单纯形法的matlab实现(20200814192014)

合集下载

单纯形法matlab

单纯形法matlab

数学软件与实验数学与信息科学学院信息与计算科学单纯形法的Matlab程序如下:function [xx,fm]=myprgmh(m,n,A,b,c)B0=A(:,1:m);cb=c(:,1:m);xx=1:n;sgm=c-cb*B0^-1*A;h=-1;sta=ones(m,1);for i=m+1:nif sgm(i)>0h=1;endendwhile h>0[msg,mk]=max(sgm);for i=1:msta(i)=b(i)/A(i,mk);end[mst,mr]=min(sta);zy=A(mr,mk);for i=1:mif i==mrfor j=1:nA(i,j)=A(i,j)/zy;endb(i)=b(i)/zy;endendfor i=1:mif i~=mrfor j=1:nA(i,j)=A(i,j)-A(i,mk)*A(mr,j);endb(i)=b(i)-A(i,mk)*b(mr);endendB1=A(:,1:m);cb(mr)=c(mk);xx(mr)=mk;sgm=c-cb*B1*A;for i=m+1:nif sgm(i)>0h=1;endendendfm=c*xx;例题:编写下列求解如下线性规划问题的单纯形法函数min f'xs.t ax<=b(其中b>=0)函数形式function [x,fval,it,op]=singl(f,a,b) 输出中x为最优解fval为最优值it为迭代次数无最优解op=0有最优解op=1编写程序如下:function [x,fval,it,op]=singl(f,a,b)[m,n]=size(a);c=[a eye(m) b;f' zeros(1,m+1)];fval=0;x=zeros(m+n,1);op=1;it=0;e=zeros(1,m);lie=find(f<0);l=length(lie);while(l>0)for j=1:ld=find(c(:,lie(j)));d_l=length(d);if d_l>0for i=1:mif c(i,lie(j))>0e(i)=c(i,end)/c(i,lie(j));elsee(i)=inf;endend[g,h]=min(e);for w=1:m+1if w==hc(w,:)=c(w,:)/c(h,lie(j));elsec(w,:)=c(w,:)-c(h,:)*c(w,lie(j))/c(h,lie(j));endendit=it+1;elseop=0;endendlie=find(c(end,:)<0);l=length(lie);endfor i=1:(m+n)ix=find(c(:,i));if(length(ix)==1)&(ix<=m)&(c(ix,i)==1) x(i)=c(ix,end)elsex(i)=0endendfval=-c(end,end);。

matlab单纯形法

matlab单纯形法

%求解标准型线性规划:max c*x;s.t. A*x=b;x>=0%本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b %N是初始的基变量的下标%输出变量sol是最优解%输出变量val是最优值,kk是迭代次数function [sol,val,kk]=ssimplex(A,N)[mA,nA]=size(A);kk=0; %迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0 %已找到最优解flag=0;sol=zeros(1,nA-1);%给每个变量赋初值0for i=1:mA-1sol(N(i))=A(i,nA);%给基变量赋新值(替换0)end %给出最优解val=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0 %问题有无界解disp('have infinite solution!');flag=0;break;endendif flag %还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i; % 进基变量的下标endend %选择最大检验数纵向对应的变量为进基变量sita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i; %出基变量下标endend %选择最小的sita横向对应的变量为出基变量%以下更新Nfor i=1:mA-1if i==outbN(i)=inb;%以进基变量的下标替代出基变量的下标endend%以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);%将主元化为1for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A(i,inb);%将进基变量所在列除主元外的其余元素化为0endendendendend。

matlab linprog dual-simplex 对偶单纯形法

matlab linprog dual-simplex 对偶单纯形法

在 MATLAB 中,`linprog` 函数用于解决线性规划问题。

当您使用这个函数时,可以使用不同的算法,包括单纯形法和对偶单纯形法。

单纯形法和对偶单纯形法都是解决线性规划问题的常用方法。

* 单纯形法:这种方法首先从可行解集合中找到一个最优解,然后通过迭代过程逐步改进这个解,直到找到最优解。

* 对偶单纯形法:这种方法首先将原始问题转化为对偶问题,然后使用单纯形法解决对偶问题。

对偶问题通常更容易处理,特别是当原始问题的约束条件很多时。

在 MATLAB 中,`linprog` 函数默认使用对偶单纯形法来解决线性规划问题。

要指定使用对偶单纯形法,您可以在调用`linprog` 函数时设置 `Algorithm` 参数为 `'dual-simplex'`。

下面是一个示例代码,演示如何使用 `linprog` 函数并指定算法为 `'dual-simplex'` 来解决线性规划问题:```matlab% 定义线性规划问题的系数矩阵和常数向量A = [-3 -2; -1 -4];b = [-10; -20];c = [4; 3];% 指定算法为 'dual-simplex'options = optimoptions('linprog', 'Algorithm', 'dual-simplex');% 调用 linprog 函数求解线性规划问题[x, fval, exitflag, output] = linprog(c, A, b, [], [], [], options);% 输出结果disp('最优解:');disp(x);disp('最优值:');disp(fval);```请注意,上述示例中的系数矩阵和常数向量仅用于演示目的。

您需要根据您的实际问题来设置这些值。

Matlab单纯形法

Matlab单纯形法

• 线性规划问题 • 解决这一问题我们用的是linprog函数,linprog 函数求的是最小值,线性规划是求最大,所以 要在目标函数前加一个负号. • x = linprog( c , A , b , Aeq , beq , lb , ub , x0 )是求 解线性规划问题的命令。 • c是目标函数的系数向量,A是不等式约束 AX<=b的系数矩阵,b是不等式约束AX<=b的常 数项,Aeq是等式约束AeqX=beq的系数矩阵, beq是等式约束AeqX=beq的常数项,lb是X的下 限,ub是X的上限,X是向量[x1,x2,...xn]即决策 变量。
Matlab单纯形法
• 运行matlab会显示三个窗口,分别是变量窗 口,命令窗口和历史窗口。 • 在命令窗口中出现命令提示符 “>>”,就 可以输入命令,按回车键完成运算。 • 命令窗口的说明: • 1.在命令中,空格不参与运算。 • 2.几条命令可以写在同一行,用逗号隔开。 • 3.在命令窗口中不能返回到前面的命令行 进行修改后在重新执行。
• 如果模型中不包含不等式约束条件,可用 []代替A和b表示缺省;如果没有等式约 束条件,可用[]代替Aeq和beq表示缺省; 如果某个xi无下界或上界,可以设定lb(i) =-inf或ub(i)=inf; 用[x , Fval]代替上述各命令行中左边的x, 则可得到在最优解x处的b中,用[1 2 3]表示行向量;[1;2;3] 表示列向量;[1 2 3;4 5 6;7 8 9]表示矩阵。 • 矩阵按行输入,元素之间用空格或“,” 隔开,行与行之间用“;”隔开。 • 特殊命令创建矩阵a=[m:q:n],m是起始值;n 是终止值;q是增量。如a=[1:2:13] • 特殊矩阵建立:eye创建一个单位矩阵,如 eye(4);ones创建一个元素全是1的矩阵,如 ones(1,4);zeros创建一个全是0的矩阵,如 zeros(1,4).

单纯型法笔记及matlab实现

单纯型法笔记及matlab实现

1
2
2
a11 · · · . . B= . am1 · · · a1m . . . = [P1 , P2 , · · · , Pm ] ̸= 0 amm
基向量与基本解等定义
基 从矩阵 A 中任意选取 m 个列向量,构成子矩阵 B ,如果 B 是非奇异的,即 |B | ̸= 0 基向量 P1 , P2 , · · · , Pm 就是基向量 基变量 与基向量对应的变量称为基变量,记为 XB = (x1 , x2 , · · · , xm )T ,其余的变量成为 非基变量,记为 XN = (xm+1 , xm+2 , · · · , xn+m )T X = (XB , XN ) 基本解 设非基变量均为 0, 则 X = (x1 , x2 , · · · , xm , 0, 0, · · · , 0)。基变量 XB = (x1 , x2 , · · · , xm )T = B −1 b 基本解有下面三个必要条件: 1. 非 0 分量的个数 ⩽ m 2. m 个基变量所对应的系数矩阵 B 为非奇异的 3. 满足 m 个约束条件 可行解 满足所有约束方程的解 基本可行解 满足所有约束条件的基本解 可行基 对应于基本可行接的基 退化解 非 0 基变量个数小于 0 的基本可行解
0 1 · · · B = (P1 , P2 , · · · , Pm ) = . . . . . . 0 0 ··· 以 B 作为初始可行基,从公式(3.1)可得 xi = bi −
n +m ∑ j =m+1
aij xj
i = 1, 2, · · · , m
3.2
最优检验
对于标准化的线性规划问题,经过若干次的迭代后,如果对 xj 及 aij 重新编号,则约

单纯形法MATLAB程序

单纯形法MATLAB程序

单纯形法(Mat lab程序)%%单纯形法(Mat lab程序)a= input (' input the major matrix A '); b=input (' input the matrix b '); n=input C input the judgement ');%%为计数器(确定循环次数)萨0;while g<40%%确定非负alength=max(size(n));blength二max(size(b));m=0;for i=l:alength辻n(i)〉=0m二m+1;endend;if m==alengthx=b;breakend;%%找Ks二min(n);for i=l:alengthif n(i) ==sk二i;breakend;end;%%a[i,k]的非负性m=0;for i=l:blengthif a(i, k)<0m二m+1;end;end;if m==blengthdisp('x does not exit');judge二1;breakend;%%找L确定主元cc=100000;for i=l:blengthif a (i, k) >0if(b(i)/a(i, k))<cccc=b(i)/a(i, k);endend end; for i=l:blengthif a(i, k)~=0if (b(i)/a(i, k))==cc1二i;breakendend end; %%计算,a 标准化zu=a(l, k); aa=a; for i=l:1-1 for j=l:alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for i=l+l:blengthfor j=l :alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for j=l:alengthaa(l, j)=a(l, j)/zu; end;%%b 勺判别bb=b; bb(l)=b(l)/zu;for i=l: 1~1 bb(i)=b(i)~b⑴*a(i, k)/a(l, k);end;for i=l+l:blength bb(i)二b(i)-b(l)*a(i, k)/a(l, k);end;b二bb; %%确定判别数tt 二n;for j=l:alength11 (j) =n(j)-a(1, j)*n(k)/a(1, k) ; end; n=tt;a=aa;%%显示单纯形表sa sa二[b' aa;0 n];dispC单纯表示例’);disp(g+1);disp(sa);g二g+l;judge=2;end;if judge==2q二0; result=zeros (alength, 2); for j=l+q:alengthif n(j)=0 t=a(:, j) ; zu=find( t) ; resu lt( j, l)=j ; result (j, 2)=x(zu) ; q 二q+1 ;endif n(j)>0 result(j,l)=q+l; q=q+l;endend;dispC最优解’);disp (result);dispC循环次数');end。

实验二-MATLAB编程单纯形法求解

实验二-MATLAB编程单纯形法求解

北京联合大学实验报告项目名称:运筹学专题实验报告学院:自动化专业:物流工程班级: 1201B 学号:************* 姓名:管水城成绩:2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。

(2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。

设初始基为B,然后执行如下步骤: (1).解B Bx b=,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2).计算单纯形乘子w,BwB C =,得到1B wC B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令max{}k i Rσσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k kBy p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4).确定下标r,使{}:0min ,0t rrktktk b b tk y y t y y >=>且rB x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的是,为了提高运行速度。

实验报告(单纯形法的matlab程序)

实验报告(单纯形法的matlab程序)

实验报告(单纯形法的matlab程序)实验一:线性规划单纯形算法一、实验目的通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。

二、算法对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。

设初始基为B,然后执行如下步骤:(1).解B Bx b =,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i mB b i -=i 以b 记的第个分量(2).计算单纯形乘子w , B wB C =,得到1B w C B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i Rz c σ∈=-,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步(3).解k k By p =,得到1kk y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4).(4).确定下标r,使{}:0min ,0t rrk tk tk b b tk y y t y y >=>且r B x 为离基变量。

k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。

对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。

对于极大化问题,应令min{}k k j j z c z c -=-四、计算框图是否是否五、计算程序function [x,f]=zuiyouhua(A,b,c)初始可行解B 令1,0,B N B B x B b b x f c x -==== 计算单纯形乘子1B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量)令max{,}k j j R σσ=∈ 0?k σ≤ 得到最优解解方程k k By p =,得到1k k y B p -=。

单纯形法的matlab编程

单纯形法的matlab编程

单纯形法的matlab实现首先输入三个值系数矩阵A目标函数系数行向量C列向量b根据大M法进行扩列A,C,b.使得行数不变,列数增加M 进行的到基向量的坐标,非基变量的坐Cb,Cn,Xb,Xn,此时的值便是典式,不在需要进行进一步化简,只需求解检验变量delta的值迭代过程输入上一步得到A,C,b,Cb,Cn,Xb,Xn,输出值为最优解为X,得到目标函数的最优解Z的值迭代循化用while循环当找到解时结束循环break或者当发现循化结果没有最优解时跳出循环,这里涉及两个判断,两个判断量初始值都可以写在循环外,两者的值共同决定循环的执行与否循化最开始进行判断初始可行解是否为最最优解,若是直接跳出循化,若上面的判断不成立,接下来进行下一个判断,若不符合进行下面入基和出基变量的选值入基和出基变量的循化是两次循化,第一次找到k的值,第二次根据上一次的k找r的值注意因为值有约束,而且是找函数最小值,需要对这个列向量进行变换一下将小于等于0的都变成无穷大,接下来进形下一次的循化,进而找到转轴元将A,b,delta合成一个新的矩阵,进行旋转变化,得到值后反变回相应的值,接下来需要对Xb,Xn的值进行交换这个步骤要两个循环,第一个循化对Ark的所在行进行变化,接下来进行对整个矩阵进行行变换,包括两种情况,两次循化嵌套分别是r==1时和r~=1的时候建立总体X的坐标列向量发生交换时出基变量找Xb,入基变量从X中找有先后顺序先解决Xn的变化。

在解决Xb的值直接解决基变量其他为0A=input('输入系数矩阵\n');b=input('输入列向量b\n');C=input('输入目标函数行向量\n');M=5200;global m;global n;global X;[m,n]=size(A);I=eye(m);A=[A,I];Xb=[];Xn=[];for i=1:mC(i+n)=-M;Xb(i)=n+i;endXb=Xb';Cb=C(1,n+1:n+m);for i=1:nXn(i)=i;endXn=Xn';X=[Xn;Xb];[m,n]=size(A);diedai(A,C,b,Cb,Xb);function[Z]=diedai(A,C,b,Cb,Xb)delta=C-Cb*A;global m;global n;global X;while1s2=0;s1=0;for j=1:nif delta(j)>0s1=1;for i=1:mif A(i,j)>0s2=1;endendendendif s1==0disp('目标函数最优解')Z=Cb*b;disp(Z)disp('基变量为');[Xb,index]=sort(Xb);disp(Xb)b=b(index);disp('基可行解为');disp(b)break;endif s2==0disp('目标函数无界,无最优解');break;end[~,k]=max(delta);p=A(:,k);zhuan=[];for i=1:mzhuan(i)=b(i)/p(i);if zhuan(i)<=0zhuan(i)=inf;endend[~,r]=min(zhuan);b(m+1)=0;Z=[A;delta];Z=[Z,b];z=Z;ark=A(r,k);for j=1:n+1Z(r,j)=Z(r,j)/ark;endif r==1for i=2:m+1for j=1:n+1Z(i,j)=Z(i,j)-z(i,k)*Z(r,j);endendelse for i=[1:r-1,r+1:m+1]for j=1:n+1Z(i,j)=Z(i,j)-z(i,k)*Z(r,j);endendendA=Z(1:m,1:n);delta=Z(m+1,1:n);b=Z(1:m,n+1);Cb(r)=C(k);Xb(r)=X(k);endend。

线性规划单纯形法matlab解法

线性规划单纯形法matlab解法

%单纯形法matlab程序-ssimplex% 求解标准型线性规划:max c*x; . A*x=b; x>=0% 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b% N是初始的基变量的下标% 输出变量sol是最优解, 其中松弛变量(或剩余变量)可能不为0% 输出变量val是最优目标值,kk是迭代次数% 例:max 2*x1+3*x2% . x1+2*x2<=8% 4*x1<=16% 4*x2<=12% x1,x2>=0% 加入松驰变量,化为标准型,得到% A=[1 2 1 0 0 8;% 4 0 0 1 0 16;% 0 4 0 0 1 12;% 2 3 0 0 0 0];% N=[3 4 5];% [sol,val,kk]=ssimplex(A,N)% 然后执行 [sol,val,kk]=ssimplex(A,N)就可以了。

function [sol,val,kk]=ssimplex(A,N)[mA,nA]=size(A);kk=0; % 迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0 % 已找到最优解flag=0;sol=zeros(1,nA-1);for i=1:mA-1sol(N(i))=A(i,nA);endval=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0 % 问题有无界解disp('have infinite solution!');flag=0;break;endendif flag % 还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i; % 进基变量的下标endendsita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i; % 出基变量下标endend% 以下更新Nfor i=1:mA-1if i==outbN(i)=inb;endend% 以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A( i,inb);EndEndEndEndend。

单纯形方法(Simplex Method)Matlab 仿真详解

单纯形方法(Simplex Method)Matlab 仿真详解

最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M 算法和分段法的仿真,拿出来与大家分享一下。

单纯形方法是求解线性规划问题的一种基本方法。

单纯形方法基本步骤如下: 1) 将所给的线性规划问题化为标准形式:min ()..0Tf x c x s t Ax bx ==≥s.t.是英文subject to 的简写,意思是受约束,也就是说第一个方程(目标函数)受到后面两个方程的约束。

对于求最大值问题可以将目标函数加负号转换为最小值问题。

max ()min ()T T f x c x f x c x =⇒=-其他的问题就是将实际问题中的不等式约束改为等式约束,主要方法是引进松弛变量和剩余变量,以及将自有变量转换为非负变量。

①对于不等式1b ,1,2,nij ji j a xi m =≤=∑ ,引入松弛变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=++==≥=∑②对于不等式1b ,1,2,nij ji j a xi m =≥=∑ ,引入剩余变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=+-==≥=∑③若变量为自有变量(可取正、负或零,符号无限制),则引入两个非负变量将其表示如下:j j j j j x x x x x '''⎧=-⎪'≥⎨⎪''≥⎩ 2)找出一个初始可行基B ,作出单纯形表,这里假设输入的线性规划问题已经有初始可行基。

0T c S A b ⎡⎤=⎢⎥⎢⎦⎣3)测试所有的检验数(目标函数的系数C ),记录检验数中的正数,若全部小于等于0,则已经找到最优解,计算终止。

否则转至4)。

4)测试所有为正的检验数,若在单纯性表中,其所在的列中其他元素全部小于等于0,则此问题无最优解,计算终止,否则转至5)。

单纯形法的MATLAB代码

单纯形法的MATLAB代码

单纯形法的MATLAB代码% 求解标准型线性规划:max c*x; s.t. A*x=b;x>=0%A1是标准系数矩阵及最后一列是资源向量,C是目标函数的系数向量% N是(初始的)基变量的下标%M=10000 人工变量系数% 本函数中的A是单纯形表,包括:最后一行是初始的检验数,最后一列是资源向量b%c1是基变量系数%输出变量sol是最优解%输出变量val是最优值,k是迭代次数%flag1的值代表有无最优解,0无界解,1无可行解,2无穷多解,3唯一最优解function [sol,val,k,flag1]=ssimplex(A1,C,N)M=10000;[mA1,nA1]=size(A1);C1=[C,0];val=zeros(1,length(C));for i=1:length(N)c1(i)=C1(N(i));endfor i=1:nA1a(i)=C1(i)-c1*A1(:,i);%计算初始检验数endA=[A1;a]; %构造初始单纯形表[mA,nA]=size(A);k=0; % 迭代次数flag=1;while flagfor i=1:(nA-1)if A(mA,i)<=0flag=0;elseflag=1;break;endendif flag==0 % 已找到最优解val1=A(1:(mA-1),nA)';for i=1:length(N)if (val1(i)~=0&&abs(C(N(i)))==M)disp('无可行解');sol=inf;val=inf;flag3=0;flag1=1;break;elseflag3=1;endendif flag3if length(find(A(mA,1:(nA-1))==0))>length(N) disp('存在无穷多最优解');flag1=2;elsedisp('存在最优解');flag1=3;endsol=c1*val1';endelseif flag==1for j=1:(mA-1)if A(j,i)<=0flag2=1;elseflag2=0;break;endendif flag==1&&flag2==1disp('此线性规划问题存在无界解');sol=inf;val=inf;flag1=0;flag=0; %跳出while循环break;endmaxq=max(A(mA,1:(nA-1)));[m,nb]=find(A(mA,:)==maxq); %确定入基变量的纵坐标for s=1:(mA-1)if A(s,nb)>0temp(s)=A(s,nA)/A(s,nb);elsetemp(s)=10000;endendk=k+1;mino=min(temp);[n,mb]=find(temp==mino); %确定入基变量的横坐标if length(mb)>1mb=mb(1);endab=A(mb,nb);A2=A;for i=1:(mA-1)for j=1:nAif i==mbA(mb,j)=A2(mb,j)/ab;elseA(i,j)=A2(i,j)-A2(i,nb)*(A2(mb,j)/ab); endendendfor i=1:length(N)if i==mbN(i)=nb;endendfor i=1:length(N)c1(i)=C(N(i));endfor i=1:nAA(mA,i)=C1(i)-c1*A(1:(mA-1),i); endendendif sol~=inffor i=1:length(C)for j=1:length(N)if i==N(j) val(i)=val1(j); endendendend。

matlab 单纯形下山法

matlab 单纯形下山法

matlab 单纯形下山法Matlab是一种强大的数值计算和科学编程工具,被广泛应用于数学、工程和科学领域。

在数值优化领域中,Matlab提供了多种解决方案,其中单纯形下山法是一种常见且有效的优化算法。

本文将以“Matlab单纯形下山法”为主题,逐步讲解这一算法的实现及应用。

本文将分为以下几个部分进行讲解:1. 单纯形下山法的基本原理2. Matlab中实现单纯形下山法的方法与步骤3. 使用Matlab进行单纯形下山法求解实际问题的案例分析1. 单纯形下山法的基本原理单纯形下山法是一种基于迭代优化的方法,用于无约束的非线性优化问题。

它通过不断缩小搜索空间,并找到局部最优解。

其基本思想是在多面体中不断移动,直至找到“山脚”,即局部最优解。

单纯形下山法的流程通常包括以下几个步骤:a. 初始化:随机生成一个多面体,定义初始顶点。

b. 计算顶点的函数值:根据优化问题,计算多面体顶点的目标函数值。

c. 选择最优顶点:找到目标函数值最小的顶点,并根据一定的规则选择下一个顶点。

d. 调整多面体:通过调整顶点的位置,缩小搜索空间。

e. 重复步骤c和d,直至满足停止条件。

2. Matlab中实现单纯形下山法的方法与步骤在Matlab中,我们可以通过优化工具箱中的函数`fminsearch`实现单纯形下山法。

具体步骤如下:a. 定义需要最小化的目标函数,例如f(x)=x^2。

b. 调用`fminsearch`函数,传入目标函数和初始点,例如`[x,fval] = fminsearch(@myfunc, x0)`。

c. 在目标函数文件`myfunc.m`中,根据输入的点计算目标函数的值,例如`function f = myfunc(x) f = x^2;`。

d. 根据需要设置停止条件,例如最大迭代次数、目标函数值的精度等。

e. 根据实际问题可能需要针对具体情况调整其他参数。

3. 使用Matlab进行单纯形下山法求解实际问题的案例分析为了更好地理解和应用单纯形下山法,在这里我们将以一个简单的函数优化问题为例进行说明。

单纯形法的MATLAB实现

单纯形法的MATLAB实现

clearclcM=1000000;A=[3,2,-3,1,0;1,-2,1,0,1];%约束矩阵C=[-3,1,2,M,M,0];%价值矩阵B=[6,4]';%右端向量s=find(C<0);f=length(s);while(f)for k=1:length(s)x=find(A(:,s(k))>0);y=find(B(x)./A(x,s(1))==min(B(x)./A(x,s(1))));%选择的要有正元素if(length(x)+1==1)break;endendy=x(y);%找到的xj的行数aa=A(y,s(k));%找到的xjA(y,:)=A(y,:)./aa;B(y,:)=B(y,:)./aa;z=find(A(:,s(k)));%除去找到的行z(find(z==y))=[];for i=1:length(z);yz=-A(z(i),s(k));A(z(i),:)=A(z(i),:)+A(y,:)*yz;disp('*')B(z(i),:)=B(z(i),:)+B(y,:).*yz;enddisp('转换后')A=AB=BAB=[A,B];C=C+AB(y,:)*(-C(s(k)))s=find(C<0);vpa([A,B;C]);s=find(C<0);f=length(s);end-C(length(C))%最有解:max 2*x1+3*x2s.t. x1+2*x2<=84*x1<=164*x2<=12x1,x2>=0加入松驰变量,化为标准型,得到A=[1 2 1 0 0 8;4 0 0 1 0 16;0 4 0 0 1 12;2 3 0 0 0 0];N=[3 4 5];然后执行? [sol,val,kk]=ssimplex(A,N)就可以了。

注:基变量对应的基矩阵一定是单位阵。

(这一局限将在后面的升级是改善)% 求解标准型线性规划:max c*x;s.t. A*x=b;x>=0% 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b % N是初始的基变量的下标%输出变量sol是最优解%输出变量val是最优值,kk是迭代次数function [sol,val,kk]=ssimplex(A,N)[mA,nA]=size(A);kk=0; %迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0 % 已找到最优解flag=0;sol=zeros(1,nA-1);for i=1:mA-1sol(N(i))=A(i,nA);endval=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0 %? 问题有无界解disp('have infinite solution!');flag=0;break;endendif flag % 还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i; % 进基变量的下标endendsita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i; %出基变量下标endend%以下更新Nfor i=1:mA-1if i==outbN(i)=inb;endend% 以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A(i,inb);endendendendend。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大连民族学院
数学实验报告
课程:____________________ 最优化方法______________________ 实验题目: ___________ 单纯形法的matlab实现 ___________________ 系别:______________________ 理学院________________________ 专业:__________________ 信息与计算科学____________________ 姓名:__________________________________________________ 班级:_____________________ 信息102班 ____________________ 指导教师:___________________ 葛仁东_______________________ 完成学期:2013 年__9 ___________ 月_2________ 日
实验目的:
实验方法和步骤(包括数值公式、算法步骤、程序) :
考察标准形式的线性规划问题:
min f(x) C T x
s.t Ax b, x 0
设x(k)F为一个基本可行解,单纯形方法首先检验它的最优性。

如果它不是最优的,确定与该顶点相连的一条使目标函数下降的边;接下来确定沿这个边移
动多远可以到达另一个更优的相邻点,也就是得出一个新的基本可行解
算法步骤:
步骤1给定一个初始基本可行解,记迭代次数 k 1 ;
步骤2 :计算单纯形乘子y k B k T c B k)和简约价值系数向量C N k) c N k) N T y k ; 步骤3 :最优性检验,计算C?k) min{C (k)|j 2},如果C?k) 0,则x (k)为最优解,
停止迭代;否则有x p 0,选x p 为入基变量;
步骤4:确定出基变量,计算g k) B k 1a p ,如果对所有j B k ,有器)0,则问题
无有界的最优解,停止迭代;否则确定出基变量指标
步骤5:交换B k 的列a q 与N k 的列a p 得到新的基矩阵 盼和山+1,计算新的基本可 行解
x (k1),置k:k 1后转步骤
2;
在上述算法中,当存在不止一个简约价值系数 C j k) 0时,选取最负的©“的 指标为p ,并以X p 作为入基变量。

Matlab 计算程序:
Function] x,f]=zuiyouhua(A,b,c) Size(A)=[m, n]; i=n+1: n+m; N=1: n;
B=eye(m,m); xb=b '; xn=zeros(m,1); f1=0; w=zeros(1,m); z=-c; flag=1; while(1) [a,k]=max(z); If a<=0 flag=0; break else
y=i nv(B)*A(:,k)
b (k)
B k };
min{ _(k )殆 0, j
if y<=0
flag=O;
fprintf( '不存在最优解’)
break
end
t=fi nd(y>0);
[a,rl]=mi n(bl(t)/y(t)) r=t(rl);
i(:,k)=k
B(:,k)=A(:,k); cb=C(:,i); xb=i nv(B)*b; bO=xb;
x=zeros(1, n+m) x(:,i)=xb '
f=cb*xb z=cb* in v(B)*A-C;
end
end
实验数据和分析:
根据题意,可以列出以下8种可能的切割方案,其目标是使总剩余的废料最小。

设X“X2L x8分别代表采用切割方案1~8的套数,f(x)表示总剩余的废料, 则上述问题的线性规划如下:
min f (x)0.1x10.3X20.9x3 0x4 1.1x50.2X60.8x7 1.4x8
2X1X2 x3x4100
2X2 X33X52X,X7100
st
x1x33X42X63X74X8100
X1,X2,X3,X4,X5,X6,X7,X 0
在matlab的输入区域输入:
A=[2,1,1,1,0,0,0,0;0,2,1,0,3,2,1,0;1,0,1,3,0,2,3,4];
b=[100,100,100 ]';
c=[,,,0,,,,];
[x,f]=zuiyouhua(A,b,c)
Matlab输出内容:
x=10 50 0 30 0 0 0 0
f=-16
结果分析:
可以看出只需要90根原料,其中,方案1需要10根,方案2需要50根, 方案4需要30根,即可达到要求,此时总剩余废料最小,为16m
附:
万案合计余料
1201
2120
3111
41030
5030
6022
7013
80046
实验的启示:
通过本次实验加深了我对单纯形法的进一步理解,利用matlab程序求解线性规划问题,在生活中有不少问题都是线性规划问题。

例如本次实验中的钢材
下料问题,学习用已学习的知识解决实际问题是我们的最终目标。

相关文档
最新文档