌BC的高度为()(参考数据:sin54°≈0.80,cos54°≈0.59,tan54°≈1.38,结果精确到0.1米)A.1.4米B.3.9米C.4.0米D.16.6米10.如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为()A.15sin32°B.15tan64°C.15sin64°D.15tan32°11.如图,测量人员计划测量山坡上一信号塔的高度,测量人员在山脚点C处,测得塔顶A 的仰角为45°,测量人员沿着坡度i=1:的山坡BC向上行走100米到达点E处,再测得塔顶A的仰角为53°,则山坡的高度BD约为()(精确到0.1米,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,≈1.73,≈1.41)A.100.5米B.110.5米C.113.5米D.116.5米12.如图,为了测量某建筑物BC的高度,某数学兴趣小组采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走390米至坡顶D处,再从D处沿水平方向继续前行一定距离后至点E处,在E点处测得该建筑物顶端C的仰角为68°,建筑物底端B的俯角为57°,其中A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据数学兴趣小组的测量数据,计算得出建筑物BC的高度约为()(计算结果精确到0.1米,参考数据:sin68°≈0.93,tan68°≈2.48,sin57°≈0.84,tan57°≈1.54)A.241.6米B.391.6米C.422.9米D.572.9米13.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=25米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)A.10.4米B.12.4米C.27.4米D.22.4米二.填空题(共7小题)14.如图,△ABC的顶点都在正方形网格的格点上,则sin∠ACB的值为________.15.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是________.16.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,线段AE与线段CD相交于点F,且AE=AB,连接DE,∠E=∠C,若AD=3DE,则cos E的值为________.17.某型号的机翼形状如图所示,根据图中的数据,可求AB的长度为________m.(≈1.732,结果保留两位小数)18.如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为________米(结果保留根号).19.如图,从飞机A看一栋楼顶部B的仰角为30°,看这栋楼底部的俯角为60°,飞机A与楼的水平距离为240m,这栋楼的高度BC是________m(≈1.732,结果取整数).20.如图,测高仪CD距建筑物AB底部5m,DC⊥BC,AB⊥BC,在测高仪D处观测建筑物顶端的仰角为50°,测高仪高度为1.5m,则建筑物AB的高度为________m.(精确到0.1m,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)三.解答题(共4小题)21.如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.22.如图,一架无人机在空中A处观测到山顶B的仰角为36.87°,山顶B在水中的倒影C 的俯角为63.44°,此时无人机距水面的距离AD=50米,求点B到水面距离BM的高度.(参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75,sin63.44°≈0.89,cos63.44°≈0.45,tan63.44°≈2.00)23.如图,一段河流自西向东,河岸笔直,且两岸平行.为测量其宽度,小明在南岸边B 处测得对岸边A处一棵大树位于北偏东60°方向,他以1.5m/s的速度沿着河岸向东步行40s后到达C处,此时测得大树位于北偏东45°方向,试计算此段河面的宽度(结果取整数,参考数据:≈1.732)24.如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.13°28°32°锐角A三角函数sin A0.22 0.47 0.53cos A0.97 0.88 0.850.62tan A0.23 0.53参考答案1.解:在△ABC中,因为∠C=90°,所以tan∠B=,因为∠B=42°,BC=8,所以AC=BC•tan B=8×tan42°.故选:D.2.解:作P A⊥x轴于A,如右图.∵P(3,4),∴OA=3,AP=4,∴OP==5,∴sinα=.故选:D.3.解:在Rt△ABC中,∠B=90°,AB=BC,∴∠ACB=45°,∵CD=AC,∴∠D=22.5°,设AB=BC=x,在Rt△ABC中,由勾股定理得,AC==x,∴AC=CD=x,∴BD=BC+CD=(+1)x,∴tan D=tan22.5°===﹣1,故选:D.4.解:如图,分别作出△ABC底边BC上的高为AD即h1,△PQR底边QR上的高为PE 即h2,在Rt△ADC中,h1=AD=5×sin55°,在Rt△PER中,h2=PE=5×sin55°,∴h1=h2,故选:A.5.解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.故选:A.6.解:由图可知,在△ABC中,AC⊥BC,∴sinα==,∴BC=30sinα米.故选:A.7.解:作BF⊥AP于F,DG⊥AP于G,DH⊥PE于H,在Rt△AFB中,sinα=,AB=12米,∴AF=AB•sinα≈12×0.28=3.36,设DH=x米,∵DE的坡度为i=1:2.4,∴HE=2.4x,由勾股定理得,(2.4x)2+x2=19.52,解得,x=7.5,∴一人从A出发到E处下降的垂直距离=3.36+5.5+7.5≈16.4(米),故选:C.8.解:由题意可知,∠AFM=13°,CD=2.5.CD的坡比是3:4,EF的坡比是12:5,FG =1.8,DE=16.2,MF∥NG,ON⊥NG,CH⊥NG,FG⊥NG,OC=NH=1(米),∴四边形MNGF是矩形,∴FM=NG,在Rt△CDH中,设CH=3x,DH=4x,∴CD=2.5,∴(3x)2+(4x)2=2.52,∴x=0.5,∴DH=2(米),CH=1.5(米),在Rt△EFG中,,FG=1.8,∴,∴EG=0.75(米),∴FM=GN=EG+DE+DH+NH=19.95(米),在Rt△AMF中,tan∠AFM==tan13°,∴AM≈19.95×0.23=4.5885(米),∴AO=AM+MO=AM+(FG﹣CH)≈4.9(米),故选:A.9.解:(1)过E作EF⊥AD,交AD的延长线于F,作EG⊥AB于G.∴则四边形EF AG是矩形,∴AG=EF,AF=EG,Rt△DEF中,i=tan∠EDF=1:2.4,∵DE=6.5米,∴EF=2.5米,DF=6米,∵AD=12米,∴AF=EG=AD+DF=18米,在Rt△CEG中,∠CEG=45°,∴CG=EG=18米,Rt△ABD中,∠ADB=54°,AD=12米,∴AB=AD•tan54°≈12×1.38=16.56(米),∴BC=CG+GA﹣AB=18+2.5﹣16.56=3.94(米)≈3.9米,即宣传牌BC的高度为3.9米.故选:B.10.解:∵∠CED=64°,∠F=32°,∠CED=∠F+∠EDF,∴∠EDF=∠CED﹣∠F=64°﹣32°=32°,∴∠EDF=∠F,∴DE=EF,∵EF=15米,∴DE=15米,在Rt△CDE中,∵sin∠CED=,∴CD=DE sin∠CED=15sin64°,故选:C.11.解:如图作EF⊥AD于F,EH⊥CD于H.在Rt△ADC中,∠ACD=45°,∴AD=CD,在Rt△CEH中,EC=100米,EH:CH=1:,∴EH=50米,CH=50米,∵四边形EFDH是矩形,∴EF=DH,EH=DF=50米,设BF=x,则EF=x,∴CD=AD=50+x,BD=x+50,AF=50+x﹣50,在Rt△AEF中,tan53°=,∴≈,∴x=150﹣50≈63.5(米),∴BD=BF+DF=63.5+50≈113.5(米).故选:C.12.解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=390米,DH:AH=1:2.4,∴DH=150(米),∵四边形DHBF是矩形,∴BF=DH=150米,在Rt△EFB中,tan57°=,∴EF=,在Rt△EFC中,FC=EF•tan68°,∴CF≈×2.48≈241.6(米),∴BC=BF+CF=391.6米.故选:B.13.解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2(米),CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=252,解得:x=5或x=﹣5(舍),则CQ=PE=20(米),BQ=15(米),∴DP=DE+PE=23(米),在Rt△ADP中,∵AP==≈27.4(米),∴AB=AP﹣BQ﹣PQ=27.4﹣15﹣2=10.4(米)故选:C.14.解:作如图所示的辅助线,则BD⊥AC,∵BC=,BD=,∴sin∠ACB=,故答案为.15.解:过点A作AG⊥x轴,交x轴于点G.∵B、C的坐标分别是(1,0)、(0,),∴OC=,OB=1,∴BC==2.∵∠ABC=90°,∠BAC=30°,∴AB====2.∵∠ABG+∠CBO=90°,∠BCO+∠CBO=90°,∴∠ABG=∠BCO.∴sin∠ABG===,cos∠ABG===,∴AG=,BG=3.∴OG=1+3=4,∴顶点A的坐标是(4,).故答案为:(4,).16.解:在AD上取一点G,使AG=DE,连接BG,如图所示:∵AD=3DE,∴DG=2AG,∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=∠ABC+∠BAG=90°,∴∠C=∠BAG,∵∠C=∠E,∴∠BAG=∠E,在△ABG和△EAD中,,∴△ABG≌△EAD(SAS),∴BG=AD=3DE=3AG,∴BD=,∴AB==AG,∴cos E=cos∠BAD=;故答案为:.17.解:如图,延长BA交过点C的水平线于点E,作DF⊥BE于点F,在Rt△CEA中,∠ACE=45°,∴AE=CE=5(m),在Rt△BDF中,∠BDF=30°,∵cos∠BDF=,∴DB==10(m),∴BF=BD=5(m),∵AB+AE=EF+BF,∴AB=5.40+5﹣5≈1.74(m).故答案为:1.74.18.解:由题意可得,∠ADB=60°,∠ACB=45°,AB=30m,在Rt△ABC中,∵∠ACB=45°,∴AB=BC,在Rt△ABD中,∵∠ADB=60°,∴BD=AB=10(m),∴CD=BC﹣BD=(30﹣10)m,故答案为:(30﹣10).19.解:过点A作AD⊥BC,垂足为D,根据题意有∠DAC=60°,∠BAD=30°,AD=240m,在Rt△ADC中,∵∠DAC=60°,AD=240m,∴DC=tan60°•AD=240(m),在Rt△ADB中,∵∠DAB=30°,AD=240m,∴DB=tan30°•AD=80(m),∴BC=240+80=320≈554(m),故答案为:554.20.解:如图,过点D作DE⊥AB,垂足为点E,∵∠DCB=∠CBE=∠DEB=90°,∴四边形BEDC是矩形,∴DE=BC=5m,DC=BE=1.5m,在Rt△ADE中,∵tan∠ADE=,∴AE=DE•tan∠ADE=5tan50°≈5×1.19=5.95(m),∴AB=AE+BE=5.95+1.5≈7.5(m),答:建筑物AB的高度约为7.5m,21.解:(1)如图,连接BD,设BC垂直平分线交BC于点F,∴BD=CD,C△ABD=AB+AD+BD=AB+AD+DC=AB+AC,∵AB=CE,∴C△ABD=AC+CE=AE=1,故△ABD的周长为1.(2)设AD=x,∴BD=3x,又∵BD=CD,∴AC=AD+CD=4x,在Rt△ABD中,AB===2.∴tan∠ABC===.22.解:过点A作AH⊥BM交于点H,由题意可得:AD=HM=50米,设BM=x米,则MC=BM=x米∵BH=BM﹣HM∴BH=(x﹣50)米,∴在Rt△ABH中,∵HC=HM+MC∴HC=(50+x)米,在Rt△AHC中,,∴,解得x=110,即BM=110米,答:点B到水面距离BM的高度约为110米.23.解:如图,作AD⊥BC于D.由题意可知:BC=1.5×40=60(m),∠ABD=90°﹣60°=30°,∠ACD=90°﹣45°=45°,在Rt△ACD中,∵tan∠ACD=tan45°==1,∴AD=CD,在Rt△ABD中,∵tan∠ABD=tan30°=,∴BD=,∵BC=BD﹣CD=﹣AD=60(m),∴AD=30(+1)≈82(m),答:此段河面的宽度约82m.24.解:(1)在Rt△ADF中,cos∠DAF=,∴AF=AD•cos∠DAF=100×cos28°=100×0.88=88(cm),在Rt△AEF中,cos∠EAF=,∴AE===≈91(cm);(2)设DG交AB于M,过点A作AN⊥DG于N,如图所示:∴∠AMN=∠MAG+∠DGA=13°+32°=45°,在Rt△ADF中,DF=AD•sin∠DAC=100×sin28°=100×0.47=47(cm),在Rt△DFG中,tan∠DGA=,∴tan32°=,∴FG==≈75.8(cm),∴AG=AF+FG=88+75.8=163.8(cm),在Rt△AGN中,AN=AG•sin∠DGA=163.8×sin32°=163.8×0.53≈86.8(cm),∵∠AMN=45°,∴△AMN为等腰直角三角形,∴AM=AN≈1.41×86.8≈122.4(cm),∴EM=AM﹣AE≈122.4﹣91≈31(cm),当M、H重合时,EH的值最小,∴EH的最小值约为31cm.。
直角三角形的边角关系专题复习
直角三角形的边角关系测试题1、在Rt △ABC 中,∠A=90º,AB=6,AC=8,则sinB= ,cosC=2、在△ABC 中,∠B=90º,21cos =C ,则∠C=3、在△ABC 中,∠C=90º,∠A=60º,AC=34,则BC=4、在△ABC 中,∠C=90º,BC=3,AB=32,则∠A=5、在△ABC 中,∠C=90º,若tanA=21,则sinA= 6、在△ABC 中,若∠C=90º,∠A=45º,则tanA+sinB=7、如图1,在△ABC 中,∠C=90º,∠B=30º,AD 是∠BAC 的平分线。
已知AB=34, 那么AD= 8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=︒+α,那么锐角α=10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角º︒=30α,测得测角仪高CD=1.5m ,则AB= 。
(结果保留四位 有效数字)11、在△ABC 中,∠C=90º,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、135 12、在Rt △ABC 中,∠C=90º,53cos =A ,AC=6cm ,则BC=( )cm A 、8B 、4.8C 、3.6D 、1.2 13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tan A ( ) A 、53 B 、54C 、34343 D 、3434514、已知:如图3,梯形ABCD 中,AD//BC ,∠B=45º,∠C=120º,AB=8,则CD 的长为( ) A 、638 B 、64 C 、238D 、24 15、在平面直角坐标系内P 点的坐标为(cos30º,tan45º),则P 点关于y 轴对称点A 的坐标为( ) A 、(23,1) B 、(—1,23) C 、(1,23-) D 、(1,23--) 16、若等腰三角形的腰长为10cm ,顶角为60º,则等腰三角形的面积为( )cm 2A 、25B 、325C 、350D 、5017、如图4,某游乐场一山顶滑梯的高为h ,滑梯的坡角为a ,那么滑梯长l 为 A .h sin a B . h tan a C . hcos aD . h ·sin a 18、在△ABC 中,∠A 、∠B 均为锐角,且0)3sin 2(3tan 2=-+-A B ,则△ABC 是( ) A 、等腰三角形 B 、等边三角形 C 、直角三角形 D 、等腰直角三角形19、河堤横断面如图5所示,堤高BC =5米,迎水坡AB 的坡比1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53米 B .10米 C .15米 D .103米 20、计算:(1)、︒+︒+︒-︒45tan 30cos 230tan 330sin (2)、︒-︒+︒-︒-︒60tan 45tan 30sin 160cos 45cos 222图2a CA E BD ACD B 图1 BC DA图3图4图521、在△ABC 中,AB=AC ,且AB=2BC ,求∠B 的三个三 22、在△ABC 中,AB=4,∠B=30º,∠C=45º,求△ABC 角函数值。
(完整)直角三角形的边角关系全章总结复习,推荐文档
2017—2018学年寒假辅导第1讲直角萨娇新的边角关系一、知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA 122232cosA 322212tanA 331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,∠A=30°,则c=,b=.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sinA==cosB=ac,cosA=sinB=bc,tanA=ab.(4)相等的角①商的关系:tanA= ;②平方关系:sin2A+cos2A=1.(5)互余的两角:若∠A+∠B=90°,则sinA=cosB, cosA=sinB.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.二、 专题讲座专题一:锐角三角函数的概念注意:1.sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有 ,这些比值只与 有关,与直角三角形的 无关2.取值范围 <sinA< ; < cosA< ; tanA> 例1.如图所示,在Rt △ABC 中,∠C =90°.①斜边)(sin =A =______, 斜边)(sin =B =______;②斜边)(cos =A =______, 斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.例2. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =__ ___,cos A =___ ___,tan A =____ __, sin B =___ ___,cos B =_____ _,tan B =___ ___.例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .类型一:直角三角形求值例4.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .例5.已知A ∠是锐角,178sin =A ,求A cos ,A tan 的值类型二. 利用角度转化求值:例6.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2. 求:sinB 、cosB 、tanB .例7.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .A D ECBF例7图 例8图 例9图 例13图例8.如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2. 例9.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.34 B.43 C.35 D.45类型三. 化斜三角形为直角三角形例10.如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例11.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A (1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tan B .例12.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.类型四:利用网格构造直角三角形例13如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A .12 B .55 C .1010D .255对应训练:1.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为( )A .55 B .255 C .12D .2 2.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ) A .35 B. 45 C. 34 D. 433. 如图,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( ) A .2 B .2 C .1 D .224. 如图,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316;求∠B 的度数及边BC 、AB 的长.DABC5.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)6.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .7. 在△ABC 中,∠A=60°,AB=6 cm ,AC=4 cm ,则△ABC 的面积是 ( )A.23 cm 2B.43 cm 2C.63 cm 2D.12 cm 28.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.9.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为( ) A.41 B. 31 C.21D. 110.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A .5 5 B. 2 5 5 C.12D. 2CB A ABO专题二:特殊角的三角函数值当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.(1)︒-︒+︒60tan 45sin 230cos 2 (2)︒-︒+︒30cos 245sin 60tan 2(3)3-1+(2π-1)0-33tan30°-tan45°(4)30tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+ (5) tan 45sin 301cos 60︒+︒-︒;例2.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α (5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是( ) A. 0°< ∠A < 30° B. 30°< ∠A <60° C. 60°< ∠A < 90° D. 30°< ∠A < 90° 2. 已知∠A 为锐角,且030sin cos <A ,则 ( )A. 0°<∠ A < 60°B. 30°<∠ A < 60°C. 60°< ∠A < 90°D. 30°<∠ A < 90°例4. (三角函数在几何中的应用)已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.对应练习:1.计算:10123tan 45(2 1.41)3-⎛⎫--++- ⎪⎝⎭2.计算:1201314.330sin 21)()(-++---π3.计算:212322cos602°. 4计算:(2014-5)0-(cos60°)-2+38-3tan30°;5.计算:6.计算:|1﹣|﹣()﹣1﹣4cos30°+(π﹣3.14)0.7.已知α是锐角,且sin(α+15°)=32. 计算10184cos ( 3.14)tan 3απα-⎛⎫---++ ⎪⎝⎭的值.8.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求: (1)∠BAD ; (2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .9. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .10. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.11.(本小题5分)如图,△ABC 中,∠A=30°,3tan 2B =,43AC =.求AB 的长.DCBAACB专题三:解直角三角形的应用例1.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()例1图例2图A.200米B.200米C.220米D.100()米例2.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m例3. “兰州中山桥”位于兰州滨河路中段白搭山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥”之美誉。
《直角三角形的边角关系》复习专题3 直角三角形边角关系的应用
专题三 直角三角形边角关系的应用本专题主要是根据直角三角形边角的关系,确定边长、角的度数以及三角函数值等,此类问题是锐角三角函数解决实际问题中的一个过渡,通过本专题的复习,应到达以下目标:能根据直角三角形中的边角关系,求边长、角的度数以及锐角三角函数值等.例1 如图1,梯形ABCD 中,AD ∥BC ,∠B =45°,∠C =120°,AB =8,那么CD 的长为〔 〕.A .863B .46C .323D .42 分析:求CD 的长可构造直角三角形利用三角函数求解:如图1,作AF ⊥BC ,垂足为F ,DE ⊥BC ,垂足为E ,那么根据条件可求出DE =AF =AB ·sin B ,再根据三角函数求出CD 的长.解:作AF ⊥BC 于F ,DE ⊥BC 并交BC 的延长线于E .在Rt △ABF 中,因为AB =8,∠B =45°,所以2422845sin =⨯=︒•=AB AF , 所以42DE AF ==.在Rt △CDE 中,因为18012060DCE ∠=-=,所以4286sin 60332DE CD ===,应选A . 说明:在利用锐角三角函数求边长时,假设所求的边不在直角三角形内,那么需将它转化到直角三角形中去,转化的途径比拟多,如构造直角三角形或用的直角三角形的边或角来代替.例2 如图2,AD 为等腰三角形ABC 底边上的高,且4tan 3B =,AC 上有一点E ,满足AE ∶EC =2∶3.那么, tan ∠ADE 是〔 〕.A.35B.23C .12D .13分析:要求tan∠ADE值,需要构造包含∠ADE的直角三角形,为此需要过点E作EF⊥AD,再求出EFFD即可.解:因为AD⊥BC,垂足为D,AB=AC,所以∠BAD=∠CAD.因为4tan3B=,∠B+∠CAD=90°,所以3 tan4CAD∠=.作EF⊥AD交AD于F,那么tan∠CAD34 EFAF==.所以34EF AF=.因为AD⊥BC,EF⊥AD,所以EF∥CB.又AE∶EC=2∶3,所以AF∶FD=2∶3.所以32FD AF=.所以314tan=322AFEFADEFD AF∠==.应选C.说明:当要求锐角三角函数值的角不在直角三角形内时,其解题思路是构造直角三角形或寻找等角.此题采用了构造直角三角形的方法.专题训练:1.如图3,CD是Rt△ABC斜边上的高,AC=4,BC=3,那么cos∠BCD=_____.2.如图4,在△ABC中,∠BAC=90°,AD是高,5tan∠DAC=55,那么AB=〔〕.A.5B.5C.25 D.553.如图5,在△ABC中,∠B=60°,BC=2,中线CD⊥BC,求AB,tan A的值.参考答案:1.452.A3.因为∠B=60°,CD⊥BC,所以∠CDB=30°.因为CB=2,所以DB=4,CD=所以AD=4,AB=8.作CE⊥BD,那么CE,DE=3.所以AE=7.所以tan A。
直角三角形边角关系
A
夹角是40°,现要加固石坝使护坡与地面
的夹角35°,若坡长AB为10米,求调整后
所占地面CD的长度(结果精确到0.1m)
(参考数据:sin40 ≈0.64,cos40 ≈ 0.77,
sin35 ≈ 0.57,tan35 ≈ 0.70)
C B
D
变式:若把已知坡面长AB为10米改为新加固的部分所 占地面的长度CB为5米,则堤坝的高度AD为多长?
C
A
5.sin60° - 2sin30°·cos30°=__0____
巩固提高
C
1.如图,已知Rt△ABC中,
斜边AB上的高CD=3,AC=5则 B
A
3
5
8D
tanB=__4__
2.如图,已知Rt△ABC中,
A
斜边AB上的中线CD=4,AC=5则
D
5 sin∠BCD=___8_
B
C
问题探讨
1.在Rt△ABC中,∠C=90°,
B
(1)已知AC,AB,如何求∠A;
(2)已知AB,∠A,如何求AC
(3)已知AC,∠B,如何求BC
A
C
2.在△ABC中,∠C=90°,a、b、c分别是∠A 、∠B ∠C的对边,则下列式子中正确的是( )C
A. b=atanA
B.b=csina
C.a=ccosB D.c=asinA
例1、有一水库大坝的护坡石坝与地面的
如图,从热气球C上测得两建物A,B底部的俯
分别为30°和60°,已知建筑物A,B间的距 离20米。求:这时气球的高度CD为多少米?
中考链接
(2012山东青岛8分)如图,某校教学楼AB的后面有一 建筑物CD,当光线与地面的夹角是22º时,教学楼在 建筑物的墙上留下高2m的影子CE;而当光线与地面 的夹角是45º时,教学楼顶A在地面上的影子F与墙角 C有13m的距离(B、F、C在一条直线上).
直角三角形的边角关系(复习)
我学会了……
我应该注意……
知识梳理
锐角三角函数
A
特殊角的三角函数
c
b C a
B
解直角三角形
简单实际问题
1、本节例题学习以后,我们可以得到解直角三角形的基本图形:
2、作高线可以把平行四边形、梯形转化为含直角三角形的图形 .
3、解直角三角形应用的解题思路:
构建
简单实际问题
数学模型
作垂线
解直角三角形
A
B
D
如图,在△ABC中,AB=16,AC=10, AD⊥BC于点D , AD=8,求tanB, BC的值.
A 变式一.在△ABC中, AB=16 , ∠B=30°, ∠C=45°, 求BC的长. B 变式二.在△ABC中, AB=16, AC=10, ∠B=30°,求BC的长. A D
A
B
D
B
C
B c A
┌
4 5
方法一:根据互为余角两个锐角的正余弦 4 的关系
cos B sin A
a 方法二:定义法
5
b
C
a 4 sin A , 设a 4k , c 5k (k 0) c 5 a 4k 4 cos B c 5k 5
2.(济南)在8×4的矩形网格中,每格小正方形的边长都 是1,若△ABC的三个顶点在图中相应的格点上,则 tan∠ACB的值为( A ) A. 1 B. 1 C. 2 D.3 2 2 3
【考点】锐角三角函数的定义. 【专题】网格型. 【分析】结合图形,根据锐角三角函数的定义即可求解.
2 1 【解答】解:由图形知:tan∠ACB= 6 3 .
【点评】本题考查了锐角三角函数的定义,属于基础题, 关键是掌握锐角三角函数的定义.
直角三角形边角关系总复习
1第一章 直角三角形的边角关系1.如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定, =A sin , A cos = , A tan = .2.特殊角的三角函数值2.锐角三角函数的关系互余两角的三角函数关系(A 为锐角):cos sin =A ,sin cos =A . 3.锐角三角函数的性质当角度在0°~90°之间变化时:正弦值随角度的增大(或减小)而 (或 ); 余弦值随角度的增大(或减小)而 (或 ); 正切值随角度的增大(或减小)而 (或 ); 4.解直角三角形的定义在直角三角形中,除直角外,一共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素求出未知元素的过程,叫做解直角三角形。
5.在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别是c b a ,,。
①三边之间的关系: ;②锐角之间的关系: 。
③边角之间的关系:=A sin ,=A cos ,=A tan , =B sin ,=B cos ,=B tan , ④面积公式:ch ab S ABC 2121==△(h 为斜边上的高). 6.解直角三角形应用题中常见的概念①坡角:坡面与水平的夹角叫做坡角,用字母α表示。
坡度:坡面的铅垂高度h 和水平宽度l 的比叫 做坡度,用字母i 表示,则αtan ==lhi 。
如图②仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角。
如图方法1:利用锐角三角函数的概念求三角函数值例1.在Rt △ABC 中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A 的正弦值( )A.扩大2倍B.缩小2倍C.扩大4倍D.不变 方法2:利用锐角三角函数的概念进行计算的方法 例2.在△ABC 中,∠C=90°,54sin =A ,则B tan =( ) 视线视线2A.34B.43C.53D.54方法3:利用特殊角三角函数值进行计算的方法例3.01-)20082009(2-60sin30cos4--+︒︒)(= 。
中考数学易错题专题复习-直角三角形的边角关系练习题及答案解析
中考数学易错题专题复习-直角三角形的边角关系练习题及答案解析一、直角三角形的边角关系1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)【答案】AB 的长约为0.6m . 【解析】 【分析】作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】解:作BF CE ⊥于F ,在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,3.85CF BC cos BCF ⋅∠≈=,在Rt ADE ∆E 中,3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】 【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQOC OG=,由此构建方程即可解决问题. 【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°,∴∠BAC=∠DCO , ∵∠DOC=∠ACB , ∴△DOC ∽△BCA , ∴AC AB BCOC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ), ∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t ,当点E 在∠BAC 的平分线上时, ∵EP ⊥AB ,EC ⊥AC , ∴PE=EC ,∴34t=8-54t ,∴t=4.∴当t 为4秒时,点E 在∠BAC 的平分线上. (2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC ) =1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在.∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭,∴t=52时,四边形OPEG 的面积最大,最大值为683.(4)存在.如图,连接OQ .∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt-=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.3.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.4.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记ACBC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE V 总是等边三角形 【解析】 【分析】(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FPMC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,ACBC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP=,∵点P是BF的中点,∴EM=MC,又∵PM⊥CE,∴PC=PE;MC PB(2)PC=PE成立,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,∵∠DAF=∠EAF,∠FDA=∠FEA,AF=AF,∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP和△EAP中,∵AD=AE,∠DAP=∠EAP,AP=AP,∴△DAP≌△EAP(SAS),∴PD=PE,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD∥BC∥PM,∴DM FP=,MC PB∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE;(3)如图4,∵△CPE总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,∵AC k BC =,ACBC=tan30°, ∴k=tan30°=33, ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.5.水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米. 【解析】试题分析:先根据两个坡比求出AE 和BF 的长,然后利用勾股定理求出AD 和BC ,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC ,梯形的面积公式可得出答案. 试题解析:∵迎水坡坡比(DE 与AE 的长度之比)为1:0.6,DE=30m , ∴AE=18米,在RT △ADE 中,22DE AE +34 ∵背水坡坡比为1:2, ∴BF=60米,在RT △BCF 中,22CF BF +5∴周长345(345)米, 面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(345)米,面积是1470平方米.6.如图,建筑物上有一旗杆,从与相距的处观测旗杆顶部的仰角为,观测旗杆底部的仰角为,求旗杆的高度.(参考数据:,,)【答案】旗杆的高度约为.【解析】【分析】在Rt△BDC中,根据tan∠BDC=求出BC,接着在Rt△ADC中,根据tan∠ADC==即可求出AB的长度【详解】解:∵在Rt△BDC中,tan∠BDC==1,∴BC=CD= 40m在Rt△ADC中,tan∠ADC==∴tan50°= =1.19∴AB7.6m答:旗杆AB的高度约为7.6m.【点睛】此题主要考查了三角函数的应用7.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.8.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|有最大值61; (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P 坐标为(﹣3,52).连接OP 交对称轴于点M ,此时,|PM ﹣OM |有最大值,直线OP 的表达式为:y 56=-x ,当x =﹣2时,y 53=,即:点M 坐标为(﹣2,53),|PM ﹣OM |的最大值为:2222555(32)()2()233-++--+=61. (3)存在.∵AE =CD ,∠AEC =∠ADC =90°,∠EMA =∠DMC ,∴△EAM ≌△DCM (AAS ),∴EM =DM ,AM =MC ,设:EM =a ,则:MC =6﹣a .在Rt △DCM 中,由勾股定理得:MC 2=DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a 83=,则:MC 103=,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt △DMC 中,12DH •MC 12=MD •DC ,即:DH 10833⨯=⨯2,则:DH 85=,HC 2265DC DH =-=,即:点D 的坐标为(61855-,); 设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣61010,D ′坐标为(618551010,-++),而点E 坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =22(2)1010+=2410m +,2'ED =22248(()551010+=2128510m +.若△A ′ED ′为直角三角形,分三种情况讨论:①当2''A D +2'A E =2'ED 时,36+2410m -=2128510m +,解得:m =105,此时D ′(618551010,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+2128510m +=2410m +,解得:m =8105-,此时D ′(618551010,-++)为(-6,2); ③当2'A E +2'ED =2''A D 时,2410m -++2128510m ++=36,解得:m =810-或m =10,此时D ′(618551010,-++)为(-6,2)或(35-,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.9.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α, ∵∠FGB=12∠ACH ,∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a ,则4a =,tan ∠CAH=43CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AHHK=3,=, ∵∴=∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°,在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG , ∵∠ACN=∠ABG , ∴∠AKH=∠ACN , ∴tan ∠AKH=tan ∠ACN=3, ∵NP ⊥AC 于P , ∴∠APN=∠CPN=90°, 在Rt △APN 中,tan ∠CAH=43PN AP =,设PN=12b ,则AP=9b , 在Rt △CPN 中,tan ∠ACN=PNCP=3, ∴CP=4b , ∴AC=AP+CP=13b , ∵AC=5, ∴13b=5, ∴b=513,∴CN=22PN CP+=410b⋅=2010 13.10.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=1233;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到33;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ ,则DP-DQ=CQ-DQ=CD ,而△ADC 为等边三角形,DP-DQ 的值. 【详解】解:(1)∵∠BAC =90°,点D 是BC 中点,BC = ∴AD =12BC = (2)连DE 、ME ,如图,∵DM >DE , 当ED 和EM 为等腰三角形EDM 的两腰, ∴OE ⊥DM , 又∵AD =AC ,∴△ADC 为等边三角形, ∴∠CAD =60°, ∴∠DAO =30°, ∴∠DON =60°,在Rt △ADN 中,DN =12AD ,在Rt △ODN 中,ON DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形; 当MD =ME ,DE 为底边,如图3,作DH ⊥AE , ∵AD =∠DAE =30°, ∴DH ∠DEA =60°,DE =2,∴△ODE 为等边三角形, ∴OE =DE =2,OH =1, ∵∠M =∠DAE =30°, 而MD =ME , ∴∠MDE =75°,∴∠ADM =90°﹣75°=15°, ∴∠DNO =45°,∴△NDH 为等腰直角三角形, ∴NH =DH∴ON ﹣1;综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;(3)当⊙O 变动时DP ﹣DQ 的值不变,DP ﹣DQ =.理由如下: 连AP 、AQ ,如图2, ∵∠C =∠CAD =60°, 而DP ⊥AB ,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠PAQ=60°,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=23.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.11.如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7132km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)【答案】工作人员家到检查站的距离AC的长约为92 km.【解析】分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=274,BH=BC•cos∠CBH=2716.再解Rt△BAH中,求出AH=BH•tan∠ABH=94,那么根据AC=CH-AH计算即可.详解:如图,过点B作BH⊥l交l于点H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7132km,∴CH=BC•sin∠CBH≈225242732254⨯=,BH=BC•cos∠CBH≈225627 322516⨯=.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=2716,∴AH=BH•tan∠ABH≈27491634⨯=,∴AC=CH﹣AH=2799442-=(km).答:工作人员家到检查站的距离AC的长约为92 km.点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(12+2,12﹣2)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.。
直角三角形的边角关系专题分类(一)
专题一锐角三角函数本专题包括两个方面的知识点,一是锐角三角函数的概念,二是一般的锐角三角函数值的计算.这两个知识点是本章的基础,也是解决实际问题的关键,通过本专题的复习应达到以下目标:(1)掌握锐角三角函数定义;(2)掌握锐角三角函数值的几种不同的计算方法.例1三角形在正方形网格纸中的位置如图1所示,则sinα的值是().A.34B.43C.35D.45分析:本题是一道设计比较新颖的试题,它通过网格的特征给出解题信息,由正方形网格可知角α的对边的长为3,邻边的长为4,要求sinα,只要根据勾股定理求出三角形的斜边,再根据三角函数的定义计算即可.解:设α的对边为a,邻边为b,斜边为c,则a=3,b=4,所以5c==,所以3sin5acα==,选C.说明:解决这类问题的思路是依据图形确定三角形的三边的长,然后根据定义进行计算.1 / 92 / 9例2 如图2,△ABC 中,∠C =90°,AC +BC =7(AC >BC ),AB =5,则tan B=______.分析:要求tan B ,根据锐角三角函数的定义,则需要求对边AC 和邻边BC 的长,因为知道斜边AB =5,且AC +BC =7,所以可以根据勾股定理进行计算. 解:设AC =x ,则BC =7-x ,根据勾股定理,得222(7)5x x +-=,解得4x =.所以43AC BC ==,.所以4tan 3AC B BC ==. 说明:本题的解题思路是根据已知条件确定∠B 的对边和邻边的长,采用了一般的解题方法,并体现了方程思想在求三角函数值中的应用.实际上,本题是一道填空题,不通过计算直接观察就可以解决.因为斜边是5,且两条直角边的和为7,所以两条直角边的长分别是4和3.例3 在Rt △ABC 中,∠C =90°,若AB =2AC ,则cos A 的值等于( ).AB.2 C .12 D.3分析:已知三角形的两边的关系,要求cos A ,根据三角函数的定义可知,cos AC A AB =,所以只要由已知条件求出AC AB即可. 解:因为2AB AC =,所以12AC AB =. 所以1cos 2AC A AB ==.选C .3 / 9说明:本题是一道选择题,解决问题时可以采用取特殊值的方法,即令AC =1,则AB =2.这样更简单.专题训练:1.在△ABC 中,∠C =90°,AB =2,AC =1,则sin B 的值是( ).A .12B .22C .32D .2 2.在△ABC 中,∠C =90°,22sin 3BC A ==,,则边AC 的长是( ). A .5 B .3 C .43D .13 3.如图3,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .已知AC =5,BC =2,那么sin ∠ACD = ( ).A .53 B .23 C .255 D .52 参考答案:1.A 2.A 3.A专题二特殊角的三角函数值本专题主要是特殊角的三角函数值的有关计算,特殊角的三角函数值在解决实际问题中应用非常广泛,所以通过复习应达到以下目标:熟练掌握30°,45°,60°角的三角函数值,并能通过特殊角的锐角三角函数值进行简单的计算.例1tan30°的值等于().A.12B.2C.3D分析:本题考查特殊角三角函数值的理解情况,解决本题需要熟练记住特殊锐角的三角函数值.解:选C.说明:如果没有记住30°的正切值,可以先画一个含有30°角的直角三角形,根据30°角所对的直角边等于斜边的一半,找到三边关系,根据定义求解.例2计算tan60°+2sin45°-2cos30°的结果是().A.2 BCD.1分析:本题是一道与锐角三角函数值有关的计算问题,解决问题的关键是先确定函数值,然后再进行实数的运算.解:tan60°+2sin45°-2cos30°222=⨯-=.4 / 9故选C.说明:与特殊角三角函数值有关的运算,先写出每个锐角函数值,然后转成具体的实数运算,应注意运算的顺序和计算的方法.专题训练:1.计算:|-4sin45°|+(cos60°-tan30°)0.2.计算:sin30°+sin245°13-tan260°=______.3.锐角A满足2sin(A-15°)A=______.4.如果22sin sin301α+=,那么锐角α的度数是().A.15°B.30°C.45°D.60° 5.在△ABC中,∠C=90°,若∠B=2∠A,则cos B的值等于().ABCD.12参考答案:1.1 2.0 3.75° 4.D 5.D5 / 96 / 9专题三 直角三角形边角关系的应用本专题主要是根据直角三角形边角的关系,确定边长、角的度数以及三角函数值等,此类问题是锐角三角函数解决实际问题中的一个过渡,通过本专题的复习,应达到以下目标:能根据直角三角形中的边角关系,求边长、角的度数以及锐角三角函数值等.例1 如图1,梯形ABCD 中,AD ∥BC ,∠B =45°,∠C =120°,AB =8,则CD 的长为( ).A .86B .46C .32D .42 分析:求CD 的长可构造直角三角形利用三角函数求解:如图1,作AF ⊥BC ,垂足为F ,DE ⊥BC ,垂足为E ,则根据已知条件可求出DE =AF =AB ·sin B ,再根据三角函数求出CD 的长.解:作AF ⊥BC 于F ,DE ⊥BC 并交BC 的延长线于E .在Rt △ABF 中,因为AB =8,∠B =45°,所以2422845sin =⨯=︒•=AB AF , 所以42DE AF ==.在Rt △CDE 中,因为18012060DCE ∠=-=,7 / 9所以4286sin 603DE CD ===,故选A . 说明:在利用锐角三角函数求边长时,若所求的边不在直角三角形内,则需将它转化到直角三角形中去,转化的途径比较多,如构造直角三角形或用已知的直角三角形的边或角来代替.例2 如图2,已知AD 为等腰三角形ABC 底边上的高,且4tan 3B =,AC 上有一点E ,满足AE ∶EC =2∶3.那么, tan ∠ADE 是( ).A .35B .23C .12D . 13分析:要求tan ∠ADE 值,需要构造包含∠ADE 的直角三角形,为此需要过点E 作EF ⊥AD ,再求出EF FD即可. 解:因为AD ⊥BC ,垂足为D ,AB =AC ,所以∠BAD =∠CAD .因为4tan 3B =,∠B +∠CAD =90°, 所以3tan 4CAD ∠=. 作EF ⊥AD 交AD 于F ,则tan ∠CAD 34EF AF ==.8 / 9 所以34EF AF =. 因为AD ⊥BC ,EF ⊥AD ,所以EF ∥CB .又AE ∶EC =2∶3,所以AF ∶FD=2∶3.所以32FD AF =. 所以314tan = 322AF EF ADE FD AF ∠==.故选C . 说明:当要求锐角三角函数值的角不在直角三角形内时,其解题思路是构造直角三角形或寻找等角.本题采用了构造直角三角形的方法.专题训练:1.如图3,CD 是Rt △ABC 斜边上的高,AC =4,BC =3,则cos ∠BCD =_____.2.如图4,在△ABC 中,∠BAC =90°,AD 是高,tan ∠DAC=AB =( ). A .5 BC.D.3.如图5,在△ABC中,∠B=60°,BC=2,中线CD⊥BC,求AB,tan A 的值.参考答案:1.452.A3.因为∠B=60°,CD⊥BC,所以∠CDB=30°.因为CB=2,所以DB=4,CD=所以AD=4,AB=8.作CE⊥BD,则CEDE=3.所以AE=7.所以tan A=7.9 / 9。
直角三角形的边角关系及其应用 专题复习
小试牛刀
锐角三角函数的实际应用
如图,AB和CD 为住宅区内的两栋楼,它们的高度 AB=CD=30m,两楼之间的距离为AC=24m现需要了 解甲楼对乙楼的采光影响情况,当太阳光线与水平线 的夹角为30°时,求甲楼的影子在乙楼上有多高? ( 3 1.732 ,精确到0.1m)
解题策略:构 造直角三角形
9
2
北
C
东
10
A B
∟
D
勇攀高峰
1、如图点C表示一个半径为300m的圆形森林公园 的中心,在公园的附近有A、B两个村庄,且 ∠A=450 ∠B=300,如果在AB 两个村庄之间修一 条长500m的笔直公路将两村连通,那么该公路是 否会穿过森林公园?
C
A
D
∟
B
2、一次数学活动课上,老师带领同学们去测量一 条两岸平行的河流的宽度。如图所示,在河的岸 边有两棵相距80m的树A、B,某同学在对岸点C处 观测到树A,测得∠BAC=21.3°,又沿河前行20m到 达D处,在D处观测到树 B,测得∠DBA=63.5°,请 你根据以上数据,帮该同学计算出这条河的宽度。 9 2 9 0 0 0 0 参考数值: sin 21.3 , tan 21.3 , sin 63.5 , tan 63.5 2 25 5 10
C D C D
A
F
E
B
A
E
∟ ∟ F
∟
B
小明家所在居民楼的对面有一座大厦AB,AB= 80米.为测量这座居民楼与大厦之间的距离,小 明从自己家的窗户C处测得大厦顶部A的仰角为 37°,大厦底部B的俯角为48°.求小明家所在居 民楼与大厦的距离CD的长度.(结果保留整数) (参考数据: A 3 3 7 11 o o o o sin37 ,tan37 ,sin 48 ,tan48 5 4 10 10
专题1.6直角三角形的边角关系十大考点(老师版)
专题1.6直角三角形的边角关系十大考点【目标导航】【知识梳理】1.锐角三角函数的定义在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边除以斜边=a c(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.即cosA=∠A的邻边除以斜边=b c.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.即tanA=∠A的对边除以∠A的邻边=a b.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2.特殊角的三角函数值(1)30°、45°、60°角的各种三角函数值(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.3.解直角三角形:(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:222a b c +=③边、角之间的关系:sinA==a c ,cosA =b c ,tanA =ab,(a ,b ,c 分别是∠A 、∠B 、∠C 的对边).4.解直角三角形的应用:(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.5.坡度、坡角问题(1)坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1:m 的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i 与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.6.俯角、仰角问题:(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.【典例剖析】【考点1】锐角三角函数的定义【例1】(2020•河池)在Rt △ABC 中,∠C =90°,BC =5,AC =12,则sinB 的值是()A .512B .125C .513D .1213【分析】直接利用勾股定理得出AB 的长,再利用锐角三角函数得出答案.【解析】如图所示:∵∠C=90°,BC=5,AC=12,∴AB=52+122=13,∴sinB=AC AB=1213.故选:D.【变式1.1】(2022秋•钢城区期中)已知在Rt△ABC中,∠C=90°,tanA=2,BC=8,则AC等于()A.6B.16C.12D.4【分析】直接利用正切的定义求解.【解答】解:∵∠C=90°,∴tanA=BC AC=2,∴AC=12BC=12×8=4.故选:D.【变式1.2】(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tanA=23B.cotA=23C.sinA=23D.cosA=23【分析】先利用勾股定理计算出AB=213,然后根据正弦、余弦、正切和余切的定义求出∠A的四个三角函数值,从而可对各选项进行判断.【解答】解:∵∠C=90°,AC=4,BC=6,∴AB=42+62=213,∴tanA=BC AC=64=32,cotA=AC BC=46=23,sinA=BC AB=6213=31313,cosA=AC AB=4213=21313.故选:B.【变式1.3】(2022•沈阳模拟)如图,已知AB为⊙O的直径,∠ADC=30°,则tan∠CAB的值为()A.3B.1C.32D.33【分析】根据圆周角定理可得∠ACB=90°,∠B=∠D=30°,进而求出∠CAB,再根据特殊锐角的三角函数值进行计算即可.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=∠ADC=30°,∴∠CAB=90°﹣30°=60°,∴tan∠CAB=tan60°=3,故选:A.【考点2】特殊角的三角函数值【例2】(2018•西湖区校级二模)在△ABC中,若|sinA−22|32−cosB|2=0,∠A,∠B都是锐角,则∠C的度数是()A.105°B.90°C.75°D.120°【分析】直接利用绝对值性质以及特殊角的三角函数值分别得出∠A=45°,∠B=30°,进而得出答案.【解析】∵|sinA−22|+|32−cosB|2=0,∴sinA=22,32=cosB,∴∠A=45°,∠B=30°,∴∠C的度数是:180°﹣45°﹣30°=105°.故选:A.【变式2.1】(2022秋•巨野县期中)∠β为锐角,且2cosβ﹣1=0,则∠β=()A.30°B.60°C.45°D.37.5°【分析】直接利用特殊角的三角函数值,进而得出答案.【解答】解:∵∠β为锐角,且2cosβ﹣1=0,∴cosβ=12,∴∠β=60°.故选:B.【变式2.2】(2022秋•浦东新区校级期中)已知α为锐角,且sinα=513,那么α的正切值为()A.512B.125C.513D.1213【分析】在Rt△ABC中,∠C=90°,∠A=α,则利用正弦的定义得到sinA=sinα=BC AB=513,于是可设BC =5x,AB=13x,利用勾股定理计算出AC=12x,然后根据正切的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=α,∵sinA=sinα=BC AB=513,∴设BC=5x,AB=13x,∴AC=AB2−BC2=(13x)2−(5x)2=12x,∴tanA=BC AC=5x12x=512,即α的正切值为512.故选:A.【变式2.3】(2021秋•梁平区期末)式子2cos30°﹣tan45°−(1−tan60°)2的值是()A.0B.23C.2D.﹣2【分析】直接利用特殊角的三角函数值代入,进而结合二次根式的性质化简得出答案.【解答】解:原式=2321﹣(3−1)=3−1−3+1=0.故选:A.【考点3】锐角三角函数的增减性【例3】锐角α满足sinα22,且tanα<3,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°【分析】直接利用特殊角的三角函数值结合锐角三角函数关系的增减性,得出答案.【解析】∵sinα22,且tanα<3,∴45°<α<60°.故选:B.【变式3.1】(2022秋•惠山区校级期中)已知∠A为锐角,且tanA=3,则∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【分析】判断出所给的正切值在最接近的哪两个锐角的正切值之间,再得出选项即可.【解答】解:tan30°=33,tan45°=1,tan60°=3,∵tanA=3,∴3<3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.【变式3.2】(2022秋•莱芜区期中)已知sina32,那么锐角a的取值范围是()A.60°<a<90°B.0°<a<60°C.45°<a<90°D.0°<a<30°【分析】根据特殊锐角三角函数值以及锐角三角函数的增减性进行判断即可.【解答】解:∵sin60°=32,sinα32,一个锐角的正弦值随着锐角的增大而增大,∴α>60°,∵α为锐角,∴60°<α<90°,故选:A.【变式3.3】(2021秋•新邵县期末)下列说法中正确的是()A.sin45°+cos45°=1B.若α为锐角,则sinα=cos(90°﹣α)C.对于锐角β,必有tanβ2=tanβ2D.若α为锐角,则sinα>cosα【分析】根据特殊角的三角函数值判断即可.【解答】解:A.sin45°+cos45°=22+22=2,故A不符合题意;B.若α为锐角,则sinα=cos(90°﹣α),故B符合题意;C.对于锐角β,当β=60°时,tanβ2=tan30°=33,tanβ2=tan60°2=32,此时tanβ2≠tanβ2,故C不符合题意;D.若α为锐角,当α=45°时,sinα=cosα=22,故D不符合题意;故选:B.【考点4】同角三角函数【例4】(2018秋•市中区校级期中)已知α为锐角,且tanα=13,则sinα=()A.23B.105C.31010D.1010【分析】根据tanα=13,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式,即可推出sinα的值.【解析】设在Rt△ABC中,∠C=90°,∠A=α,则sinα=a c,tanα=a b,a2+b2=c2,∵tanα=13知,∴可设a=x,则b=3x,∴c=a2+b2=10x.∴sinα=a c=x10x=1010,故选:D.【变式4.1】(2022春•巴东县期中)x为锐角,sinx=23,则cosx的值为()A.79B.73C.7D.23【分析】根据同角三角函数的平方关系:sin2x+cos2x=1解答即可.【解答】解:∵sin2x+cos2x=1,sinx=23,∴cosx=1−sin2x=1−29=73.故选:B.【变式4.2】(2022•内黄县模拟)在Rt△ABC中,∠C=90°,sinA=45,则tanA=()A.53B.43C.45D.34【分析】根据题意设BC=4a,AB=5a,然后利用勾股定理求出AC,最后根据锐角三角函数的定义进行计算即可解答.【解答】解:在Rt△ABC中,∠C=90°,sinA=45,∴sinA=BC AB=45,∴设BC=4a,AB=5a,∴AC=AB2−BC2=(5a)2−(4a)2=3a,∴tanA=BC AC=4a3a=43,故选:B.【变式4.3】(2020秋•黄浦区期末)对于锐角α,下列等式中成立的是()A.sinα=cosα•tanαB.cosα=tanα•cotαC.tanα=cotα•sinαD.cotα=sinα•cosα【分析】根据锐角三角函数的定义,分别验证每个选项的正误即可.【解答】解:如图,在Rt△ABC中,设∠C=90°,∠A=α,∠A、∠B、∠C的对边分别为a、b、c,有sinα=a c,cosα=b c,tanα=a b,cotα=b a,于是:A.cosα•tanα=b c•a b=a c=sinα,因此选项A符合题意;B.tanα•cotα=a b•b a=1≠cosα,因此选项B不符合题意;C.cotα•sinα=b a•a c=b c=cosα,因此选项C不符合题意;D.sinα•cosα=a c•b c=ab c2≠cotα,因此选项D不符合题意;故选:A.【考点5】锐角三角函数的新定义问题【例5】(2020秋•闵行区期中)我们把有三个内角相等的凸四边形叫做三等角四边形,例如:在四边形PQMN 中,如果∠P=∠Q=100°,∠M=60°,那么四边形PQMN是三等角四边形.请阅读以上定义,完成下列探究:如图,在△ABC中,AB=AC=9,cosB=13,如果点D在边AB上,AD=6,点E在边AC上,四边形DBCE是三等角四边形,那么线段CE的长是.【分析】如图,过点A作AJ⊥BC于J,连接CD,解直角三角形求出BK,CKAK,再利用相似三角形的性质求出DH,AH,想办法求出EH,即可解决问题.【解析】如图,过点A作AJ⊥BC于J,连接CD,过点C作CK⊥AB于K,过点D作DH⊥AC于H.∵AB=AC=9,AJ⊥BC,∴BJ=JC,∵cosB=BJ AB=13,∴BJ=JC=3,∵CK⊥AB,∴cosB=BK BC=13,∴BK=2,CK=BC2−BK2=62−22=42,∵∠DAH=∠CAK,∠AHD=∠AKC=90°,∴△AHD∽△AKC,∴AD AC=AH AK DH CK,∴69=AH7=DH42,∴AH=143,DH=823,∵四边形DBCE是三等角四边形,∴∠DEH=∠B,∴cos∠DEH=cos∠B=1EH,设EH=m,DE=3m,在Rt△DEH中,∵DE2=EH2+DH2,∴(3m)2=m2+(823)2,∴m=43或−43(舍弃),∴EH=43,∴AE=AH﹣EH=143−43=103,∴CE=AC﹣AE=9−103=173.故答案为:173.【变式5.1】(2021秋•冷水滩区月考)关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1−tanαtanβ(其中:1﹣tanαtanβ≠0)例如:sin90°=sin(30°+60°)=sin30℃os60°+cos30°sim60°=12×12+32×32=1.利用上述公式计算下列三角函数:①sin105°=6+24②sin15°=6−24③cos90°=0,④sin15°+tan105°=2﹣2364.其中正确的个数为()A.1B.2C.3D.4【分析】根据上述公式把一般角转化为特殊角的和或者差,然后进行计算即可.【解答】解:①sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=22122232=6+24,故①正确;②sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=322212×22=6−24,故②正确;③cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=22×2222×22=0,故③正确;④tan105°=tan(60°+45°)=tan45°+tan60°1−tan45°tan60°=1+31−3=−2−3,sin15°+tan105°=6−24(﹣2−3)=﹣2−36424,故④错误;所以正确的个数为:3个,故选:C.【变式5.2】(2020•广元)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,cos(x+y)=cosxcosy﹣sinxsiny,给出以下四个结论:(1)sin(﹣30°)=−12;(2)cos2x=cos2x﹣sin2x;(3)cos(x﹣y)=cosxcosy+sinxsiny;(4)cos15°=.其中正确的结论的个数为()A.1个B.2个C.3个D.4个【分析】根据题目中所规定公式,化简三角函数,即可判断结论.【解答】解:(1)sin(−30°)=−sin30°=−12,故此结论正确;(2)cos2x=cos(x+x)=cosxcosx﹣sinxsinx=cos2x﹣sin2x,故此结论正确;(3)cos(x﹣y)=cos[x+(﹣y)]=cosxcos(﹣y)﹣sinxsin(﹣y)=cosxcosy+sinxsiny,故此结论正确;(4)cos15°=cos(45°﹣30°)=cos45°cos30°+sin45°sin30°=2232+22×12=6424=6+24,故此结论错误.所以正确的结论有3个,故选:C.【变式5.3】(2019•巴州区校级自主招生)规定:对任意角x,y,都有sin2x+cos2x=1,sin(﹣x)=﹣sinx,cos (﹣x)=cosx,cos(x+y)=cosxcosy﹣sinxsiny,现给出下列等式:①sin(−60°)=−32;②cos15°=6−24;③cos2x=1﹣2sin2x;④cos(x﹣y)=cosxcosy+sinxsiny;⑤cosxcosy=12[cos(x+y)+cos(x−y)],其中,等式成立的个数为()A.2个B.3个C.4个D.5个【分析】根据所提供的材料解题即可.【解答】解:①﹣sin60°=sin(−60°)=−32,故正确;②cos15°=cos(60°﹣45°)=cos60°cos(﹣45°)﹣sin60°sin(﹣45°)=cos60°cos45°+sin60°sin45°=122232×22=2+64,即cos15°=6−24是错误的;③cos2x=cos(x+x)=cosxcosx﹣sinxsinx=cos2x﹣sin2x=1﹣sin2x﹣sin2x=1﹣2sin2x,故正确;④cos(x﹣y)=cosxcosy+sinxsiny,故正确;⑤cosxcosy=12[cos(x+y)+cos(x−y)],故正确.综上所述,其中,等式成立的个数为4个.故选:C.【考点6】三角函数与网格问题【例6】(2018秋•乐山期末)如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则cosA =45.【分析】根据勾股定理,可得AC的长,根据余弦为邻边比斜边,可得答案.【解析】如图,由勾股定理,得AC=AD2+CD2=42+32=5.cosA=AD AC=45,故答案为:45.【变式6.1】(2021•商河县校级模拟)如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=12.【分析】根据正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA,利用网格计算即可.【解答】解:tan∠ABC=24=12,故答案为:12.【变式6.2】(2021•甘谷县一模)如图,在5×5的正方形网格中,△ABC的三个顶点A,B,C均在格点上,则tanA的值为13.【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【解答】解:如图:作BD⊥AC于D,BD=2,AD=32,tanA=BD AD=232=13,故答案为:13.【变式6.3】(2020•铁东区四模)如图,将∠BAC放置在5×5的正方形网格中,如果顶点A、B、C均在格点上,那么∠BAC的正切值为1.【分析】连接BC,先利用勾股定理逆定理证△ABC是等腰直角三角形,再根据正切函数的定义可得.【解答】解:如图所示,连接BC,则AB=BC=12+32=10,AC=22+42=25,∴AB2+BC2=10+10=20=AC2,∴△ABC是等腰直角三角形,且∠ABC=90°,∴∠BAC=45°,则tan∠BAC=1,故答案为:1.【考点7】解直角三角形【例7】(2020秋•浦东新区期中)如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,BC=18,AD=6.(1)求sinB的值;(2)点E在AB上,且BE=2AE,过E作EF⊥BC,垂足为点F,求DE的长.【分析】(1)先利用等腰三角形三线合一的性质求出BD,然后在Rt△ABD中,利用勾股定理求出AB,再根据sinB=AD AB计算即可;(2)由EF∥AD,BE=2AE,可得BE AB=EF AD=BF BD=23,求出EF、DF,再利用勾股定理解决问题.【解析】(1)∵AB=AC,AD⊥BC,BC=18,∴BD=DC=12BC=9,∴AB=AD2+BD262+92=313,∴sinB=AD AB=6313=21313;(2)∵AD⊥BC,EF⊥BC,∴EF∥AD,∴BE=EF=BF=2,∴EF=23AD=23×6=4,BF=23BD=23×9=6,∴DF=BD﹣BF=9﹣6=3,在Rt△DEF中,DE=EF2+DF2=42+32=5.【变式7.1】(2022秋•奉贤区期中)已知:如图,在△ABC中,AB=AC=15,tanA=43.;求:(1)S△ABC(2)∠B的余弦值.【分析】(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,利用锐角三角函数的定义设CD=4k,则AD =3k,从而利用勾股定理求出AC=5k,进而可得k=3,然后可得AD=9,CD=12,最后利用三角形的面积公式,进行计算即可解答;(2)在Rt△BCD中,利用勾股定理求出BC的长,然后再利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,tanA=CD AD=43,∴设CD=4k,则AD=3k,∴AC=AD2+CD2=(3k)2+(4k)2=5k,∵AC=15,∴5k=15,∴k=3,∴AD=9,CD=12,=12AB•CD∴S△ABC=12×15×12=90,=90;∴S△ABC(2)在Rt△BCD中,BD=AB﹣AD=15﹣9=6,CD=12,∴BC=CD2+BD2=122+62=65,∴cosB=BD CB=665=55,∴∠B的余弦值为55.【变式7.2】(2022秋•浦东新区期中)如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan ∠B=23,点E是边BC的中点.(1)求边AC的长;(2)求∠EAB的正切值.【分析】(1)解直角三角形求出CD=4,再利用勾股定理求出AC即可;(2)过点E作EH⊥AB于点H.求出AH,EH,可得结论.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠CDB=90°,∴tanB=CD DB=23,∵BD=6,∴CD=4,∴AC=CD2+AD2=42+22=25;(2)过点E作EH⊥AB于点H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∵EC=EB,∴DH=BH=3,∴EH=12CD=2,∴AH=AD+DH=2+3=5,∴tan∠EAB=EH AH=25.【变式7.3】(2022秋•虎丘区校级期中)(1)在△ABC中,∠C=90°.已知c=83,∠A=60°,求∠B,a,b;(2)如图,在△ABC中,∠C=90°,sinA=35,D为AC上一点,∠BDC=45°,CD=6.求AD的长.【分析】(1)由∠A与∠B互余即可求出∠B,由直角三角形中30°的直角边等于斜边的一半可求b,由锐角的正切定义可求a;(2)由锐角的正弦定义,勾股定理可求AD长.【解答】解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=12c=43,∵tanA=a b,∴a=btanA,∴a=43×3=12;(2)∵∠C=90,∠BDC=45°,∴△BDC是等腰直角三角形,∴BC=CD=6,∵sinA=BC AB,∴AB=BC sinA=10,∵AC2=AB2﹣BC2,∴AC2=102﹣62,∴AC=8,∴AD=AC﹣DC=2.【考点8】锐角三角函数的应用:方向角问题【例8】(2020•启东市三模)如图,一艘船由A港沿北偏东65°方向航行302km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求(1)∠C的度数.(2)A,C两港之间的距离为多少km.【分析】(1)由由题意即可得出答案;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=302,过B作BE⊥AC于E,解直角三角形即可得到答案.【解析】(1)由题意得:∠ACB=20°+40°=60°;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=302,过B作BE⊥AC于E,如图所示:∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=302,∴AE=BE=22AB=30,在Rt△CBE中,∵∠ACB=60°,tan∠ACB=BE CE,∴CE=BE tan60°=303=103,∴AC=AE+CE=30+103,∴A,C两港之间的距离为(30+103)km.【变式8.1】(2022•锦州二模)某海港南北方向上有两个海岸观测站A,B,距离为10海里.从港口出发的一艘轮船正沿北偏东30°方向匀速航行,某一时刻在观测站A,B两处分别测得此轮船正好航行到南偏东30°和北偏东75°方向上的C处.经过0.5时轮船航行到D处,此时在观测站A处测得轮船在北偏东75°方向上,求轮船航行的速度(结果精确到0.1海里/时,参考数据:2≈1.414,3=1.732)【分析】根据三角形内角和得到∠ACB=180°﹣75°﹣30°=75°,求得∠ABC=∠ACB,根据等腰三角形的性质得到AC=AB=10海里,根据平行线的性质得到∠ACF=30°,求得∠ACD=60.平角的性质得到∠DAC=180°﹣70°﹣40°=70°,即可求得∠DAE=45°,解直角三角形求得CE=5海里,AE=DE=53海里,即可求得CD=5+53≈13.66(海里),进一步求得轮船航行的速度.【解答】解:作AE⊥CD于E,∵∠ACB=180°﹣75°﹣30°=75°,∴∠ABC=∠ACB,∴AC=AB=10海里,∵向北的方向线是平行的,∴∠ACF=∠CAB=30°,∴∠ACD=60°,∴∠CAE=30°,∴CE=12AC=5海里,AE=32AC=53海里,∵∠DAC=180°﹣75°﹣30°=75°,∴∠DAE=75°﹣30°=45°,∴DE=AE=53海里,∴CD=5+53≈13.66(海里),轮船航行的速度为:13.66÷12=27.3(海里/时),答:轮船航行的速度是27.3海里/时,【变式8.2】(2022秋•垦利区期中)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的北偏东15°方向,距离80千米的地方有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.【分析】过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.【解答】解:由题意得:∠DOC=45°,∠BOD=15°,OB=80km,∴∠BOC=30°,OB=80km,如图,作BG⊥OC于G,∴BG=12OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∵BG=40km,∴EG=BE∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5(小时),∴影响时间约为1.5小时.【变式8.3】(2022秋•沙坪坝区校级期中)如图,海上有一座小岛C,一艘渔船在海中自西向东航行,速度为60海里/小时,船在A处测得小岛C在北偏东45°方向,1小时后渔船到达B处,测得小岛C在北偏东30°方向.(参考数据:2≈1.41,3≈1.73,6≈2.45)(1)求BC的距离;(结果保留整数)(2)渔船在B处改变航行线路,沿北偏东75°方向继续航行,此航行路线记为l,但此时发现剩余油量不足,于是当渔船航行到l上与小岛C最近的D处时,立即沿DC方向前往小岛C加油,加油时间为18分钟,在小岛C加油后,再沿南偏东75°方向航行至l上的点E处.若小船在D处时恰好是上午11点,问渔船能否在下午5点之前到达E处?请说明理由.【分析】(1)作CF⊥AB于点F,CD⊥BE于点D,设BF=x,则BC=2x,CF=3x,根据AF=CF,得60+x=3x,求出x的值即可求出答案;(2)根据特殊直角三角形求出CD,CE,即可求出从D到E用的时间,和6小时相比较即可.【解答】解:如图,作CF⊥AB于点F,CD⊥BE于点D,(1)由已知得AB=60海里,∠CAF=45°,∠BCF=30°,设BF=x,则BC=2x,CF=3x,∵AF=CF,∴60+x=3x,∴x=603−1=30(3+1),∴BC=60(3+1)≈142(海里),∴BC的距离为142海里;(2)由已知得∠CBD=∠BCD=45°,∴CD=22BC=30(6+2),∵∠ECF=75°,∴∠CED=180°﹣45°﹣30°﹣75°=30°,∴CE=2CD=60(6+2),∴从D到E用的时间为CD+CE60=90(6+2)60≈5.8<6,∴渔船能在下午5点之前到达E处.【考点9】锐角三角函数的应用:坡度坡角问题【例9】(2019秋•滨海县期末)速滑运动受到许多年轻人的喜爱.如图,四边形BCDG是某速滑场馆建造的滑台,已知CD∥EG,滑台的高DG为5米,且坡面BC的坡度为1:1.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为1:3.(1)求新坡面AC的坡角及AC的长;(2)原坡面底部BG的正前方10米处(EB=10)是护墙EF,为保证安全,体育管理部门规定,坡面底部至少距护墙7米.请问新的设计方案能否通过,试说明理由(参考数据:3≈1.73)【分析】(1)过点C作CH⊥BG,垂足为H,根据坡度的概念求出∠CAH,根据直角三角形的性质求出AC;(2)根据坡度的概念求出BH,根据正切的定义求出AH,得到AB,结合图形求出EB,计算得到答案.【解析】(1)如图,过点C作CH⊥BG,垂足为H,∵新坡面AC的坡度为1:3,∴tan∠CAH=13=33,∴∠CAH=30°,即新坡面AC的坡角为30°,∴AC=2CH=10米;(2)新的设计方案不能通过.理由如下:∵坡面BC的坡度为1:1,∴BH=CH=5,∵tan∠CAH=33,∴AH=3CH=53,∴AB=53−5,∴AE=EB﹣AB=10﹣(53−5)=15﹣53≈6.35<7,∴新的设计方案不能通过.【变式9.1】(2022秋•高新区校级期中)如图1,居家网课学习时,小华先将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角150°,侧面示意图如图2;如图3,使用时为了散热,他在底板下垫入散热架ACO'后,电脑转到AO'B'位置,侧面示意图如图4.已知OA=OB,O'C⊥OA于点C,AO':O'C=5:3,AC=40cm.(1)求OA的长;(2)垫入散热架后,显示屏顶部B'比原来升高了多少cm?【分析】(1)设AO′=5xcm,O′C=3xcm,利用勾股定理得到AO′=4x,则4x=40,解方程可得到AO′=50cm,O′C=30cm,所以AO为50cm;(2)过B点作BH⊥AO于H点,如图,先计算出∠BOH=30°,利用30的正弦得到BH=25cm,再计算CB′=80cm,然后计算B′C′﹣BH即可.【解答】解:(1)∵AO':O'C=5:3,∴设AO′=5xcm,O′C=3xcm,∵O'C⊥OA,∴∠ACO′=90°,∵AO′=(5x)2−(3x)2=4x,∴4x=40,解得x=10,∴AO′=50cm,O′C=30cm,∴AO=AO′=50cm;答:OA的长为50cm;(2)过B点作BH⊥AO于H点,如图,∴∠AOB=150°,∴∠BOH=30°,∵BH=12OB=25cm,∵CB′=O′B′+CO′=50+30=80(cm)∴B′C′﹣BH=80﹣25=55(cm),∴显示屏的顶部B′比原来升高了55cm.【变式9.2】(2022秋•高新区期中)如图,水坝的横截面是梯形ABCD(DC∥AB),迎水坡BC的坡角α为30°,背水坡AD的坡度i为1:1.2,坝顶宽DC=2.5米,坝高5米.求:(1)坝底宽AB的长(结果保留根号);(2)在上题中,为了提高堤坝的防洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽0.5米,背水坡AD的坡度改为1:1.4,求横截面增加的面积.(结果保留根号)【分析】(1)作DF⊥AB于点F,根据坡度的概念求出AF,根据正切的定义求出BE,得到坝底宽AB的长;(2)作D′G⊥A′B于点G,求出CD′、A′B,再根据梯形的面积公式计算,得到答案.【解答】解:(1)作DF⊥AB,垂足为F,∵DC∥EF,DF∥CE,DF⊥AB,∴四边形DFEC为矩形,∴FE=DC=2.5,DF=CE=5,在Rt△AFD中,坡AD的坡度i为1:1.2,∴AF=1.2DF=1.2×5=6,在Rt△CEB中,tanα=CE EB,∴BE=CE tan30°=53,∴AB=AF+FE+EB=(172+53)米;(2)如图,作D′G⊥A′B于G,在Rt△A'GD′中,A′G=1.4D′G=7,∴A′A=A′G+GF﹣AF=1.5,∴梯形D′A′AD的面积=12×(0.5+1.5)×5=5,答:横截面增加的面积为5平方米.【变式9.3】(2022秋•长春期中)如图是某地铁站自动扶梯的示意图,自动扶梯AB的倾斜角(∠BAC)为30.5°,自动扶梯AB的长为17米.(1)求乘客从扶梯底端升到顶端上升的高度BC.(结果精确到0.1米)(2)如果一层楼的高度为2.8米,问这个扶梯升高的高度BC相当于几层楼高?(结果保留整数)【参考数据:sin30.5°=0.51,cos30.5°=0.86,tan30.5°=0.59】【分析】(1)根据题意和锐角三角函数可以求得BC的长即可;(2)直接利用(1)中所求,即可得出答案.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=17×0.51≈8.7(米),答:乘客从扶梯底端升到顶端上升的高度BC约为8.7米;(2)由题意可得:8.7÷2.8≈3(层),答:这个扶梯升高的高度BC相当于3层楼高.【考点10】锐角三角函数的应用:俯角仰角问题【例10】(2020•大庆)如图,AB,CD为两个建筑物,两建筑物底部之间的水平地面上有一点M,从建筑物AB 的顶点A测得M点的俯角为45°,从建筑物CD的顶点C测得M点的俯角为75°,测得建筑物AB的顶点A的俯角为30°.若已知建筑物AB的高度为20米,求两建筑物顶点A、C之间的距离(结果精确到1m,参考数据:2≈1.414,3≈1.732).【分析】在Rt△ABM中,根据等腰直角三角形的性质求得AM,在Rt△AME中,根据正弦函数求得AE,在Rt△AEC中,根据正弦函数求得AC.【解析】∵AB⊥BD,∠HAM=45°,∴∠BAM=∠AMB=45°,∴∠AMB=∠BAM,∴AB=BM=20(米),∴在Rt△ABM中,AM=202(米),作AE⊥MC于E,∵∠KCM=75°,∠ACK=30°,∴∠ACM=45°,∠ACK=∠CAH=30°,∵∠HAM=45°,∴∠CAM=75°,∴∠AMC=180°﹣45°﹣75°=60°,∴在Rt△AME中,AM=202(米),∵sin∠AME=AE AM,∴AE=sin60°•202=32202=106(米),在Rt△AEC中,∠AEC=90°,∠ACE=45°,AE=106(米),∴sin∠ACE=AE AC,∴AC=AE sin45°=10622=203≈35(米),答:两建筑物顶点A、C之间的距离约为35米.【变式10.1】(2021秋•临泉县期末)如图,为测量某建筑物BC的高度,采用了如下方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD(坡度i=1:2.4)行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,底端B的俯角为45°,点A、B、C、D、E在同一平面内.根据测量数据,计算出建筑物BC的高度.(参考数据:3≈1.732)【分析】过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,得BF=DH,在Rt△ADH中求出DH,再解直角三角形求出EF、CF的长,即可解决问题.【解答】解:如图,过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,∴BF=DH,在RtADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∴BF=DH=50米),在Rt△EFB中,∠BEF=45°,∴△EFB是等腰直角三角形,∴EF=BF=50(米),在Rt△EFC中,∠CEF=60°,tan∠CEF=tan60°=∴CF =3EF =503=86.6(米),∴BC =BF+CF =136.6(米).答:建筑物BC 的高度约为136.6米.【变式10.2】(2022秋•蓬莱区期中)如图中是抛物线形拱桥,P 处有一照明灯,水面OA 宽4m ,从O 、A 两处观测P 处,仰角分别为α、β,且tan α=12,tan β=32,以O 为原点,OA 所在直线为x 轴建立直角坐标系,若水面上升1m ,水面宽为多少?【分析】过点P 作PH ⊥x 轴于点H ,设PH =3xm ,则OH =6xm ,AH =2xm ,由OA =4m ,可求出x 值,进而可得出点P 的坐标;根据点O 、P 、A 的坐标利用待定系数法,可求出抛物线的解析式,再根据二次函数图象上点的坐标特征可求出y =1时x 的值,两值做差即可得出结论.【解答】解:过点P 作PH ⊥x 轴于点H ,如图所示.设PH =3xm ,则OH =6xm ,AH =2xm ,∴OA =OH+HA =6x+2x =4,解得:x =12,∴OH =6x =3,PH =3x =32,∴点P 的坐标为(3,32).设拱桥所在抛物线的解析式为y =ax 2+bx+c ,将点O (0,0)、B (4,0)、P (3,32)代入y =ax 2+bx+c ,c =016a +4b +c =09a +3b +c =32,解得:a =−12b =2c =0,∴拱桥所在抛物线的解析式为y =−12x 2+2x .当y =−12x 2+2x =1时,x =2±2,∴2+2−(2−2)=22(m ).答:水面上升1m ,水面宽22m .【变式10.3】(2022秋•莱阳市期中)如图,某物业楼上竖立一块广告牌,高CD=3m,小亮和小伟要测量广告牌底部D到水平地面AH的距离,小亮在水平地面A处安置测倾器,测得广告牌底部D的仰角为22°,小伟在水平地面B处安置测倾器,测得广告牌顶部C的仰角为45°,两人合作量得测倾器的高度AE=BF=1.2m,测点A和测点B之间的距离AB=9m,请根据以上信息,求广告牌底部D到水平地面AH的距离.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【分析】延长EF交CH于点G,则FG⊥CH,得矩形AEFB,矩形BFGH,矩形AEGH,EF=AB=9m,AE =BF=GH=1.2m,在Rt△FDG中,∠EGD=90°,∠DEG=22°,FG=EF+FG=(9+FG)m,利用锐角三角函数即可解决问题.【解答】解:延长EF交CH于点G,则FG⊥CH,得矩形AEFB,矩形BFGH,矩形AEGH,∴EF=AB=9m,AE=BF=GH=1.2m,∵∠CFG=45°,∴∠FCG=45°,∴FG=CG,∴GD=CG﹣CD=(CG﹣3)m,在Rt△FDG中,∠EGD=90°,∠DEG=22°,EG=EF+FG=(9+FG)m,∵DG=EG•tan22°,∴CG﹣3≈(9+CG)×0.40,∴CG=11m,∴DG=CG﹣3=8(m),∴DH=DG+GH=8+1.2=9.2(m).答:广告牌底部D到水平地面AH的距离为9.2m.。
中考数学专题复习题:直角三角形的边角关系
中考数学专题复习题:直角三角形的边角关系一、单项选择题(共12小题)1.如图,在Rt△ABC中,∠C=90°,如果BC=3,AB=5,则sinA的值是()A.53B.35C.54D.452.如图,在△ABC中,AC=ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()AB.3C.D.4第2题图第3题图3.如图,一艘船由A港沿北偏东50︒方向航行100km至C港,然后再沿北偏西25︒方向航行至B港,B港在A港北偏东20︒方向,则A,B两港之间的距离为()A.()50km B.()50km C.D.50km4.如图,某公园为了使残疾人的轮椅行走方便,设想拆除台阶换成斜坡,又考虑安全,斜坡的坡角不得超过10︒,此公园门前的台阶高出地面1.62米,则斜坡的水平宽度MN至少需()(精确到0.1米,参考值:sin100.17,cos100.98,tan100.18︒≈︒≈︒≈)A.9.1米B.9.5米C.9.4米D.9.0米5.在Rt△ABC中,∠C=90°,则tanA×tanB的值一定是()A.小于1B.等于1C.大于1D.不小于16.若等腰三角形腰长为4,面积是4,则这个等腰三角形顶角的度数为()A.30°B.30°或150°C.60°D.60°或120°7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()A.25√3海里B.25√2海里C.50海里D.25海里第7题图第8题图8.长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2√3m B.(2√3−2) m C.2√6m D.(2√6−2)m 9.直角三角形纸片的两直角边长分别为6,8,现将ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.247B.724C.√73D.13C.43C.35EF折叠,使点D落在BC交于点M,DG与,那么BH的长为(二、填空题(共6小题)13.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=3,则tan B5的值为________.14.在△ABC中,∠C=90°,若tan A=1,则sin B=________.215.在Rt△ABC中,∠C=90°,AB=2,BC=√3,则sin A=________.230,过相交,得到图中所示的阴影梯形,若它们的面积依次极为BPC 是等边三角形,、BP CP 的延长线分别交相交于点H ,给出下列结论:①ABE △31BPDABCD S −=正方形,其中正确的是________.BQ 上的动点,连接,连接CE ,DE ,当CE三、解答题(共5小题)19.计算:(1)3tan30∘− (cos60∘)−1+√8cos45∘+√(1−tan60∘)2;(2)sin²30°− cos45∘⋅tan60∘+sin60∘cos45∘−tan45∘.20.如图所示,在矩形ABCD 中,点E 在线段CD 上,点F 在线段AB 的延长线上,连接EF 交线段BC 于点G ,连接BD,若DE=BF=2.(1)求证:四边形BFED 是平行四边形;(2)若tan∠ABD =23 ,求线段BG 的长度.21.如图,已知ABD △中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BE 为AD 边上的中线.(1)求AC 的长;(2)求BED 的面积.22.如图1、图2分别是某型号吊车的实物图与示意图,吊车底座抽象为矩形ABCD ,4AB =米,2AD =米.吊臂EF 现在的长度为30米,仰角32DEF ∠=︒.吊钩FG 现在的长度为6米,吊钩垂直于地面.已知1CE =米,求吊钩FG 的下端点G 到地面AB 的距离多少米?(结果精确到1米.参考数据:sin320.53︒=,cos320.85︒=,tan32062︒=.)23.在某飞机场东西方向的地面l 上有一长为1 km 的飞机跑道MN (如图),在跑道MN 的正西端14.5 km 处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A 的北偏西30°,且与点A 相距15 km 的B 处;经过1分钟,又测得该飞机位于点A 的北偏东60°,且与点A 相距5√3 km 的C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.。
第一章《直角三角形的边角关系》复习
AD AF2 DF2 22 12 5
sin DF 1 5
AD 5 5
知识点二
特殊角三角函数值
角度
三角函数
sinα cosα
tanα
30°
1 2
3 2
3 3
45°
2 2
2 2
1
60°
3 2
1 2
3
针对训练二Βιβλιοθήκη 注重对特殊角的三角函数值的考查
1、cos30°=( C )
A、1
B、 2
C、 3
cos(__9_0°__-_A_)=sinA
4、锐角三角函数的范围:_0__<sinA<_1__;
_0__<cosA<__1__; tanA>__0__
针对训练三
重点考查锐角三角函数在实际问题中的应用
1、如图所示,某河堤的横断面是梯形ABCD,BC‖AD,
迎 则水 背坡水坡ABC长D1的3长米为,_且_2迎__4水__坡_米AB。的坡度为12:5,∠D= 30
4、如图,一艘渔船以6海里/时 的速度至西向东航行,小岛周
围 6 6 海里内有暗礁,渔船在A 处,测得小岛P在北偏东60°方
向上,航行2小时后在B处,测 得小岛P在北偏东30°方向上, 如果渔船不改变航向有没有触 礁危险?
5.如图,在电线杆上的C处引位线CE、CF固定 电线杆,拉线CE和地面成60°角,在离电线杆6 米的B处安置测角仪,在A处测得电线杆C处的仰 角为30°,已知测角仪AB高为1.5米,求拉线CE 的长.(结果保留根号)
视线
铅 仰角 直 线 俯角
水平线
视线
②坡角与坡度:坡面与水平面的夹角叫做_坡__ 角,图中的 α 是坡角;坡面的_铅__直_高度h和 _水__平__距离l的比叫坡度。
直角三角形的边角关系复习专题
直角三角形的边角关系复习专题2013年将继续考查锐角三角形函数的概念,其中特殊三角函数值为考查的重点。
解直角三角形为命题的热点,特别是与实际问题结合的应用题.【应试对策】1、要掌握锐角三角函数的概念,会根据已知条件求一个角的三角函数,会熟练地运用特殊角的三角函数值,会使用科学计算器进行三角函数的求值;2、掌握根据已知条件解直角三角形的方法,运用解直角三角形的知识解决实际问题. 具体做到:1)了解某些实际问题中的仰角、俯角、坡度等概念;2)将实际问题转化为数学问题,建立数学模型;3)涉及解斜三角形的问题时,会通过作适当的辅助线构造直角三角形,使之转化为解直角三角形的计算问题而达到解决实际问题.【重点知识点】1.直角三角形中边与角的关系中,∠C=90°(1)边的关系:(2)角的关系:(3)边与角的关系:sinA=cosB=ac, cosA=sinB=bc,tanA==ab, tanB=ba。
2.特殊角的三角函数值特殊角30°,45°,60°的三角函数值列表如下:αsinαcosαtanα30°123345°22160°1 23. 直角三角形的解法直角三角形中各元素间的关系是解直角三角形的依据,因此,解直角三角形的关键是正确选择直角三角形的边角关系式,使两个已知元素(其中至少有一个元素是边)和一个未知元素共处于这个关系式中.【点对点突破】1.如图,已知AC=1,求BD。
2.如图,已知△ABC 中,∠B=45° , BC=3+ , ,∠C=30°求AB的长。
3.图15(2)是图15(1)中窗子开到一定位置时的平面图,若∠AOB=45°,≈,结果精确到整∠OAB=30°,OA=60cm,求点B到OA边的距离.(3 1.7数)图15(1)图15(2)4.如图,在△ABC中,∠C=90°, ,D为AC上一点,∠BDC=45°, DC=8,求AB的长。
直角三角形的边角关系知识点整理复习(无答案)
直⾓三⾓形的边⾓关系知识点整理复习(⽆答案)DSL ⾦牌数学初三下系列(⼀)直⾓三⾓形的边⾓关系知识点精析精讲考点⼀、锐⾓三⾓函数的概念如图,在△ABC 中,∠C=90°正弦:_____sin =∠=斜边的对边A A 余弦:____cos =∠=斜边的邻边A A 正切:_____tan =∠∠=的邻边的对边A A A三⾓函数 30°45°60°sin α cos α tan α考点三、各锐⾓三⾓函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ;(2)平⽅关系:1cos sin 22=+A A (3)倒数关系:tanA ?tan(90°—A)=1 (4)商的关系:tanA=AAcos sin考点四、锐⾓三⾓函数的增减性当⾓度在0°~90°之间变化时,(1) 正弦值随着⾓度的增⼤⽽_______;(2) 余弦值随着⾓度的增⼤⽽_______;(3) 正切值随着⾓度的增⼤⽽___________;考点五、解直⾓三⾓形 1、解直⾓三⾓形的概念在直⾓三⾓形中,除直⾓外,⼀共有五个元素,即三条边和两个锐⾓,由直⾓三⾓形中除直⾓外的已知元素求出所有未知元素的过程叫做解直⾓三⾓形。
2、解直⾓三⾓形的理论依据在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:______________________(勾股定理)(2)锐⾓之间的关系:______________________(3)边⾓之间的关系:正弦sinA=___________,余弦cosA=____________,正切tanA=______________(4) ⾯积公式:c ch ab s 2121==(h c 为c 边上的⾼)考点六、解直⾓三⾓形应⽤1、将实际问题转化到直⾓三⾓形中,⽤锐⾓三⾓函数、代数和⼏何知识综合求解2、仰⾓、俯⾓、坡⾯知识点及应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形的边角关系测试题
1、在Rt △ABC 中,∠A=90º,AB=6,AC=8,则sinB= ,cosC=
2、在△ABC 中,∠B=90º,2
1
cos =C ,则∠C=
】
3、在△ABC 中,∠C=90º,∠A=60º,AC=34,则BC=
4、在△ABC 中,∠C=90º,BC=3,AB=32,则∠A=
5、在△ABC 中,∠C=90º,若tanA=
2
1
,则sinA= 6、在△ABC 中,若∠C=90º,∠A=45º,则tanA+sinB=
7、如图1,在△ABC 中,∠C=90º,∠B=30º,AD 是∠BAC 的平分线。
已知AB=34,
那么AD=
#
8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=︒+α,那么锐角α=
10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角º︒=30α,测得测角仪高CD=1.5m ,则AB= 。
(结果保留四位 有效数字)
11、在△ABC 中,∠C=90º,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、13
5 12、在Rt △ABC 中,∠C=90º,5
3
cos =
A ,AC=6cm ,则BC=( )cm A 、8
B 、
C 、
D 、 !
13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tan
A ( ) A 、53
B 、54
C 、34
343 D 、34345
14、已知:如图3,梯形ABCD 中,AD
63864238242
3
23
1,23-1,2
3
--3253500
)3sin 2(3tan 2=-+-A B 5
米
353103︒+︒+︒-︒45tan 30cos 230tan 330sin ︒-︒+︒
-︒
-
︒60tan 45tan 30sin 160cos 45cos 2226—1为平地
上一幢建筑物与铁塔图,题6-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度.
…
图6-1 图6-2
图2
a C
A
E B
)
图1 B
C
D
A
图3
图4 图5
24、如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路。
现新修一条路AC 到公路l .小 明测量出∠ACD =30°,∠ABD =45°,BC =50m .请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:
2 1.414,
3 1.732≈≈)
—
25、如图,某船向正东方向航行,在A 处望见某岛C 在北偏东60º方向,前进6海里到B 点,测得该岛在北偏东30º方向,已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险试说明理由。
]
、
26、综合实践课上,小明所在小组要测量护城河的宽度。
如图所示是护城河的一段,两岸ABCD ,河岸AB 上有一排大 树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD 的M 处测得∠α=36°,然后沿河岸走50米到达N 点,测得∠β=72°。
请你根据这些数据帮小明他们算出河宽FR (结果保留两位有效数字). (参考数据:sin 36°≈,cos 36°≈,tan36°≈,sin 72°≈,cos 72°≈,tan72°≈)
A
B C
北 东
A
B
)
E
F
α
β。